1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (rwlock): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 26 * the metadata (e.g. count) are protected by this lock. Note that some 27 * members of this structure may be protected by other means (atomic or 28 * kmemleak_lock). This lock is also held when scanning the corresponding 29 * memory block to avoid the kernel freeing it via the kmemleak_free() 30 * callback. This is less heavyweight than holding a global lock like 31 * kmemleak_lock during scanning 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kmemleak.h> 101 #include <linux/memory_hotplug.h> 102 103 /* 104 * Kmemleak configuration and common defines. 105 */ 106 #define MAX_TRACE 16 /* stack trace length */ 107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 111 112 #define BYTES_PER_POINTER sizeof(void *) 113 114 /* GFP bitmask for kmemleak internal allocations */ 115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 116 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 117 __GFP_NOWARN | __GFP_NOFAIL) 118 119 /* scanning area inside a memory block */ 120 struct kmemleak_scan_area { 121 struct hlist_node node; 122 unsigned long start; 123 size_t size; 124 }; 125 126 #define KMEMLEAK_GREY 0 127 #define KMEMLEAK_BLACK -1 128 129 /* 130 * Structure holding the metadata for each allocated memory block. 131 * Modifications to such objects should be made while holding the 132 * object->lock. Insertions or deletions from object_list, gray_list or 133 * rb_node are already protected by the corresponding locks or mutex (see 134 * the notes on locking above). These objects are reference-counted 135 * (use_count) and freed using the RCU mechanism. 136 */ 137 struct kmemleak_object { 138 spinlock_t lock; 139 unsigned int flags; /* object status flags */ 140 struct list_head object_list; 141 struct list_head gray_list; 142 struct rb_node rb_node; 143 struct rcu_head rcu; /* object_list lockless traversal */ 144 /* object usage count; object freed when use_count == 0 */ 145 atomic_t use_count; 146 unsigned long pointer; 147 size_t size; 148 /* pass surplus references to this pointer */ 149 unsigned long excess_ref; 150 /* minimum number of a pointers found before it is considered leak */ 151 int min_count; 152 /* the total number of pointers found pointing to this object */ 153 int count; 154 /* checksum for detecting modified objects */ 155 u32 checksum; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long trace[MAX_TRACE]; 159 unsigned int trace_len; 160 unsigned long jiffies; /* creation timestamp */ 161 pid_t pid; /* pid of the current task */ 162 char comm[TASK_COMM_LEN]; /* executable name */ 163 }; 164 165 /* flag representing the memory block allocation status */ 166 #define OBJECT_ALLOCATED (1 << 0) 167 /* flag set after the first reporting of an unreference object */ 168 #define OBJECT_REPORTED (1 << 1) 169 /* flag set to not scan the object */ 170 #define OBJECT_NO_SCAN (1 << 2) 171 172 #define HEX_PREFIX " " 173 /* number of bytes to print per line; must be 16 or 32 */ 174 #define HEX_ROW_SIZE 16 175 /* number of bytes to print at a time (1, 2, 4, 8) */ 176 #define HEX_GROUP_SIZE 1 177 /* include ASCII after the hex output */ 178 #define HEX_ASCII 1 179 /* max number of lines to be printed */ 180 #define HEX_MAX_LINES 2 181 182 /* the list of all allocated objects */ 183 static LIST_HEAD(object_list); 184 /* the list of gray-colored objects (see color_gray comment below) */ 185 static LIST_HEAD(gray_list); 186 /* search tree for object boundaries */ 187 static struct rb_root object_tree_root = RB_ROOT; 188 /* rw_lock protecting the access to object_list and object_tree_root */ 189 static DEFINE_RWLOCK(kmemleak_lock); 190 191 /* allocation caches for kmemleak internal data */ 192 static struct kmem_cache *object_cache; 193 static struct kmem_cache *scan_area_cache; 194 195 /* set if tracing memory operations is enabled */ 196 static int kmemleak_enabled; 197 /* same as above but only for the kmemleak_free() callback */ 198 static int kmemleak_free_enabled; 199 /* set in the late_initcall if there were no errors */ 200 static int kmemleak_initialized; 201 /* enables or disables early logging of the memory operations */ 202 static int kmemleak_early_log = 1; 203 /* set if a kmemleak warning was issued */ 204 static int kmemleak_warning; 205 /* set if a fatal kmemleak error has occurred */ 206 static int kmemleak_error; 207 208 /* minimum and maximum address that may be valid pointers */ 209 static unsigned long min_addr = ULONG_MAX; 210 static unsigned long max_addr; 211 212 static struct task_struct *scan_thread; 213 /* used to avoid reporting of recently allocated objects */ 214 static unsigned long jiffies_min_age; 215 static unsigned long jiffies_last_scan; 216 /* delay between automatic memory scannings */ 217 static signed long jiffies_scan_wait; 218 /* enables or disables the task stacks scanning */ 219 static int kmemleak_stack_scan = 1; 220 /* protects the memory scanning, parameters and debug/kmemleak file access */ 221 static DEFINE_MUTEX(scan_mutex); 222 /* setting kmemleak=on, will set this var, skipping the disable */ 223 static int kmemleak_skip_disable; 224 /* If there are leaks that can be reported */ 225 static bool kmemleak_found_leaks; 226 227 static bool kmemleak_verbose; 228 module_param_named(verbose, kmemleak_verbose, bool, 0600); 229 230 /* 231 * Early object allocation/freeing logging. Kmemleak is initialized after the 232 * kernel allocator. However, both the kernel allocator and kmemleak may 233 * allocate memory blocks which need to be tracked. Kmemleak defines an 234 * arbitrary buffer to hold the allocation/freeing information before it is 235 * fully initialized. 236 */ 237 238 /* kmemleak operation type for early logging */ 239 enum { 240 KMEMLEAK_ALLOC, 241 KMEMLEAK_ALLOC_PERCPU, 242 KMEMLEAK_FREE, 243 KMEMLEAK_FREE_PART, 244 KMEMLEAK_FREE_PERCPU, 245 KMEMLEAK_NOT_LEAK, 246 KMEMLEAK_IGNORE, 247 KMEMLEAK_SCAN_AREA, 248 KMEMLEAK_NO_SCAN, 249 KMEMLEAK_SET_EXCESS_REF 250 }; 251 252 /* 253 * Structure holding the information passed to kmemleak callbacks during the 254 * early logging. 255 */ 256 struct early_log { 257 int op_type; /* kmemleak operation type */ 258 int min_count; /* minimum reference count */ 259 const void *ptr; /* allocated/freed memory block */ 260 union { 261 size_t size; /* memory block size */ 262 unsigned long excess_ref; /* surplus reference passing */ 263 }; 264 unsigned long trace[MAX_TRACE]; /* stack trace */ 265 unsigned int trace_len; /* stack trace length */ 266 }; 267 268 /* early logging buffer and current position */ 269 static struct early_log 270 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 271 static int crt_early_log __initdata; 272 273 static void kmemleak_disable(void); 274 275 /* 276 * Print a warning and dump the stack trace. 277 */ 278 #define kmemleak_warn(x...) do { \ 279 pr_warn(x); \ 280 dump_stack(); \ 281 kmemleak_warning = 1; \ 282 } while (0) 283 284 /* 285 * Macro invoked when a serious kmemleak condition occurred and cannot be 286 * recovered from. Kmemleak will be disabled and further allocation/freeing 287 * tracing no longer available. 288 */ 289 #define kmemleak_stop(x...) do { \ 290 kmemleak_warn(x); \ 291 kmemleak_disable(); \ 292 } while (0) 293 294 #define warn_or_seq_printf(seq, fmt, ...) do { \ 295 if (seq) \ 296 seq_printf(seq, fmt, ##__VA_ARGS__); \ 297 else \ 298 pr_warn(fmt, ##__VA_ARGS__); \ 299 } while (0) 300 301 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 302 int rowsize, int groupsize, const void *buf, 303 size_t len, bool ascii) 304 { 305 if (seq) 306 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 307 buf, len, ascii); 308 else 309 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 310 rowsize, groupsize, buf, len, ascii); 311 } 312 313 /* 314 * Printing of the objects hex dump to the seq file. The number of lines to be 315 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 316 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 317 * with the object->lock held. 318 */ 319 static void hex_dump_object(struct seq_file *seq, 320 struct kmemleak_object *object) 321 { 322 const u8 *ptr = (const u8 *)object->pointer; 323 size_t len; 324 325 /* limit the number of lines to HEX_MAX_LINES */ 326 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 327 328 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 329 kasan_disable_current(); 330 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 331 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 332 kasan_enable_current(); 333 } 334 335 /* 336 * Object colors, encoded with count and min_count: 337 * - white - orphan object, not enough references to it (count < min_count) 338 * - gray - not orphan, not marked as false positive (min_count == 0) or 339 * sufficient references to it (count >= min_count) 340 * - black - ignore, it doesn't contain references (e.g. text section) 341 * (min_count == -1). No function defined for this color. 