1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object_tree_root (or 18 * object_phys_tree_root). The object_list is the main list holding the 19 * metadata (struct kmemleak_object) for the allocated memory blocks. 20 * The object_tree_root and object_phys_tree_root are red 21 * black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The object_phys_tree_root is for objects 23 * allocated with physical address. The kmemleak_object structures are 24 * added to the object_list and object_tree_root (or object_phys_tree_root) 25 * in the create_object() function called from the kmemleak_alloc() (or 26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 27 * the kmemleak_free() callback 28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 29 * Accesses to the metadata (e.g. count) are protected by this lock. Note 30 * that some members of this structure may be protected by other means 31 * (atomic or kmemleak_lock). This lock is also held when scanning the 32 * corresponding memory block to avoid the kernel freeing it via the 33 * kmemleak_free() callback. This is less heavyweight than holding a global 34 * lock like kmemleak_lock during scanning. 35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 36 * unreferenced objects at a time. The gray_list contains the objects which 37 * are already referenced or marked as false positives and need to be 38 * scanned. This list is only modified during a scanning episode when the 39 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 40 * Note that the kmemleak_object.use_count is incremented when an object is 41 * added to the gray_list and therefore cannot be freed. This mutex also 42 * prevents multiple users of the "kmemleak" debugfs file together with 43 * modifications to the memory scanning parameters including the scan_thread 44 * pointer 45 * 46 * Locks and mutexes are acquired/nested in the following order: 47 * 48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 49 * 50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 51 * regions. 52 * 53 * The kmemleak_object structures have a use_count incremented or decremented 54 * using the get_object()/put_object() functions. When the use_count becomes 55 * 0, this count can no longer be incremented and put_object() schedules the 56 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 57 * function must be protected by rcu_read_lock() to avoid accessing a freed 58 * structure. 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include <linux/init.h> 64 #include <linux/kernel.h> 65 #include <linux/list.h> 66 #include <linux/sched/signal.h> 67 #include <linux/sched/task.h> 68 #include <linux/sched/task_stack.h> 69 #include <linux/jiffies.h> 70 #include <linux/delay.h> 71 #include <linux/export.h> 72 #include <linux/kthread.h> 73 #include <linux/rbtree.h> 74 #include <linux/fs.h> 75 #include <linux/debugfs.h> 76 #include <linux/seq_file.h> 77 #include <linux/cpumask.h> 78 #include <linux/spinlock.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/stackdepot.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/memblock.h> 87 #include <linux/pfn.h> 88 #include <linux/mmzone.h> 89 #include <linux/slab.h> 90 #include <linux/thread_info.h> 91 #include <linux/err.h> 92 #include <linux/uaccess.h> 93 #include <linux/string.h> 94 #include <linux/nodemask.h> 95 #include <linux/mm.h> 96 #include <linux/workqueue.h> 97 #include <linux/crc32.h> 98 99 #include <asm/sections.h> 100 #include <asm/processor.h> 101 #include <linux/atomic.h> 102 103 #include <linux/kasan.h> 104 #include <linux/kfence.h> 105 #include <linux/kmemleak.h> 106 #include <linux/memory_hotplug.h> 107 108 /* 109 * Kmemleak configuration and common defines. 110 */ 111 #define MAX_TRACE 16 /* stack trace length */ 112 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 113 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 114 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 115 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 116 117 #define BYTES_PER_POINTER sizeof(void *) 118 119 /* GFP bitmask for kmemleak internal allocations */ 120 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 121 __GFP_NOLOCKDEP)) | \ 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 123 __GFP_NOWARN) 124 125 /* scanning area inside a memory block */ 126 struct kmemleak_scan_area { 127 struct hlist_node node; 128 unsigned long start; 129 size_t size; 130 }; 131 132 #define KMEMLEAK_GREY 0 133 #define KMEMLEAK_BLACK -1 134 135 /* 136 * Structure holding the metadata for each allocated memory block. 137 * Modifications to such objects should be made while holding the 138 * object->lock. Insertions or deletions from object_list, gray_list or 139 * rb_node are already protected by the corresponding locks or mutex (see 140 * the notes on locking above). These objects are reference-counted 141 * (use_count) and freed using the RCU mechanism. 142 */ 143 struct kmemleak_object { 144 raw_spinlock_t lock; 145 unsigned int flags; /* object status flags */ 146 struct list_head object_list; 147 struct list_head gray_list; 148 struct rb_node rb_node; 149 struct rcu_head rcu; /* object_list lockless traversal */ 150 /* object usage count; object freed when use_count == 0 */ 151 atomic_t use_count; 152 unsigned int del_state; /* deletion state */ 153 unsigned long pointer; 154 size_t size; 155 /* pass surplus references to this pointer */ 156 unsigned long excess_ref; 157 /* minimum number of a pointers found before it is considered leak */ 158 int min_count; 159 /* the total number of pointers found pointing to this object */ 160 int count; 161 /* checksum for detecting modified objects */ 162 u32 checksum; 163 /* memory ranges to be scanned inside an object (empty for all) */ 164 struct hlist_head area_list; 165 depot_stack_handle_t trace_handle; 166 unsigned long jiffies; /* creation timestamp */ 167 pid_t pid; /* pid of the current task */ 168 char comm[TASK_COMM_LEN]; /* executable name */ 169 }; 170 171 /* flag representing the memory block allocation status */ 172 #define OBJECT_ALLOCATED (1 << 0) 173 /* flag set after the first reporting of an unreference object */ 174 #define OBJECT_REPORTED (1 << 1) 175 /* flag set to not scan the object */ 176 #define OBJECT_NO_SCAN (1 << 2) 177 /* flag set to fully scan the object when scan_area allocation failed */ 178 #define OBJECT_FULL_SCAN (1 << 3) 179 /* flag set for object allocated with physical address */ 180 #define OBJECT_PHYS (1 << 4) 181 182 /* set when __remove_object() called */ 183 #define DELSTATE_REMOVED (1 << 0) 184 /* set to temporarily prevent deletion from object_list */ 185 #define DELSTATE_NO_DELETE (1 << 1) 186 187 #define HEX_PREFIX " " 188 /* number of bytes to print per line; must be 16 or 32 */ 189 #define HEX_ROW_SIZE 16 190 /* number of bytes to print at a time (1, 2, 4, 8) */ 191 #define HEX_GROUP_SIZE 1 192 /* include ASCII after the hex output */ 193 #define HEX_ASCII 1 194 /* max number of lines to be printed */ 195 #define HEX_MAX_LINES 2 196 197 /* the list of all allocated objects */ 198 static LIST_HEAD(object_list); 199 /* the list of gray-colored objects (see color_gray comment below) */ 200 static LIST_HEAD(gray_list); 201 /* memory pool allocation */ 202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 204 static LIST_HEAD(mem_pool_free_list); 205 /* search tree for object boundaries */ 206 static struct rb_root object_tree_root = RB_ROOT; 207 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 208 static struct rb_root object_phys_tree_root = RB_ROOT; 209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 210 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 211 212 /* allocation caches for kmemleak internal data */ 213 static struct kmem_cache *object_cache; 214 static struct kmem_cache *scan_area_cache; 215 216 /* set if tracing memory operations is enabled */ 217 static int kmemleak_enabled = 1; 218 /* same as above but only for the kmemleak_free() callback */ 219 static int kmemleak_free_enabled = 1; 220 /* set in the late_initcall if there were no errors */ 221 static int kmemleak_initialized; 222 /* set if a kmemleak warning was issued */ 223 static int kmemleak_warning; 224 /* set if a fatal kmemleak error has occurred */ 225 static int kmemleak_error; 226 227 /* minimum and maximum address that may be valid pointers */ 228 static unsigned long min_addr = ULONG_MAX; 229 static unsigned long max_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 308 kasan_disable_current(); 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 311 kasan_enable_current(); 312 } 313 314 /* 315 * Object colors, encoded with count and min_count: 316 * - white - orphan object, not enough references to it (count < min_count) 317 * - gray - not orphan, not marked as false positive (min_count == 0) or 318 * sufficient references to it (count >= min_count) 319 * - black - ignore, it doesn't contain references (e.g. text section) 320 * (min_count == -1). No function defined for this color. 