xref: /openbmc/linux/mm/kmemleak.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107 
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111 
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115 
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE		16	/* stack trace length */
120 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
121 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
122 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
124 
125 #define BYTES_PER_POINTER	sizeof(void *)
126 
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 				 __GFP_NOWARN | __GFP_NOFAIL)
131 
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 	struct hlist_node node;
135 	unsigned long start;
136 	size_t size;
137 };
138 
139 #define KMEMLEAK_GREY	0
140 #define KMEMLEAK_BLACK	-1
141 
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151 	spinlock_t lock;
152 	unsigned int flags;		/* object status flags */
153 	struct list_head object_list;
154 	struct list_head gray_list;
155 	struct rb_node rb_node;
156 	struct rcu_head rcu;		/* object_list lockless traversal */
157 	/* object usage count; object freed when use_count == 0 */
158 	atomic_t use_count;
159 	unsigned long pointer;
160 	size_t size;
161 	/* pass surplus references to this pointer */
162 	unsigned long excess_ref;
163 	/* minimum number of a pointers found before it is considered leak */
164 	int min_count;
165 	/* the total number of pointers found pointing to this object */
166 	int count;
167 	/* checksum for detecting modified objects */
168 	u32 checksum;
169 	/* memory ranges to be scanned inside an object (empty for all) */
170 	struct hlist_head area_list;
171 	unsigned long trace[MAX_TRACE];
172 	unsigned int trace_len;
173 	unsigned long jiffies;		/* creation timestamp */
174 	pid_t pid;			/* pid of the current task */
175 	char comm[TASK_COMM_LEN];	/* executable name */
176 };
177 
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED	(1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED		(1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN		(1 << 2)
184 
185 #define HEX_PREFIX		"    "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE		16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE		1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII		1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES		2
194 
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203 
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207 
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220 
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224 
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239 
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242 
243 /*
244  * Early object allocation/freeing logging. Kmemleak is initialized after the
245  * kernel allocator. However, both the kernel allocator and kmemleak may
246  * allocate memory blocks which need to be tracked. Kmemleak defines an
247  * arbitrary buffer to hold the allocation/freeing information before it is
248  * fully initialized.
249  */
250 
251 /* kmemleak operation type for early logging */
252 enum {
253 	KMEMLEAK_ALLOC,
254 	KMEMLEAK_ALLOC_PERCPU,
255 	KMEMLEAK_FREE,
256 	KMEMLEAK_FREE_PART,
257 	KMEMLEAK_FREE_PERCPU,
258 	KMEMLEAK_NOT_LEAK,
259 	KMEMLEAK_IGNORE,
260 	KMEMLEAK_SCAN_AREA,
261 	KMEMLEAK_NO_SCAN,
262 	KMEMLEAK_SET_EXCESS_REF
263 };
264 
265 /*
266  * Structure holding the information passed to kmemleak callbacks during the
267  * early logging.
268  */
269 struct early_log {
270 	int op_type;			/* kmemleak operation type */
271 	int min_count;			/* minimum reference count */
272 	const void *ptr;		/* allocated/freed memory block */
273 	union {
274 		size_t size;		/* memory block size */
275 		unsigned long excess_ref; /* surplus reference passing */
276 	};
277 	unsigned long trace[MAX_TRACE];	/* stack trace */
278 	unsigned int trace_len;		/* stack trace length */
279 };
280 
281 /* early logging buffer and current position */
282 static struct early_log
283 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285 
286 static void kmemleak_disable(void);
287 
288 /*
289  * Print a warning and dump the stack trace.
290  */
291 #define kmemleak_warn(x...)	do {		\
292 	pr_warn(x);				\
293 	dump_stack();				\
294 	kmemleak_warning = 1;			\
295 } while (0)
296 
297 /*
298  * Macro invoked when a serious kmemleak condition occurred and cannot be
299  * recovered from. Kmemleak will be disabled and further allocation/freeing
300  * tracing no longer available.
301  */
302 #define kmemleak_stop(x...)	do {	\
303 	kmemleak_warn(x);		\
304 	kmemleak_disable();		\
305 } while (0)
306 
307 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
308 	if (seq)					\
309 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
310 	else						\
311 		pr_warn(fmt, ##__VA_ARGS__);		\
312 } while (0)
313 
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 				 int rowsize, int groupsize, const void *buf,
316 				 size_t len, bool ascii)
317 {
318 	if (seq)
319 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 			     buf, len, ascii);
321 	else
322 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 			       rowsize, groupsize, buf, len, ascii);
324 }
325 
326 /*
327  * Printing of the objects hex dump to the seq file. The number of lines to be
328  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330  * with the object->lock held.
331  */
332 static void hex_dump_object(struct seq_file *seq,
333 			    struct kmemleak_object *object)
334 {
335 	const u8 *ptr = (const u8 *)object->pointer;
336 	size_t len;
337 
338 	/* limit the number of lines to HEX_MAX_LINES */
339 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340 
341 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
342 	kasan_disable_current();
343 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345 	kasan_enable_current();
346 }
347 
348 /*
349  * Object colors, encoded with count and min_count:
350  * - white - orphan object, not enough references to it (count < min_count)
351  * - gray  - not orphan, not marked as false positive (min_count == 0) or
352  *		sufficient references to it (count >= min_count)
353  * - black - ignore, it doesn't contain references (e.g. text section)
354  *		(min_count == -1). No function defined for this color.
355  * Newly created objects don't have any color assigned (object->count == -1)
356  * before the next memory scan when they become white.
357  */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360 	return object->count != KMEMLEAK_BLACK &&
361 		object->count < object->min_count;
362 }
363 
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366 	return object->min_count != KMEMLEAK_BLACK &&
367 		object->count >= object->min_count;
368 }
369 
370 /*
371  * Objects are considered unreferenced only if their color is white, they have
372  * not be deleted and have a minimum age to avoid false positives caused by
373  * pointers temporarily stored in CPU registers.
374  */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378 		time_before_eq(object->jiffies + jiffies_min_age,
379 			       jiffies_last_scan);
380 }
381 
382 /*
383  * Printing of the unreferenced objects information to the seq file. The
384  * print_unreferenced function must be called with the object->lock held.
385  */
386 static void print_unreferenced(struct seq_file *seq,
387 			       struct kmemleak_object *object)
388 {
389 	int i;
390 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391 
392 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393 		   object->pointer, object->size);
394 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 		   object->comm, object->pid, object->jiffies,
396 		   msecs_age / 1000, msecs_age % 1000);
397 	hex_dump_object(seq, object);
398 	warn_or_seq_printf(seq, "  backtrace:\n");
399 
400 	for (i = 0; i < object->trace_len; i++) {
401 		void *ptr = (void *)object->trace[i];
402 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
403 	}
404 }
405 
406 /*
407  * Print the kmemleak_object information. This function is used mainly for
408  * debugging special cases when kmemleak operations. It must be called with
409  * the object->lock held.
410  */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413 	struct stack_trace trace;
414 
415 	trace.nr_entries = object->trace_len;
416 	trace.entries = object->trace;
417 
418 	pr_notice("Object 0x%08lx (size %zu):\n",
419 		  object->pointer, object->size);
420 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
421 		  object->comm, object->pid, object->jiffies);
422 	pr_notice("  min_count = %d\n", object->min_count);
423 	pr_notice("  count = %d\n", object->count);
424 	pr_notice("  flags = 0x%x\n", object->flags);
425 	pr_notice("  checksum = %u\n", object->checksum);
426 	pr_notice("  backtrace:\n");
427 	print_stack_trace(&trace, 4);
428 }
429 
430 /*
431  * Look-up a memory block metadata (kmemleak_object) in the object search
432  * tree based on a pointer value. If alias is 0, only values pointing to the
433  * beginning of the memory block are allowed. The kmemleak_lock must be held
434  * when calling this function.