342 * Newly created objects don't have any color assigned (object->count == -1) 343 * before the next memory scan when they become white. 344 */ 345 static bool color_white(const struct kmemleak_object *object) 346 { 347 return object->count != KMEMLEAK_BLACK && 348 object->count < object->min_count; 349 } 350 351 static bool color_gray(const struct kmemleak_object *object) 352 { 353 return object->min_count != KMEMLEAK_BLACK && 354 object->count >= object->min_count; 355 } 356 357 /* 358 * Objects are considered unreferenced only if their color is white, they have 359 * not be deleted and have a minimum age to avoid false positives caused by 360 * pointers temporarily stored in CPU registers. 361 */ 362 static bool unreferenced_object(struct kmemleak_object *object) 363 { 364 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 365 time_before_eq(object->jiffies + jiffies_min_age, 366 jiffies_last_scan); 367 } 368 369 /* 370 * Printing of the unreferenced objects information to the seq file. The 371 * print_unreferenced function must be called with the object->lock held. 372 */ 373 static void print_unreferenced(struct seq_file *seq, 374 struct kmemleak_object *object) 375 { 376 int i; 377 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 378 379 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 380 object->pointer, object->size); 381 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 382 object->comm, object->pid, object->jiffies, 383 msecs_age / 1000, msecs_age % 1000); 384 hex_dump_object(seq, object); 385 warn_or_seq_printf(seq, " backtrace:\n"); 386 387 for (i = 0; i < object->trace_len; i++) { 388 void *ptr = (void *)object->trace[i]; 389 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 390 } 391 } 392 393 /* 394 * Print the kmemleak_object information. This function is used mainly for 395 * debugging special cases when kmemleak operations. It must be called with 396 * the object->lock held. 397 */ 398 static void dump_object_info(struct kmemleak_object *object) 399 { 400 pr_notice("Object 0x%08lx (size %zu):\n", 401 object->pointer, object->size); 402 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 403 object->comm, object->pid, object->jiffies); 404 pr_notice(" min_count = %d\n", object->min_count); 405 pr_notice(" count = %d\n", object->count); 406 pr_notice(" flags = 0x%x\n", object->flags); 407 pr_notice(" checksum = %u\n", object->checksum); 408 pr_notice(" backtrace:\n"); 409 stack_trace_print(object->trace, object->trace_len, 4); 410 } 411 412 /* 413 * Look-up a memory block metadata (kmemleak_object) in the object search 414 * tree based on a pointer value. If alias is 0, only values pointing to the 415 * beginning of the memory block are allowed. The kmemleak_lock must be held 416 * when calling this function. 417 */ 418 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 419 { 420 struct rb_node *rb = object_tree_root.rb_node; 421 422 while (rb) { 423 struct kmemleak_object *object = 424 rb_entry(rb, struct kmemleak_object, rb_node); 425 if (ptr < object->pointer) 426 rb = object->rb_node.rb_left; 427 else if (object->pointer + object->size <= ptr) 428 rb = object->rb_node.rb_right; 429 else if (object->pointer == ptr || alias) 430 return object; 431 else { 432 kmemleak_warn("Found object by alias at 0x%08lx\n", 433 ptr); 434 dump_object_info(object); 435 break; 436 } 437 } 438 return NULL; 439 } 440 441 /* 442 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 443 * that once an object's use_count reached 0, the RCU freeing was already 444 * registered and the object should no longer be used. This function must be 445 * called under the protection of rcu_read_lock(). 446 */ 447 static int get_object(struct kmemleak_object *object) 448 { 449 return atomic_inc_not_zero(&object->use_count); 450 } 451 452 /* 453 * RCU callback to free a kmemleak_object. 