321 * Newly created objects don't have any color assigned (object->count == -1) 322 * before the next memory scan when they become white. 323 */ 324 static bool color_white(const struct kmemleak_object *object) 325 { 326 return object->count != KMEMLEAK_BLACK && 327 object->count < object->min_count; 328 } 329 330 static bool color_gray(const struct kmemleak_object *object) 331 { 332 return object->min_count != KMEMLEAK_BLACK && 333 object->count >= object->min_count; 334 } 335 336 /* 337 * Objects are considered unreferenced only if their color is white, they have 338 * not be deleted and have a minimum age to avoid false positives caused by 339 * pointers temporarily stored in CPU registers. 340 */ 341 static bool unreferenced_object(struct kmemleak_object *object) 342 { 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 344 time_before_eq(object->jiffies + jiffies_min_age, 345 jiffies_last_scan); 346 } 347 348 /* 349 * Printing of the unreferenced objects information to the seq file. The 350 * print_unreferenced function must be called with the object->lock held. 351 */ 352 static void print_unreferenced(struct seq_file *seq, 353 struct kmemleak_object *object) 354 { 355 int i; 356 unsigned long *entries; 357 unsigned int nr_entries; 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 359 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 364 object->comm, object->pid, object->jiffies, 365 msecs_age / 1000, msecs_age % 1000); 366 hex_dump_object(seq, object); 367 warn_or_seq_printf(seq, " backtrace:\n"); 368 369 for (i = 0; i < nr_entries; i++) { 370 void *ptr = (void *)entries[i]; 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 372 } 373 } 374 375 /* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380 static void dump_object_info(struct kmemleak_object *object) 381 { 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%x\n", object->flags); 389 pr_notice(" checksum = %u\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 if (object->trace_handle) 392 stack_depot_print(object->trace_handle); 393 } 394 395 /* 396 * Look-up a memory block metadata (kmemleak_object) in the object search 397 * tree based on a pointer value. If alias is 0, only values pointing to the 398 * beginning of the memory block are allowed. The kmemleak_lock must be held 399 * when calling this function. 400 */ 401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 402 bool is_phys) 403 { 404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 405 object_tree_root.rb_node; 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 407 408 while (rb) { 409 struct kmemleak_object *object; 410 unsigned long untagged_objp; 411 412 object = rb_entry(rb, struct kmemleak_object, rb_node); 413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 414 415 if (untagged_ptr < untagged_objp) 416 rb = object->rb_node.rb_left; 417 else if (untagged_objp + object->size <= untagged_ptr) 418 rb = object->rb_node.rb_right; 419 else if (untagged_objp == untagged_ptr || alias) 420 return object; 421 else { 422 kmemleak_warn("Found object by alias at 0x%08lx\n", 423 ptr); 424 dump_object_info(object); 425 break; 426 } 427 } 428 return NULL; 429 } 430 431 /* Look-up a kmemleak object which allocated with virtual address. */ 432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 433 { 434 return __lookup_object(ptr, alias, false); 435 } 436 437 /* 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 439 * that once an object's use_count reached 0, the RCU freeing was already 440 * registered and the object should no longer be used. This function must be 441 * called under the protection of rcu_read_lock(). 442 */ 443 static int get_object(struct kmemleak_object *object) 444 { 445 return atomic_inc_not_zero(&object->use_count); 446 } 447 448 /* 449 * Memory pool allocation and freeing. kmemleak_lock must not be held. 450 */ 451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 452 { 453 unsigned long flags; 454 struct kmemleak_object *object; 455 456 /* try the slab allocator first */ 457 if (object_cache) { 458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 459 if (object) 460 return object; 461 } 462 463 /* slab allocation failed, try the memory pool */ 464 raw_spin_lock_irqsave(&kmemleak_lock, flags); 465 object = list_first_entry_or_null(&mem_pool_free_list, 466 typeof(*object), object_list); 467 if (object) 468 list_del(&object->object_list); 469 else if (mem_pool_free_count) 470 object = &mem_pool[--mem_pool_free_count]; 471 else 472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 474 475 return object; 476 } 477 478 /* 479 * Return the object to either the slab allocator or the memory pool. 480 */ 481 static void mem_pool_free(struct kmemleak_object *object) 482 { 483 unsigned long flags; 484 485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 486 kmem_cache_free(object_cache, object); 487 return; 488 } 489 490 /* add the object to the memory pool free list */ 491 raw_spin_lock_irqsave(&kmemleak_lock, flags); 492 list_add(&object->object_list, &mem_pool_free_list); 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 494 } 495 496 /* 497 * RCU callback to free a kmemleak_object. 498 */ 499 static void free_object_rcu(struct rcu_head *rcu) 500 { 501 struct hlist_node *tmp; 502 struct kmemleak_scan_area *area; 503 struct kmemleak_object *object = 504 container_of(rcu, struct kmemleak_object, rcu); 505 506 /* 507 * Once use_count is 0 (guaranteed by put_object), there is no other 508 * code accessing this object, hence no need for locking. 509 */ 510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 511 hlist_del(&area->node); 512 kmem_cache_free(scan_area_cache, area); 513 } 514 mem_pool_free(object); 515 } 516 517 /* 518 * Decrement the object use_count. Once the count is 0, free the object using 519 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 520 * delete_object() path, the delayed RCU freeing ensures that there is no 521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 522 * is also possible. 523 */ 524 static void put_object(struct kmemleak_object *object) 525 { 526 if (!atomic_dec_and_test(&object->use_count)) 527 return; 528 529 /* should only get here after delete_object was called */ 530 WARN_ON(object->flags & OBJECT_ALLOCATED); 531 532 /* 533 * It may be too early for the RCU callbacks, however, there is no 534 * concurrent object_list traversal when !object_cache and all objects 535 * came from the memory pool. Free the object directly. 536 */ 537 if (object_cache) 538 call_rcu(&object->rcu, free_object_rcu); 539 else 540 free_object_rcu(&object->rcu); 541 } 542 543 /* 544 * Look up an object in the object search tree and increase its use_count. 