xref: /openbmc/linux/mm/kmemleak.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102 
103 /*
104  * Kmemleak configuration and common defines.
105  */
106 #define MAX_TRACE		16	/* stack trace length */
107 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
109 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111 
112 #define BYTES_PER_POINTER	sizeof(void *)
113 
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 				 __GFP_NOWARN)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long start;
123 	size_t size;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * rb_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	raw_spinlock_t lock;
139 	unsigned int flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct rb_node rb_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* pass surplus references to this pointer */
149 	unsigned long excess_ref;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN	(1 << 3)
173 
174 #define HEX_PREFIX		"    "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE		16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE		1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII		1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES		2
183 
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* protecting the access to object_list and object_tree_root */
195 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
196 
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200 
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211 
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215 
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230 
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233 
234 static void kmemleak_disable(void);
235 
236 /*
237  * Print a warning and dump the stack trace.
238  */
239 #define kmemleak_warn(x...)	do {		\
240 	pr_warn(x);				\
241 	dump_stack();				\
242 	kmemleak_warning = 1;			\
243 } while (0)
244 
245 /*
246  * Macro invoked when a serious kmemleak condition occurred and cannot be
247  * recovered from. Kmemleak will be disabled and further allocation/freeing
248  * tracing no longer available.
249  */
250 #define kmemleak_stop(x...)	do {	\
251 	kmemleak_warn(x);		\
252 	kmemleak_disable();		\
253 } while (0)
254 
255 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
256 	if (seq)					\
257 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
258 	else						\
259 		pr_warn(fmt, ##__VA_ARGS__);		\
260 } while (0)
261 
262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 				 int rowsize, int groupsize, const void *buf,
264 				 size_t len, bool ascii)
265 {
266 	if (seq)
267 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 			     buf, len, ascii);
269 	else
270 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 			       rowsize, groupsize, buf, len, ascii);
272 }
273 
274 /*
275  * Printing of the objects hex dump to the seq file. The number of lines to be
276  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278  * with the object->lock held.
279  */
280 static void hex_dump_object(struct seq_file *seq,
281 			    struct kmemleak_object *object)
282 {
283 	const u8 *ptr = (const u8 *)object->pointer;
284 	size_t len;
285 
286 	/* limit the number of lines to HEX_MAX_LINES */
287 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288 
289 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
290 	kasan_disable_current();
291 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 	kasan_enable_current();
294 }
295 
296 /*
297  * Object colors, encoded with count and min_count:
298  * - white - orphan object, not enough references to it (count < min_count)
299  * - gray  - not orphan, not marked as false positive (min_count == 0) or
300  *		sufficient references to it (count >= min_count)
301  * - black - ignore, it doesn't contain references (e.g. text section)
302  *		(min_count == -1). No function defined for this color.
303  * Newly created objects don't have any color assigned (object->count == -1)
304  * before the next memory scan when they become white.
305  */
306 static bool color_white(const struct kmemleak_object *object)
307 {
308 	return object->count != KMEMLEAK_BLACK &&
309 		object->count < object->min_count;
310 }
311 
312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 	return object->min_count != KMEMLEAK_BLACK &&
315 		object->count >= object->min_count;
316 }
317 
318 /*
319  * Objects are considered unreferenced only if their color is white, they have
320  * not be deleted and have a minimum age to avoid false positives caused by
321  * pointers temporarily stored in CPU registers.
322  */
323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 		time_before_eq(object->jiffies + jiffies_min_age,
327 			       jiffies_last_scan);
328 }
329 
330 /*
331  * Printing of the unreferenced objects information to the seq file. The
332  * print_unreferenced function must be called with the object->lock held.
333  */
334 static void print_unreferenced(struct seq_file *seq,
335 			       struct kmemleak_object *object)
336 {
337 	int i;
338 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339 
340 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 		   object->pointer, object->size);
342 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 		   object->comm, object->pid, object->jiffies,
344 		   msecs_age / 1000, msecs_age % 1000);
345 	hex_dump_object(seq, object);
346 	warn_or_seq_printf(seq, "  backtrace:\n");
347 
348 	for (i = 0; i < object->trace_len; i++) {
349 		void *ptr = (void *)object->trace[i];
350 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
351 	}
352 }
353 
354 /*
355  * Print the kmemleak_object information. This function is used mainly for
356  * debugging special cases when kmemleak operations. It must be called with
357  * the object->lock held.
358  */
359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 	pr_notice("Object 0x%08lx (size %zu):\n",
362 		  object->pointer, object->size);
363 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
364 		  object->comm, object->pid, object->jiffies);
365 	pr_notice("  min_count = %d\n", object->min_count);
366 	pr_notice("  count = %d\n", object->count);
367 	pr_notice("  flags = 0x%x\n", object->flags);
368 	pr_notice("  checksum = %u\n", object->checksum);
369 	pr_notice("  backtrace:\n");
370 	stack_trace_print(object->trace, object->trace_len, 4);
371 }
372 
373 /*
374  * Look-up a memory block metadata (kmemleak_object) in the object search
375  * tree based on a pointer value. If alias is 0, only values pointing to the
376  * beginning of the memory block are allowed. The kmemleak_lock must be held
377  * when calling this function.
378  */
379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 	struct rb_node *rb = object_tree_root.rb_node;
382 
383 	while (rb) {
384 		struct kmemleak_object *object =
385 			rb_entry(rb, struct kmemleak_object, rb_node);
386 		if (ptr < object->pointer)
387 			rb = object->rb_node.rb_left;
388 		else if (object->pointer + object->size <= ptr)
389 			rb = object->rb_node.rb_right;
390 		else if (object->pointer == ptr || alias)
391 			return object;
392 		else {
393 			kmemleak_warn("Found object by alias at 0x%08lx\n",
394 				      ptr);
395 			dump_object_info(object);
396 			break;
397 		}
398 	}
399 	return NULL;
400 }
401 
402 /*
403  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404  * that once an object's use_count reached 0, the RCU freeing was already
405  * registered and the object should no longer be used. This function must be
406  * called under the protection of rcu_read_lock().
407  */
408 static int get_object(struct kmemleak_object *object)
409 {
410 	return atomic_inc_not_zero(&object->use_count);
411 }
412 
413 /*
414  * Memory pool allocation and freeing. kmemleak_lock must not be held.
415  */
416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 	unsigned long flags;
419 	struct kmemleak_object *object;
420 
421 	/* try the slab allocator first */
422 	if (object_cache) {
423 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 		if (object)
425 			return object;
426 	}
427 
428 	/* slab allocation failed, try the memory pool */
429 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
430 	object = list_first_entry_or_null(&mem_pool_free_list,
431 					  typeof(*object), object_list);
432 	if (object)
433 		list_del(&object->object_list);
434 	else if (mem_pool_free_count)
435 		object = &mem_pool[--mem_pool_free_count];
436 	else
437 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
439 
440 	return object;
441 }
442 
443 /*
444  * Return the object to either the slab allocator or the memory pool.