435  */
436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437 {
438 	struct rb_node *rb = object_tree_root.rb_node;
439 
440 	while (rb) {
441 		struct kmemleak_object *object =
442 			rb_entry(rb, struct kmemleak_object, rb_node);
443 		if (ptr < object->pointer)
444 			rb = object->rb_node.rb_left;
445 		else if (object->pointer + object->size <= ptr)
446 			rb = object->rb_node.rb_right;
447 		else if (object->pointer == ptr || alias)
448 			return object;
449 		else {
450 			kmemleak_warn("Found object by alias at 0x%08lx\n",
451 				      ptr);
452 			dump_object_info(object);
453 			break;
454 		}
455 	}
456 	return NULL;
457 }
458 
459 /*
460  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461  * that once an object's use_count reached 0, the RCU freeing was already
462  * registered and the object should no longer be used. This function must be
463  * called under the protection of rcu_read_lock().
464  */
465 static int get_object(struct kmemleak_object *object)
466 {
467 	return atomic_inc_not_zero(&object->use_count);
468 }
469 
470 /*
471  * RCU callback to free a kmemleak_object.
472  */
473 static void free_object_rcu(struct rcu_head *rcu)
474 {
475 	struct hlist_node *tmp;
476 	struct kmemleak_scan_area *area;
477 	struct kmemleak_object *object =
478 		container_of(rcu, struct kmemleak_object, rcu);
479 
480 	/*
481 	 * Once use_count is 0 (guaranteed by put_object), there is no other
482 	 * code accessing this object, hence no need for locking.
483 	 */
484 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485 		hlist_del(&area->node);
486 		kmem_cache_free(scan_area_cache, area);
487 	}
488 	kmem_cache_free(object_cache, object);
489 }
490 
491 /*
492  * Decrement the object use_count. Once the count is 0, free the object using
493  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494  * delete_object() path, the delayed RCU freeing ensures that there is no
495  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496  * is also possible.
497  */
498 static void put_object(struct kmemleak_object *object)
499 {
500 	if (!atomic_dec_and_test(&object->use_count))
501 		return;
502 
503 	/* should only get here after delete_object was called */
504 	WARN_ON(object->flags & OBJECT_ALLOCATED);
505 
506 	call_rcu(&object->rcu, free_object_rcu);
507 }
508 
509 /*
510  * Look up an object in the object search tree and increase its use_count.
511  */
512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514 	unsigned long flags;
515 	struct kmemleak_object *object;
516 
517 	rcu_read_lock();
518 	read_lock_irqsave(&kmemleak_lock, flags);
519 	object = lookup_object(ptr, alias);
520 	read_unlock_irqrestore(&kmemleak_lock, flags);
521 
522 	/* check whether the object is still available */
523 	if (object && !get_object(object))
524 		object = NULL;
525 	rcu_read_unlock();
526 
527 	return object;
528 }
529 
530 /*
531  * Look up an object in the object search tree and remove it from both
532  * object_tree_root and object_list. The returned object's use_count should be
533  * at least 1, as initially set by create_object().
534  */
535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536 {
537 	unsigned long flags;
538 	struct kmemleak_object *object;
539 
540 	write_lock_irqsave(&kmemleak_lock, flags);
541 	object = lookup_object(ptr, alias);
542 	if (object) {
543 		rb_erase(&object->rb_node, &object_tree_root);
544 		list_del_rcu(&object->object_list);
545 	}
546 	write_unlock_irqrestore(&kmemleak_lock, flags);
547 
548 	return object;
549 }
550 
551 /*
552  * Save stack trace to the given array of MAX_TRACE size.
553  */
554 static int __save_stack_trace(unsigned long *trace)
555 {
556 	struct stack_trace stack_trace;
557 
558 	stack_trace.max_entries = MAX_TRACE;
559 	stack_trace.nr_entries = 0;
560 	stack_trace.entries = trace;
561 	stack_trace.skip = 2;
562 	save_stack_trace(&stack_trace);
563 
564 	return stack_trace.nr_entries;
565 }
566 
567 /*
568  * Create the metadata (struct kmemleak_object) corresponding to an allocated
569  * memory block and add it to the object_list and object_tree_root.
570  */
571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 					     int min_count, gfp_t gfp)
573 {
574 	unsigned long flags;
575 	struct kmemleak_object *object, *parent;
576 	struct rb_node **link, *rb_parent;
577 
578 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
579 	if (!object) {
580 		pr_warn("Cannot allocate a kmemleak_object structure\n");
581 		kmemleak_disable();
582 		return NULL;
583 	}
584 
585 	INIT_LIST_HEAD(&object->object_list);
586 	INIT_LIST_HEAD(&object->gray_list);
587 	INIT_HLIST_HEAD(&object->area_list);
588 	spin_lock_init(&object->lock);
589 	atomic_set(&object->use_count, 1);
590 	object->flags = OBJECT_ALLOCATED;
591 	object->pointer = ptr;
592 	object->size = size;
593 	object->excess_ref = 0;
594 	object->min_count = min_count;
595 	object->count = 0;			/* white color initially */
596 	object->jiffies = jiffies;
597 	object->checksum = 0;
598 
599 	/* task information */
600 	if (in_irq()) {
601 		object->pid = 0;
602 		strncpy(object->comm, "hardirq", sizeof(object->comm));
603 	} else if (in_softirq()) {
604 		object->pid = 0;
605 		strncpy(object->comm, "softirq", sizeof(object->comm));
606 	} else {
607 		object->pid = current->pid;
608 		/*
609 		 * There is a small chance of a race with set_task_comm(),
610 		 * however using get_task_comm() here may cause locking
611 		 * dependency issues with current->alloc_lock. In the worst
612 		 * case, the command line is not correct.
613 		 */
614 		strncpy(object->comm, current->comm, sizeof(object->comm));
615 	}
616 
617 	/* kernel backtrace */
618 	object->trace_len = __save_stack_trace(object->trace);
619 
620 	write_lock_irqsave(&kmemleak_lock, flags);
621 
622 	min_addr = min(min_addr, ptr);
623 	max_addr = max(max_addr, ptr + size);
624 	link = &object_tree_root.rb_node;
625 	rb_parent = NULL;
626 	while (*link) {
627 		rb_parent = *link;
628 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
629 		if (ptr + size <= parent->pointer)
630 			link = &parent->rb_node.rb_left;
631 		else if (parent->pointer + parent->size <= ptr)
632 			link = &parent->rb_node.rb_right;
633 		else {
634 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
635 				      ptr);
636 			/*
637 			 * No need for parent->lock here since "parent" cannot
638 			 * be freed while the kmemleak_lock is held.
639 			 */
640 			dump_object_info(parent);
641 			kmem_cache_free(object_cache, object);
642 			object = NULL;
643 			goto out;
644 		}
645 	}
646 	rb_link_node(&object->rb_node, rb_parent, link);
647 	rb_insert_color(&object->rb_node, &object_tree_root);
648 
649 	list_add_tail_rcu(&object->object_list, &object_list);
650 out:
651 	write_unlock_irqrestore(&kmemleak_lock, flags);
652 	return object;
653 }
654 
655 /*
656  * Mark the object as not allocated and schedule RCU freeing via put_object().
657  */
658 static void __delete_object(struct kmemleak_object *object)
659 {
660 	unsigned long flags;
661 
662 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
663 	WARN_ON(atomic_read(&object->use_count) < 1);
664 
665 	/*
666 	 * Locking here also ensures that the corresponding memory block
667 	 * cannot be freed when it is being scanned.
668 	 */
669 	spin_lock_irqsave(&object->lock, flags);
670 	object->flags &= ~OBJECT_ALLOCATED;
671 	spin_unlock_irqrestore(&object->lock, flags);
672 	put_object(object);
673 }
674 
675 /*
676  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
677  * delete it.
