1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root (or object_phys_tree_root). The 18 * object_list is the main list holding the metadata (struct kmemleak_object) 19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root 20 * are red black trees used to look-up metadata based on a pointer to the 21 * corresponding memory block. The object_phys_tree_root is for objects 22 * allocated with physical address. The kmemleak_object structures are 23 * added to the object_list and object_tree_root (or object_phys_tree_root) 24 * in the create_object() function called from the kmemleak_alloc() (or 25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 26 * the kmemleak_free() callback 27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 28 * Accesses to the metadata (e.g. count) are protected by this lock. Note 29 * that some members of this structure may be protected by other means 30 * (atomic or kmemleak_lock). This lock is also held when scanning the 31 * corresponding memory block to avoid the kernel freeing it via the 32 * kmemleak_free() callback. This is less heavyweight than holding a global 33 * lock like kmemleak_lock during scanning. 34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 35 * unreferenced objects at a time. The gray_list contains the objects which 36 * are already referenced or marked as false positives and need to be 37 * scanned. This list is only modified during a scanning episode when the 38 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 39 * Note that the kmemleak_object.use_count is incremented when an object is 40 * added to the gray_list and therefore cannot be freed. This mutex also 41 * prevents multiple users of the "kmemleak" debugfs file together with 42 * modifications to the memory scanning parameters including the scan_thread 43 * pointer 44 * 45 * Locks and mutexes are acquired/nested in the following order: 46 * 47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 48 * 49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 50 * regions. 51 * 52 * The kmemleak_object structures have a use_count incremented or decremented 53 * using the get_object()/put_object() functions. When the use_count becomes 54 * 0, this count can no longer be incremented and put_object() schedules the 55 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 56 * function must be protected by rcu_read_lock() to avoid accessing a freed 57 * structure. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/init.h> 63 #include <linux/kernel.h> 64 #include <linux/list.h> 65 #include <linux/sched/signal.h> 66 #include <linux/sched/task.h> 67 #include <linux/sched/task_stack.h> 68 #include <linux/jiffies.h> 69 #include <linux/delay.h> 70 #include <linux/export.h> 71 #include <linux/kthread.h> 72 #include <linux/rbtree.h> 73 #include <linux/fs.h> 74 #include <linux/debugfs.h> 75 #include <linux/seq_file.h> 76 #include <linux/cpumask.h> 77 #include <linux/spinlock.h> 78 #include <linux/module.h> 79 #include <linux/mutex.h> 80 #include <linux/rcupdate.h> 81 #include <linux/stacktrace.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* GFP bitmask for kmemleak internal allocations */ 118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 119 __GFP_NOLOCKDEP)) | \ 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 121 __GFP_NOWARN) 122 123 /* scanning area inside a memory block */ 124 struct kmemleak_scan_area { 125 struct hlist_node node; 126 unsigned long start; 127 size_t size; 128 }; 129 130 #define KMEMLEAK_GREY 0 131 #define KMEMLEAK_BLACK -1 132 133 /* 134 * Structure holding the metadata for each allocated memory block. 135 * Modifications to such objects should be made while holding the 136 * object->lock. Insertions or deletions from object_list, gray_list or 137 * rb_node are already protected by the corresponding locks or mutex (see 138 * the notes on locking above). These objects are reference-counted 139 * (use_count) and freed using the RCU mechanism. 140 */ 141 struct kmemleak_object { 142 raw_spinlock_t lock; 143 unsigned int flags; /* object status flags */ 144 struct list_head object_list; 145 struct list_head gray_list; 146 struct rb_node rb_node; 147 struct rcu_head rcu; /* object_list lockless traversal */ 148 /* object usage count; object freed when use_count == 0 */ 149 atomic_t use_count; 150 unsigned long pointer; 151 size_t size; 152 /* pass surplus references to this pointer */ 153 unsigned long excess_ref; 154 /* minimum number of a pointers found before it is considered leak */ 155 int min_count; 156 /* the total number of pointers found pointing to this object */ 157 int count; 158 /* checksum for detecting modified objects */ 159 u32 checksum; 160 /* memory ranges to be scanned inside an object (empty for all) */ 161 struct hlist_head area_list; 162 unsigned long trace[MAX_TRACE]; 163 unsigned int trace_len; 164 unsigned long jiffies; /* creation timestamp */ 165 pid_t pid; /* pid of the current task */ 166 char comm[TASK_COMM_LEN]; /* executable name */ 167 }; 168 169 /* flag representing the memory block allocation status */ 170 #define OBJECT_ALLOCATED (1 << 0) 171 /* flag set after the first reporting of an unreference object */ 172 #define OBJECT_REPORTED (1 << 1) 173 /* flag set to not scan the object */ 174 #define OBJECT_NO_SCAN (1 << 2) 175 /* flag set to fully scan the object when scan_area allocation failed */ 176 #define OBJECT_FULL_SCAN (1 << 3) 177 /* flag set for object allocated with physical address */ 178 #define OBJECT_PHYS (1 << 4) 179 180 #define HEX_PREFIX " " 181 /* number of bytes to print per line; must be 16 or 32 */ 182 #define HEX_ROW_SIZE 16 183 /* number of bytes to print at a time (1, 2, 4, 8) */ 184 #define HEX_GROUP_SIZE 1 185 /* include ASCII after the hex output */ 186 #define HEX_ASCII 1 187 /* max number of lines to be printed */ 188 #define HEX_MAX_LINES 2 189 190 /* the list of all allocated objects */ 191 static LIST_HEAD(object_list); 192 /* the list of gray-colored objects (see color_gray comment below) */ 193 static LIST_HEAD(gray_list); 194 /* memory pool allocation */ 195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 197 static LIST_HEAD(mem_pool_free_list); 198 /* search tree for object boundaries */ 199 static struct rb_root object_tree_root = RB_ROOT; 200 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 201 static struct rb_root object_phys_tree_root = RB_ROOT; 202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 203 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 204 205 /* allocation caches for kmemleak internal data */ 206 static struct kmem_cache *object_cache; 207 static struct kmem_cache *scan_area_cache; 208 209 /* set if tracing memory operations is enabled */ 210 static int kmemleak_enabled = 1; 211 /* same as above but only for the kmemleak_free() callback */ 212 static int kmemleak_free_enabled = 1; 213 /* set in the late_initcall if there were no errors */ 214 static int kmemleak_initialized; 215 /* set if a kmemleak warning was issued */ 216 static int kmemleak_warning; 217 /* set if a fatal kmemleak error has occurred */ 218 static int kmemleak_error; 219 220 /* minimum and maximum address that may be valid pointers */ 221 static unsigned long min_addr = ULONG_MAX; 222 static unsigned long max_addr; 223 224 static struct task_struct *scan_thread; 225 /* used to avoid reporting of recently allocated objects */ 226 static unsigned long jiffies_min_age; 227 static unsigned long jiffies_last_scan; 228 /* delay between automatic memory scannings */ 229 static unsigned long jiffies_scan_wait; 230 /* enables or disables the task stacks scanning */ 231 static int kmemleak_stack_scan = 1; 232 /* protects the memory scanning, parameters and debug/kmemleak file access */ 233 static DEFINE_MUTEX(scan_mutex); 234 /* setting kmemleak=on, will set this var, skipping the disable */ 235 static int kmemleak_skip_disable; 236 /* If there are leaks that can be reported */ 237 static bool kmemleak_found_leaks; 238 239 static bool kmemleak_verbose; 240 module_param_named(verbose, kmemleak_verbose, bool, 0600); 241 242 static void kmemleak_disable(void); 243 244 /* 245 * Print a warning and dump the stack trace. 