445  */
446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 	unsigned long flags;
449 
450 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 		kmem_cache_free(object_cache, object);
452 		return;
453 	}
454 
455 	/* add the object to the memory pool free list */
456 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
457 	list_add(&object->object_list, &mem_pool_free_list);
458 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460 
461 /*
462  * RCU callback to free a kmemleak_object.
463  */
464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 	struct hlist_node *tmp;
467 	struct kmemleak_scan_area *area;
468 	struct kmemleak_object *object =
469 		container_of(rcu, struct kmemleak_object, rcu);
470 
471 	/*
472 	 * Once use_count is 0 (guaranteed by put_object), there is no other
473 	 * code accessing this object, hence no need for locking.
474 	 */
475 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 		hlist_del(&area->node);
477 		kmem_cache_free(scan_area_cache, area);
478 	}
479 	mem_pool_free(object);
480 }
481 
482 /*
483  * Decrement the object use_count. Once the count is 0, free the object using
484  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485  * delete_object() path, the delayed RCU freeing ensures that there is no
486  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487  * is also possible.
488  */
489 static void put_object(struct kmemleak_object *object)
490 {
491 	if (!atomic_dec_and_test(&object->use_count))
492 		return;
493 
494 	/* should only get here after delete_object was called */
495 	WARN_ON(object->flags & OBJECT_ALLOCATED);
496 
497 	/*
498 	 * It may be too early for the RCU callbacks, however, there is no
499 	 * concurrent object_list traversal when !object_cache and all objects
500 	 * came from the memory pool. Free the object directly.
501 	 */
502 	if (object_cache)
503 		call_rcu(&object->rcu, free_object_rcu);
504 	else
505 		free_object_rcu(&object->rcu);
506 }
507 
508 /*
509  * Look up an object in the object search tree and increase its use_count.
510  */
511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	rcu_read_lock();
517 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
518 	object = lookup_object(ptr, alias);
519 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
520 
521 	/* check whether the object is still available */
522 	if (object && !get_object(object))
523 		object = NULL;
524 	rcu_read_unlock();
525 
526 	return object;
527 }
528 
529 /*
530  * Remove an object from the object_tree_root and object_list. Must be called
531  * with the kmemleak_lock held _if_ kmemleak is still enabled.
532  */
533 static void __remove_object(struct kmemleak_object *object)
534 {
535 	rb_erase(&object->rb_node, &object_tree_root);
536 	list_del_rcu(&object->object_list);
537 }
538 
539 /*
540  * Look up an object in the object search tree and remove it from both
541  * object_tree_root and object_list. The returned object's use_count should be
542  * at least 1, as initially set by create_object().
543  */
544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 {
546 	unsigned long flags;
547 	struct kmemleak_object *object;
548 
549 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
550 	object = lookup_object(ptr, alias);
551 	if (object)
552 		__remove_object(object);
553 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
554 
555 	return object;
556 }
557 
558 /*
559  * Save stack trace to the given array of MAX_TRACE size.
560  */
561 static int __save_stack_trace(unsigned long *trace)
562 {
563 	return stack_trace_save(trace, MAX_TRACE, 2);
564 }
565 
566 /*
567  * Create the metadata (struct kmemleak_object) corresponding to an allocated
568  * memory block and add it to the object_list and object_tree_root.
569  */
570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 					     int min_count, gfp_t gfp)
572 {
573 	unsigned long flags;
574 	struct kmemleak_object *object, *parent;
575 	struct rb_node **link, *rb_parent;
576 	unsigned long untagged_ptr;
577 
578 	object = mem_pool_alloc(gfp);
579 	if (!object) {
580 		pr_warn("Cannot allocate a kmemleak_object structure\n");
581 		kmemleak_disable();
582 		return NULL;
583 	}
584 
585 	INIT_LIST_HEAD(&object->object_list);
586 	INIT_LIST_HEAD(&object->gray_list);
587 	INIT_HLIST_HEAD(&object->area_list);
588 	raw_spin_lock_init(&object->lock);
589 	atomic_set(&object->use_count, 1);
590 	object->flags = OBJECT_ALLOCATED;
591 	object->pointer = ptr;
592 	object->size = size;
593 	object->excess_ref = 0;
594 	object->min_count = min_count;
595 	object->count = 0;			/* white color initially */
596 	object->jiffies = jiffies;
597 	object->checksum = 0;
598 
599 	/* task information */
600 	if (in_irq()) {
601 		object->pid = 0;
602 		strncpy(object->comm, "hardirq", sizeof(object->comm));
603 	} else if (in_serving_softirq()) {
604 		object->pid = 0;
605 		strncpy(object->comm, "softirq", sizeof(object->comm));
606 	} else {
607 		object->pid = current->pid;
608 		/*
609 		 * There is a small chance of a race with set_task_comm(),
610 		 * however using get_task_comm() here may cause locking
611 		 * dependency issues with current->alloc_lock. In the worst
612 		 * case, the command line is not correct.
613 		 */
614 		strncpy(object->comm, current->comm, sizeof(object->comm));
615 	}
616 
617 	/* kernel backtrace */
618 	object->trace_len = __save_stack_trace(object->trace);
619 
620 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
621 
622 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 	min_addr = min(min_addr, untagged_ptr);
624 	max_addr = max(max_addr, untagged_ptr + size);
625 	link = &object_tree_root.rb_node;
626 	rb_parent = NULL;
627 	while (*link) {
628 		rb_parent = *link;
629 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 		if (ptr + size <= parent->pointer)
631 			link = &parent->rb_node.rb_left;
632 		else if (parent->pointer + parent->size <= ptr)
633 			link = &parent->rb_node.rb_right;
634 		else {
635 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 				      ptr);
637 			/*
638 			 * No need for parent->lock here since "parent" cannot
639 			 * be freed while the kmemleak_lock is held.
640 			 */
641 			dump_object_info(parent);
642 			kmem_cache_free(object_cache, object);
643 			object = NULL;
644 			goto out;
645 		}
646 	}
647 	rb_link_node(&object->rb_node, rb_parent, link);
648 	rb_insert_color(&object->rb_node, &object_tree_root);
649 
650 	list_add_tail_rcu(&object->object_list, &object_list);
651 out:
652 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
653 	return object;
654 }
655 
656 /*
657  * Mark the object as not allocated and schedule RCU freeing via put_object().
658  */
659 static void __delete_object(struct kmemleak_object *object)
660 {
661 	unsigned long flags;
662 
663 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 	WARN_ON(atomic_read(&object->use_count) < 1);
665 
666 	/*
667 	 * Locking here also ensures that the corresponding memory block
668 	 * cannot be freed when it is being scanned.