678  */
679 static void delete_object_full(unsigned long ptr)
680 {
681 	struct kmemleak_object *object;
682 
683 	object = find_and_remove_object(ptr, 0);
684 	if (!object) {
685 #ifdef DEBUG
686 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
687 			      ptr);
688 #endif
689 		return;
690 	}
691 	__delete_object(object);
692 }
693 
694 /*
695  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
696  * delete it. If the memory block is partially freed, the function may create
697  * additional metadata for the remaining parts of the block.
698  */
699 static void delete_object_part(unsigned long ptr, size_t size)
700 {
701 	struct kmemleak_object *object;
702 	unsigned long start, end;
703 
704 	object = find_and_remove_object(ptr, 1);
705 	if (!object) {
706 #ifdef DEBUG
707 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
708 			      ptr, size);
709 #endif
710 		return;
711 	}
712 
713 	/*
714 	 * Create one or two objects that may result from the memory block
715 	 * split. Note that partial freeing is only done by free_bootmem() and
716 	 * this happens before kmemleak_init() is called. The path below is
717 	 * only executed during early log recording in kmemleak_init(), so
718 	 * GFP_KERNEL is enough.
719 	 */
720 	start = object->pointer;
721 	end = object->pointer + object->size;
722 	if (ptr > start)
723 		create_object(start, ptr - start, object->min_count,
724 			      GFP_KERNEL);
725 	if (ptr + size < end)
726 		create_object(ptr + size, end - ptr - size, object->min_count,
727 			      GFP_KERNEL);
728 
729 	__delete_object(object);
730 }
731 
732 static void __paint_it(struct kmemleak_object *object, int color)
733 {
734 	object->min_count = color;
735 	if (color == KMEMLEAK_BLACK)
736 		object->flags |= OBJECT_NO_SCAN;
737 }
738 
739 static void paint_it(struct kmemleak_object *object, int color)
740 {
741 	unsigned long flags;
742 
743 	spin_lock_irqsave(&object->lock, flags);
744 	__paint_it(object, color);
745 	spin_unlock_irqrestore(&object->lock, flags);
746 }
747 
748 static void paint_ptr(unsigned long ptr, int color)
749 {
750 	struct kmemleak_object *object;
751 
752 	object = find_and_get_object(ptr, 0);
753 	if (!object) {
754 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 			      ptr,
756 			      (color == KMEMLEAK_GREY) ? "Grey" :
757 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758 		return;
759 	}
760 	paint_it(object, color);
761 	put_object(object);
762 }
763 
764 /*
765  * Mark an object permanently as gray-colored so that it can no longer be
766  * reported as a leak. This is used in general to mark a false positive.
767  */
768 static void make_gray_object(unsigned long ptr)
769 {
770 	paint_ptr(ptr, KMEMLEAK_GREY);
771 }
772 
773 /*
774  * Mark the object as black-colored so that it is ignored from scans and
775  * reporting.
776  */
777 static void make_black_object(unsigned long ptr)
778 {
779 	paint_ptr(ptr, KMEMLEAK_BLACK);
780 }
781 
782 /*
783  * Add a scanning area to the object. If at least one such area is added,
784  * kmemleak will only scan these ranges rather than the whole memory block.
785  */
786 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787 {
788 	unsigned long flags;
789 	struct kmemleak_object *object;
790 	struct kmemleak_scan_area *area;
791 
792 	object = find_and_get_object(ptr, 1);
793 	if (!object) {
794 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
795 			      ptr);
796 		return;
797 	}
798 
799 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800 	if (!area) {
801 		pr_warn("Cannot allocate a scan area\n");
802 		goto out;
803 	}
804 
805 	spin_lock_irqsave(&object->lock, flags);
806 	if (size == SIZE_MAX) {
807 		size = object->pointer + object->size - ptr;
808 	} else if (ptr + size > object->pointer + object->size) {
809 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
810 		dump_object_info(object);
811 		kmem_cache_free(scan_area_cache, area);
812 		goto out_unlock;
813 	}
814 
815 	INIT_HLIST_NODE(&area->node);
816 	area->start = ptr;
817 	area->size = size;
818 
819 	hlist_add_head(&area->node, &object->area_list);
820 out_unlock:
821 	spin_unlock_irqrestore(&object->lock, flags);
822 out:
823 	put_object(object);
824 }
825 
826 /*
827  * Any surplus references (object already gray) to 'ptr' are passed to
828  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
829  * vm_struct may be used as an alternative reference to the vmalloc'ed object
830  * (see free_thread_stack()).
831  */
832 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
833 {
834 	unsigned long flags;
835 	struct kmemleak_object *object;
836 
837 	object = find_and_get_object(ptr, 0);
838 	if (!object) {
839 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
840 			      ptr);
841 		return;
842 	}
843 
844 	spin_lock_irqsave(&object->lock, flags);
845 	object->excess_ref = excess_ref;
846 	spin_unlock_irqrestore(&object->lock, flags);
847 	put_object(object);
848 }
849 
850 /*
851  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
852  * pointer. Such object will not be scanned by kmemleak but references to it
853  * are searched.
854  */
855 static void object_no_scan(unsigned long ptr)
856 {
857 	unsigned long flags;
858 	struct kmemleak_object *object;
859 
860 	object = find_and_get_object(ptr, 0);
861 	if (!object) {
862 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
863 		return;
864 	}
865 
866 	spin_lock_irqsave(&object->lock, flags);
867 	object->flags |= OBJECT_NO_SCAN;
868 	spin_unlock_irqrestore(&object->lock, flags);
869 	put_object(object);
870 }
871 
872 /*
873  * Log an early kmemleak_* call to the early_log buffer. These calls will be
874  * processed later once kmemleak is fully initialized.
875  */
876 static void __init log_early(int op_type, const void *ptr, size_t size,
877 			     int min_count)
878 {
879 	unsigned long flags;
880 	struct early_log *log;
881 
882 	if (kmemleak_error) {
883 		/* kmemleak stopped recording, just count the requests */
884 		crt_early_log++;
885 		return;
886 	}
887 
888 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
889 		crt_early_log++;
890 		kmemleak_disable();
891 		return;
892 	}
893 
894 	/*
895 	 * There is no need for locking since the kernel is still in UP mode
896 	 * at this stage. Disabling the IRQs is enough.
897 	 */
898 	local_irq_save(flags);
899 	log = &early_log[crt_early_log];
900 	log->op_type = op_type;
901 	log->ptr = ptr;
902 	log->size = size;
903 	log->min_count = min_count;
904 	log->trace_len = __save_stack_trace(log->trace);
905 	crt_early_log++;
906 	local_irq_restore(flags);
907 }
908 
909 /*
910  * Log an early allocated block and populate the stack trace.
911  */
912 static void early_alloc(struct early_log *log)
913 {
914 	struct kmemleak_object *object;
915 	unsigned long flags;
916 	int i;
917 
918 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
919 		return;
920 
921 	/*
922 	 * RCU locking needed to ensure object is not freed via put_object().
923 	 */
924 	rcu_read_lock();
925 	object = create_object((unsigned long)log->ptr, log->size,
926 			       log->min_count, GFP_ATOMIC);
927 	if (!object)
928 		goto out;
929 	spin_lock_irqsave(&object->lock, flags);
930 	for (i = 0; i < log->trace_len; i++)
931 		object->trace[i] = log->trace[i];
932 	object->trace_len = log->trace_len;
933 	spin_unlock_irqrestore(&object->lock, flags);
934 out:
935 	rcu_read_unlock();
936 }
937 
938 /*
939  * Log an early allocated block and populate the stack trace.