454 */ 455 static void free_object_rcu(struct rcu_head *rcu) 456 { 457 struct hlist_node *tmp; 458 struct kmemleak_scan_area *area; 459 struct kmemleak_object *object = 460 container_of(rcu, struct kmemleak_object, rcu); 461 462 /* 463 * Once use_count is 0 (guaranteed by put_object), there is no other 464 * code accessing this object, hence no need for locking. 465 */ 466 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 467 hlist_del(&area->node); 468 kmem_cache_free(scan_area_cache, area); 469 } 470 kmem_cache_free(object_cache, object); 471 } 472 473 /* 474 * Decrement the object use_count. Once the count is 0, free the object using 475 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 476 * delete_object() path, the delayed RCU freeing ensures that there is no 477 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 478 * is also possible. 479 */ 480 static void put_object(struct kmemleak_object *object) 481 { 482 if (!atomic_dec_and_test(&object->use_count)) 483 return; 484 485 /* should only get here after delete_object was called */ 486 WARN_ON(object->flags & OBJECT_ALLOCATED); 487 488 call_rcu(&object->rcu, free_object_rcu); 489 } 490 491 /* 492 * Look up an object in the object search tree and increase its use_count. 493 */ 494 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 495 { 496 unsigned long flags; 497 struct kmemleak_object *object; 498 499 rcu_read_lock(); 500 read_lock_irqsave(&kmemleak_lock, flags); 501 object = lookup_object(ptr, alias); 502 read_unlock_irqrestore(&kmemleak_lock, flags); 503 504 /* check whether the object is still available */ 505 if (object && !get_object(object)) 506 object = NULL; 507 rcu_read_unlock(); 508 509 return object; 510 } 511 512 /* 513 * Look up an object in the object search tree and remove it from both 514 * object_tree_root and object_list. The returned object's use_count should be 515 * at least 1, as initially set by create_object(). 516 */ 517 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 518 { 519 unsigned long flags; 520 struct kmemleak_object *object; 521 522 write_lock_irqsave(&kmemleak_lock, flags); 523 object = lookup_object(ptr, alias); 524 if (object) { 525 rb_erase(&object->rb_node, &object_tree_root); 526 list_del_rcu(&object->object_list); 527 } 528 write_unlock_irqrestore(&kmemleak_lock, flags); 529 530 return object; 531 } 532 533 /* 534 * Save stack trace to the given array of MAX_TRACE size. 535 */ 536 static int __save_stack_trace(unsigned long *trace) 537 { 538 return stack_trace_save(trace, MAX_TRACE, 2); 539 } 540 541 /* 542 * Create the metadata (struct kmemleak_object) corresponding to an allocated 543 * memory block and add it to the object_list and object_tree_root. 544 */ 545 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 546 int min_count, gfp_t gfp) 547 { 548 unsigned long flags; 549 struct kmemleak_object *object, *parent; 550 struct rb_node **link, *rb_parent; 551 unsigned long untagged_ptr; 552 553 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 554 if (!object) { 555 pr_warn("Cannot allocate a kmemleak_object structure\n"); 556 kmemleak_disable(); 557 return NULL; 558 } 559 560 INIT_LIST_HEAD(&object->object_list); 561 INIT_LIST_HEAD(&object->gray_list); 562 INIT_HLIST_HEAD(&object->area_list); 563 spin_lock_init(&object->lock); 564 atomic_set(&object->use_count, 1); 565 object->flags = OBJECT_ALLOCATED; 566 object->pointer = ptr; 567 object->size = size; 568 object->excess_ref = 0; 569 object->min_count = min_count; 570 object->count = 0; /* white color initially */ 571 object->jiffies = jiffies; 572 object->checksum = 0; 573 574 /* task information */ 575 if (in_irq()) { 576 object->pid = 0; 577 strncpy(object->comm, "hardirq", sizeof(object->comm)); 578 } else if (in_softirq()) { 579 object->pid = 0; 580 strncpy(object->comm, "softirq", sizeof(object->comm)); 581 } else { 582 object->pid = current->pid; 583 /* 584 * There is a small chance of a race with set_task_comm(), 585 * however using get_task_comm() here may cause locking 586 * dependency issues with current->alloc_lock. In the worst 587 * case, the command line is not correct. 