669 	 */
670 	raw_spin_lock_irqsave(&object->lock, flags);
671 	object->flags &= ~OBJECT_ALLOCATED;
672 	raw_spin_unlock_irqrestore(&object->lock, flags);
673 	put_object(object);
674 }
675 
676 /*
677  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678  * delete it.
679  */
680 static void delete_object_full(unsigned long ptr)
681 {
682 	struct kmemleak_object *object;
683 
684 	object = find_and_remove_object(ptr, 0);
685 	if (!object) {
686 #ifdef DEBUG
687 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 			      ptr);
689 #endif
690 		return;
691 	}
692 	__delete_object(object);
693 }
694 
695 /*
696  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697  * delete it. If the memory block is partially freed, the function may create
698  * additional metadata for the remaining parts of the block.
699  */
700 static void delete_object_part(unsigned long ptr, size_t size)
701 {
702 	struct kmemleak_object *object;
703 	unsigned long start, end;
704 
705 	object = find_and_remove_object(ptr, 1);
706 	if (!object) {
707 #ifdef DEBUG
708 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 			      ptr, size);
710 #endif
711 		return;
712 	}
713 
714 	/*
715 	 * Create one or two objects that may result from the memory block
716 	 * split. Note that partial freeing is only done by free_bootmem() and
717 	 * this happens before kmemleak_init() is called.
718 	 */
719 	start = object->pointer;
720 	end = object->pointer + object->size;
721 	if (ptr > start)
722 		create_object(start, ptr - start, object->min_count,
723 			      GFP_KERNEL);
724 	if (ptr + size < end)
725 		create_object(ptr + size, end - ptr - size, object->min_count,
726 			      GFP_KERNEL);
727 
728 	__delete_object(object);
729 }
730 
731 static void __paint_it(struct kmemleak_object *object, int color)
732 {
733 	object->min_count = color;
734 	if (color == KMEMLEAK_BLACK)
735 		object->flags |= OBJECT_NO_SCAN;
736 }
737 
738 static void paint_it(struct kmemleak_object *object, int color)
739 {
740 	unsigned long flags;
741 
742 	raw_spin_lock_irqsave(&object->lock, flags);
743 	__paint_it(object, color);
744 	raw_spin_unlock_irqrestore(&object->lock, flags);
745 }
746 
747 static void paint_ptr(unsigned long ptr, int color)
748 {
749 	struct kmemleak_object *object;
750 
751 	object = find_and_get_object(ptr, 0);
752 	if (!object) {
753 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 			      ptr,
755 			      (color == KMEMLEAK_GREY) ? "Grey" :
756 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 		return;
758 	}
759 	paint_it(object, color);
760 	put_object(object);
761 }
762 
763 /*
764  * Mark an object permanently as gray-colored so that it can no longer be
765  * reported as a leak. This is used in general to mark a false positive.
766  */
767 static void make_gray_object(unsigned long ptr)
768 {
769 	paint_ptr(ptr, KMEMLEAK_GREY);
770 }
771 
772 /*
773  * Mark the object as black-colored so that it is ignored from scans and
774  * reporting.
775  */
776 static void make_black_object(unsigned long ptr)
777 {
778 	paint_ptr(ptr, KMEMLEAK_BLACK);
779 }
780 
781 /*
782  * Add a scanning area to the object. If at least one such area is added,
783  * kmemleak will only scan these ranges rather than the whole memory block.
784  */
785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 {
787 	unsigned long flags;
788 	struct kmemleak_object *object;
789 	struct kmemleak_scan_area *area = NULL;
790 
791 	object = find_and_get_object(ptr, 1);
792 	if (!object) {
793 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
794 			      ptr);
795 		return;
796 	}
797 
798 	if (scan_area_cache)
799 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800 
801 	raw_spin_lock_irqsave(&object->lock, flags);
802 	if (!area) {
803 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 		/* mark the object for full scan to avoid false positives */
805 		object->flags |= OBJECT_FULL_SCAN;
806 		goto out_unlock;
807 	}
808 	if (size == SIZE_MAX) {
809 		size = object->pointer + object->size - ptr;
810 	} else if (ptr + size > object->pointer + object->size) {
811 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 		dump_object_info(object);
813 		kmem_cache_free(scan_area_cache, area);
814 		goto out_unlock;
815 	}
816 
817 	INIT_HLIST_NODE(&area->node);
818 	area->start = ptr;
819 	area->size = size;
820 
821 	hlist_add_head(&area->node, &object->area_list);
822 out_unlock:
823 	raw_spin_unlock_irqrestore(&object->lock, flags);
824 	put_object(object);
825 }
826 
827 /*
828  * Any surplus references (object already gray) to 'ptr' are passed to
829  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830  * vm_struct may be used as an alternative reference to the vmalloc'ed object
831  * (see free_thread_stack()).
832  */
833 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
834 {
835 	unsigned long flags;
836 	struct kmemleak_object *object;
837 
838 	object = find_and_get_object(ptr, 0);
839 	if (!object) {
840 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
841 			      ptr);
842 		return;
843 	}
844 
845 	raw_spin_lock_irqsave(&object->lock, flags);
846 	object->excess_ref = excess_ref;
847 	raw_spin_unlock_irqrestore(&object->lock, flags);
848 	put_object(object);
849 }
850 
851 /*
852  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853  * pointer. Such object will not be scanned by kmemleak but references to it
854  * are searched.
855  */
856 static void object_no_scan(unsigned long ptr)
857 {
858 	unsigned long flags;
859 	struct kmemleak_object *object;
860 
861 	object = find_and_get_object(ptr, 0);
862 	if (!object) {
863 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
864 		return;
865 	}
866 
867 	raw_spin_lock_irqsave(&object->lock, flags);
868 	object->flags |= OBJECT_NO_SCAN;
869 	raw_spin_unlock_irqrestore(&object->lock, flags);
870 	put_object(object);
871 }
872 
873 /**
874  * kmemleak_alloc - register a newly allocated object
875  * @ptr:	pointer to beginning of the object
876  * @size:	size of the object
877  * @min_count:	minimum number of references to this object. If during memory
878  *		scanning a number of references less than @min_count is found,
879  *		the object is reported as a memory leak. If @min_count is 0,
880  *		the object is never reported as a leak. If @min_count is -1,
881  *		the object is ignored (not scanned and not reported as a leak)
882  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
883  *
884  * This function is called from the kernel allocators when a new object
885  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
886  */
887 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
888 			  gfp_t gfp)
889 {
890 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
891 
892 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
893 		create_object((unsigned long)ptr, size, min_count, gfp);
894 }
895 EXPORT_SYMBOL_GPL(kmemleak_alloc);
896 
897 /**
898  * kmemleak_alloc_percpu - register a newly allocated __percpu object
899  * @ptr:	__percpu pointer to beginning of the object
900  * @size:	size of the object
901  * @gfp:	flags used for kmemleak internal memory allocations
902  *
903  * This function is called from the kernel percpu allocator when a new object
904  * (memory block) is allocated (alloc_percpu).