940  */
941 static void early_alloc_percpu(struct early_log *log)
942 {
943 	unsigned int cpu;
944 	const void __percpu *ptr = log->ptr;
945 
946 	for_each_possible_cpu(cpu) {
947 		log->ptr = per_cpu_ptr(ptr, cpu);
948 		early_alloc(log);
949 	}
950 }
951 
952 /**
953  * kmemleak_alloc - register a newly allocated object
954  * @ptr:	pointer to beginning of the object
955  * @size:	size of the object
956  * @min_count:	minimum number of references to this object. If during memory
957  *		scanning a number of references less than @min_count is found,
958  *		the object is reported as a memory leak. If @min_count is 0,
959  *		the object is never reported as a leak. If @min_count is -1,
960  *		the object is ignored (not scanned and not reported as a leak)
961  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
962  *
963  * This function is called from the kernel allocators when a new object
964  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
965  */
966 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
967 			  gfp_t gfp)
968 {
969 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
970 
971 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
972 		create_object((unsigned long)ptr, size, min_count, gfp);
973 	else if (kmemleak_early_log)
974 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
975 }
976 EXPORT_SYMBOL_GPL(kmemleak_alloc);
977 
978 /**
979  * kmemleak_alloc_percpu - register a newly allocated __percpu object
980  * @ptr:	__percpu pointer to beginning of the object
981  * @size:	size of the object
982  * @gfp:	flags used for kmemleak internal memory allocations
983  *
984  * This function is called from the kernel percpu allocator when a new object
985  * (memory block) is allocated (alloc_percpu).
986  */
987 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
988 				 gfp_t gfp)
989 {
990 	unsigned int cpu;
991 
992 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
993 
994 	/*
995 	 * Percpu allocations are only scanned and not reported as leaks
996 	 * (min_count is set to 0).
997 	 */
998 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
999 		for_each_possible_cpu(cpu)
1000 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1001 				      size, 0, gfp);
1002 	else if (kmemleak_early_log)
1003 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1004 }
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006 
1007 /**
1008  * kmemleak_vmalloc - register a newly vmalloc'ed object
1009  * @area:	pointer to vm_struct
1010  * @size:	size of the object
1011  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1012  *
1013  * This function is called from the vmalloc() kernel allocator when a new
1014  * object (memory block) is allocated.
1015  */
1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017 {
1018 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019 
1020 	/*
1021 	 * A min_count = 2 is needed because vm_struct contains a reference to
1022 	 * the virtual address of the vmalloc'ed block.
1023 	 */
1024 	if (kmemleak_enabled) {
1025 		create_object((unsigned long)area->addr, size, 2, gfp);
1026 		object_set_excess_ref((unsigned long)area,
1027 				      (unsigned long)area->addr);
1028 	} else if (kmemleak_early_log) {
1029 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1030 		/* reusing early_log.size for storing area->addr */
1031 		log_early(KMEMLEAK_SET_EXCESS_REF,
1032 			  area, (unsigned long)area->addr, 0);
1033 	}
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036 
1037 /**
1038  * kmemleak_free - unregister a previously registered object
1039  * @ptr:	pointer to beginning of the object
1040  *
1041  * This function is called from the kernel allocators when an object (memory
1042  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043  */
1044 void __ref kmemleak_free(const void *ptr)
1045 {
1046 	pr_debug("%s(0x%p)\n", __func__, ptr);
1047 
1048 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049 		delete_object_full((unsigned long)ptr);
1050 	else if (kmemleak_early_log)
1051 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1052 }
1053 EXPORT_SYMBOL_GPL(kmemleak_free);
1054 
1055 /**
1056  * kmemleak_free_part - partially unregister a previously registered object
1057  * @ptr:	pointer to the beginning or inside the object. This also
1058  *		represents the start of the range to be freed
1059  * @size:	size to be unregistered
1060  *
1061  * This function is called when only a part of a memory block is freed
1062  * (usually from the bootmem allocator).
1063  */
1064 void __ref kmemleak_free_part(const void *ptr, size_t size)
1065 {
1066 	pr_debug("%s(0x%p)\n", __func__, ptr);
1067 
1068 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1069 		delete_object_part((unsigned long)ptr, size);
1070 	else if (kmemleak_early_log)
1071 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1072 }
1073 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1074 
1075 /**
1076  * kmemleak_free_percpu - unregister a previously registered __percpu object
1077  * @ptr:	__percpu pointer to beginning of the object
1078  *
1079  * This function is called from the kernel percpu allocator when an object
1080  * (memory block) is freed (free_percpu).
1081  */
1082 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1083 {
1084 	unsigned int cpu;
1085 
1086 	pr_debug("%s(0x%p)\n", __func__, ptr);
1087 
1088 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1089 		for_each_possible_cpu(cpu)
1090 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1091 								      cpu));
1092 	else if (kmemleak_early_log)
1093 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1094 }
1095 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1096 
1097 /**
1098  * kmemleak_update_trace - update object allocation stack trace
1099  * @ptr:	pointer to beginning of the object
1100  *
1101  * Override the object allocation stack trace for cases where the actual
1102  * allocation place is not always useful.
1103  */
1104 void __ref kmemleak_update_trace(const void *ptr)
1105 {
1106 	struct kmemleak_object *object;
1107 	unsigned long flags;
1108 
1109 	pr_debug("%s(0x%p)\n", __func__, ptr);
1110 
1111 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1112 		return;
1113 
1114 	object = find_and_get_object((unsigned long)ptr, 1);
1115 	if (!object) {
1116 #ifdef DEBUG
1117 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1118 			      ptr);
1119 #endif
1120 		return;
1121 	}
1122 
1123 	spin_lock_irqsave(&object->lock, flags);
1124 	object->trace_len = __save_stack_trace(object->trace);
1125 	spin_unlock_irqrestore(&object->lock, flags);
1126 
1127 	put_object(object);
1128 }
1129 EXPORT_SYMBOL(kmemleak_update_trace);
1130 
1131 /**
1132  * kmemleak_not_leak - mark an allocated object as false positive
1133  * @ptr:	pointer to beginning of the object
1134  *
1135  * Calling this function on an object will cause the memory block to no longer
1136  * be reported as leak and always be scanned.
1137  */
1138 void __ref kmemleak_not_leak(const void *ptr)
1139 {
1140 	pr_debug("%s(0x%p)\n", __func__, ptr);
1141 
1142 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1143 		make_gray_object((unsigned long)ptr);
1144 	else if (kmemleak_early_log)
1145 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1146 }
1147 EXPORT_SYMBOL(kmemleak_not_leak);
1148 
1149 /**
1150  * kmemleak_ignore - ignore an allocated object
1151  * @ptr:	pointer to beginning of the object
1152  *
1153  * Calling this function on an object will cause the memory block to be
1154  * ignored (not scanned and not reported as a leak). This is usually done when
1155  * it is known that the corresponding block is not a leak and does not contain
1156  * any references to other allocated memory blocks.
1157  */
1158 void __ref kmemleak_ignore(const void *ptr)
1159 {
1160 	pr_debug("%s(0x%p)\n", __func__, ptr);
1161 
1162 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163 		make_black_object((unsigned long)ptr);
1164 	else if (kmemleak_early_log)
1165 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore);
1168 
1169 /**
1170  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1171  * @ptr:	pointer to beginning or inside the object. This also
1172  *		represents the start of the scan area
1173  * @size:	size of the scan area
1174  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1175  *
1176  * This function is used when it is known that only certain parts of an object
1177  * contain references to other objects. Kmemleak will only scan these areas
1178  * reducing the number false negatives.
1179  */
1180 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1181 {
1182 	pr_debug("%s(0x%p)\n", __func__, ptr);
1183 
1184 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1185 		add_scan_area((unsigned long)ptr, size, gfp);
1186 	else if (kmemleak_early_log)
1187 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1188 }
1189 EXPORT_SYMBOL(kmemleak_scan_area);
1190 
1191 /**
1192  * kmemleak_no_scan - do not scan an allocated object
1193  * @ptr:	pointer to beginning of the object
1194  *
1195  * This function notifies kmemleak not to scan the given memory block. Useful
1196  * in situations where it is known that the given object does not contain any
1197  * references to other objects. Kmemleak will not scan such objects reducing
1198  * the number of false negatives.