246 */ 247 #define kmemleak_warn(x...) do { \ 248 pr_warn(x); \ 249 dump_stack(); \ 250 kmemleak_warning = 1; \ 251 } while (0) 252 253 /* 254 * Macro invoked when a serious kmemleak condition occurred and cannot be 255 * recovered from. Kmemleak will be disabled and further allocation/freeing 256 * tracing no longer available. 257 */ 258 #define kmemleak_stop(x...) do { \ 259 kmemleak_warn(x); \ 260 kmemleak_disable(); \ 261 } while (0) 262 263 #define warn_or_seq_printf(seq, fmt, ...) do { \ 264 if (seq) \ 265 seq_printf(seq, fmt, ##__VA_ARGS__); \ 266 else \ 267 pr_warn(fmt, ##__VA_ARGS__); \ 268 } while (0) 269 270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 271 int rowsize, int groupsize, const void *buf, 272 size_t len, bool ascii) 273 { 274 if (seq) 275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 276 buf, len, ascii); 277 else 278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 279 rowsize, groupsize, buf, len, ascii); 280 } 281 282 /* 283 * Printing of the objects hex dump to the seq file. The number of lines to be 284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 286 * with the object->lock held. 287 */ 288 static void hex_dump_object(struct seq_file *seq, 289 struct kmemleak_object *object) 290 { 291 const u8 *ptr = (const u8 *)object->pointer; 292 size_t len; 293 294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 295 return; 296 297 /* limit the number of lines to HEX_MAX_LINES */ 298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 299 300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 301 kasan_disable_current(); 302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 304 kasan_enable_current(); 305 } 306 307 /* 308 * Object colors, encoded with count and min_count: 309 * - white - orphan object, not enough references to it (count < min_count) 310 * - gray - not orphan, not marked as false positive (min_count == 0) or 311 * sufficient references to it (count >= min_count) 312 * - black - ignore, it doesn't contain references (e.g. text section) 313 * (min_count == -1). No function defined for this color. 314 * Newly created objects don't have any color assigned (object->count == -1) 315 * before the next memory scan when they become white. 316 */ 317 static bool color_white(const struct kmemleak_object *object) 318 { 319 return object->count != KMEMLEAK_BLACK && 320 object->count < object->min_count; 321 } 322 323 static bool color_gray(const struct kmemleak_object *object) 324 { 325 return object->min_count != KMEMLEAK_BLACK && 326 object->count >= object->min_count; 327 } 328 329 /* 330 * Objects are considered unreferenced only if their color is white, they have 331 * not be deleted and have a minimum age to avoid false positives caused by 332 * pointers temporarily stored in CPU registers. 333 */ 334 static bool unreferenced_object(struct kmemleak_object *object) 335 { 336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 337 time_before_eq(object->jiffies + jiffies_min_age, 338 jiffies_last_scan); 339 } 340 341 /* 342 * Printing of the unreferenced objects information to the seq file. The 343 * print_unreferenced function must be called with the object->lock held. 344 */ 345 static void print_unreferenced(struct seq_file *seq, 346 struct kmemleak_object *object) 347 { 348 int i; 349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 350 351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 352 object->pointer, object->size); 353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 354 object->comm, object->pid, object->jiffies, 355 msecs_age / 1000, msecs_age % 1000); 356 hex_dump_object(seq, object); 357 warn_or_seq_printf(seq, " backtrace:\n"); 358 359 for (i = 0; i < object->trace_len; i++) { 360 void *ptr = (void *)object->trace[i]; 361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 362 } 363 } 364 365 /* 366 * Print the kmemleak_object information. This function is used mainly for 367 * debugging special cases when kmemleak operations. It must be called with 368 * the object->lock held. 369 */ 370 static void dump_object_info(struct kmemleak_object *object) 371 { 372 pr_notice("Object 0x%08lx (size %zu):\n", 373 object->pointer, object->size); 374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 pr_notice(" min_count = %d\n", object->min_count); 377 pr_notice(" count = %d\n", object->count); 378 pr_notice(" flags = 0x%x\n", object->flags); 379 pr_notice(" checksum = %u\n", object->checksum); 380 pr_notice(" backtrace:\n"); 381 stack_trace_print(object->trace, object->trace_len, 4); 382 } 383 384 /* 385 * Look-up a memory block metadata (kmemleak_object) in the object search 386 * tree based on a pointer value. If alias is 0, only values pointing to the 387 * beginning of the memory block are allowed. The kmemleak_lock must be held 388 * when calling this function. 389 */ 390 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 391 bool is_phys) 392 { 393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 394 object_tree_root.rb_node; 395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 396 397 while (rb) { 398 struct kmemleak_object *object; 399 unsigned long untagged_objp; 400 401 object = rb_entry(rb, struct kmemleak_object, rb_node); 402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 403 404 if (untagged_ptr < untagged_objp) 405 rb = object->rb_node.rb_left; 406 else if (untagged_objp + object->size <= untagged_ptr) 407 rb = object->rb_node.rb_right; 408 else if (untagged_objp == untagged_ptr || alias) 409 return object; 410 else { 411 kmemleak_warn("Found object by alias at 0x%08lx\n", 412 ptr); 413 dump_object_info(object); 414 break; 415 } 416 } 417 return NULL; 418 } 419 420 /* Look-up a kmemleak object which allocated with virtual address. */ 421 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 422 { 423 return __lookup_object(ptr, alias, false); 424 } 425 426 /* 427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 428 * that once an object's use_count reached 0, the RCU freeing was already 429 * registered and the object should no longer be used. This function must be 430 * called under the protection of rcu_read_lock(). 431 */ 432 static int get_object(struct kmemleak_object *object) 433 { 434 return atomic_inc_not_zero(&object->use_count); 435 } 436 437 /* 438 * Memory pool allocation and freeing. kmemleak_lock must not be held. 439 */ 440 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 441 { 442 unsigned long flags; 443 struct kmemleak_object *object; 444 445 /* try the slab allocator first */ 446 if (object_cache) { 447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 448 if (object) 449 return object; 450 } 451 452 /* slab allocation failed, try the memory pool */ 453 raw_spin_lock_irqsave(&kmemleak_lock, flags); 454 object = list_first_entry_or_null(&mem_pool_free_list, 455 typeof(*object), object_list); 456 if (object) 457 list_del(&object->object_list); 458 else if (mem_pool_free_count) 459 object = &mem_pool[--mem_pool_free_count]; 460 else 461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 463 464 return object; 465 } 466 467 /* 468 * Return the object to either the slab allocator or the memory pool. 469 */ 470 static void mem_pool_free(struct kmemleak_object *object) 471 { 472 unsigned long flags; 473 474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 475 kmem_cache_free(object_cache, object); 476 return; 477 } 478 479 /* add the object to the memory pool free list */ 480 raw_spin_lock_irqsave(&kmemleak_lock, flags); 481 list_add(&object->object_list, &mem_pool_free_list); 482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 483 } 484 485 /* 486 * RCU callback to free a kmemleak_object. 487 */ 488 static void free_object_rcu(struct rcu_head *rcu) 489 { 490 struct hlist_node *tmp; 491 struct kmemleak_scan_area *area; 492 struct kmemleak_object *object = 493 container_of(rcu, struct kmemleak_object, rcu); 494 495 /* 496 * Once use_count is 0 (guaranteed by put_object), there is no other 497 * code accessing this object, hence no need for locking. 