905  */
906 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
907 				 gfp_t gfp)
908 {
909 	unsigned int cpu;
910 
911 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912 
913 	/*
914 	 * Percpu allocations are only scanned and not reported as leaks
915 	 * (min_count is set to 0).
916 	 */
917 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918 		for_each_possible_cpu(cpu)
919 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 				      size, 0, gfp);
921 }
922 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
923 
924 /**
925  * kmemleak_vmalloc - register a newly vmalloc'ed object
926  * @area:	pointer to vm_struct
927  * @size:	size of the object
928  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
929  *
930  * This function is called from the vmalloc() kernel allocator when a new
931  * object (memory block) is allocated.
932  */
933 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
934 {
935 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
936 
937 	/*
938 	 * A min_count = 2 is needed because vm_struct contains a reference to
939 	 * the virtual address of the vmalloc'ed block.
940 	 */
941 	if (kmemleak_enabled) {
942 		create_object((unsigned long)area->addr, size, 2, gfp);
943 		object_set_excess_ref((unsigned long)area,
944 				      (unsigned long)area->addr);
945 	}
946 }
947 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
948 
949 /**
950  * kmemleak_free - unregister a previously registered object
951  * @ptr:	pointer to beginning of the object
952  *
953  * This function is called from the kernel allocators when an object (memory
954  * block) is freed (kmem_cache_free, kfree, vfree etc.).
955  */
956 void __ref kmemleak_free(const void *ptr)
957 {
958 	pr_debug("%s(0x%p)\n", __func__, ptr);
959 
960 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 		delete_object_full((unsigned long)ptr);
962 }
963 EXPORT_SYMBOL_GPL(kmemleak_free);
964 
965 /**
966  * kmemleak_free_part - partially unregister a previously registered object
967  * @ptr:	pointer to the beginning or inside the object. This also
968  *		represents the start of the range to be freed
969  * @size:	size to be unregistered
970  *
971  * This function is called when only a part of a memory block is freed
972  * (usually from the bootmem allocator).
973  */
974 void __ref kmemleak_free_part(const void *ptr, size_t size)
975 {
976 	pr_debug("%s(0x%p)\n", __func__, ptr);
977 
978 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
979 		delete_object_part((unsigned long)ptr, size);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_free_part);
982 
983 /**
984  * kmemleak_free_percpu - unregister a previously registered __percpu object
985  * @ptr:	__percpu pointer to beginning of the object
986  *
987  * This function is called from the kernel percpu allocator when an object
988  * (memory block) is freed (free_percpu).
989  */
990 void __ref kmemleak_free_percpu(const void __percpu *ptr)
991 {
992 	unsigned int cpu;
993 
994 	pr_debug("%s(0x%p)\n", __func__, ptr);
995 
996 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
997 		for_each_possible_cpu(cpu)
998 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
999 								      cpu));
1000 }
1001 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002 
1003 /**
1004  * kmemleak_update_trace - update object allocation stack trace
1005  * @ptr:	pointer to beginning of the object
1006  *
1007  * Override the object allocation stack trace for cases where the actual
1008  * allocation place is not always useful.
1009  */
1010 void __ref kmemleak_update_trace(const void *ptr)
1011 {
1012 	struct kmemleak_object *object;
1013 	unsigned long flags;
1014 
1015 	pr_debug("%s(0x%p)\n", __func__, ptr);
1016 
1017 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018 		return;
1019 
1020 	object = find_and_get_object((unsigned long)ptr, 1);
1021 	if (!object) {
1022 #ifdef DEBUG
1023 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024 			      ptr);
1025 #endif
1026 		return;
1027 	}
1028 
1029 	raw_spin_lock_irqsave(&object->lock, flags);
1030 	object->trace_len = __save_stack_trace(object->trace);
1031 	raw_spin_unlock_irqrestore(&object->lock, flags);
1032 
1033 	put_object(object);
1034 }
1035 EXPORT_SYMBOL(kmemleak_update_trace);
1036 
1037 /**
1038  * kmemleak_not_leak - mark an allocated object as false positive
1039  * @ptr:	pointer to beginning of the object
1040  *
1041  * Calling this function on an object will cause the memory block to no longer
1042  * be reported as leak and always be scanned.
1043  */
1044 void __ref kmemleak_not_leak(const void *ptr)
1045 {
1046 	pr_debug("%s(0x%p)\n", __func__, ptr);
1047 
1048 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049 		make_gray_object((unsigned long)ptr);
1050 }
1051 EXPORT_SYMBOL(kmemleak_not_leak);
1052 
1053 /**
1054  * kmemleak_ignore - ignore an allocated object
1055  * @ptr:	pointer to beginning of the object
1056  *
1057  * Calling this function on an object will cause the memory block to be
1058  * ignored (not scanned and not reported as a leak). This is usually done when
1059  * it is known that the corresponding block is not a leak and does not contain
1060  * any references to other allocated memory blocks.
1061  */
1062 void __ref kmemleak_ignore(const void *ptr)
1063 {
1064 	pr_debug("%s(0x%p)\n", __func__, ptr);
1065 
1066 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 		make_black_object((unsigned long)ptr);
1068 }
1069 EXPORT_SYMBOL(kmemleak_ignore);
1070 
1071 /**
1072  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073  * @ptr:	pointer to beginning or inside the object. This also
1074  *		represents the start of the scan area
1075  * @size:	size of the scan area
1076  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1077  *
1078  * This function is used when it is known that only certain parts of an object
1079  * contain references to other objects. Kmemleak will only scan these areas
1080  * reducing the number false negatives.
1081  */
1082 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083 {
1084 	pr_debug("%s(0x%p)\n", __func__, ptr);
1085 
1086 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087 		add_scan_area((unsigned long)ptr, size, gfp);
1088 }
1089 EXPORT_SYMBOL(kmemleak_scan_area);
1090 
1091 /**
1092  * kmemleak_no_scan - do not scan an allocated object
1093  * @ptr:	pointer to beginning of the object
1094  *
1095  * This function notifies kmemleak not to scan the given memory block. Useful
1096  * in situations where it is known that the given object does not contain any
1097  * references to other objects. Kmemleak will not scan such objects reducing
1098  * the number of false negatives.
1099  */
1100 void __ref kmemleak_no_scan(const void *ptr)
1101 {
1102 	pr_debug("%s(0x%p)\n", __func__, ptr);
1103 
1104 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105 		object_no_scan((unsigned long)ptr);
1106 }
1107 EXPORT_SYMBOL(kmemleak_no_scan);
1108 
1109 /**
1110  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111  *			 address argument
1112  * @phys:	physical address of the object
1113  * @size:	size of the object
1114  * @min_count:	minimum number of references to this object.