1199  */
1200 void __ref kmemleak_no_scan(const void *ptr)
1201 {
1202 	pr_debug("%s(0x%p)\n", __func__, ptr);
1203 
1204 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1205 		object_no_scan((unsigned long)ptr);
1206 	else if (kmemleak_early_log)
1207 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1208 }
1209 EXPORT_SYMBOL(kmemleak_no_scan);
1210 
1211 /**
1212  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1213  *			 address argument
1214  * @phys:	physical address of the object
1215  * @size:	size of the object
1216  * @min_count:	minimum number of references to this object.
1217  *              See kmemleak_alloc()
1218  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1219  */
1220 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1221 			       gfp_t gfp)
1222 {
1223 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1224 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1225 }
1226 EXPORT_SYMBOL(kmemleak_alloc_phys);
1227 
1228 /**
1229  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1230  *			     physical address argument
1231  * @phys:	physical address if the beginning or inside an object. This
1232  *		also represents the start of the range to be freed
1233  * @size:	size to be unregistered
1234  */
1235 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1236 {
1237 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 		kmemleak_free_part(__va(phys), size);
1239 }
1240 EXPORT_SYMBOL(kmemleak_free_part_phys);
1241 
1242 /**
1243  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1244  *			    address argument
1245  * @phys:	physical address of the object
1246  */
1247 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1248 {
1249 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1250 		kmemleak_not_leak(__va(phys));
1251 }
1252 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1253 
1254 /**
1255  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1256  *			  address argument
1257  * @phys:	physical address of the object
1258  */
1259 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1260 {
1261 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1262 		kmemleak_ignore(__va(phys));
1263 }
1264 EXPORT_SYMBOL(kmemleak_ignore_phys);
1265 
1266 /*
1267  * Update an object's checksum and return true if it was modified.
1268  */
1269 static bool update_checksum(struct kmemleak_object *object)
1270 {
1271 	u32 old_csum = object->checksum;
1272 
1273 	kasan_disable_current();
1274 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1275 	kasan_enable_current();
1276 
1277 	return object->checksum != old_csum;
1278 }
1279 
1280 /*
1281  * Update an object's references. object->lock must be held by the caller.
1282  */
1283 static void update_refs(struct kmemleak_object *object)
1284 {
1285 	if (!color_white(object)) {
1286 		/* non-orphan, ignored or new */
1287 		return;
1288 	}
1289 
1290 	/*
1291 	 * Increase the object's reference count (number of pointers to the
1292 	 * memory block). If this count reaches the required minimum, the
1293 	 * object's color will become gray and it will be added to the
1294 	 * gray_list.
1295 	 */
1296 	object->count++;
1297 	if (color_gray(object)) {
1298 		/* put_object() called when removing from gray_list */
1299 		WARN_ON(!get_object(object));
1300 		list_add_tail(&object->gray_list, &gray_list);
1301 	}
1302 }
1303 
1304 /*
1305  * Memory scanning is a long process and it needs to be interruptable. This
1306  * function checks whether such interrupt condition occurred.
1307  */
1308 static int scan_should_stop(void)
1309 {
1310 	if (!kmemleak_enabled)
1311 		return 1;
1312 
1313 	/*
1314 	 * This function may be called from either process or kthread context,
1315 	 * hence the need to check for both stop conditions.
1316 	 */
1317 	if (current->mm)
1318 		return signal_pending(current);
1319 	else
1320 		return kthread_should_stop();
1321 
1322 	return 0;
1323 }
1324 
1325 /*
1326  * Scan a memory block (exclusive range) for valid pointers and add those
1327  * found to the gray list.
1328  */
1329 static void scan_block(void *_start, void *_end,
1330 		       struct kmemleak_object *scanned)
1331 {
1332 	unsigned long *ptr;
1333 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1334 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1335 	unsigned long flags;
1336 
1337 	read_lock_irqsave(&kmemleak_lock, flags);
1338 	for (ptr = start; ptr < end; ptr++) {
1339 		struct kmemleak_object *object;
1340 		unsigned long pointer;
1341 		unsigned long excess_ref;
1342 
1343 		if (scan_should_stop())
1344 			break;
1345 
1346 		kasan_disable_current();
1347 		pointer = *ptr;
1348 		kasan_enable_current();
1349 
1350 		if (pointer < min_addr || pointer >= max_addr)
1351 			continue;
1352 
1353 		/*
1354 		 * No need for get_object() here since we hold kmemleak_lock.
1355 		 * object->use_count cannot be dropped to 0 while the object
1356 		 * is still present in object_tree_root and object_list
1357 		 * (with updates protected by kmemleak_lock).
1358 		 */
1359 		object = lookup_object(pointer, 1);
1360 		if (!object)
1361 			continue;
1362 		if (object == scanned)
1363 			/* self referenced, ignore */
1364 			continue;
1365 
1366 		/*
1367 		 * Avoid the lockdep recursive warning on object->lock being
1368 		 * previously acquired in scan_object(). These locks are
1369 		 * enclosed by scan_mutex.
1370 		 */
1371 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1372 		/* only pass surplus references (object already gray) */
1373 		if (color_gray(object)) {
1374 			excess_ref = object->excess_ref;
1375 			/* no need for update_refs() if object already gray */
1376 		} else {
1377 			excess_ref = 0;
1378 			update_refs(object);
1379 		}
1380 		spin_unlock(&object->lock);
1381 
1382 		if (excess_ref) {
1383 			object = lookup_object(excess_ref, 0);
1384 			if (!object)
1385 				continue;
1386 			if (object == scanned)
1387 				/* circular reference, ignore */
1388 				continue;
1389 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1390 			update_refs(object);
1391 			spin_unlock(&object->lock);
1392 		}
1393 	}
1394 	read_unlock_irqrestore(&kmemleak_lock, flags);
1395 }
1396 
1397 /*
1398  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1399  */
1400 static void scan_large_block(void *start, void *end)
1401 {
1402 	void *next;
1403 
1404 	while (start < end) {
1405 		next = min(start + MAX_SCAN_SIZE, end);
1406 		scan_block(start, next, NULL);
1407 		start = next;
1408 		cond_resched();
1409 	}
1410 }
1411 
1412 /*
1413  * Scan a memory block corresponding to a kmemleak_object. A condition is
1414  * that object->use_count >= 1.
1415  */
1416 static void scan_object(struct kmemleak_object *object)
1417 {
1418 	struct kmemleak_scan_area *area;
1419 	unsigned long flags;
1420 
1421 	/*
1422 	 * Once the object->lock is acquired, the corresponding memory block
1423 	 * cannot be freed (the same lock is acquired in delete_object).
1424 	 */
1425 	spin_lock_irqsave(&object->lock, flags);
1426 	if (object->flags & OBJECT_NO_SCAN)
1427 		goto out;
1428 	if (!(object->flags & OBJECT_ALLOCATED))
1429 		/* already freed object */
1430 		goto out;
1431 	if (hlist_empty(&object->area_list)) {
1432 		void *start = (void *)object->pointer;
1433 		void *end = (void *)(object->pointer + object->size);
1434 		void *next;
1435 
1436 		do {
1437 			next = min(start + MAX_SCAN_SIZE, end);
1438 			scan_block(start, next, object);
1439 
1440 			start = next;
1441 			if (start >= end)
1442 				break;
1443 
1444 			spin_unlock_irqrestore(&object->lock, flags);
1445 			cond_resched();
1446 			spin_lock_irqsave(&object->lock, flags);
1447 		} while (object->flags & OBJECT_ALLOCATED);
1448 	} else
1449 		hlist_for_each_entry(area, &object->area_list, node)
1450 			scan_block((void *)area->start,
1451 				   (void *)(area->start + area->size),
1452 				   object);
1453 out:
1454 	spin_unlock_irqrestore(&object->lock, flags);
1455 }
1456 
1457 /*
1458  * Scan the objects already referenced (gray objects). More objects will be
1459  * referenced and, if there are no memory leaks, all the objects are scanned.