545 */ 546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 547 bool is_phys) 548 { 549 unsigned long flags; 550 struct kmemleak_object *object; 551 552 rcu_read_lock(); 553 raw_spin_lock_irqsave(&kmemleak_lock, flags); 554 object = __lookup_object(ptr, alias, is_phys); 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 556 557 /* check whether the object is still available */ 558 if (object && !get_object(object)) 559 object = NULL; 560 rcu_read_unlock(); 561 562 return object; 563 } 564 565 /* Look up and get an object which allocated with virtual address. */ 566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 567 { 568 return __find_and_get_object(ptr, alias, false); 569 } 570 571 /* 572 * Remove an object from the object_tree_root (or object_phys_tree_root) 573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 574 * is still enabled. 575 */ 576 static void __remove_object(struct kmemleak_object *object) 577 { 578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 579 &object_phys_tree_root : 580 &object_tree_root); 581 if (!(object->del_state & DELSTATE_NO_DELETE)) 582 list_del_rcu(&object->object_list); 583 object->del_state |= DELSTATE_REMOVED; 584 } 585 586 /* 587 * Look up an object in the object search tree and remove it from both 588 * object_tree_root (or object_phys_tree_root) and object_list. The 589 * returned object's use_count should be at least 1, as initially set 590 * by create_object(). 591 */ 592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 593 bool is_phys) 594 { 595 unsigned long flags; 596 struct kmemleak_object *object; 597 598 raw_spin_lock_irqsave(&kmemleak_lock, flags); 599 object = __lookup_object(ptr, alias, is_phys); 600 if (object) 601 __remove_object(object); 602 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 603 604 return object; 605 } 606 607 static noinline depot_stack_handle_t set_track_prepare(void) 608 { 609 depot_stack_handle_t trace_handle; 610 unsigned long entries[MAX_TRACE]; 611 unsigned int nr_entries; 612 613 if (!kmemleak_initialized) 614 return 0; 615 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 616 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 617 618 return trace_handle; 619 } 620 621 /* 622 * Create the metadata (struct kmemleak_object) corresponding to an allocated 623 * memory block and add it to the object_list and object_tree_root (or 624 * object_phys_tree_root). 625 */ 626 static void __create_object(unsigned long ptr, size_t size, 627 int min_count, gfp_t gfp, bool is_phys) 628 { 629 unsigned long flags; 630 struct kmemleak_object *object, *parent; 631 struct rb_node **link, *rb_parent; 632 unsigned long untagged_ptr; 633 unsigned long untagged_objp; 634 635 object = mem_pool_alloc(gfp); 636 if (!object) { 637 pr_warn("Cannot allocate a kmemleak_object structure\n"); 638 kmemleak_disable(); 639 return; 640 } 641 642 INIT_LIST_HEAD(&object->object_list); 643 INIT_LIST_HEAD(&object->gray_list); 644 INIT_HLIST_HEAD(&object->area_list); 645 raw_spin_lock_init(&object->lock); 646 atomic_set(&object->use_count, 1); 647 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 648 object->pointer = ptr; 649 object->size = kfence_ksize((void *)ptr) ?: size; 650 object->excess_ref = 0; 651 object->min_count = min_count; 652 object->count = 0; /* white color initially */ 653 object->jiffies = jiffies; 654 object->checksum = 0; 655 object->del_state = 0; 656 657 /* task information */ 658 if (in_hardirq()) { 659 object->pid = 0; 660 strncpy(object->comm, "hardirq", sizeof(object->comm)); 661 } else if (in_serving_softirq()) { 662 object->pid = 0; 663 strncpy(object->comm, "softirq", sizeof(object->comm)); 664 } else { 665 object->pid = current->pid; 666 /* 667 * There is a small chance of a race with set_task_comm(), 668 * however using get_task_comm() here may cause locking 669 * dependency issues with current->alloc_lock. In the worst 670 * case, the command line is not correct. 671 */ 672 strncpy(object->comm, current->comm, sizeof(object->comm)); 673 } 674 675 /* kernel backtrace */ 676 object->trace_handle = set_track_prepare(); 677 678 raw_spin_lock_irqsave(&kmemleak_lock, flags); 679 680 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 681 /* 682 * Only update min_addr and max_addr with object 683 * storing virtual address. 684 */ 685 if (!is_phys) { 686 min_addr = min(min_addr, untagged_ptr); 687 max_addr = max(max_addr, untagged_ptr + size); 688 } 689 link = is_phys ? &object_phys_tree_root.rb_node : 690 &object_tree_root.rb_node; 691 rb_parent = NULL; 692 while (*link) { 693 rb_parent = *link; 694 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 695 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 696 if (untagged_ptr + size <= untagged_objp) 697 link = &parent->rb_node.rb_left; 698 else if (untagged_objp + parent->size <= untagged_ptr) 699 link = &parent->rb_node.rb_right; 700 else { 701 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 702 ptr); 703 /* 704 * No need for parent->lock here since "parent" cannot 705 * be freed while the kmemleak_lock is held. 706 */ 707 dump_object_info(parent); 708 kmem_cache_free(object_cache, object); 709 goto out; 710 } 711 } 712 rb_link_node(&object->rb_node, rb_parent, link); 713 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 714 &object_tree_root); 715 list_add_tail_rcu(&object->object_list, &object_list); 716 out: 717 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 718 } 719 720 /* Create kmemleak object which allocated with virtual address. */ 721 static void create_object(unsigned long ptr, size_t size, 722 int min_count, gfp_t gfp) 723 { 724 __create_object(ptr, size, min_count, gfp, false); 725 } 726 727 /* Create kmemleak object which allocated with physical address. */ 728 static void create_object_phys(unsigned long ptr, size_t size, 729 int min_count, gfp_t gfp) 730 { 731 __create_object(ptr, size, min_count, gfp, true); 732 } 733 734 /* 735 * Mark the object as not allocated and schedule RCU freeing via put_object(). 736 */ 737 static void __delete_object(struct kmemleak_object *object) 738 { 739 unsigned long flags; 740 741 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 742 WARN_ON(atomic_read(&object->use_count) < 1); 743 744 /* 745 * Locking here also ensures that the corresponding memory block 746 * cannot be freed when it is being scanned. 747 */ 748 raw_spin_lock_irqsave(&object->lock, flags); 749 object->flags &= ~OBJECT_ALLOCATED; 750 raw_spin_unlock_irqrestore(&object->lock, flags); 751 put_object(object); 752 } 753 754 /* 755 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 756 * delete it. 757 */ 758 static void delete_object_full(unsigned long ptr) 759 { 760 struct kmemleak_object *object; 761 762 object = find_and_remove_object(ptr, 0, false); 763 if (!object) { 764 #ifdef DEBUG 765 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 766 ptr); 767 #endif 768 return; 769 } 770 __delete_object(object); 771 } 772 773 /* 774 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 775 * delete it. If the memory block is partially freed, the function may create 776 * additional metadata for the remaining parts of the block. 777 */ 778 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 779 { 780 struct kmemleak_object *object; 781 unsigned long start, end; 782 783 object = find_and_remove_object(ptr, 1, is_phys); 784 if (!object) { 785 #ifdef DEBUG 786 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 787 ptr, size); 788 #endif 789 return; 790 } 791 792 /* 793 * Create one or two objects that may result from the memory block 794 * split. Note that partial freeing is only done by free_bootmem() and 795 * this happens before kmemleak_init() is called. 