498 */ 499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 500 hlist_del(&area->node); 501 kmem_cache_free(scan_area_cache, area); 502 } 503 mem_pool_free(object); 504 } 505 506 /* 507 * Decrement the object use_count. Once the count is 0, free the object using 508 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 509 * delete_object() path, the delayed RCU freeing ensures that there is no 510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 511 * is also possible. 512 */ 513 static void put_object(struct kmemleak_object *object) 514 { 515 if (!atomic_dec_and_test(&object->use_count)) 516 return; 517 518 /* should only get here after delete_object was called */ 519 WARN_ON(object->flags & OBJECT_ALLOCATED); 520 521 /* 522 * It may be too early for the RCU callbacks, however, there is no 523 * concurrent object_list traversal when !object_cache and all objects 524 * came from the memory pool. Free the object directly. 525 */ 526 if (object_cache) 527 call_rcu(&object->rcu, free_object_rcu); 528 else 529 free_object_rcu(&object->rcu); 530 } 531 532 /* 533 * Look up an object in the object search tree and increase its use_count. 534 */ 535 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 536 bool is_phys) 537 { 538 unsigned long flags; 539 struct kmemleak_object *object; 540 541 rcu_read_lock(); 542 raw_spin_lock_irqsave(&kmemleak_lock, flags); 543 object = __lookup_object(ptr, alias, is_phys); 544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 545 546 /* check whether the object is still available */ 547 if (object && !get_object(object)) 548 object = NULL; 549 rcu_read_unlock(); 550 551 return object; 552 } 553 554 /* Look up and get an object which allocated with virtual address. */ 555 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 556 { 557 return __find_and_get_object(ptr, alias, false); 558 } 559 560 /* 561 * Remove an object from the object_tree_root (or object_phys_tree_root) 562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 563 * is still enabled. 564 */ 565 static void __remove_object(struct kmemleak_object *object) 566 { 567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 568 &object_phys_tree_root : 569 &object_tree_root); 570 list_del_rcu(&object->object_list); 571 } 572 573 /* 574 * Look up an object in the object search tree and remove it from both 575 * object_tree_root (or object_phys_tree_root) and object_list. The 576 * returned object's use_count should be at least 1, as initially set 577 * by create_object(). 578 */ 579 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 580 bool is_phys) 581 { 582 unsigned long flags; 583 struct kmemleak_object *object; 584 585 raw_spin_lock_irqsave(&kmemleak_lock, flags); 586 object = __lookup_object(ptr, alias, is_phys); 587 if (object) 588 __remove_object(object); 589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 590 591 return object; 592 } 593 594 /* 595 * Save stack trace to the given array of MAX_TRACE size. 596 */ 597 static int __save_stack_trace(unsigned long *trace) 598 { 599 return stack_trace_save(trace, MAX_TRACE, 2); 600 } 601 602 /* 603 * Create the metadata (struct kmemleak_object) corresponding to an allocated 604 * memory block and add it to the object_list and object_tree_root (or 605 * object_phys_tree_root). 606 */ 607 static void __create_object(unsigned long ptr, size_t size, 608 int min_count, gfp_t gfp, bool is_phys) 609 { 610 unsigned long flags; 611 struct kmemleak_object *object, *parent; 612 struct rb_node **link, *rb_parent; 613 unsigned long untagged_ptr; 614 unsigned long untagged_objp; 615 616 object = mem_pool_alloc(gfp); 617 if (!object) { 618 pr_warn("Cannot allocate a kmemleak_object structure\n"); 619 kmemleak_disable(); 620 return; 621 } 622 623 INIT_LIST_HEAD(&object->object_list); 624 INIT_LIST_HEAD(&object->gray_list); 625 INIT_HLIST_HEAD(&object->area_list); 626 raw_spin_lock_init(&object->lock); 627 atomic_set(&object->use_count, 1); 628 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 629 object->pointer = ptr; 630 object->size = kfence_ksize((void *)ptr) ?: size; 631 object->excess_ref = 0; 632 object->min_count = min_count; 633 object->count = 0; /* white color initially */ 634 object->jiffies = jiffies; 635 object->checksum = 0; 636 637 /* task information */ 638 if (in_hardirq()) { 639 object->pid = 0; 640 strncpy(object->comm, "hardirq", sizeof(object->comm)); 641 } else if (in_serving_softirq()) { 642 object->pid = 0; 643 strncpy(object->comm, "softirq", sizeof(object->comm)); 644 } else { 645 object->pid = current->pid; 646 /* 647 * There is a small chance of a race with set_task_comm(), 648 * however using get_task_comm() here may cause locking 649 * dependency issues with current->alloc_lock. In the worst 650 * case, the command line is not correct. 651 */ 652 strncpy(object->comm, current->comm, sizeof(object->comm)); 653 } 654 655 /* kernel backtrace */ 656 object->trace_len = __save_stack_trace(object->trace); 657 658 raw_spin_lock_irqsave(&kmemleak_lock, flags); 659 660 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 661 /* 662 * Only update min_addr and max_addr with object 663 * storing virtual address. 664 */ 665 if (!is_phys) { 666 min_addr = min(min_addr, untagged_ptr); 667 max_addr = max(max_addr, untagged_ptr + size); 668 } 669 link = is_phys ? &object_phys_tree_root.rb_node : 670 &object_tree_root.rb_node; 671 rb_parent = NULL; 672 while (*link) { 673 rb_parent = *link; 674 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 675 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 676 if (untagged_ptr + size <= untagged_objp) 677 link = &parent->rb_node.rb_left; 678 else if (untagged_objp + parent->size <= untagged_ptr) 679 link = &parent->rb_node.rb_right; 680 else { 681 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 682 ptr); 683 /* 684 * No need for parent->lock here since "parent" cannot 685 * be freed while the kmemleak_lock is held. 686 */ 687 dump_object_info(parent); 688 kmem_cache_free(object_cache, object); 689 goto out; 690 } 691 } 692 rb_link_node(&object->rb_node, rb_parent, link); 693 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 694 &object_tree_root); 695 696 list_add_tail_rcu(&object->object_list, &object_list); 697 out: 698 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 699 } 700 701 /* Create kmemleak object which allocated with virtual address. */ 702 static void create_object(unsigned long ptr, size_t size, 703 int min_count, gfp_t gfp) 704 { 705 __create_object(ptr, size, min_count, gfp, false); 706 } 707 708 /* Create kmemleak object which allocated with physical address. */ 709 static void create_object_phys(unsigned long ptr, size_t size, 710 int min_count, gfp_t gfp) 711 { 712 __create_object(ptr, size, min_count, gfp, true); 713 } 714 715 /* 716 * Mark the object as not allocated and schedule RCU freeing via put_object(). 717 */ 718 static void __delete_object(struct kmemleak_object *object) 719 { 720 unsigned long flags; 721 722 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 723 WARN_ON(atomic_read(&object->use_count) < 1); 724 725 /* 726 * Locking here also ensures that the corresponding memory block 727 * cannot be freed when it is being scanned. 728 */ 729 raw_spin_lock_irqsave(&object->lock, flags); 730 object->flags &= ~OBJECT_ALLOCATED; 731 raw_spin_unlock_irqrestore(&object->lock, flags); 732 put_object(object); 733 } 734 735 /* 736 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 737 * delete it. 738 */ 739 static void delete_object_full(unsigned long ptr) 740 { 741 struct kmemleak_object *object; 742 743 object = find_and_remove_object(ptr, 0, false); 744 if (!object) { 745 #ifdef DEBUG 746 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 747 ptr); 748 #endif 749 return; 750 } 751 __delete_object(object); 752 } 753 754 /* 755 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 756 * delete it. If the memory block is partially freed, the function may create 757 * additional metadata for the remaining parts of the block. 