1460  */
1461 static void scan_gray_list(void)
1462 {
1463 	struct kmemleak_object *object, *tmp;
1464 
1465 	/*
1466 	 * The list traversal is safe for both tail additions and removals
1467 	 * from inside the loop. The kmemleak objects cannot be freed from
1468 	 * outside the loop because their use_count was incremented.
1469 	 */
1470 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1471 	while (&object->gray_list != &gray_list) {
1472 		cond_resched();
1473 
1474 		/* may add new objects to the list */
1475 		if (!scan_should_stop())
1476 			scan_object(object);
1477 
1478 		tmp = list_entry(object->gray_list.next, typeof(*object),
1479 				 gray_list);
1480 
1481 		/* remove the object from the list and release it */
1482 		list_del(&object->gray_list);
1483 		put_object(object);
1484 
1485 		object = tmp;
1486 	}
1487 	WARN_ON(!list_empty(&gray_list));
1488 }
1489 
1490 /*
1491  * Scan data sections and all the referenced memory blocks allocated via the
1492  * kernel's standard allocators. This function must be called with the
1493  * scan_mutex held.
1494  */
1495 static void kmemleak_scan(void)
1496 {
1497 	unsigned long flags;
1498 	struct kmemleak_object *object;
1499 	int i;
1500 	int new_leaks = 0;
1501 
1502 	jiffies_last_scan = jiffies;
1503 
1504 	/* prepare the kmemleak_object's */
1505 	rcu_read_lock();
1506 	list_for_each_entry_rcu(object, &object_list, object_list) {
1507 		spin_lock_irqsave(&object->lock, flags);
1508 #ifdef DEBUG
1509 		/*
1510 		 * With a few exceptions there should be a maximum of
1511 		 * 1 reference to any object at this point.
1512 		 */
1513 		if (atomic_read(&object->use_count) > 1) {
1514 			pr_debug("object->use_count = %d\n",
1515 				 atomic_read(&object->use_count));
1516 			dump_object_info(object);
1517 		}
1518 #endif
1519 		/* reset the reference count (whiten the object) */
1520 		object->count = 0;
1521 		if (color_gray(object) && get_object(object))
1522 			list_add_tail(&object->gray_list, &gray_list);
1523 
1524 		spin_unlock_irqrestore(&object->lock, flags);
1525 	}
1526 	rcu_read_unlock();
1527 
1528 	/* data/bss scanning */
1529 	scan_large_block(_sdata, _edata);
1530 	scan_large_block(__bss_start, __bss_stop);
1531 	scan_large_block(__start_ro_after_init, __end_ro_after_init);
1532 
1533 #ifdef CONFIG_SMP
1534 	/* per-cpu sections scanning */
1535 	for_each_possible_cpu(i)
1536 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1537 				 __per_cpu_end + per_cpu_offset(i));
1538 #endif
1539 
1540 	/*
1541 	 * Struct page scanning for each node.
1542 	 */
1543 	get_online_mems();
1544 	for_each_online_node(i) {
1545 		unsigned long start_pfn = node_start_pfn(i);
1546 		unsigned long end_pfn = node_end_pfn(i);
1547 		unsigned long pfn;
1548 
1549 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1550 			struct page *page = pfn_to_online_page(pfn);
1551 
1552 			if (!page)
1553 				continue;
1554 
1555 			/* only scan pages belonging to this node */
1556 			if (page_to_nid(page) != i)
1557 				continue;
1558 			/* only scan if page is in use */
1559 			if (page_count(page) == 0)
1560 				continue;
1561 			scan_block(page, page + 1, NULL);
1562 			if (!(pfn & 63))
1563 				cond_resched();
1564 		}
1565 	}
1566 	put_online_mems();
1567 
1568 	/*
1569 	 * Scanning the task stacks (may introduce false negatives).
1570 	 */
1571 	if (kmemleak_stack_scan) {
1572 		struct task_struct *p, *g;
1573 
1574 		read_lock(&tasklist_lock);
1575 		do_each_thread(g, p) {
1576 			void *stack = try_get_task_stack(p);
1577 			if (stack) {
1578 				scan_block(stack, stack + THREAD_SIZE, NULL);
1579 				put_task_stack(p);
1580 			}
1581 		} while_each_thread(g, p);
1582 		read_unlock(&tasklist_lock);
1583 	}
1584 
1585 	/*
1586 	 * Scan the objects already referenced from the sections scanned
1587 	 * above.
1588 	 */
1589 	scan_gray_list();
1590 
1591 	/*
1592 	 * Check for new or unreferenced objects modified since the previous
1593 	 * scan and color them gray until the next scan.
1594 	 */
1595 	rcu_read_lock();
1596 	list_for_each_entry_rcu(object, &object_list, object_list) {
1597 		spin_lock_irqsave(&object->lock, flags);
1598 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1599 		    && update_checksum(object) && get_object(object)) {
1600 			/* color it gray temporarily */
1601 			object->count = object->min_count;
1602 			list_add_tail(&object->gray_list, &gray_list);
1603 		}
1604 		spin_unlock_irqrestore(&object->lock, flags);
1605 	}
1606 	rcu_read_unlock();
1607 
1608 	/*
1609 	 * Re-scan the gray list for modified unreferenced objects.
1610 	 */
1611 	scan_gray_list();
1612 
1613 	/*
1614 	 * If scanning was stopped do not report any new unreferenced objects.
1615 	 */
1616 	if (scan_should_stop())
1617 		return;
1618 
1619 	/*
1620 	 * Scanning result reporting.
1621 	 */
1622 	rcu_read_lock();
1623 	list_for_each_entry_rcu(object, &object_list, object_list) {
1624 		spin_lock_irqsave(&object->lock, flags);
1625 		if (unreferenced_object(object) &&
1626 		    !(object->flags & OBJECT_REPORTED)) {
1627 			object->flags |= OBJECT_REPORTED;
1628 
1629 			if (kmemleak_verbose)
1630 				print_unreferenced(NULL, object);
1631 
1632 			new_leaks++;
1633 		}
1634 		spin_unlock_irqrestore(&object->lock, flags);
1635 	}
1636 	rcu_read_unlock();
1637 
1638 	if (new_leaks) {
1639 		kmemleak_found_leaks = true;
1640 
1641 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1642 			new_leaks);
1643 	}
1644 
1645 }
1646 
1647 /*
1648  * Thread function performing automatic memory scanning. Unreferenced objects
1649  * at the end of a memory scan are reported but only the first time.
1650  */
1651 static int kmemleak_scan_thread(void *arg)
1652 {
1653 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1654 
1655 	pr_info("Automatic memory scanning thread started\n");
1656 	set_user_nice(current, 10);
1657 
1658 	/*
1659 	 * Wait before the first scan to allow the system to fully initialize.
1660 	 */
1661 	if (first_run) {
1662 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1663 		first_run = 0;
1664 		while (timeout && !kthread_should_stop())
1665 			timeout = schedule_timeout_interruptible(timeout);
1666 	}
1667 
1668 	while (!kthread_should_stop()) {
1669 		signed long timeout = jiffies_scan_wait;
1670 
1671 		mutex_lock(&scan_mutex);
1672 		kmemleak_scan();
1673 		mutex_unlock(&scan_mutex);
1674 
1675 		/* wait before the next scan */
1676 		while (timeout && !kthread_should_stop())
1677 			timeout = schedule_timeout_interruptible(timeout);
1678 	}
1679 
1680 	pr_info("Automatic memory scanning thread ended\n");
1681 
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Start the automatic memory scanning thread. This function must be called
1687  * with the scan_mutex held.