796 */ 797 start = object->pointer; 798 end = object->pointer + object->size; 799 if (ptr > start) 800 __create_object(start, ptr - start, object->min_count, 801 GFP_KERNEL, is_phys); 802 if (ptr + size < end) 803 __create_object(ptr + size, end - ptr - size, object->min_count, 804 GFP_KERNEL, is_phys); 805 806 __delete_object(object); 807 } 808 809 static void __paint_it(struct kmemleak_object *object, int color) 810 { 811 object->min_count = color; 812 if (color == KMEMLEAK_BLACK) 813 object->flags |= OBJECT_NO_SCAN; 814 } 815 816 static void paint_it(struct kmemleak_object *object, int color) 817 { 818 unsigned long flags; 819 820 raw_spin_lock_irqsave(&object->lock, flags); 821 __paint_it(object, color); 822 raw_spin_unlock_irqrestore(&object->lock, flags); 823 } 824 825 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 826 { 827 struct kmemleak_object *object; 828 829 object = __find_and_get_object(ptr, 0, is_phys); 830 if (!object) { 831 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 832 ptr, 833 (color == KMEMLEAK_GREY) ? "Grey" : 834 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 835 return; 836 } 837 paint_it(object, color); 838 put_object(object); 839 } 840 841 /* 842 * Mark an object permanently as gray-colored so that it can no longer be 843 * reported as a leak. This is used in general to mark a false positive. 844 */ 845 static void make_gray_object(unsigned long ptr) 846 { 847 paint_ptr(ptr, KMEMLEAK_GREY, false); 848 } 849 850 /* 851 * Mark the object as black-colored so that it is ignored from scans and 852 * reporting. 853 */ 854 static void make_black_object(unsigned long ptr, bool is_phys) 855 { 856 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 857 } 858 859 /* 860 * Add a scanning area to the object. If at least one such area is added, 861 * kmemleak will only scan these ranges rather than the whole memory block. 862 */ 863 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 864 { 865 unsigned long flags; 866 struct kmemleak_object *object; 867 struct kmemleak_scan_area *area = NULL; 868 unsigned long untagged_ptr; 869 unsigned long untagged_objp; 870 871 object = find_and_get_object(ptr, 1); 872 if (!object) { 873 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 874 ptr); 875 return; 876 } 877 878 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 879 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 880 881 if (scan_area_cache) 882 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 883 884 raw_spin_lock_irqsave(&object->lock, flags); 885 if (!area) { 886 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 887 /* mark the object for full scan to avoid false positives */ 888 object->flags |= OBJECT_FULL_SCAN; 889 goto out_unlock; 890 } 891 if (size == SIZE_MAX) { 892 size = untagged_objp + object->size - untagged_ptr; 893 } else if (untagged_ptr + size > untagged_objp + object->size) { 894 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 895 dump_object_info(object); 896 kmem_cache_free(scan_area_cache, area); 897 goto out_unlock; 898 } 899 900 INIT_HLIST_NODE(&area->node); 901 area->start = ptr; 902 area->size = size; 903 904 hlist_add_head(&area->node, &object->area_list); 905 out_unlock: 906 raw_spin_unlock_irqrestore(&object->lock, flags); 907 put_object(object); 908 } 909 910 /* 911 * Any surplus references (object already gray) to 'ptr' are passed to 912 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 913 * vm_struct may be used as an alternative reference to the vmalloc'ed object 914 * (see free_thread_stack()). 915 */ 916 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 917 { 918 unsigned long flags; 919 struct kmemleak_object *object; 920 921 object = find_and_get_object(ptr, 0); 922 if (!object) { 923 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 924 ptr); 925 return; 926 } 927 928 raw_spin_lock_irqsave(&object->lock, flags); 929 object->excess_ref = excess_ref; 930 raw_spin_unlock_irqrestore(&object->lock, flags); 931 put_object(object); 932 } 933 934 /* 935 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 936 * pointer. Such object will not be scanned by kmemleak but references to it 937 * are searched. 938 */ 939 static void object_no_scan(unsigned long ptr) 940 { 941 unsigned long flags; 942 struct kmemleak_object *object; 943 944 object = find_and_get_object(ptr, 0); 945 if (!object) { 946 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 947 return; 948 } 949 950 raw_spin_lock_irqsave(&object->lock, flags); 951 object->flags |= OBJECT_NO_SCAN; 952 raw_spin_unlock_irqrestore(&object->lock, flags); 953 put_object(object); 954 } 955 956 /** 957 * kmemleak_alloc - register a newly allocated object 958 * @ptr: pointer to beginning of the object 959 * @size: size of the object 960 * @min_count: minimum number of references to this object. If during memory 961 * scanning a number of references less than @min_count is found, 962 * the object is reported as a memory leak. If @min_count is 0, 963 * the object is never reported as a leak. If @min_count is -1, 964 * the object is ignored (not scanned and not reported as a leak) 965 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 966 * 967 * This function is called from the kernel allocators when a new object 968 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 969 */ 970 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 971 gfp_t gfp) 972 { 973 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 974 975 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 976 create_object((unsigned long)ptr, size, min_count, gfp); 977 } 978 EXPORT_SYMBOL_GPL(kmemleak_alloc); 979 980 /** 981 * kmemleak_alloc_percpu - register a newly allocated __percpu object 982 * @ptr: __percpu pointer to beginning of the object 983 * @size: size of the object 984 * @gfp: flags used for kmemleak internal memory allocations 985 * 986 * This function is called from the kernel percpu allocator when a new object 987 * (memory block) is allocated (alloc_percpu). 988 */ 989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 990 gfp_t gfp) 991 { 992 unsigned int cpu; 993 994 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 995 996 /* 997 * Percpu allocations are only scanned and not reported as leaks 998 * (min_count is set to 0). 999 */ 1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1001 for_each_possible_cpu(cpu) 1002 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 1003 size, 0, gfp); 1004 } 1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1006 1007 /** 1008 * kmemleak_vmalloc - register a newly vmalloc'ed object 1009 * @area: pointer to vm_struct 1010 * @size: size of the object 1011 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1012 * 1013 * This function is called from the vmalloc() kernel allocator when a new 1014 * object (memory block) is allocated. 1015 */ 1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1017 { 1018 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 1019 1020 /* 1021 * A min_count = 2 is needed because vm_struct contains a reference to 1022 * the virtual address of the vmalloc'ed block. 1023 */ 1024 if (kmemleak_enabled) { 1025 create_object((unsigned long)area->addr, size, 2, gfp); 1026 object_set_excess_ref((unsigned long)area, 1027 (unsigned long)area->addr); 1028 } 1029 } 1030 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1031 1032 /** 1033 * kmemleak_free - unregister a previously registered object 1034 * @ptr: pointer to beginning of the object 1035 * 1036 * This function is called from the kernel allocators when an object (memory 1037 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1038 */ 1039 void __ref kmemleak_free(const void *ptr) 1040 { 1041 pr_debug("%s(0x%p)\n", __func__, ptr); 1042 1043 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1044 delete_object_full((unsigned long)ptr); 1045 } 1046 EXPORT_SYMBOL_GPL(kmemleak_free); 1047 1048 /** 1049 * kmemleak_free_part - partially unregister a previously registered object 1050 * @ptr: pointer to the beginning or inside the object. This also 1051 * represents the start of the range to be freed 1052 * @size: size to be unregistered 1053 * 1054 * This function is called when only a part of a memory block is freed 1055 * (usually from the bootmem allocator). 