1115  *              See kmemleak_alloc()
1116  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1117  */
1118 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119 			       gfp_t gfp)
1120 {
1121 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1123 }
1124 EXPORT_SYMBOL(kmemleak_alloc_phys);
1125 
1126 /**
1127  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128  *			     physical address argument
1129  * @phys:	physical address if the beginning or inside an object. This
1130  *		also represents the start of the range to be freed
1131  * @size:	size to be unregistered
1132  */
1133 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134 {
1135 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 		kmemleak_free_part(__va(phys), size);
1137 }
1138 EXPORT_SYMBOL(kmemleak_free_part_phys);
1139 
1140 /**
1141  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142  *			    address argument
1143  * @phys:	physical address of the object
1144  */
1145 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146 {
1147 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148 		kmemleak_not_leak(__va(phys));
1149 }
1150 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151 
1152 /**
1153  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154  *			  address argument
1155  * @phys:	physical address of the object
1156  */
1157 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158 {
1159 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160 		kmemleak_ignore(__va(phys));
1161 }
1162 EXPORT_SYMBOL(kmemleak_ignore_phys);
1163 
1164 /*
1165  * Update an object's checksum and return true if it was modified.
1166  */
1167 static bool update_checksum(struct kmemleak_object *object)
1168 {
1169 	u32 old_csum = object->checksum;
1170 
1171 	kasan_disable_current();
1172 	kcsan_disable_current();
1173 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1174 	kasan_enable_current();
1175 	kcsan_enable_current();
1176 
1177 	return object->checksum != old_csum;
1178 }
1179 
1180 /*
1181  * Update an object's references. object->lock must be held by the caller.
1182  */
1183 static void update_refs(struct kmemleak_object *object)
1184 {
1185 	if (!color_white(object)) {
1186 		/* non-orphan, ignored or new */
1187 		return;
1188 	}
1189 
1190 	/*
1191 	 * Increase the object's reference count (number of pointers to the
1192 	 * memory block). If this count reaches the required minimum, the
1193 	 * object's color will become gray and it will be added to the
1194 	 * gray_list.
1195 	 */
1196 	object->count++;
1197 	if (color_gray(object)) {
1198 		/* put_object() called when removing from gray_list */
1199 		WARN_ON(!get_object(object));
1200 		list_add_tail(&object->gray_list, &gray_list);
1201 	}
1202 }
1203 
1204 /*
1205  * Memory scanning is a long process and it needs to be interruptable. This
1206  * function checks whether such interrupt condition occurred.
1207  */
1208 static int scan_should_stop(void)
1209 {
1210 	if (!kmemleak_enabled)
1211 		return 1;
1212 
1213 	/*
1214 	 * This function may be called from either process or kthread context,
1215 	 * hence the need to check for both stop conditions.
1216 	 */
1217 	if (current->mm)
1218 		return signal_pending(current);
1219 	else
1220 		return kthread_should_stop();
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Scan a memory block (exclusive range) for valid pointers and add those
1227  * found to the gray list.
1228  */
1229 static void scan_block(void *_start, void *_end,
1230 		       struct kmemleak_object *scanned)
1231 {
1232 	unsigned long *ptr;
1233 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1234 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1235 	unsigned long flags;
1236 	unsigned long untagged_ptr;
1237 
1238 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1239 	for (ptr = start; ptr < end; ptr++) {
1240 		struct kmemleak_object *object;
1241 		unsigned long pointer;
1242 		unsigned long excess_ref;
1243 
1244 		if (scan_should_stop())
1245 			break;
1246 
1247 		kasan_disable_current();
1248 		pointer = *ptr;
1249 		kasan_enable_current();
1250 
1251 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1252 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1253 			continue;
1254 
1255 		/*
1256 		 * No need for get_object() here since we hold kmemleak_lock.
1257 		 * object->use_count cannot be dropped to 0 while the object
1258 		 * is still present in object_tree_root and object_list
1259 		 * (with updates protected by kmemleak_lock).
1260 		 */
1261 		object = lookup_object(pointer, 1);
1262 		if (!object)
1263 			continue;
1264 		if (object == scanned)
1265 			/* self referenced, ignore */
1266 			continue;
1267 
1268 		/*
1269 		 * Avoid the lockdep recursive warning on object->lock being
1270 		 * previously acquired in scan_object(). These locks are
1271 		 * enclosed by scan_mutex.
1272 		 */
1273 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1274 		/* only pass surplus references (object already gray) */
1275 		if (color_gray(object)) {
1276 			excess_ref = object->excess_ref;
1277 			/* no need for update_refs() if object already gray */
1278 		} else {
1279 			excess_ref = 0;
1280 			update_refs(object);
1281 		}
1282 		raw_spin_unlock(&object->lock);
1283 
1284 		if (excess_ref) {
1285 			object = lookup_object(excess_ref, 0);
1286 			if (!object)
1287 				continue;
1288 			if (object == scanned)
1289 				/* circular reference, ignore */
1290 				continue;
1291 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1292 			update_refs(object);
1293 			raw_spin_unlock(&object->lock);
1294 		}
1295 	}
1296 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1297 }
1298 
1299 /*
1300  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1301  */
1302 #ifdef CONFIG_SMP
1303 static void scan_large_block(void *start, void *end)
1304 {
1305 	void *next;
1306 
1307 	while (start < end) {
1308 		next = min(start + MAX_SCAN_SIZE, end);
1309 		scan_block(start, next, NULL);
1310 		start = next;
1311 		cond_resched();
1312 	}
1313 }
1314 #endif
1315 
1316 /*
1317  * Scan a memory block corresponding to a kmemleak_object. A condition is
1318  * that object->use_count >= 1.
1319  */
1320 static void scan_object(struct kmemleak_object *object)
1321 {
1322 	struct kmemleak_scan_area *area;
1323 	unsigned long flags;
1324 
1325 	/*
1326 	 * Once the object->lock is acquired, the corresponding memory block
1327 	 * cannot be freed (the same lock is acquired in delete_object).
1328 	 */
1329 	raw_spin_lock_irqsave(&object->lock, flags);
1330 	if (object->flags & OBJECT_NO_SCAN)
1331 		goto out;
1332 	if (!(object->flags & OBJECT_ALLOCATED))
1333 		/* already freed object */
1334 		goto out;
1335 	if (hlist_empty(&object->area_list) ||
1336 	    object->flags & OBJECT_FULL_SCAN) {
1337 		void *start = (void *)object->pointer;
1338 		void *end = (void *)(object->pointer + object->size);
1339 		void *next;
1340 
1341 		do {
1342 			next = min(start + MAX_SCAN_SIZE, end);
1343 			scan_block(start, next, object);
1344 
1345 			start = next;
1346 			if (start >= end)
1347 				break;
1348 
1349 			raw_spin_unlock_irqrestore(&object->lock, flags);
1350 			cond_resched();
1351 			raw_spin_lock_irqsave(&object->lock, flags);
1352 		} while (object->flags & OBJECT_ALLOCATED);
1353 	} else
1354 		hlist_for_each_entry(area, &object->area_list, node)
1355 			scan_block((void *)area->start,
1356 				   (void *)(area->start + area->size),
1357 				   object);
1358 out:
1359 	raw_spin_unlock_irqrestore(&object->lock, flags);
1360 }
1361 
1362 /*
1363  * Scan the objects already referenced (gray objects). More objects will be
1364  * referenced and, if there are no memory leaks, all the objects are scanned.