758 */ 759 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 760 { 761 struct kmemleak_object *object; 762 unsigned long start, end; 763 764 object = find_and_remove_object(ptr, 1, is_phys); 765 if (!object) { 766 #ifdef DEBUG 767 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 768 ptr, size); 769 #endif 770 return; 771 } 772 773 /* 774 * Create one or two objects that may result from the memory block 775 * split. Note that partial freeing is only done by free_bootmem() and 776 * this happens before kmemleak_init() is called. 777 */ 778 start = object->pointer; 779 end = object->pointer + object->size; 780 if (ptr > start) 781 __create_object(start, ptr - start, object->min_count, 782 GFP_KERNEL, is_phys); 783 if (ptr + size < end) 784 __create_object(ptr + size, end - ptr - size, object->min_count, 785 GFP_KERNEL, is_phys); 786 787 __delete_object(object); 788 } 789 790 static void __paint_it(struct kmemleak_object *object, int color) 791 { 792 object->min_count = color; 793 if (color == KMEMLEAK_BLACK) 794 object->flags |= OBJECT_NO_SCAN; 795 } 796 797 static void paint_it(struct kmemleak_object *object, int color) 798 { 799 unsigned long flags; 800 801 raw_spin_lock_irqsave(&object->lock, flags); 802 __paint_it(object, color); 803 raw_spin_unlock_irqrestore(&object->lock, flags); 804 } 805 806 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 807 { 808 struct kmemleak_object *object; 809 810 object = __find_and_get_object(ptr, 0, is_phys); 811 if (!object) { 812 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 813 ptr, 814 (color == KMEMLEAK_GREY) ? "Grey" : 815 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 816 return; 817 } 818 paint_it(object, color); 819 put_object(object); 820 } 821 822 /* 823 * Mark an object permanently as gray-colored so that it can no longer be 824 * reported as a leak. This is used in general to mark a false positive. 825 */ 826 static void make_gray_object(unsigned long ptr) 827 { 828 paint_ptr(ptr, KMEMLEAK_GREY, false); 829 } 830 831 /* 832 * Mark the object as black-colored so that it is ignored from scans and 833 * reporting. 834 */ 835 static void make_black_object(unsigned long ptr, bool is_phys) 836 { 837 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 838 } 839 840 /* 841 * Add a scanning area to the object. If at least one such area is added, 842 * kmemleak will only scan these ranges rather than the whole memory block. 843 */ 844 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 845 { 846 unsigned long flags; 847 struct kmemleak_object *object; 848 struct kmemleak_scan_area *area = NULL; 849 unsigned long untagged_ptr; 850 unsigned long untagged_objp; 851 852 object = find_and_get_object(ptr, 1); 853 if (!object) { 854 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 855 ptr); 856 return; 857 } 858 859 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 860 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 861 862 if (scan_area_cache) 863 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 864 865 raw_spin_lock_irqsave(&object->lock, flags); 866 if (!area) { 867 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 868 /* mark the object for full scan to avoid false positives */ 869 object->flags |= OBJECT_FULL_SCAN; 870 goto out_unlock; 871 } 872 if (size == SIZE_MAX) { 873 size = untagged_objp + object->size - untagged_ptr; 874 } else if (untagged_ptr + size > untagged_objp + object->size) { 875 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 876 dump_object_info(object); 877 kmem_cache_free(scan_area_cache, area); 878 goto out_unlock; 879 } 880 881 INIT_HLIST_NODE(&area->node); 882 area->start = ptr; 883 area->size = size; 884 885 hlist_add_head(&area->node, &object->area_list); 886 out_unlock: 887 raw_spin_unlock_irqrestore(&object->lock, flags); 888 put_object(object); 889 } 890 891 /* 892 * Any surplus references (object already gray) to 'ptr' are passed to 893 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 894 * vm_struct may be used as an alternative reference to the vmalloc'ed object 895 * (see free_thread_stack()). 896 */ 897 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 898 { 899 unsigned long flags; 900 struct kmemleak_object *object; 901 902 object = find_and_get_object(ptr, 0); 903 if (!object) { 904 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 905 ptr); 906 return; 907 } 908 909 raw_spin_lock_irqsave(&object->lock, flags); 910 object->excess_ref = excess_ref; 911 raw_spin_unlock_irqrestore(&object->lock, flags); 912 put_object(object); 913 } 914 915 /* 916 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 917 * pointer. Such object will not be scanned by kmemleak but references to it 918 * are searched. 919 */ 920 static void object_no_scan(unsigned long ptr) 921 { 922 unsigned long flags; 923 struct kmemleak_object *object; 924 925 object = find_and_get_object(ptr, 0); 926 if (!object) { 927 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 928 return; 929 } 930 931 raw_spin_lock_irqsave(&object->lock, flags); 932 object->flags |= OBJECT_NO_SCAN; 933 raw_spin_unlock_irqrestore(&object->lock, flags); 934 put_object(object); 935 } 936 937 /** 938 * kmemleak_alloc - register a newly allocated object 939 * @ptr: pointer to beginning of the object 940 * @size: size of the object 941 * @min_count: minimum number of references to this object. If during memory 942 * scanning a number of references less than @min_count is found, 943 * the object is reported as a memory leak. If @min_count is 0, 944 * the object is never reported as a leak. If @min_count is -1, 945 * the object is ignored (not scanned and not reported as a leak) 946 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 947 * 948 * This function is called from the kernel allocators when a new object 949 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 950 */ 951 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 952 gfp_t gfp) 953 { 954 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 955 956 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 957 create_object((unsigned long)ptr, size, min_count, gfp); 958 } 959 EXPORT_SYMBOL_GPL(kmemleak_alloc); 960 961 /** 962 * kmemleak_alloc_percpu - register a newly allocated __percpu object 963 * @ptr: __percpu pointer to beginning of the object 964 * @size: size of the object 965 * @gfp: flags used for kmemleak internal memory allocations 966 * 967 * This function is called from the kernel percpu allocator when a new object 968 * (memory block) is allocated (alloc_percpu). 969 */ 970 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 971 gfp_t gfp) 972 { 973 unsigned int cpu; 974 975 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 976 977 /* 978 * Percpu allocations are only scanned and not reported as leaks 979 * (min_count is set to 0). 980 */ 981 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 982 for_each_possible_cpu(cpu) 983 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 984 size, 0, gfp); 985 } 986 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 987 988 /** 989 * kmemleak_vmalloc - register a newly vmalloc'ed object 990 * @area: pointer to vm_struct 991 * @size: size of the object 992 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 993 * 994 * This function is called from the vmalloc() kernel allocator when a new 995 * object (memory block) is allocated. 996 */ 997 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 998 { 999 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 1000 1001 /* 1002 * A min_count = 2 is needed because vm_struct contains a reference to 1003 * the virtual address of the vmalloc'ed block. 1004 */ 1005 if (kmemleak_enabled) { 1006 create_object((unsigned long)area->addr, size, 2, gfp); 1007 object_set_excess_ref((unsigned long)area, 1008 (unsigned long)area->addr); 1009 } 1010 } 1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1012 1013 /** 1014 * kmemleak_free - unregister a previously registered object 1015 * @ptr: pointer to beginning of the object 1016 * 1017 * This function is called from the kernel allocators when an object (memory 1018 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1019 */ 1020 void __ref kmemleak_free(const void *ptr) 1021 { 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1025 delete_object_full((unsigned long)ptr); 1026 } 1027 EXPORT_SYMBOL_GPL(kmemleak_free); 1028 1029 /** 1030 * kmemleak_free_part - partially unregister a previously registered object 1031 * @ptr: pointer to the beginning or inside the object. This also 1032 * represents the start of the range to be freed 1033 * @size: size to be unregistered 1034 * 1035 * This function is called when only a part of a memory block is freed 1036 * (usually from the bootmem allocator). 