1056 */ 1057 void __ref kmemleak_free_part(const void *ptr, size_t size) 1058 { 1059 pr_debug("%s(0x%p)\n", __func__, ptr); 1060 1061 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1062 delete_object_part((unsigned long)ptr, size, false); 1063 } 1064 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1065 1066 /** 1067 * kmemleak_free_percpu - unregister a previously registered __percpu object 1068 * @ptr: __percpu pointer to beginning of the object 1069 * 1070 * This function is called from the kernel percpu allocator when an object 1071 * (memory block) is freed (free_percpu). 1072 */ 1073 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1074 { 1075 unsigned int cpu; 1076 1077 pr_debug("%s(0x%p)\n", __func__, ptr); 1078 1079 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1080 for_each_possible_cpu(cpu) 1081 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1082 cpu)); 1083 } 1084 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1085 1086 /** 1087 * kmemleak_update_trace - update object allocation stack trace 1088 * @ptr: pointer to beginning of the object 1089 * 1090 * Override the object allocation stack trace for cases where the actual 1091 * allocation place is not always useful. 1092 */ 1093 void __ref kmemleak_update_trace(const void *ptr) 1094 { 1095 struct kmemleak_object *object; 1096 unsigned long flags; 1097 1098 pr_debug("%s(0x%p)\n", __func__, ptr); 1099 1100 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1101 return; 1102 1103 object = find_and_get_object((unsigned long)ptr, 1); 1104 if (!object) { 1105 #ifdef DEBUG 1106 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1107 ptr); 1108 #endif 1109 return; 1110 } 1111 1112 raw_spin_lock_irqsave(&object->lock, flags); 1113 object->trace_handle = set_track_prepare(); 1114 raw_spin_unlock_irqrestore(&object->lock, flags); 1115 1116 put_object(object); 1117 } 1118 EXPORT_SYMBOL(kmemleak_update_trace); 1119 1120 /** 1121 * kmemleak_not_leak - mark an allocated object as false positive 1122 * @ptr: pointer to beginning of the object 1123 * 1124 * Calling this function on an object will cause the memory block to no longer 1125 * be reported as leak and always be scanned. 1126 */ 1127 void __ref kmemleak_not_leak(const void *ptr) 1128 { 1129 pr_debug("%s(0x%p)\n", __func__, ptr); 1130 1131 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1132 make_gray_object((unsigned long)ptr); 1133 } 1134 EXPORT_SYMBOL(kmemleak_not_leak); 1135 1136 /** 1137 * kmemleak_ignore - ignore an allocated object 1138 * @ptr: pointer to beginning of the object 1139 * 1140 * Calling this function on an object will cause the memory block to be 1141 * ignored (not scanned and not reported as a leak). This is usually done when 1142 * it is known that the corresponding block is not a leak and does not contain 1143 * any references to other allocated memory blocks. 1144 */ 1145 void __ref kmemleak_ignore(const void *ptr) 1146 { 1147 pr_debug("%s(0x%p)\n", __func__, ptr); 1148 1149 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1150 make_black_object((unsigned long)ptr, false); 1151 } 1152 EXPORT_SYMBOL(kmemleak_ignore); 1153 1154 /** 1155 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1156 * @ptr: pointer to beginning or inside the object. This also 1157 * represents the start of the scan area 1158 * @size: size of the scan area 1159 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1160 * 1161 * This function is used when it is known that only certain parts of an object 1162 * contain references to other objects. Kmemleak will only scan these areas 1163 * reducing the number false negatives. 1164 */ 1165 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1166 { 1167 pr_debug("%s(0x%p)\n", __func__, ptr); 1168 1169 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1170 add_scan_area((unsigned long)ptr, size, gfp); 1171 } 1172 EXPORT_SYMBOL(kmemleak_scan_area); 1173 1174 /** 1175 * kmemleak_no_scan - do not scan an allocated object 1176 * @ptr: pointer to beginning of the object 1177 * 1178 * This function notifies kmemleak not to scan the given memory block. Useful 1179 * in situations where it is known that the given object does not contain any 1180 * references to other objects. Kmemleak will not scan such objects reducing 1181 * the number of false negatives. 1182 */ 1183 void __ref kmemleak_no_scan(const void *ptr) 1184 { 1185 pr_debug("%s(0x%p)\n", __func__, ptr); 1186 1187 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1188 object_no_scan((unsigned long)ptr); 1189 } 1190 EXPORT_SYMBOL(kmemleak_no_scan); 1191 1192 /** 1193 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1194 * address argument 1195 * @phys: physical address of the object 1196 * @size: size of the object 1197 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1198 */ 1199 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1200 { 1201 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size); 1202 1203 if (kmemleak_enabled) 1204 /* 1205 * Create object with OBJECT_PHYS flag and 1206 * assume min_count 0. 1207 */ 1208 create_object_phys((unsigned long)phys, size, 0, gfp); 1209 } 1210 EXPORT_SYMBOL(kmemleak_alloc_phys); 1211 1212 /** 1213 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1214 * physical address argument 1215 * @phys: physical address if the beginning or inside an object. This 1216 * also represents the start of the range to be freed 1217 * @size: size to be unregistered 1218 */ 1219 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1220 { 1221 pr_debug("%s(0x%pa)\n", __func__, &phys); 1222 1223 if (kmemleak_enabled) 1224 delete_object_part((unsigned long)phys, size, true); 1225 } 1226 EXPORT_SYMBOL(kmemleak_free_part_phys); 1227 1228 /** 1229 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1230 * address argument 1231 * @phys: physical address of the object 1232 */ 1233 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1234 { 1235 pr_debug("%s(0x%pa)\n", __func__, &phys); 1236 1237 if (kmemleak_enabled) 1238 make_black_object((unsigned long)phys, true); 1239 } 1240 EXPORT_SYMBOL(kmemleak_ignore_phys); 1241 1242 /* 1243 * Update an object's checksum and return true if it was modified. 1244 */ 1245 static bool update_checksum(struct kmemleak_object *object) 1246 { 1247 u32 old_csum = object->checksum; 1248 1249 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1250 return false; 1251 1252 kasan_disable_current(); 1253 kcsan_disable_current(); 1254 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1255 kasan_enable_current(); 1256 kcsan_enable_current(); 1257 1258 return object->checksum != old_csum; 1259 } 1260 1261 /* 1262 * Update an object's references. object->lock must be held by the caller. 1263 */ 1264 static void update_refs(struct kmemleak_object *object) 1265 { 1266 if (!color_white(object)) { 1267 /* non-orphan, ignored or new */ 1268 return; 1269 } 1270 1271 /* 1272 * Increase the object's reference count (number of pointers to the 1273 * memory block). If this count reaches the required minimum, the 1274 * object's color will become gray and it will be added to the 1275 * gray_list. 1276 */ 1277 object->count++; 1278 if (color_gray(object)) { 1279 /* put_object() called when removing from gray_list */ 1280 WARN_ON(!get_object(object)); 1281 list_add_tail(&object->gray_list, &gray_list); 1282 } 1283 } 1284 1285 /* 1286 * Memory scanning is a long process and it needs to be interruptible. This 1287 * function checks whether such interrupt condition occurred. 1288 */ 1289 static int scan_should_stop(void) 1290 { 1291 if (!kmemleak_enabled) 1292 return 1; 1293 1294 /* 1295 * This function may be called from either process or kthread context, 1296 * hence the need to check for both stop conditions. 