1688  */
1689 static void start_scan_thread(void)
1690 {
1691 	if (scan_thread)
1692 		return;
1693 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1694 	if (IS_ERR(scan_thread)) {
1695 		pr_warn("Failed to create the scan thread\n");
1696 		scan_thread = NULL;
1697 	}
1698 }
1699 
1700 /*
1701  * Stop the automatic memory scanning thread.
1702  */
1703 static void stop_scan_thread(void)
1704 {
1705 	if (scan_thread) {
1706 		kthread_stop(scan_thread);
1707 		scan_thread = NULL;
1708 	}
1709 }
1710 
1711 /*
1712  * Iterate over the object_list and return the first valid object at or after
1713  * the required position with its use_count incremented. The function triggers
1714  * a memory scanning when the pos argument points to the first position.
1715  */
1716 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1717 {
1718 	struct kmemleak_object *object;
1719 	loff_t n = *pos;
1720 	int err;
1721 
1722 	err = mutex_lock_interruptible(&scan_mutex);
1723 	if (err < 0)
1724 		return ERR_PTR(err);
1725 
1726 	rcu_read_lock();
1727 	list_for_each_entry_rcu(object, &object_list, object_list) {
1728 		if (n-- > 0)
1729 			continue;
1730 		if (get_object(object))
1731 			goto out;
1732 	}
1733 	object = NULL;
1734 out:
1735 	return object;
1736 }
1737 
1738 /*
1739  * Return the next object in the object_list. The function decrements the
1740  * use_count of the previous object and increases that of the next one.
1741  */
1742 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1743 {
1744 	struct kmemleak_object *prev_obj = v;
1745 	struct kmemleak_object *next_obj = NULL;
1746 	struct kmemleak_object *obj = prev_obj;
1747 
1748 	++(*pos);
1749 
1750 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1751 		if (get_object(obj)) {
1752 			next_obj = obj;
1753 			break;
1754 		}
1755 	}
1756 
1757 	put_object(prev_obj);
1758 	return next_obj;
1759 }
1760 
1761 /*
1762  * Decrement the use_count of the last object required, if any.
1763  */
1764 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1765 {
1766 	if (!IS_ERR(v)) {
1767 		/*
1768 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1769 		 * waiting was interrupted, so only release it if !IS_ERR.
1770 		 */
1771 		rcu_read_unlock();
1772 		mutex_unlock(&scan_mutex);
1773 		if (v)
1774 			put_object(v);
1775 	}
1776 }
1777 
1778 /*
1779  * Print the information for an unreferenced object to the seq file.
1780  */
1781 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1782 {
1783 	struct kmemleak_object *object = v;
1784 	unsigned long flags;
1785 
1786 	spin_lock_irqsave(&object->lock, flags);
1787 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1788 		print_unreferenced(seq, object);
1789 	spin_unlock_irqrestore(&object->lock, flags);
1790 	return 0;
1791 }
1792 
1793 static const struct seq_operations kmemleak_seq_ops = {
1794 	.start = kmemleak_seq_start,
1795 	.next  = kmemleak_seq_next,
1796 	.stop  = kmemleak_seq_stop,
1797 	.show  = kmemleak_seq_show,
1798 };
1799 
1800 static int kmemleak_open(struct inode *inode, struct file *file)
1801 {
1802 	return seq_open(file, &kmemleak_seq_ops);
1803 }
1804 
1805 static int dump_str_object_info(const char *str)
1806 {
1807 	unsigned long flags;
1808 	struct kmemleak_object *object;
1809 	unsigned long addr;
1810 
1811 	if (kstrtoul(str, 0, &addr))
1812 		return -EINVAL;
1813 	object = find_and_get_object(addr, 0);
1814 	if (!object) {
1815 		pr_info("Unknown object at 0x%08lx\n", addr);
1816 		return -EINVAL;
1817 	}
1818 
1819 	spin_lock_irqsave(&object->lock, flags);
1820 	dump_object_info(object);
1821 	spin_unlock_irqrestore(&object->lock, flags);
1822 
1823 	put_object(object);
1824 	return 0;
1825 }
1826 
1827 /*
1828  * We use grey instead of black to ensure we can do future scans on the same
1829  * objects. If we did not do future scans these black objects could
1830  * potentially contain references to newly allocated objects in the future and
1831  * we'd end up with false positives.
1832  */
1833 static void kmemleak_clear(void)
1834 {
1835 	struct kmemleak_object *object;
1836 	unsigned long flags;
1837 
1838 	rcu_read_lock();
1839 	list_for_each_entry_rcu(object, &object_list, object_list) {
1840 		spin_lock_irqsave(&object->lock, flags);
1841 		if ((object->flags & OBJECT_REPORTED) &&
1842 		    unreferenced_object(object))
1843 			__paint_it(object, KMEMLEAK_GREY);
1844 		spin_unlock_irqrestore(&object->lock, flags);
1845 	}
1846 	rcu_read_unlock();
1847 
1848 	kmemleak_found_leaks = false;
1849 }
1850 
1851 static void __kmemleak_do_cleanup(void);
1852 
1853 /*
1854  * File write operation to configure kmemleak at run-time. The following
1855  * commands can be written to the /sys/kernel/debug/kmemleak file:
1856  *   off	- disable kmemleak (irreversible)
1857  *   stack=on	- enable the task stacks scanning
1858  *   stack=off	- disable the tasks stacks scanning
1859  *   scan=on	- start the automatic memory scanning thread
1860  *   scan=off	- stop the automatic memory scanning thread
1861  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1862  *		  disable it)
1863  *   scan	- trigger a memory scan
1864  *   clear	- mark all current reported unreferenced kmemleak objects as
1865  *		  grey to ignore printing them, or free all kmemleak objects
1866  *		  if kmemleak has been disabled.
1867  *   dump=...	- dump information about the object found at the given address
1868  */
1869 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1870 			      size_t size, loff_t *ppos)
1871 {
1872 	char buf[64];
1873 	int buf_size;
1874 	int ret;
1875 
1876 	buf_size = min(size, (sizeof(buf) - 1));
1877 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1878 		return -EFAULT;
1879 	buf[buf_size] = 0;
1880 
1881 	ret = mutex_lock_interruptible(&scan_mutex);
1882 	if (ret < 0)
1883 		return ret;
1884 
1885 	if (strncmp(buf, "clear", 5) == 0) {
1886 		if (kmemleak_enabled)
1887 			kmemleak_clear();
1888 		else
1889 			__kmemleak_do_cleanup();
1890 		goto out;
1891 	}
1892 
1893 	if (!kmemleak_enabled) {
1894 		ret = -EBUSY;
1895 		goto out;
1896 	}
1897 
1898 	if (strncmp(buf, "off", 3) == 0)
1899 		kmemleak_disable();
1900 	else if (strncmp(buf, "stack=on", 8) == 0)
1901 		kmemleak_stack_scan = 1;
1902 	else if (strncmp(buf, "stack=off", 9) == 0)
1903 		kmemleak_stack_scan = 0;
1904 	else if (strncmp(buf, "scan=on", 7) == 0)
1905 		start_scan_thread();
1906 	else if (strncmp(buf, "scan=off", 8) == 0)
1907 		stop_scan_thread();
1908 	else if (strncmp(buf, "scan=", 5) == 0) {
1909 		unsigned long secs;
1910 
1911 		ret = kstrtoul(buf + 5, 0, &secs);
1912 		if (ret < 0)
1913 			goto out;
1914 		stop_scan_thread();
1915 		if (secs) {
1916 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1917 			start_scan_thread();
1918 		}
1919 	} else if (strncmp(buf, "scan", 4) == 0)
1920 		kmemleak_scan();
1921 	else if (strncmp(buf, "dump=", 5) == 0)
1922 		ret = dump_str_object_info(buf + 5);
1923 	else
1924 		ret = -EINVAL;
1925 
1926 out:
1927 	mutex_unlock(&scan_mutex);
1928 	if (ret < 0)
1929 		return ret;
1930 
1931 	/* ignore the rest of the buffer, only one command at a time */
1932 	*ppos += size;
1933 	return size;
1934 }
1935 
1936 static const struct file_operations kmemleak_fops = {
1937 	.owner		= THIS_MODULE,
1938 	.open		= kmemleak_open,
1939 	.read		= seq_read,
1940 	.write		= kmemleak_write,
1941 	.llseek		= seq_lseek,
1942 	.release	= seq_release,
1943 };
1944 
1945 static void __kmemleak_do_cleanup(void)
1946 {
1947 	struct kmemleak_object *object;
1948 
1949 	rcu_read_lock();
1950 	list_for_each_entry_rcu(object, &object_list, object_list)
1951 		delete_object_full(object->pointer);
1952 	rcu_read_unlock();
1953 }
1954 
1955 /*
1956  * Stop the memory scanning thread and free the kmemleak internal objects if
1957  * no previous scan thread (otherwise, kmemleak may still have some useful
1958  * information on memory leaks).