1037 */ 1038 void __ref kmemleak_free_part(const void *ptr, size_t size) 1039 { 1040 pr_debug("%s(0x%p)\n", __func__, ptr); 1041 1042 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1043 delete_object_part((unsigned long)ptr, size, false); 1044 } 1045 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1046 1047 /** 1048 * kmemleak_free_percpu - unregister a previously registered __percpu object 1049 * @ptr: __percpu pointer to beginning of the object 1050 * 1051 * This function is called from the kernel percpu allocator when an object 1052 * (memory block) is freed (free_percpu). 1053 */ 1054 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1055 { 1056 unsigned int cpu; 1057 1058 pr_debug("%s(0x%p)\n", __func__, ptr); 1059 1060 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1061 for_each_possible_cpu(cpu) 1062 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1063 cpu)); 1064 } 1065 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1066 1067 /** 1068 * kmemleak_update_trace - update object allocation stack trace 1069 * @ptr: pointer to beginning of the object 1070 * 1071 * Override the object allocation stack trace for cases where the actual 1072 * allocation place is not always useful. 1073 */ 1074 void __ref kmemleak_update_trace(const void *ptr) 1075 { 1076 struct kmemleak_object *object; 1077 unsigned long flags; 1078 1079 pr_debug("%s(0x%p)\n", __func__, ptr); 1080 1081 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1082 return; 1083 1084 object = find_and_get_object((unsigned long)ptr, 1); 1085 if (!object) { 1086 #ifdef DEBUG 1087 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1088 ptr); 1089 #endif 1090 return; 1091 } 1092 1093 raw_spin_lock_irqsave(&object->lock, flags); 1094 object->trace_len = __save_stack_trace(object->trace); 1095 raw_spin_unlock_irqrestore(&object->lock, flags); 1096 1097 put_object(object); 1098 } 1099 EXPORT_SYMBOL(kmemleak_update_trace); 1100 1101 /** 1102 * kmemleak_not_leak - mark an allocated object as false positive 1103 * @ptr: pointer to beginning of the object 1104 * 1105 * Calling this function on an object will cause the memory block to no longer 1106 * be reported as leak and always be scanned. 1107 */ 1108 void __ref kmemleak_not_leak(const void *ptr) 1109 { 1110 pr_debug("%s(0x%p)\n", __func__, ptr); 1111 1112 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1113 make_gray_object((unsigned long)ptr); 1114 } 1115 EXPORT_SYMBOL(kmemleak_not_leak); 1116 1117 /** 1118 * kmemleak_ignore - ignore an allocated object 1119 * @ptr: pointer to beginning of the object 1120 * 1121 * Calling this function on an object will cause the memory block to be 1122 * ignored (not scanned and not reported as a leak). This is usually done when 1123 * it is known that the corresponding block is not a leak and does not contain 1124 * any references to other allocated memory blocks. 1125 */ 1126 void __ref kmemleak_ignore(const void *ptr) 1127 { 1128 pr_debug("%s(0x%p)\n", __func__, ptr); 1129 1130 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1131 make_black_object((unsigned long)ptr, false); 1132 } 1133 EXPORT_SYMBOL(kmemleak_ignore); 1134 1135 /** 1136 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1137 * @ptr: pointer to beginning or inside the object. This also 1138 * represents the start of the scan area 1139 * @size: size of the scan area 1140 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1141 * 1142 * This function is used when it is known that only certain parts of an object 1143 * contain references to other objects. Kmemleak will only scan these areas 1144 * reducing the number false negatives. 1145 */ 1146 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1147 { 1148 pr_debug("%s(0x%p)\n", __func__, ptr); 1149 1150 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1151 add_scan_area((unsigned long)ptr, size, gfp); 1152 } 1153 EXPORT_SYMBOL(kmemleak_scan_area); 1154 1155 /** 1156 * kmemleak_no_scan - do not scan an allocated object 1157 * @ptr: pointer to beginning of the object 1158 * 1159 * This function notifies kmemleak not to scan the given memory block. Useful 1160 * in situations where it is known that the given object does not contain any 1161 * references to other objects. Kmemleak will not scan such objects reducing 1162 * the number of false negatives. 1163 */ 1164 void __ref kmemleak_no_scan(const void *ptr) 1165 { 1166 pr_debug("%s(0x%p)\n", __func__, ptr); 1167 1168 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1169 object_no_scan((unsigned long)ptr); 1170 } 1171 EXPORT_SYMBOL(kmemleak_no_scan); 1172 1173 /** 1174 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1175 * address argument 1176 * @phys: physical address of the object 1177 * @size: size of the object 1178 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1179 */ 1180 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1181 { 1182 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size); 1183 1184 if (kmemleak_enabled) 1185 /* 1186 * Create object with OBJECT_PHYS flag and 1187 * assume min_count 0. 1188 */ 1189 create_object_phys((unsigned long)phys, size, 0, gfp); 1190 } 1191 EXPORT_SYMBOL(kmemleak_alloc_phys); 1192 1193 /** 1194 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1195 * physical address argument 1196 * @phys: physical address if the beginning or inside an object. This 1197 * also represents the start of the range to be freed 1198 * @size: size to be unregistered 1199 */ 1200 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1201 { 1202 pr_debug("%s(0x%pa)\n", __func__, &phys); 1203 1204 if (kmemleak_enabled) 1205 delete_object_part((unsigned long)phys, size, true); 1206 } 1207 EXPORT_SYMBOL(kmemleak_free_part_phys); 1208 1209 /** 1210 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1211 * address argument 1212 * @phys: physical address of the object 1213 */ 1214 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1215 { 1216 pr_debug("%s(0x%pa)\n", __func__, &phys); 1217 1218 if (kmemleak_enabled) 1219 make_black_object((unsigned long)phys, true); 1220 } 1221 EXPORT_SYMBOL(kmemleak_ignore_phys); 1222 1223 /* 1224 * Update an object's checksum and return true if it was modified. 1225 */ 1226 static bool update_checksum(struct kmemleak_object *object) 1227 { 1228 u32 old_csum = object->checksum; 1229 1230 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1231 return false; 1232 1233 kasan_disable_current(); 1234 kcsan_disable_current(); 1235 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1236 kasan_enable_current(); 1237 kcsan_enable_current(); 1238 1239 return object->checksum != old_csum; 1240 } 1241 1242 /* 1243 * Update an object's references. object->lock must be held by the caller. 1244 */ 1245 static void update_refs(struct kmemleak_object *object) 1246 { 1247 if (!color_white(object)) { 1248 /* non-orphan, ignored or new */ 1249 return; 1250 } 1251 1252 /* 1253 * Increase the object's reference count (number of pointers to the 1254 * memory block). If this count reaches the required minimum, the 1255 * object's color will become gray and it will be added to the 1256 * gray_list. 1257 */ 1258 object->count++; 1259 if (color_gray(object)) { 1260 /* put_object() called when removing from gray_list */ 1261 WARN_ON(!get_object(object)); 1262 list_add_tail(&object->gray_list, &gray_list); 1263 } 1264 } 1265 1266 /* 1267 * Memory scanning is a long process and it needs to be interruptible. This 1268 * function checks whether such interrupt condition occurred. 