1297 */ 1298 if (current->mm) 1299 return signal_pending(current); 1300 else 1301 return kthread_should_stop(); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * Scan a memory block (exclusive range) for valid pointers and add those 1308 * found to the gray list. 1309 */ 1310 static void scan_block(void *_start, void *_end, 1311 struct kmemleak_object *scanned) 1312 { 1313 unsigned long *ptr; 1314 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1315 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1316 unsigned long flags; 1317 unsigned long untagged_ptr; 1318 1319 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1320 for (ptr = start; ptr < end; ptr++) { 1321 struct kmemleak_object *object; 1322 unsigned long pointer; 1323 unsigned long excess_ref; 1324 1325 if (scan_should_stop()) 1326 break; 1327 1328 kasan_disable_current(); 1329 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1330 kasan_enable_current(); 1331 1332 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1333 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1334 continue; 1335 1336 /* 1337 * No need for get_object() here since we hold kmemleak_lock. 1338 * object->use_count cannot be dropped to 0 while the object 1339 * is still present in object_tree_root and object_list 1340 * (with updates protected by kmemleak_lock). 1341 */ 1342 object = lookup_object(pointer, 1); 1343 if (!object) 1344 continue; 1345 if (object == scanned) 1346 /* self referenced, ignore */ 1347 continue; 1348 1349 /* 1350 * Avoid the lockdep recursive warning on object->lock being 1351 * previously acquired in scan_object(). These locks are 1352 * enclosed by scan_mutex. 1353 */ 1354 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1355 /* only pass surplus references (object already gray) */ 1356 if (color_gray(object)) { 1357 excess_ref = object->excess_ref; 1358 /* no need for update_refs() if object already gray */ 1359 } else { 1360 excess_ref = 0; 1361 update_refs(object); 1362 } 1363 raw_spin_unlock(&object->lock); 1364 1365 if (excess_ref) { 1366 object = lookup_object(excess_ref, 0); 1367 if (!object) 1368 continue; 1369 if (object == scanned) 1370 /* circular reference, ignore */ 1371 continue; 1372 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1373 update_refs(object); 1374 raw_spin_unlock(&object->lock); 1375 } 1376 } 1377 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1378 } 1379 1380 /* 1381 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1382 */ 1383 #ifdef CONFIG_SMP 1384 static void scan_large_block(void *start, void *end) 1385 { 1386 void *next; 1387 1388 while (start < end) { 1389 next = min(start + MAX_SCAN_SIZE, end); 1390 scan_block(start, next, NULL); 1391 start = next; 1392 cond_resched(); 1393 } 1394 } 1395 #endif 1396 1397 /* 1398 * Scan a memory block corresponding to a kmemleak_object. A condition is 1399 * that object->use_count >= 1. 1400 */ 1401 static void scan_object(struct kmemleak_object *object) 1402 { 1403 struct kmemleak_scan_area *area; 1404 unsigned long flags; 1405 void *obj_ptr; 1406 1407 /* 1408 * Once the object->lock is acquired, the corresponding memory block 1409 * cannot be freed (the same lock is acquired in delete_object). 1410 */ 1411 raw_spin_lock_irqsave(&object->lock, flags); 1412 if (object->flags & OBJECT_NO_SCAN) 1413 goto out; 1414 if (!(object->flags & OBJECT_ALLOCATED)) 1415 /* already freed object */ 1416 goto out; 1417 1418 obj_ptr = object->flags & OBJECT_PHYS ? 1419 __va((phys_addr_t)object->pointer) : 1420 (void *)object->pointer; 1421 1422 if (hlist_empty(&object->area_list) || 1423 object->flags & OBJECT_FULL_SCAN) { 1424 void *start = obj_ptr; 1425 void *end = obj_ptr + object->size; 1426 void *next; 1427 1428 do { 1429 next = min(start + MAX_SCAN_SIZE, end); 1430 scan_block(start, next, object); 1431 1432 start = next; 1433 if (start >= end) 1434 break; 1435 1436 raw_spin_unlock_irqrestore(&object->lock, flags); 1437 cond_resched(); 1438 raw_spin_lock_irqsave(&object->lock, flags); 1439 } while (object->flags & OBJECT_ALLOCATED); 1440 } else 1441 hlist_for_each_entry(area, &object->area_list, node) 1442 scan_block((void *)area->start, 1443 (void *)(area->start + area->size), 1444 object); 1445 out: 1446 raw_spin_unlock_irqrestore(&object->lock, flags); 1447 } 1448 1449 /* 1450 * Scan the objects already referenced (gray objects). More objects will be 1451 * referenced and, if there are no memory leaks, all the objects are scanned. 1452 */ 1453 static void scan_gray_list(void) 1454 { 1455 struct kmemleak_object *object, *tmp; 1456 1457 /* 1458 * The list traversal is safe for both tail additions and removals 1459 * from inside the loop. The kmemleak objects cannot be freed from 1460 * outside the loop because their use_count was incremented. 1461 */ 1462 object = list_entry(gray_list.next, typeof(*object), gray_list); 1463 while (&object->gray_list != &gray_list) { 1464 cond_resched(); 1465 1466 /* may add new objects to the list */ 1467 if (!scan_should_stop()) 1468 scan_object(object); 1469 1470 tmp = list_entry(object->gray_list.next, typeof(*object), 1471 gray_list); 1472 1473 /* remove the object from the list and release it */ 1474 list_del(&object->gray_list); 1475 put_object(object); 1476 1477 object = tmp; 1478 } 1479 WARN_ON(!list_empty(&gray_list)); 1480 } 1481 1482 /* 1483 * Conditionally call resched() in an object iteration loop while making sure 1484 * that the given object won't go away without RCU read lock by performing a 1485 * get_object() if necessaary. 1486 */ 1487 static void kmemleak_cond_resched(struct kmemleak_object *object) 1488 { 1489 if (!get_object(object)) 1490 return; /* Try next object */ 1491 1492 raw_spin_lock_irq(&kmemleak_lock); 1493 if (object->del_state & DELSTATE_REMOVED) 1494 goto unlock_put; /* Object removed */ 1495 object->del_state |= DELSTATE_NO_DELETE; 1496 raw_spin_unlock_irq(&kmemleak_lock); 1497 1498 rcu_read_unlock(); 1499 cond_resched(); 1500 rcu_read_lock(); 1501 1502 raw_spin_lock_irq(&kmemleak_lock); 1503 if (object->del_state & DELSTATE_REMOVED) 1504 list_del_rcu(&object->object_list); 1505 object->del_state &= ~DELSTATE_NO_DELETE; 1506 unlock_put: 1507 raw_spin_unlock_irq(&kmemleak_lock); 1508 put_object(object); 1509 } 1510 1511 /* 1512 * Scan data sections and all the referenced memory blocks allocated via the 1513 * kernel's standard allocators. This function must be called with the 1514 * scan_mutex held. 1515 */ 1516 static void kmemleak_scan(void) 1517 { 1518 struct kmemleak_object *object; 1519 struct zone *zone; 1520 int __maybe_unused i; 1521 int new_leaks = 0; 1522 1523 jiffies_last_scan = jiffies; 1524 1525 /* prepare the kmemleak_object's */ 1526 rcu_read_lock(); 1527 list_for_each_entry_rcu(object, &object_list, object_list) { 1528 raw_spin_lock_irq(&object->lock); 1529 #ifdef DEBUG 1530 /* 1531 * With a few exceptions there should be a maximum of 1532 * 1 reference to any object at this point. 1533 */ 1534 if (atomic_read(&object->use_count) > 1) { 1535 pr_debug("object->use_count = %d\n", 1536 atomic_read(&object->use_count)); 1537 dump_object_info(object); 1538 } 1539 #endif 1540 1541 /* ignore objects outside lowmem (paint them black) */ 1542 if ((object->flags & OBJECT_PHYS) && 1543 !(object->flags & OBJECT_NO_SCAN)) { 1544 unsigned long phys = object->pointer; 1545 1546 if (PHYS_PFN(phys) < min_low_pfn || 1547 PHYS_PFN(phys + object->size) >= max_low_pfn) 1548 __paint_it(object, KMEMLEAK_BLACK); 1549 } 1550 1551 /* reset the reference count (whiten the object) */ 1552 object->count = 0; 1553 if (color_gray(object) && get_object(object)) 1554 list_add_tail(&object->gray_list, &gray_list); 1555 1556 raw_spin_unlock_irq(&object->lock); 1557 1558 if (need_resched()) 1559 kmemleak_cond_resched(object); 1560 } 1561 rcu_read_unlock(); 1562 1563 #ifdef CONFIG_SMP 1564 /* per-cpu sections scanning */ 1565 for_each_possible_cpu(i) 1566 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1567 __per_cpu_end + per_cpu_offset(i)); 1568 #endif 1569 1570 /* 1571 * Struct page scanning for each node. 1572 */ 1573 get_online_mems(); 1574 for_each_populated_zone(zone) { 1575 unsigned long start_pfn = zone->zone_start_pfn; 1576 unsigned long end_pfn = zone_end_pfn(zone); 1577 unsigned long pfn; 1578 1579 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1580 struct page *page = pfn_to_online_page(pfn); 1581 1582 if (!page) 1583 continue; 1584 1585 /* only scan pages belonging to this zone */ 1586 if (page_zone(page) != zone) 1587 continue; 1588 /* only scan if page is in use */ 1589 if (page_count(page) == 0) 1590 continue; 1591 scan_block(page, page + 1, NULL); 1592 if (!