1365  */
1366 static void scan_gray_list(void)
1367 {
1368 	struct kmemleak_object *object, *tmp;
1369 
1370 	/*
1371 	 * The list traversal is safe for both tail additions and removals
1372 	 * from inside the loop. The kmemleak objects cannot be freed from
1373 	 * outside the loop because their use_count was incremented.
1374 	 */
1375 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1376 	while (&object->gray_list != &gray_list) {
1377 		cond_resched();
1378 
1379 		/* may add new objects to the list */
1380 		if (!scan_should_stop())
1381 			scan_object(object);
1382 
1383 		tmp = list_entry(object->gray_list.next, typeof(*object),
1384 				 gray_list);
1385 
1386 		/* remove the object from the list and release it */
1387 		list_del(&object->gray_list);
1388 		put_object(object);
1389 
1390 		object = tmp;
1391 	}
1392 	WARN_ON(!list_empty(&gray_list));
1393 }
1394 
1395 /*
1396  * Scan data sections and all the referenced memory blocks allocated via the
1397  * kernel's standard allocators. This function must be called with the
1398  * scan_mutex held.
1399  */
1400 static void kmemleak_scan(void)
1401 {
1402 	unsigned long flags;
1403 	struct kmemleak_object *object;
1404 	int i;
1405 	int new_leaks = 0;
1406 
1407 	jiffies_last_scan = jiffies;
1408 
1409 	/* prepare the kmemleak_object's */
1410 	rcu_read_lock();
1411 	list_for_each_entry_rcu(object, &object_list, object_list) {
1412 		raw_spin_lock_irqsave(&object->lock, flags);
1413 #ifdef DEBUG
1414 		/*
1415 		 * With a few exceptions there should be a maximum of
1416 		 * 1 reference to any object at this point.
1417 		 */
1418 		if (atomic_read(&object->use_count) > 1) {
1419 			pr_debug("object->use_count = %d\n",
1420 				 atomic_read(&object->use_count));
1421 			dump_object_info(object);
1422 		}
1423 #endif
1424 		/* reset the reference count (whiten the object) */
1425 		object->count = 0;
1426 		if (color_gray(object) && get_object(object))
1427 			list_add_tail(&object->gray_list, &gray_list);
1428 
1429 		raw_spin_unlock_irqrestore(&object->lock, flags);
1430 	}
1431 	rcu_read_unlock();
1432 
1433 #ifdef CONFIG_SMP
1434 	/* per-cpu sections scanning */
1435 	for_each_possible_cpu(i)
1436 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1437 				 __per_cpu_end + per_cpu_offset(i));
1438 #endif
1439 
1440 	/*
1441 	 * Struct page scanning for each node.
1442 	 */
1443 	get_online_mems();
1444 	for_each_online_node(i) {
1445 		unsigned long start_pfn = node_start_pfn(i);
1446 		unsigned long end_pfn = node_end_pfn(i);
1447 		unsigned long pfn;
1448 
1449 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1450 			struct page *page = pfn_to_online_page(pfn);
1451 
1452 			if (!page)
1453 				continue;
1454 
1455 			/* only scan pages belonging to this node */
1456 			if (page_to_nid(page) != i)
1457 				continue;
1458 			/* only scan if page is in use */
1459 			if (page_count(page) == 0)
1460 				continue;
1461 			scan_block(page, page + 1, NULL);
1462 			if (!(pfn & 63))
1463 				cond_resched();
1464 		}
1465 	}
1466 	put_online_mems();
1467 
1468 	/*
1469 	 * Scanning the task stacks (may introduce false negatives).
1470 	 */
1471 	if (kmemleak_stack_scan) {
1472 		struct task_struct *p, *g;
1473 
1474 		rcu_read_lock();
1475 		for_each_process_thread(g, p) {
1476 			void *stack = try_get_task_stack(p);
1477 			if (stack) {
1478 				scan_block(stack, stack + THREAD_SIZE, NULL);
1479 				put_task_stack(p);
1480 			}
1481 		}
1482 		rcu_read_unlock();
1483 	}
1484 
1485 	/*
1486 	 * Scan the objects already referenced from the sections scanned
1487 	 * above.
1488 	 */
1489 	scan_gray_list();
1490 
1491 	/*
1492 	 * Check for new or unreferenced objects modified since the previous
1493 	 * scan and color them gray until the next scan.
1494 	 */
1495 	rcu_read_lock();
1496 	list_for_each_entry_rcu(object, &object_list, object_list) {
1497 		raw_spin_lock_irqsave(&object->lock, flags);
1498 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1499 		    && update_checksum(object) && get_object(object)) {
1500 			/* color it gray temporarily */
1501 			object->count = object->min_count;
1502 			list_add_tail(&object->gray_list, &gray_list);
1503 		}
1504 		raw_spin_unlock_irqrestore(&object->lock, flags);
1505 	}
1506 	rcu_read_unlock();
1507 
1508 	/*
1509 	 * Re-scan the gray list for modified unreferenced objects.
1510 	 */
1511 	scan_gray_list();
1512 
1513 	/*
1514 	 * If scanning was stopped do not report any new unreferenced objects.
1515 	 */
1516 	if (scan_should_stop())
1517 		return;
1518 
1519 	/*
1520 	 * Scanning result reporting.
1521 	 */
1522 	rcu_read_lock();
1523 	list_for_each_entry_rcu(object, &object_list, object_list) {
1524 		raw_spin_lock_irqsave(&object->lock, flags);
1525 		if (unreferenced_object(object) &&
1526 		    !(object->flags & OBJECT_REPORTED)) {
1527 			object->flags |= OBJECT_REPORTED;
1528 
1529 			if (kmemleak_verbose)
1530 				print_unreferenced(NULL, object);
1531 
1532 			new_leaks++;
1533 		}
1534 		raw_spin_unlock_irqrestore(&object->lock, flags);
1535 	}
1536 	rcu_read_unlock();
1537 
1538 	if (new_leaks) {
1539 		kmemleak_found_leaks = true;
1540 
1541 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1542 			new_leaks);
1543 	}
1544 
1545 }
1546 
1547 /*
1548  * Thread function performing automatic memory scanning. Unreferenced objects
1549  * at the end of a memory scan are reported but only the first time.
1550  */
1551 static int kmemleak_scan_thread(void *arg)
1552 {
1553 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1554 
1555 	pr_info("Automatic memory scanning thread started\n");
1556 	set_user_nice(current, 10);
1557 
1558 	/*
1559 	 * Wait before the first scan to allow the system to fully initialize.