1269 */ 1270 static int scan_should_stop(void) 1271 { 1272 if (!kmemleak_enabled) 1273 return 1; 1274 1275 /* 1276 * This function may be called from either process or kthread context, 1277 * hence the need to check for both stop conditions. 1278 */ 1279 if (current->mm) 1280 return signal_pending(current); 1281 else 1282 return kthread_should_stop(); 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Scan a memory block (exclusive range) for valid pointers and add those 1289 * found to the gray list. 1290 */ 1291 static void scan_block(void *_start, void *_end, 1292 struct kmemleak_object *scanned) 1293 { 1294 unsigned long *ptr; 1295 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1296 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1297 unsigned long flags; 1298 unsigned long untagged_ptr; 1299 1300 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1301 for (ptr = start; ptr < end; ptr++) { 1302 struct kmemleak_object *object; 1303 unsigned long pointer; 1304 unsigned long excess_ref; 1305 1306 if (scan_should_stop()) 1307 break; 1308 1309 kasan_disable_current(); 1310 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1311 kasan_enable_current(); 1312 1313 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1314 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1315 continue; 1316 1317 /* 1318 * No need for get_object() here since we hold kmemleak_lock. 1319 * object->use_count cannot be dropped to 0 while the object 1320 * is still present in object_tree_root and object_list 1321 * (with updates protected by kmemleak_lock). 1322 */ 1323 object = lookup_object(pointer, 1); 1324 if (!object) 1325 continue; 1326 if (object == scanned) 1327 /* self referenced, ignore */ 1328 continue; 1329 1330 /* 1331 * Avoid the lockdep recursive warning on object->lock being 1332 * previously acquired in scan_object(). These locks are 1333 * enclosed by scan_mutex. 1334 */ 1335 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1336 /* only pass surplus references (object already gray) */ 1337 if (color_gray(object)) { 1338 excess_ref = object->excess_ref; 1339 /* no need for update_refs() if object already gray */ 1340 } else { 1341 excess_ref = 0; 1342 update_refs(object); 1343 } 1344 raw_spin_unlock(&object->lock); 1345 1346 if (excess_ref) { 1347 object = lookup_object(excess_ref, 0); 1348 if (!object) 1349 continue; 1350 if (object == scanned) 1351 /* circular reference, ignore */ 1352 continue; 1353 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1354 update_refs(object); 1355 raw_spin_unlock(&object->lock); 1356 } 1357 } 1358 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1359 } 1360 1361 /* 1362 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1363 */ 1364 #ifdef CONFIG_SMP 1365 static void scan_large_block(void *start, void *end) 1366 { 1367 void *next; 1368 1369 while (start < end) { 1370 next = min(start + MAX_SCAN_SIZE, end); 1371 scan_block(start, next, NULL); 1372 start = next; 1373 cond_resched(); 1374 } 1375 } 1376 #endif 1377 1378 /* 1379 * Scan a memory block corresponding to a kmemleak_object. A condition is 1380 * that object->use_count >= 1. 1381 */ 1382 static void scan_object(struct kmemleak_object *object) 1383 { 1384 struct kmemleak_scan_area *area; 1385 unsigned long flags; 1386 void *obj_ptr; 1387 1388 /* 1389 * Once the object->lock is acquired, the corresponding memory block 1390 * cannot be freed (the same lock is acquired in delete_object). 1391 */ 1392 raw_spin_lock_irqsave(&object->lock, flags); 1393 if (object->flags & OBJECT_NO_SCAN) 1394 goto out; 1395 if (!(object->flags & OBJECT_ALLOCATED)) 1396 /* already freed object */ 1397 goto out; 1398 1399 obj_ptr = object->flags & OBJECT_PHYS ? 1400 __va((phys_addr_t)object->pointer) : 1401 (void *)object->pointer; 1402 1403 if (hlist_empty(&object->area_list) || 1404 object->flags & OBJECT_FULL_SCAN) { 1405 void *start = obj_ptr; 1406 void *end = obj_ptr + object->size; 1407 void *next; 1408 1409 do { 1410 next = min(start + MAX_SCAN_SIZE, end); 1411 scan_block(start, next, object); 1412 1413 start = next; 1414 if (start >= end) 1415 break; 1416 1417 raw_spin_unlock_irqrestore(&object->lock, flags); 1418 cond_resched(); 1419 raw_spin_lock_irqsave(&object->lock, flags); 1420 } while (object->flags & OBJECT_ALLOCATED); 1421 } else 1422 hlist_for_each_entry(area, &object->area_list, node) 1423 scan_block((void *)area->start, 1424 (void *)(area->start + area->size), 1425 object); 1426 out: 1427 raw_spin_unlock_irqrestore(&object->lock, flags); 1428 } 1429 1430 /* 1431 * Scan the objects already referenced (gray objects). More objects will be 1432 * referenced and, if there are no memory leaks, all the objects are scanned. 1433 */ 1434 static void scan_gray_list(void) 1435 { 1436 struct kmemleak_object *object, *tmp; 1437 1438 /* 1439 * The list traversal is safe for both tail additions and removals 1440 * from inside the loop. The kmemleak objects cannot be freed from 1441 * outside the loop because their use_count was incremented. 1442 */ 1443 object = list_entry(gray_list.next, typeof(*object), gray_list); 1444 while (&object->gray_list != &gray_list) { 1445 cond_resched(); 1446 1447 /* may add new objects to the list */ 1448 if (!scan_should_stop()) 1449 scan_object(object); 1450 1451 tmp = list_entry(object->gray_list.next, typeof(*object), 1452 gray_list); 1453 1454 /* remove the object from the list and release it */ 1455 list_del(&object->gray_list); 1456 put_object(object); 1457 1458 object = tmp; 1459 } 1460 WARN_ON(!list_empty(&gray_list)); 1461 } 1462 1463 /* 1464 * Conditionally call resched() in a object iteration loop while making sure 1465 * that the given object won't go away without RCU read lock by performing a 1466 * get_object() if !pinned. 1467 * 1468 * Return: false if can't do a cond_resched() due to get_object() failure 1469 * true otherwise 1470 */ 1471 static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned) 1472 { 1473 if (!pinned && !get_object(object)) 1474 return false; 1475 1476 rcu_read_unlock(); 1477 cond_resched(); 1478 rcu_read_lock(); 1479 if (!pinned) 1480 put_object(object); 1481 return true; 1482 } 1483 1484 /* 1485 * Scan data sections and all the referenced memory blocks allocated via the 1486 * kernel's standard allocators. This function must be called with the 1487 * scan_mutex held. 1488 */ 1489 static void kmemleak_scan(void) 1490 { 1491 struct kmemleak_object *object; 1492 struct zone *zone; 1493 int __maybe_unused i; 1494 int new_leaks = 0; 1495 int loop_cnt = 0; 1496 1497 jiffies_last_scan = jiffies; 1498 1499 /* prepare the kmemleak_object's */ 1500 rcu_read_lock(); 1501 list_for_each_entry_rcu(object, &object_list, object_list) { 1502 bool obj_pinned = false; 1503 1504 raw_spin_lock_irq(&object->lock); 1505 #ifdef DEBUG 1506 /* 1507 * With a few exceptions there should be a maximum of 1508 * 1 reference to any object at this point. 1509 */ 1510 if (atomic_read(&object->use_count) > 1) { 1511 pr_debug("object->use_count = %d\n", 1512 atomic_read(&object->use_count)); 1513 dump_object_info(object); 1514 } 1515 #endif 1516 1517 /* ignore objects outside lowmem (paint them black) */ 1518 if ((object->flags & OBJECT_PHYS) && 1519 !(object->flags & OBJECT_NO_SCAN)) { 1520 unsigned long phys = object->pointer; 1521 1522 if (PHYS_PFN(phys) < min_low_pfn || 1523 PHYS_PFN(phys + object->size) >= max_low_pfn) 1524 __paint_it(object, KMEMLEAK_BLACK); 1525 } 1526 1527 /* reset the reference count (whiten the object) */ 1528 object->count = 0; 1529 if (color_gray(object) && get_object(object)) { 1530 list_add_tail(&object->gray_list, &gray_list); 1531 obj_pinned = true; 1532 } 1533 1534 raw_spin_unlock_irq(&object->lock); 1535 1536 /* 1537 * Do a cond_resched() every 64k objects to avoid soft lockup. 1538 */ 1539 if (!