(pfn & 63)) 1593 cond_resched(); 1594 } 1595 } 1596 put_online_mems(); 1597 1598 /* 1599 * Scanning the task stacks (may introduce false negatives). 1600 */ 1601 if (kmemleak_stack_scan) { 1602 struct task_struct *p, *g; 1603 1604 rcu_read_lock(); 1605 for_each_process_thread(g, p) { 1606 void *stack = try_get_task_stack(p); 1607 if (stack) { 1608 scan_block(stack, stack + THREAD_SIZE, NULL); 1609 put_task_stack(p); 1610 } 1611 } 1612 rcu_read_unlock(); 1613 } 1614 1615 /* 1616 * Scan the objects already referenced from the sections scanned 1617 * above. 1618 */ 1619 scan_gray_list(); 1620 1621 /* 1622 * Check for new or unreferenced objects modified since the previous 1623 * scan and color them gray until the next scan. 1624 */ 1625 rcu_read_lock(); 1626 list_for_each_entry_rcu(object, &object_list, object_list) { 1627 if (need_resched()) 1628 kmemleak_cond_resched(object); 1629 1630 /* 1631 * This is racy but we can save the overhead of lock/unlock 1632 * calls. The missed objects, if any, should be caught in 1633 * the next scan. 1634 */ 1635 if (!color_white(object)) 1636 continue; 1637 raw_spin_lock_irq(&object->lock); 1638 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1639 && update_checksum(object) && get_object(object)) { 1640 /* color it gray temporarily */ 1641 object->count = object->min_count; 1642 list_add_tail(&object->gray_list, &gray_list); 1643 } 1644 raw_spin_unlock_irq(&object->lock); 1645 } 1646 rcu_read_unlock(); 1647 1648 /* 1649 * Re-scan the gray list for modified unreferenced objects. 1650 */ 1651 scan_gray_list(); 1652 1653 /* 1654 * If scanning was stopped do not report any new unreferenced objects. 1655 */ 1656 if (scan_should_stop()) 1657 return; 1658 1659 /* 1660 * Scanning result reporting. 1661 */ 1662 rcu_read_lock(); 1663 list_for_each_entry_rcu(object, &object_list, object_list) { 1664 if (need_resched()) 1665 kmemleak_cond_resched(object); 1666 1667 /* 1668 * This is racy but we can save the overhead of lock/unlock 1669 * calls. The missed objects, if any, should be caught in 1670 * the next scan. 1671 */ 1672 if (!color_white(object)) 1673 continue; 1674 raw_spin_lock_irq(&object->lock); 1675 if (unreferenced_object(object) && 1676 !(object->flags & OBJECT_REPORTED)) { 1677 object->flags |= OBJECT_REPORTED; 1678 1679 if (kmemleak_verbose) 1680 print_unreferenced(NULL, object); 1681 1682 new_leaks++; 1683 } 1684 raw_spin_unlock_irq(&object->lock); 1685 } 1686 rcu_read_unlock(); 1687 1688 if (new_leaks) { 1689 kmemleak_found_leaks = true; 1690 1691 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1692 new_leaks); 1693 } 1694 1695 } 1696 1697 /* 1698 * Thread function performing automatic memory scanning. Unreferenced objects 1699 * at the end of a memory scan are reported but only the first time. 1700 */ 1701 static int kmemleak_scan_thread(void *arg) 1702 { 1703 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1704 1705 pr_info("Automatic memory scanning thread started\n"); 1706 set_user_nice(current, 10); 1707 1708 /* 1709 * Wait before the first scan to allow the system to fully initialize. 1710 */ 1711 if (first_run) { 1712 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1713 first_run = 0; 1714 while (timeout && !kthread_should_stop()) 1715 timeout = schedule_timeout_interruptible(timeout); 1716 } 1717 1718 while (!kthread_should_stop()) { 1719 signed long timeout = READ_ONCE(jiffies_scan_wait); 1720 1721 mutex_lock(&scan_mutex); 1722 kmemleak_scan(); 1723 mutex_unlock(&scan_mutex); 1724 1725 /* wait before the next scan */ 1726 while (timeout && !kthread_should_stop()) 1727 timeout = schedule_timeout_interruptible(timeout); 1728 } 1729 1730 pr_info("Automatic memory scanning thread ended\n"); 1731 1732 return 0; 1733 } 1734 1735 /* 1736 * Start the automatic memory scanning thread. This function must be called 1737 * with the scan_mutex held. 1738 */ 1739 static void start_scan_thread(void) 1740 { 1741 if (scan_thread) 1742 return; 1743 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1744 if (IS_ERR(scan_thread)) { 1745 pr_warn("Failed to create the scan thread\n"); 1746 scan_thread = NULL; 1747 } 1748 } 1749 1750 /* 1751 * Stop the automatic memory scanning thread. 1752 */ 1753 static void stop_scan_thread(void) 1754 { 1755 if (scan_thread) { 1756 kthread_stop(scan_thread); 1757 scan_thread = NULL; 1758 } 1759 } 1760 1761 /* 1762 * Iterate over the object_list and return the first valid object at or after 1763 * the required position with its use_count incremented. The function triggers 1764 * a memory scanning when the pos argument points to the first position. 1765 */ 1766 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1767 { 1768 struct kmemleak_object *object; 1769 loff_t n = *pos; 1770 int err; 1771 1772 err = mutex_lock_interruptible(&scan_mutex); 1773 if (err < 0) 1774 return ERR_PTR(err); 1775 1776 rcu_read_lock(); 1777 list_for_each_entry_rcu(object, &object_list, object_list) { 1778 if (n-- > 0) 1779 continue; 1780 if (get_object(object)) 1781 goto out; 1782 } 1783 object = NULL; 1784 out: 1785 return object; 1786 } 1787 1788 /* 1789 * Return the next object in the object_list. The function decrements the 1790 * use_count of the previous object and increases that of the next one. 1791 */ 1792 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1793 { 1794 struct kmemleak_object *prev_obj = v; 1795 struct kmemleak_object *next_obj = NULL; 1796 struct kmemleak_object *obj = prev_obj; 1797 1798 ++(*pos); 1799 1800 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1801 if (get_object(obj)) { 1802 next_obj = obj; 1803 break; 1804 } 1805 } 1806 1807 put_object(prev_obj); 1808 return next_obj; 1809 } 1810 1811 /* 1812 * Decrement the use_count of the last object required, if any. 1813 */ 1814 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1815 { 1816 if (!IS_ERR(v)) { 1817 /* 1818 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1819 * waiting was interrupted, so only release it if !IS_ERR. 1820 */ 1821 rcu_read_unlock(); 1822 mutex_unlock(&scan_mutex); 1823 if (v) 1824 put_object(v); 1825 } 1826 } 1827 1828 /* 1829 * Print the information for an unreferenced object to the seq file. 1830 */ 1831 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1832 { 1833 struct kmemleak_object *object = v; 1834 unsigned long flags; 1835 1836 raw_spin_lock_irqsave(&object->lock, flags); 1837 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1838 print_unreferenced(seq, object); 1839 raw_spin_unlock_irqrestore(&object->lock, flags); 1840 return 0; 1841 } 1842 1843 static const struct seq_operations kmemleak_seq_ops = { 1844 .start = kmemleak_seq_start, 1845 .next = kmemleak_seq_next, 1846 .stop = kmemleak_seq_stop, 1847 .show = kmemleak_seq_show, 1848 }; 1849 1850 static int kmemleak_open(struct inode *inode, struct file *file) 1851 { 1852 return seq_open(file, &kmemleak_seq_ops); 1853 } 1854 1855 static int dump_str_object_info(const char *str) 1856 { 1857 unsigned long flags; 1858 struct kmemleak_object *object; 1859 unsigned long addr; 1860 1861 if (kstrtoul(str, 0, &addr)) 1862 return -EINVAL; 1863 object = find_and_get_object(addr, 0); 1864 if (!object) { 1865 pr_info("Unknown object at 0x%08lx\n", addr); 1866 return -EINVAL; 1867 } 1868 1869 raw_spin_lock_irqsave(&object->lock, flags); 1870 dump_object_info(object); 1871 raw_spin_unlock_irqrestore(&object->lock, flags); 1872 1873 put_object(object); 1874 return 0; 1875 } 1876 1877 /* 1878 * We use grey instead of black to ensure we can do future scans on the same 1879 * objects. If we did not do future scans these black objects could 1880 * potentially contain references to newly allocated objects in the future and 1881 * we'd end up with false positives. 