1560 	 */
1561 	if (first_run) {
1562 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1563 		first_run = 0;
1564 		while (timeout && !kthread_should_stop())
1565 			timeout = schedule_timeout_interruptible(timeout);
1566 	}
1567 
1568 	while (!kthread_should_stop()) {
1569 		signed long timeout = jiffies_scan_wait;
1570 
1571 		mutex_lock(&scan_mutex);
1572 		kmemleak_scan();
1573 		mutex_unlock(&scan_mutex);
1574 
1575 		/* wait before the next scan */
1576 		while (timeout && !kthread_should_stop())
1577 			timeout = schedule_timeout_interruptible(timeout);
1578 	}
1579 
1580 	pr_info("Automatic memory scanning thread ended\n");
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Start the automatic memory scanning thread. This function must be called
1587  * with the scan_mutex held.
1588  */
1589 static void start_scan_thread(void)
1590 {
1591 	if (scan_thread)
1592 		return;
1593 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1594 	if (IS_ERR(scan_thread)) {
1595 		pr_warn("Failed to create the scan thread\n");
1596 		scan_thread = NULL;
1597 	}
1598 }
1599 
1600 /*
1601  * Stop the automatic memory scanning thread.
1602  */
1603 static void stop_scan_thread(void)
1604 {
1605 	if (scan_thread) {
1606 		kthread_stop(scan_thread);
1607 		scan_thread = NULL;
1608 	}
1609 }
1610 
1611 /*
1612  * Iterate over the object_list and return the first valid object at or after
1613  * the required position with its use_count incremented. The function triggers
1614  * a memory scanning when the pos argument points to the first position.
1615  */
1616 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1617 {
1618 	struct kmemleak_object *object;
1619 	loff_t n = *pos;
1620 	int err;
1621 
1622 	err = mutex_lock_interruptible(&scan_mutex);
1623 	if (err < 0)
1624 		return ERR_PTR(err);
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(object, &object_list, object_list) {
1628 		if (n-- > 0)
1629 			continue;
1630 		if (get_object(object))
1631 			goto out;
1632 	}
1633 	object = NULL;
1634 out:
1635 	return object;
1636 }
1637 
1638 /*
1639  * Return the next object in the object_list. The function decrements the
1640  * use_count of the previous object and increases that of the next one.
1641  */
1642 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1643 {
1644 	struct kmemleak_object *prev_obj = v;
1645 	struct kmemleak_object *next_obj = NULL;
1646 	struct kmemleak_object *obj = prev_obj;
1647 
1648 	++(*pos);
1649 
1650 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1651 		if (get_object(obj)) {
1652 			next_obj = obj;
1653 			break;
1654 		}
1655 	}
1656 
1657 	put_object(prev_obj);
1658 	return next_obj;
1659 }
1660 
1661 /*
1662  * Decrement the use_count of the last object required, if any.
1663  */
1664 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1665 {
1666 	if (!IS_ERR(v)) {
1667 		/*
1668 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1669 		 * waiting was interrupted, so only release it if !IS_ERR.
1670 		 */
1671 		rcu_read_unlock();
1672 		mutex_unlock(&scan_mutex);
1673 		if (v)
1674 			put_object(v);
1675 	}
1676 }
1677 
1678 /*
1679  * Print the information for an unreferenced object to the seq file.
1680  */
1681 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1682 {
1683 	struct kmemleak_object *object = v;
1684 	unsigned long flags;
1685 
1686 	raw_spin_lock_irqsave(&object->lock, flags);
1687 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1688 		print_unreferenced(seq, object);
1689 	raw_spin_unlock_irqrestore(&object->lock, flags);
1690 	return 0;
1691 }
1692 
1693 static const struct seq_operations kmemleak_seq_ops = {
1694 	.start = kmemleak_seq_start,
1695 	.next  = kmemleak_seq_next,
1696 	.stop  = kmemleak_seq_stop,
1697 	.show  = kmemleak_seq_show,
1698 };
1699 
1700 static int kmemleak_open(struct inode *inode, struct file *file)
1701 {
1702 	return seq_open(file, &kmemleak_seq_ops);
1703 }
1704 
1705 static int dump_str_object_info(const char *str)
1706 {
1707 	unsigned long flags;
1708 	struct kmemleak_object *object;
1709 	unsigned long addr;
1710 
1711 	if (kstrtoul(str, 0, &addr))
1712 		return -EINVAL;
1713 	object = find_and_get_object(addr, 0);
1714 	if (!object) {
1715 		pr_info("Unknown object at 0x%08lx\n", addr);
1716 		return -EINVAL;
1717 	}
1718 
1719 	raw_spin_lock_irqsave(&object->lock, flags);
1720 	dump_object_info(object);
1721 	raw_spin_unlock_irqrestore(&object->lock, flags);
1722 
1723 	put_object(object);
1724 	return 0;
1725 }
1726 
1727 /*
1728  * We use grey instead of black to ensure we can do future scans on the same
1729  * objects. If we did not do future scans these black objects could
1730  * potentially contain references to newly allocated objects in the future and
1731  * we'd end up with false positives.
1732  */
1733 static void kmemleak_clear(void)
1734 {
1735 	struct kmemleak_object *object;
1736 	unsigned long flags;
1737 
1738 	rcu_read_lock();
1739 	list_for_each_entry_rcu(object, &object_list, object_list) {
1740 		raw_spin_lock_irqsave(&object->lock, flags);
1741 		if ((object->flags & OBJECT_REPORTED) &&
1742 		    unreferenced_object(object))
1743 			__paint_it(object, KMEMLEAK_GREY);
1744 		raw_spin_unlock_irqrestore(&object->lock, flags);
1745 	}
1746 	rcu_read_unlock();
1747 
1748 	kmemleak_found_leaks = false;
1749 }
1750 
1751 static void __kmemleak_do_cleanup(void);
1752 
1753 /*
1754  * File write operation to configure kmemleak at run-time. The following
1755  * commands can be written to the /sys/kernel/debug/kmemleak file:
1756  *   off	- disable kmemleak (irreversible)
1757  *   stack=on	- enable the task stacks scanning
1758  *   stack=off	- disable the tasks stacks scanning
1759  *   scan=on	- start the automatic memory scanning thread
1760  *   scan=off	- stop the automatic memory scanning thread
1761  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1762  *		  disable it)
1763  *   scan	- trigger a memory scan
1764  *   clear	- mark all current reported unreferenced kmemleak objects as
1765  *		  grey to ignore printing them, or free all kmemleak objects
1766  *		  if kmemleak has been disabled.