(++loop_cnt & 0xffff) && 1540 !kmemleak_cond_resched(object, obj_pinned)) 1541 loop_cnt--; /* Try again on next object */ 1542 } 1543 rcu_read_unlock(); 1544 1545 #ifdef CONFIG_SMP 1546 /* per-cpu sections scanning */ 1547 for_each_possible_cpu(i) 1548 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1549 __per_cpu_end + per_cpu_offset(i)); 1550 #endif 1551 1552 /* 1553 * Struct page scanning for each node. 1554 */ 1555 get_online_mems(); 1556 for_each_populated_zone(zone) { 1557 unsigned long start_pfn = zone->zone_start_pfn; 1558 unsigned long end_pfn = zone_end_pfn(zone); 1559 unsigned long pfn; 1560 1561 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1562 struct page *page = pfn_to_online_page(pfn); 1563 1564 if (!page) 1565 continue; 1566 1567 /* only scan pages belonging to this zone */ 1568 if (page_zone(page) != zone) 1569 continue; 1570 /* only scan if page is in use */ 1571 if (page_count(page) == 0) 1572 continue; 1573 scan_block(page, page + 1, NULL); 1574 if (!(pfn & 63)) 1575 cond_resched(); 1576 } 1577 } 1578 put_online_mems(); 1579 1580 /* 1581 * Scanning the task stacks (may introduce false negatives). 1582 */ 1583 if (kmemleak_stack_scan) { 1584 struct task_struct *p, *g; 1585 1586 rcu_read_lock(); 1587 for_each_process_thread(g, p) { 1588 void *stack = try_get_task_stack(p); 1589 if (stack) { 1590 scan_block(stack, stack + THREAD_SIZE, NULL); 1591 put_task_stack(p); 1592 } 1593 } 1594 rcu_read_unlock(); 1595 } 1596 1597 /* 1598 * Scan the objects already referenced from the sections scanned 1599 * above. 1600 */ 1601 scan_gray_list(); 1602 1603 /* 1604 * Check for new or unreferenced objects modified since the previous 1605 * scan and color them gray until the next scan. 1606 */ 1607 rcu_read_lock(); 1608 loop_cnt = 0; 1609 list_for_each_entry_rcu(object, &object_list, object_list) { 1610 /* 1611 * Do a cond_resched() every 64k objects to avoid soft lockup. 1612 */ 1613 if (!(++loop_cnt & 0xffff) && 1614 !kmemleak_cond_resched(object, false)) 1615 loop_cnt--; /* Try again on next object */ 1616 1617 /* 1618 * This is racy but we can save the overhead of lock/unlock 1619 * calls. The missed objects, if any, should be caught in 1620 * the next scan. 1621 */ 1622 if (!color_white(object)) 1623 continue; 1624 raw_spin_lock_irq(&object->lock); 1625 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1626 && update_checksum(object) && get_object(object)) { 1627 /* color it gray temporarily */ 1628 object->count = object->min_count; 1629 list_add_tail(&object->gray_list, &gray_list); 1630 } 1631 raw_spin_unlock_irq(&object->lock); 1632 } 1633 rcu_read_unlock(); 1634 1635 /* 1636 * Re-scan the gray list for modified unreferenced objects. 1637 */ 1638 scan_gray_list(); 1639 1640 /* 1641 * If scanning was stopped do not report any new unreferenced objects. 1642 */ 1643 if (scan_should_stop()) 1644 return; 1645 1646 /* 1647 * Scanning result reporting. 1648 */ 1649 rcu_read_lock(); 1650 loop_cnt = 0; 1651 list_for_each_entry_rcu(object, &object_list, object_list) { 1652 /* 1653 * Do a cond_resched() every 64k objects to avoid soft lockup. 1654 */ 1655 if (!(++loop_cnt & 0xffff) && 1656 !kmemleak_cond_resched(object, false)) 1657 loop_cnt--; /* Try again on next object */ 1658 1659 /* 1660 * This is racy but we can save the overhead of lock/unlock 1661 * calls. The missed objects, if any, should be caught in 1662 * the next scan. 1663 */ 1664 if (!color_white(object)) 1665 continue; 1666 raw_spin_lock_irq(&object->lock); 1667 if (unreferenced_object(object) && 1668 !(object->flags & OBJECT_REPORTED)) { 1669 object->flags |= OBJECT_REPORTED; 1670 1671 if (kmemleak_verbose) 1672 print_unreferenced(NULL, object); 1673 1674 new_leaks++; 1675 } 1676 raw_spin_unlock_irq(&object->lock); 1677 } 1678 rcu_read_unlock(); 1679 1680 if (new_leaks) { 1681 kmemleak_found_leaks = true; 1682 1683 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1684 new_leaks); 1685 } 1686 1687 } 1688 1689 /* 1690 * Thread function performing automatic memory scanning. Unreferenced objects 1691 * at the end of a memory scan are reported but only the first time. 1692 */ 1693 static int kmemleak_scan_thread(void *arg) 1694 { 1695 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1696 1697 pr_info("Automatic memory scanning thread started\n"); 1698 set_user_nice(current, 10); 1699 1700 /* 1701 * Wait before the first scan to allow the system to fully initialize. 1702 */ 1703 if (first_run) { 1704 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1705 first_run = 0; 1706 while (timeout && !kthread_should_stop()) 1707 timeout = schedule_timeout_interruptible(timeout); 1708 } 1709 1710 while (!kthread_should_stop()) { 1711 signed long timeout = READ_ONCE(jiffies_scan_wait); 1712 1713 mutex_lock(&scan_mutex); 1714 kmemleak_scan(); 1715 mutex_unlock(&scan_mutex); 1716 1717 /* wait before the next scan */ 1718 while (timeout && !kthread_should_stop()) 1719 timeout = schedule_timeout_interruptible(timeout); 1720 } 1721 1722 pr_info("Automatic memory scanning thread ended\n"); 1723 1724 return 0; 1725 } 1726 1727 /* 1728 * Start the automatic memory scanning thread. This function must be called 1729 * with the scan_mutex held. 1730 */ 1731 static void start_scan_thread(void) 1732 { 1733 if (scan_thread) 1734 return; 1735 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1736 if (IS_ERR(scan_thread)) { 1737 pr_warn("Failed to create the scan thread\n"); 1738 scan_thread = NULL; 1739 } 1740 } 1741 1742 /* 1743 * Stop the automatic memory scanning thread. 1744 */ 1745 static void stop_scan_thread(void) 1746 { 1747 if (scan_thread) { 1748 kthread_stop(scan_thread); 1749 scan_thread = NULL; 1750 } 1751 } 1752 1753 /* 1754 * Iterate over the object_list and return the first valid object at or after 1755 * the required position with its use_count incremented. The function triggers 1756 * a memory scanning when the pos argument points to the first position. 1757 */ 1758 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1759 { 1760 struct kmemleak_object *object; 1761 loff_t n = *pos; 1762 int err; 1763 1764 err = mutex_lock_interruptible(&scan_mutex); 1765 if (err < 0) 1766 return ERR_PTR(err); 1767 1768 rcu_read_lock(); 1769 list_for_each_entry_rcu(object, &object_list, object_list) { 1770 if (n-- > 0) 1771 continue; 1772 if (get_object(object)) 1773 goto out; 1774 } 1775 object = NULL; 1776 out: 1777 return object; 1778 } 1779 1780 /* 1781 * Return the next object in the object_list. The function decrements the 1782 * use_count of the previous object and increases that of the next one. 1783 */ 1784 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1785 { 1786 struct kmemleak_object *prev_obj = v; 1787 struct kmemleak_object *next_obj = NULL; 1788 struct kmemleak_object *obj = prev_obj; 1789 1790 ++(*pos); 1791 1792 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1793 if (get_object(obj)) { 1794 next_obj = obj; 1795 break; 1796 } 1797 } 1798 1799 put_object(prev_obj); 1800 return next_obj; 1801 } 1802 1803 /* 1804 * Decrement the use_count of the last object required, if any. 1805 */ 1806 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1807 { 1808 if (!IS_ERR(v)) { 1809 /* 1810 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1811 * waiting was interrupted, so only release it if !IS_ERR. 1812 */ 1813 rcu_read_unlock(); 1814 mutex_unlock(&scan_mutex); 1815 if (v) 1816 put_object(v); 1817 } 1818 } 1819 1820 /* 1821 * Print the information for an unreferenced object to the seq file. 1822 */ 1823 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1824 { 1825 struct kmemleak_object *object = v; 1826 unsigned long flags; 1827 1828 raw_spin_lock_irqsave(&object->lock, flags); 1829 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1830 print_unreferenced(seq, object); 1831 raw_spin_unlock_irqrestore(&object->lock, flags); 1832 return 0; 1833 } 1834 1835 static const struct seq_operations kmemleak_seq_ops = { 1836 .start = kmemleak_seq_start, 1837 .next = kmemleak_seq_next, 1838 .stop = kmemleak_seq_stop, 1839 .show = kmemleak_seq_show, 1840 }; 1841 1842 static int kmemleak_open(struct inode *inode, struct file *file) 1843 { 1844 return seq_open(file, &kmemleak_seq_ops); 1845 } 1846 1847 static int dump_str_object_info(const char *str) 1848 { 1849 unsigned long flags; 1850 struct kmemleak_object *object; 1851 unsigned long addr; 1852 1853 if (kstrtoul(str, 0, &addr)) 1854 return -EINVAL; 1855 object = find_and_get_object(addr, 0); 1856 if (!object) { 1857 pr_info("Unknown object at 0x%08lx\n", addr); 1858 return -EINVAL; 1859 } 1860 1861 raw_spin_lock_irqsave(&object->lock, flags); 1862 dump_object_info(object); 1863 raw_spin_unlock_irqrestore(&object->lock, flags); 1864 1865 put_object(object); 1866 return 0; 1867 } 1868 1869 /* 1870 * We use grey instead of black to ensure we can do future scans on the same 1871 * objects. If we did not do future scans these black objects could 1872 * potentially contain references to newly allocated objects in the future and 1873 * we'd end up with false positives. 