1882 */ 1883 static void kmemleak_clear(void) 1884 { 1885 struct kmemleak_object *object; 1886 1887 rcu_read_lock(); 1888 list_for_each_entry_rcu(object, &object_list, object_list) { 1889 raw_spin_lock_irq(&object->lock); 1890 if ((object->flags & OBJECT_REPORTED) && 1891 unreferenced_object(object)) 1892 __paint_it(object, KMEMLEAK_GREY); 1893 raw_spin_unlock_irq(&object->lock); 1894 } 1895 rcu_read_unlock(); 1896 1897 kmemleak_found_leaks = false; 1898 } 1899 1900 static void __kmemleak_do_cleanup(void); 1901 1902 /* 1903 * File write operation to configure kmemleak at run-time. The following 1904 * commands can be written to the /sys/kernel/debug/kmemleak file: 1905 * off - disable kmemleak (irreversible) 1906 * stack=on - enable the task stacks scanning 1907 * stack=off - disable the tasks stacks scanning 1908 * scan=on - start the automatic memory scanning thread 1909 * scan=off - stop the automatic memory scanning thread 1910 * scan=... - set the automatic memory scanning period in seconds (0 to 1911 * disable it) 1912 * scan - trigger a memory scan 1913 * clear - mark all current reported unreferenced kmemleak objects as 1914 * grey to ignore printing them, or free all kmemleak objects 1915 * if kmemleak has been disabled. 1916 * dump=... - dump information about the object found at the given address 1917 */ 1918 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1919 size_t size, loff_t *ppos) 1920 { 1921 char buf[64]; 1922 int buf_size; 1923 int ret; 1924 1925 buf_size = min(size, (sizeof(buf) - 1)); 1926 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1927 return -EFAULT; 1928 buf[buf_size] = 0; 1929 1930 ret = mutex_lock_interruptible(&scan_mutex); 1931 if (ret < 0) 1932 return ret; 1933 1934 if (strncmp(buf, "clear", 5) == 0) { 1935 if (kmemleak_enabled) 1936 kmemleak_clear(); 1937 else 1938 __kmemleak_do_cleanup(); 1939 goto out; 1940 } 1941 1942 if (!kmemleak_enabled) { 1943 ret = -EPERM; 1944 goto out; 1945 } 1946 1947 if (strncmp(buf, "off", 3) == 0) 1948 kmemleak_disable(); 1949 else if (strncmp(buf, "stack=on", 8) == 0) 1950 kmemleak_stack_scan = 1; 1951 else if (strncmp(buf, "stack=off", 9) == 0) 1952 kmemleak_stack_scan = 0; 1953 else if (strncmp(buf, "scan=on", 7) == 0) 1954 start_scan_thread(); 1955 else if (strncmp(buf, "scan=off", 8) == 0) 1956 stop_scan_thread(); 1957 else if (strncmp(buf, "scan=", 5) == 0) { 1958 unsigned secs; 1959 unsigned long msecs; 1960 1961 ret = kstrtouint(buf + 5, 0, &secs); 1962 if (ret < 0) 1963 goto out; 1964 1965 msecs = secs * MSEC_PER_SEC; 1966 if (msecs > UINT_MAX) 1967 msecs = UINT_MAX; 1968 1969 stop_scan_thread(); 1970 if (msecs) { 1971 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1972 start_scan_thread(); 1973 } 1974 } else if (strncmp(buf, "scan", 4) == 0) 1975 kmemleak_scan(); 1976 else if (strncmp(buf, "dump=", 5) == 0) 1977 ret = dump_str_object_info(buf + 5); 1978 else 1979 ret = -EINVAL; 1980 1981 out: 1982 mutex_unlock(&scan_mutex); 1983 if (ret < 0) 1984 return ret; 1985 1986 /* ignore the rest of the buffer, only one command at a time */ 1987 *ppos += size; 1988 return size; 1989 } 1990 1991 static const struct file_operations kmemleak_fops = { 1992 .owner = THIS_MODULE, 1993 .open = kmemleak_open, 1994 .read = seq_read, 1995 .write = kmemleak_write, 1996 .llseek = seq_lseek, 1997 .release = seq_release, 1998 }; 1999 2000 static void __kmemleak_do_cleanup(void) 2001 { 2002 struct kmemleak_object *object, *tmp; 2003 2004 /* 2005 * Kmemleak has already been disabled, no need for RCU list traversal 2006 * or kmemleak_lock held. 2007 */ 2008 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2009 __remove_object(object); 2010 __delete_object(object); 2011 } 2012 } 2013 2014 /* 2015 * Stop the memory scanning thread and free the kmemleak internal objects if 2016 * no previous scan thread (otherwise, kmemleak may still have some useful 2017 * information on memory leaks). 2018 */ 2019 static void kmemleak_do_cleanup(struct work_struct *work) 2020 { 2021 stop_scan_thread(); 2022 2023 mutex_lock(&scan_mutex); 2024 /* 2025 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2026 * longer track object freeing. Ordering of the scan thread stopping and 2027 * the memory accesses below is guaranteed by the kthread_stop() 2028 * function. 2029 */ 2030 kmemleak_free_enabled = 0; 2031 mutex_unlock(&scan_mutex); 2032 2033 if (!kmemleak_found_leaks) 2034 __kmemleak_do_cleanup(); 2035 else 2036 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2037 } 2038 2039 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2040 2041 /* 2042 * Disable kmemleak. No memory allocation/freeing will be traced once this 2043 * function is called. Disabling kmemleak is an irreversible operation. 2044 */ 2045 static void kmemleak_disable(void) 2046 { 2047 /* atomically check whether it was already invoked */ 2048 if (cmpxchg(&kmemleak_error, 0, 1)) 2049 return; 2050 2051 /* stop any memory operation tracing */ 2052 kmemleak_enabled = 0; 2053 2054 /* check whether it is too early for a kernel thread */ 2055 if (kmemleak_initialized) 2056 schedule_work(&cleanup_work); 2057 else 2058 kmemleak_free_enabled = 0; 2059 2060 pr_info("Kernel memory leak detector disabled\n"); 2061 } 2062 2063 /* 2064 * Allow boot-time kmemleak disabling (enabled by default). 2065 */ 2066 static int __init kmemleak_boot_config(char *str) 2067 { 2068 if (!str) 2069 return -EINVAL; 2070 if (strcmp(str, "off") == 0) 2071 kmemleak_disable(); 2072 else if (strcmp(str, "on") == 0) { 2073 kmemleak_skip_disable = 1; 2074 stack_depot_request_early_init(); 2075 } 2076 else 2077 return -EINVAL; 2078 return 0; 2079 } 2080 early_param("kmemleak", kmemleak_boot_config); 2081 2082 /* 2083 * Kmemleak initialization. 2084 */ 2085 void __init kmemleak_init(void) 2086 { 2087 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2088 if (!kmemleak_skip_disable) { 2089 kmemleak_disable(); 2090 return; 2091 } 2092 #endif 2093 2094 if (kmemleak_error) 2095 return; 2096 2097 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2098 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2099 2100 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2101 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2102 2103 /* register the data/bss sections */ 2104 create_object((unsigned long)_sdata, _edata - _sdata, 2105 KMEMLEAK_GREY, GFP_ATOMIC); 2106 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2107 KMEMLEAK_GREY, GFP_ATOMIC); 2108 /* only register .data..ro_after_init if not within .data */ 2109 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2110 create_object((unsigned long)__start_ro_after_init, 2111 __end_ro_after_init - __start_ro_after_init, 2112 KMEMLEAK_GREY, GFP_ATOMIC); 2113 } 2114 2115 /* 2116 * Late initialization function. 2117 */ 2118 static int __init kmemleak_late_init(void) 2119 { 2120 kmemleak_initialized = 1; 2121 2122 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2123 2124 if (kmemleak_error) { 2125 /* 2126 * Some error occurred and kmemleak was disabled. There is a 2127 * small chance that kmemleak_disable() was called immediately 2128 * after setting kmemleak_initialized and we may end up with 2129 * two clean-up threads but serialized by scan_mutex. 2130 */ 2131 schedule_work(&cleanup_work); 2132 return -ENOMEM; 2133 } 2134 2135 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2136 mutex_lock(&scan_mutex); 2137 start_scan_thread(); 2138 mutex_unlock(&scan_mutex); 2139 } 2140 2141 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2142 mem_pool_free_count); 2143 2144 return 0; 2145 } 2146 late_initcall(kmemleak_late_init); 2147