1767  *   dump=...	- dump information about the object found at the given address
1768  */
1769 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1770 			      size_t size, loff_t *ppos)
1771 {
1772 	char buf[64];
1773 	int buf_size;
1774 	int ret;
1775 
1776 	buf_size = min(size, (sizeof(buf) - 1));
1777 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1778 		return -EFAULT;
1779 	buf[buf_size] = 0;
1780 
1781 	ret = mutex_lock_interruptible(&scan_mutex);
1782 	if (ret < 0)
1783 		return ret;
1784 
1785 	if (strncmp(buf, "clear", 5) == 0) {
1786 		if (kmemleak_enabled)
1787 			kmemleak_clear();
1788 		else
1789 			__kmemleak_do_cleanup();
1790 		goto out;
1791 	}
1792 
1793 	if (!kmemleak_enabled) {
1794 		ret = -EPERM;
1795 		goto out;
1796 	}
1797 
1798 	if (strncmp(buf, "off", 3) == 0)
1799 		kmemleak_disable();
1800 	else if (strncmp(buf, "stack=on", 8) == 0)
1801 		kmemleak_stack_scan = 1;
1802 	else if (strncmp(buf, "stack=off", 9) == 0)
1803 		kmemleak_stack_scan = 0;
1804 	else if (strncmp(buf, "scan=on", 7) == 0)
1805 		start_scan_thread();
1806 	else if (strncmp(buf, "scan=off", 8) == 0)
1807 		stop_scan_thread();
1808 	else if (strncmp(buf, "scan=", 5) == 0) {
1809 		unsigned long secs;
1810 
1811 		ret = kstrtoul(buf + 5, 0, &secs);
1812 		if (ret < 0)
1813 			goto out;
1814 		stop_scan_thread();
1815 		if (secs) {
1816 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1817 			start_scan_thread();
1818 		}
1819 	} else if (strncmp(buf, "scan", 4) == 0)
1820 		kmemleak_scan();
1821 	else if (strncmp(buf, "dump=", 5) == 0)
1822 		ret = dump_str_object_info(buf + 5);
1823 	else
1824 		ret = -EINVAL;
1825 
1826 out:
1827 	mutex_unlock(&scan_mutex);
1828 	if (ret < 0)
1829 		return ret;
1830 
1831 	/* ignore the rest of the buffer, only one command at a time */
1832 	*ppos += size;
1833 	return size;
1834 }
1835 
1836 static const struct file_operations kmemleak_fops = {
1837 	.owner		= THIS_MODULE,
1838 	.open		= kmemleak_open,
1839 	.read		= seq_read,
1840 	.write		= kmemleak_write,
1841 	.llseek		= seq_lseek,
1842 	.release	= seq_release,
1843 };
1844 
1845 static void __kmemleak_do_cleanup(void)
1846 {
1847 	struct kmemleak_object *object, *tmp;
1848 
1849 	/*
1850 	 * Kmemleak has already been disabled, no need for RCU list traversal
1851 	 * or kmemleak_lock held.
1852 	 */
1853 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1854 		__remove_object(object);
1855 		__delete_object(object);
1856 	}
1857 }
1858 
1859 /*
1860  * Stop the memory scanning thread and free the kmemleak internal objects if
1861  * no previous scan thread (otherwise, kmemleak may still have some useful
1862  * information on memory leaks).
1863  */
1864 static void kmemleak_do_cleanup(struct work_struct *work)
1865 {
1866 	stop_scan_thread();
1867 
1868 	mutex_lock(&scan_mutex);
1869 	/*
1870 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1871 	 * longer track object freeing. Ordering of the scan thread stopping and
1872 	 * the memory accesses below is guaranteed by the kthread_stop()
1873 	 * function.
1874 	 */
1875 	kmemleak_free_enabled = 0;
1876 	mutex_unlock(&scan_mutex);
1877 
1878 	if (!kmemleak_found_leaks)
1879 		__kmemleak_do_cleanup();
1880 	else
1881 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1882 }
1883 
1884 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1885 
1886 /*
1887  * Disable kmemleak. No memory allocation/freeing will be traced once this
1888  * function is called. Disabling kmemleak is an irreversible operation.
1889  */
1890 static void kmemleak_disable(void)
1891 {
1892 	/* atomically check whether it was already invoked */
1893 	if (cmpxchg(&kmemleak_error, 0, 1))
1894 		return;
1895 
1896 	/* stop any memory operation tracing */
1897 	kmemleak_enabled = 0;
1898 
1899 	/* check whether it is too early for a kernel thread */
1900 	if (kmemleak_initialized)
1901 		schedule_work(&cleanup_work);
1902 	else
1903 		kmemleak_free_enabled = 0;
1904 
1905 	pr_info("Kernel memory leak detector disabled\n");
1906 }
1907 
1908 /*
1909  * Allow boot-time kmemleak disabling (enabled by default).
1910  */
1911 static int __init kmemleak_boot_config(char *str)
1912 {
1913 	if (!str)
1914 		return -EINVAL;
1915 	if (strcmp(str, "off") == 0)
1916 		kmemleak_disable();
1917 	else if (strcmp(str, "on") == 0)
1918 		kmemleak_skip_disable = 1;
1919 	else
1920 		return -EINVAL;
1921 	return 0;
1922 }
1923 early_param("kmemleak", kmemleak_boot_config);
1924 
1925 /*
1926  * Kmemleak initialization.
1927  */
1928 void __init kmemleak_init(void)
1929 {
1930 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1931 	if (!kmemleak_skip_disable) {
1932 		kmemleak_disable();
1933 		return;
1934 	}
1935 #endif
1936 
1937 	if (kmemleak_error)
1938 		return;
1939 
1940 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1941 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1942 
1943 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1944 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1945 
1946 	/* register the data/bss sections */
1947 	create_object((unsigned long)_sdata, _edata - _sdata,
1948 		      KMEMLEAK_GREY, GFP_ATOMIC);
1949 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1950 		      KMEMLEAK_GREY, GFP_ATOMIC);
1951 	/* only register .data..ro_after_init if not within .data */
1952 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1953 		create_object((unsigned long)__start_ro_after_init,
1954 			      __end_ro_after_init - __start_ro_after_init,
1955 			      KMEMLEAK_GREY, GFP_ATOMIC);
1956 }
1957 
1958 /*
1959  * Late initialization function.
1960  */
1961 static int __init kmemleak_late_init(void)
1962 {
1963 	kmemleak_initialized = 1;
1964 
1965 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1966 
1967 	if (kmemleak_error) {
1968 		/*
1969 		 * Some error occurred and kmemleak was disabled. There is a
1970 		 * small chance that kmemleak_disable() was called immediately
1971 		 * after setting kmemleak_initialized and we may end up with
1972 		 * two clean-up threads but serialized by scan_mutex.
1973 		 */
1974 		schedule_work(&cleanup_work);
1975 		return -ENOMEM;
1976 	}
1977 
1978 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1979 		mutex_lock(&scan_mutex);
1980 		start_scan_thread();
1981 		mutex_unlock(&scan_mutex);
1982 	}
1983 
1984 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1985 		mem_pool_free_count);
1986 
1987 	return 0;
1988 }
1989 late_initcall(kmemleak_late_init);
1990