1874 */ 1875 static void kmemleak_clear(void) 1876 { 1877 struct kmemleak_object *object; 1878 1879 rcu_read_lock(); 1880 list_for_each_entry_rcu(object, &object_list, object_list) { 1881 raw_spin_lock_irq(&object->lock); 1882 if ((object->flags & OBJECT_REPORTED) && 1883 unreferenced_object(object)) 1884 __paint_it(object, KMEMLEAK_GREY); 1885 raw_spin_unlock_irq(&object->lock); 1886 } 1887 rcu_read_unlock(); 1888 1889 kmemleak_found_leaks = false; 1890 } 1891 1892 static void __kmemleak_do_cleanup(void); 1893 1894 /* 1895 * File write operation to configure kmemleak at run-time. The following 1896 * commands can be written to the /sys/kernel/debug/kmemleak file: 1897 * off - disable kmemleak (irreversible) 1898 * stack=on - enable the task stacks scanning 1899 * stack=off - disable the tasks stacks scanning 1900 * scan=on - start the automatic memory scanning thread 1901 * scan=off - stop the automatic memory scanning thread 1902 * scan=... - set the automatic memory scanning period in seconds (0 to 1903 * disable it) 1904 * scan - trigger a memory scan 1905 * clear - mark all current reported unreferenced kmemleak objects as 1906 * grey to ignore printing them, or free all kmemleak objects 1907 * if kmemleak has been disabled. 1908 * dump=... - dump information about the object found at the given address 1909 */ 1910 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1911 size_t size, loff_t *ppos) 1912 { 1913 char buf[64]; 1914 int buf_size; 1915 int ret; 1916 1917 buf_size = min(size, (sizeof(buf) - 1)); 1918 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1919 return -EFAULT; 1920 buf[buf_size] = 0; 1921 1922 ret = mutex_lock_interruptible(&scan_mutex); 1923 if (ret < 0) 1924 return ret; 1925 1926 if (strncmp(buf, "clear", 5) == 0) { 1927 if (kmemleak_enabled) 1928 kmemleak_clear(); 1929 else 1930 __kmemleak_do_cleanup(); 1931 goto out; 1932 } 1933 1934 if (!kmemleak_enabled) { 1935 ret = -EPERM; 1936 goto out; 1937 } 1938 1939 if (strncmp(buf, "off", 3) == 0) 1940 kmemleak_disable(); 1941 else if (strncmp(buf, "stack=on", 8) == 0) 1942 kmemleak_stack_scan = 1; 1943 else if (strncmp(buf, "stack=off", 9) == 0) 1944 kmemleak_stack_scan = 0; 1945 else if (strncmp(buf, "scan=on", 7) == 0) 1946 start_scan_thread(); 1947 else if (strncmp(buf, "scan=off", 8) == 0) 1948 stop_scan_thread(); 1949 else if (strncmp(buf, "scan=", 5) == 0) { 1950 unsigned secs; 1951 unsigned long msecs; 1952 1953 ret = kstrtouint(buf + 5, 0, &secs); 1954 if (ret < 0) 1955 goto out; 1956 1957 msecs = secs * MSEC_PER_SEC; 1958 if (msecs > UINT_MAX) 1959 msecs = UINT_MAX; 1960 1961 stop_scan_thread(); 1962 if (msecs) { 1963 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1964 start_scan_thread(); 1965 } 1966 } else if (strncmp(buf, "scan", 4) == 0) 1967 kmemleak_scan(); 1968 else if (strncmp(buf, "dump=", 5) == 0) 1969 ret = dump_str_object_info(buf + 5); 1970 else 1971 ret = -EINVAL; 1972 1973 out: 1974 mutex_unlock(&scan_mutex); 1975 if (ret < 0) 1976 return ret; 1977 1978 /* ignore the rest of the buffer, only one command at a time */ 1979 *ppos += size; 1980 return size; 1981 } 1982 1983 static const struct file_operations kmemleak_fops = { 1984 .owner = THIS_MODULE, 1985 .open = kmemleak_open, 1986 .read = seq_read, 1987 .write = kmemleak_write, 1988 .llseek = seq_lseek, 1989 .release = seq_release, 1990 }; 1991 1992 static void __kmemleak_do_cleanup(void) 1993 { 1994 struct kmemleak_object *object, *tmp; 1995 1996 /* 1997 * Kmemleak has already been disabled, no need for RCU list traversal 1998 * or kmemleak_lock held. 1999 */ 2000 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2001 __remove_object(object); 2002 __delete_object(object); 2003 } 2004 } 2005 2006 /* 2007 * Stop the memory scanning thread and free the kmemleak internal objects if 2008 * no previous scan thread (otherwise, kmemleak may still have some useful 2009 * information on memory leaks). 2010 */ 2011 static void kmemleak_do_cleanup(struct work_struct *work) 2012 { 2013 stop_scan_thread(); 2014 2015 mutex_lock(&scan_mutex); 2016 /* 2017 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2018 * longer track object freeing. Ordering of the scan thread stopping and 2019 * the memory accesses below is guaranteed by the kthread_stop() 2020 * function. 2021 */ 2022 kmemleak_free_enabled = 0; 2023 mutex_unlock(&scan_mutex); 2024 2025 if (!kmemleak_found_leaks) 2026 __kmemleak_do_cleanup(); 2027 else 2028 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2029 } 2030 2031 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2032 2033 /* 2034 * Disable kmemleak. No memory allocation/freeing will be traced once this 2035 * function is called. Disabling kmemleak is an irreversible operation. 2036 */ 2037 static void kmemleak_disable(void) 2038 { 2039 /* atomically check whether it was already invoked */ 2040 if (cmpxchg(&kmemleak_error, 0, 1)) 2041 return; 2042 2043 /* stop any memory operation tracing */ 2044 kmemleak_enabled = 0; 2045 2046 /* check whether it is too early for a kernel thread */ 2047 if (kmemleak_initialized) 2048 schedule_work(&cleanup_work); 2049 else 2050 kmemleak_free_enabled = 0; 2051 2052 pr_info("Kernel memory leak detector disabled\n"); 2053 } 2054 2055 /* 2056 * Allow boot-time kmemleak disabling (enabled by default). 2057 */ 2058 static int __init kmemleak_boot_config(char *str) 2059 { 2060 if (!str) 2061 return -EINVAL; 2062 if (strcmp(str, "off") == 0) 2063 kmemleak_disable(); 2064 else if (strcmp(str, "on") == 0) 2065 kmemleak_skip_disable = 1; 2066 else 2067 return -EINVAL; 2068 return 0; 2069 } 2070 early_param("kmemleak", kmemleak_boot_config); 2071 2072 /* 2073 * Kmemleak initialization. 2074 */ 2075 void __init kmemleak_init(void) 2076 { 2077 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2078 if (!kmemleak_skip_disable) { 2079 kmemleak_disable(); 2080 return; 2081 } 2082 #endif 2083 2084 if (kmemleak_error) 2085 return; 2086 2087 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2088 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2089 2090 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2091 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2092 2093 /* register the data/bss sections */ 2094 create_object((unsigned long)_sdata, _edata - _sdata, 2095 KMEMLEAK_GREY, GFP_ATOMIC); 2096 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2097 KMEMLEAK_GREY, GFP_ATOMIC); 2098 /* only register .data..ro_after_init if not within .data */ 2099 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2100 create_object((unsigned long)__start_ro_after_init, 2101 __end_ro_after_init - __start_ro_after_init, 2102 KMEMLEAK_GREY, GFP_ATOMIC); 2103 } 2104 2105 /* 2106 * Late initialization function. 2107 */ 2108 static int __init kmemleak_late_init(void) 2109 { 2110 kmemleak_initialized = 1; 2111 2112 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2113 2114 if (kmemleak_error) { 2115 /* 2116 * Some error occurred and kmemleak was disabled. There is a 2117 * small chance that kmemleak_disable() was called immediately 2118 * after setting kmemleak_initialized and we may end up with 2119 * two clean-up threads but serialized by scan_mutex. 2120 */ 2121 schedule_work(&cleanup_work); 2122 return -ENOMEM; 2123 } 2124 2125 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2126 mutex_lock(&scan_mutex); 2127 start_scan_thread(); 2128 mutex_unlock(&scan_mutex); 2129 } 2130 2131 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2132 mem_pool_free_count); 2133 2134 return 0; 2135 } 2136 late_initcall(kmemleak_late_init); 2137