1959  */
1960 static void kmemleak_do_cleanup(struct work_struct *work)
1961 {
1962 	stop_scan_thread();
1963 
1964 	mutex_lock(&scan_mutex);
1965 	/*
1966 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1967 	 * longer track object freeing. Ordering of the scan thread stopping and
1968 	 * the memory accesses below is guaranteed by the kthread_stop()
1969 	 * function.
1970 	 */
1971 	kmemleak_free_enabled = 0;
1972 	mutex_unlock(&scan_mutex);
1973 
1974 	if (!kmemleak_found_leaks)
1975 		__kmemleak_do_cleanup();
1976 	else
1977 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1978 }
1979 
1980 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1981 
1982 /*
1983  * Disable kmemleak. No memory allocation/freeing will be traced once this
1984  * function is called. Disabling kmemleak is an irreversible operation.
1985  */
1986 static void kmemleak_disable(void)
1987 {
1988 	/* atomically check whether it was already invoked */
1989 	if (cmpxchg(&kmemleak_error, 0, 1))
1990 		return;
1991 
1992 	/* stop any memory operation tracing */
1993 	kmemleak_enabled = 0;
1994 
1995 	/* check whether it is too early for a kernel thread */
1996 	if (kmemleak_initialized)
1997 		schedule_work(&cleanup_work);
1998 	else
1999 		kmemleak_free_enabled = 0;
2000 
2001 	pr_info("Kernel memory leak detector disabled\n");
2002 }
2003 
2004 /*
2005  * Allow boot-time kmemleak disabling (enabled by default).
2006  */
2007 static int __init kmemleak_boot_config(char *str)
2008 {
2009 	if (!str)
2010 		return -EINVAL;
2011 	if (strcmp(str, "off") == 0)
2012 		kmemleak_disable();
2013 	else if (strcmp(str, "on") == 0)
2014 		kmemleak_skip_disable = 1;
2015 	else
2016 		return -EINVAL;
2017 	return 0;
2018 }
2019 early_param("kmemleak", kmemleak_boot_config);
2020 
2021 static void __init print_log_trace(struct early_log *log)
2022 {
2023 	struct stack_trace trace;
2024 
2025 	trace.nr_entries = log->trace_len;
2026 	trace.entries = log->trace;
2027 
2028 	pr_notice("Early log backtrace:\n");
2029 	print_stack_trace(&trace, 2);
2030 }
2031 
2032 /*
2033  * Kmemleak initialization.
2034  */
2035 void __init kmemleak_init(void)
2036 {
2037 	int i;
2038 	unsigned long flags;
2039 
2040 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2041 	if (!kmemleak_skip_disable) {
2042 		kmemleak_early_log = 0;
2043 		kmemleak_disable();
2044 		return;
2045 	}
2046 #endif
2047 
2048 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2049 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2050 
2051 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2052 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2053 
2054 	if (crt_early_log > ARRAY_SIZE(early_log))
2055 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2056 			crt_early_log);
2057 
2058 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2059 	local_irq_save(flags);
2060 	kmemleak_early_log = 0;
2061 	if (kmemleak_error) {
2062 		local_irq_restore(flags);
2063 		return;
2064 	} else {
2065 		kmemleak_enabled = 1;
2066 		kmemleak_free_enabled = 1;
2067 	}
2068 	local_irq_restore(flags);
2069 
2070 	/*
2071 	 * This is the point where tracking allocations is safe. Automatic
2072 	 * scanning is started during the late initcall. Add the early logged
2073 	 * callbacks to the kmemleak infrastructure.
2074 	 */
2075 	for (i = 0; i < crt_early_log; i++) {
2076 		struct early_log *log = &early_log[i];
2077 
2078 		switch (log->op_type) {
2079 		case KMEMLEAK_ALLOC:
2080 			early_alloc(log);
2081 			break;
2082 		case KMEMLEAK_ALLOC_PERCPU:
2083 			early_alloc_percpu(log);
2084 			break;
2085 		case KMEMLEAK_FREE:
2086 			kmemleak_free(log->ptr);
2087 			break;
2088 		case KMEMLEAK_FREE_PART:
2089 			kmemleak_free_part(log->ptr, log->size);
2090 			break;
2091 		case KMEMLEAK_FREE_PERCPU:
2092 			kmemleak_free_percpu(log->ptr);
2093 			break;
2094 		case KMEMLEAK_NOT_LEAK:
2095 			kmemleak_not_leak(log->ptr);
2096 			break;
2097 		case KMEMLEAK_IGNORE:
2098 			kmemleak_ignore(log->ptr);
2099 			break;
2100 		case KMEMLEAK_SCAN_AREA:
2101 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2102 			break;
2103 		case KMEMLEAK_NO_SCAN:
2104 			kmemleak_no_scan(log->ptr);
2105 			break;
2106 		case KMEMLEAK_SET_EXCESS_REF:
2107 			object_set_excess_ref((unsigned long)log->ptr,
2108 					      log->excess_ref);
2109 			break;
2110 		default:
2111 			kmemleak_warn("Unknown early log operation: %d\n",
2112 				      log->op_type);
2113 		}
2114 
2115 		if (kmemleak_warning) {
2116 			print_log_trace(log);
2117 			kmemleak_warning = 0;
2118 		}
2119 	}
2120 }
2121 
2122 /*
2123  * Late initialization function.
2124  */
2125 static int __init kmemleak_late_init(void)
2126 {
2127 	struct dentry *dentry;
2128 
2129 	kmemleak_initialized = 1;
2130 
2131 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2132 				     &kmemleak_fops);
2133 	if (!dentry)
2134 		pr_warn("Failed to create the debugfs kmemleak file\n");
2135 
2136 	if (kmemleak_error) {
2137 		/*
2138 		 * Some error occurred and kmemleak was disabled. There is a
2139 		 * small chance that kmemleak_disable() was called immediately
2140 		 * after setting kmemleak_initialized and we may end up with
2141 		 * two clean-up threads but serialized by scan_mutex.
2142 		 */
2143 		schedule_work(&cleanup_work);
2144 		return -ENOMEM;
2145 	}
2146 
2147 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2148 		mutex_lock(&scan_mutex);
2149 		start_scan_thread();
2150 		mutex_unlock(&scan_mutex);
2151 	}
2152 
2153 	pr_info("Kernel memory leak detector initialized\n");
2154 
2155 	return 0;
2156 }
2157 late_initcall(kmemleak_late_init);
2158