588 */ 589 strncpy(object->comm, current->comm, sizeof(object->comm)); 590 } 591 592 /* kernel backtrace */ 593 object->trace_len = __save_stack_trace(object->trace); 594 595 write_lock_irqsave(&kmemleak_lock, flags); 596 597 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 598 min_addr = min(min_addr, untagged_ptr); 599 max_addr = max(max_addr, untagged_ptr + size); 600 link = &object_tree_root.rb_node; 601 rb_parent = NULL; 602 while (*link) { 603 rb_parent = *link; 604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 605 if (ptr + size <= parent->pointer) 606 link = &parent->rb_node.rb_left; 607 else if (parent->pointer + parent->size <= ptr) 608 link = &parent->rb_node.rb_right; 609 else { 610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 611 ptr); 612 /* 613 * No need for parent->lock here since "parent" cannot 614 * be freed while the kmemleak_lock is held. 615 */ 616 dump_object_info(parent); 617 kmem_cache_free(object_cache, object); 618 object = NULL; 619 goto out; 620 } 621 } 622 rb_link_node(&object->rb_node, rb_parent, link); 623 rb_insert_color(&object->rb_node, &object_tree_root); 624 625 list_add_tail_rcu(&object->object_list, &object_list); 626 out: 627 write_unlock_irqrestore(&kmemleak_lock, flags); 628 return object; 629 } 630 631 /* 632 * Mark the object as not allocated and schedule RCU freeing via put_object(). 633 */ 634 static void __delete_object(struct kmemleak_object *object) 635 { 636 unsigned long flags; 637 638 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 639 WARN_ON(atomic_read(&object->use_count) < 1); 640 641 /* 642 * Locking here also ensures that the corresponding memory block 643 * cannot be freed when it is being scanned. 644 */ 645 spin_lock_irqsave(&object->lock, flags); 646 object->flags &= ~OBJECT_ALLOCATED; 647 spin_unlock_irqrestore(&object->lock, flags); 648 put_object(object); 649 } 650 651 /* 652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 653 * delete it. 654 */ 655 static void delete_object_full(unsigned long ptr) 656 { 657 struct kmemleak_object *object; 658 659 object = find_and_remove_object(ptr, 0); 660 if (!object) { 661 #ifdef DEBUG 662 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 663 ptr); 664 #endif 665 return; 666 } 667 __delete_object(object); 668 } 669 670 /* 671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 672 * delete it. If the memory block is partially freed, the function may create 673 * additional metadata for the remaining parts of the block. 674 */ 675 static void delete_object_part(unsigned long ptr, size_t size) 676 { 677 struct kmemleak_object *object; 678 unsigned long start, end; 679 680 object = find_and_remove_object(ptr, 1); 681 if (!object) { 682 #ifdef DEBUG 683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 684 ptr, size); 685 #endif 686 return; 687 } 688 689 /* 690 * Create one or two objects that may result from the memory block 691 * split. Note that partial freeing is only done by free_bootmem() and 692 * this happens before kmemleak_init() is called. The path below is 693 * only executed during early log recording in kmemleak_init(), so 694 * GFP_KERNEL is enough. 695 */ 696 start = object->pointer; 697 end = object->pointer + object->size; 698 if (ptr > start) 699 create_object(start, ptr - start, object->min_count, 700 GFP_KERNEL); 701 if (ptr + size < end) 702 create_object(ptr + size, end - ptr - size, object->min_count, 703 GFP_KERNEL); 704 705 __delete_object(object); 706 } 707 708 static void __paint_it(struct kmemleak_object *object, int color) 709 { 710 object->min_count = color; 711 if (color == KMEMLEAK_BLACK) 712 object->flags |= OBJECT_NO_SCAN; 713 } 714 715 static void paint_it(struct kmemleak_object *object, int color) 716 { 717 unsigned long flags; 718 719 spin_lock_irqsave(&object->lock, flags); 720 __paint_it(object, color); 721 spin_unlock_irqrestore(&object->lock, flags); 722 } 723 724 static void paint_ptr(unsigned long ptr, int color) 725 { 726 struct kmemleak_object *object; 727 728 object = find_and_get_object(ptr, 0); 729 if (!object) { 730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 731 ptr, 732 (color == KMEMLEAK_GREY) ? "Grey" : 733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 734 return; 735 } 736 paint_it(object, color); 737 put_object(object); 738 } 739 740 /* 741 * Mark an object permanently as gray-colored so that it can no longer be 742 * reported as a leak. This is used in general to mark a false positive. 743 */ 744 static void make_gray_object(unsigned long ptr) 745 { 746 paint_ptr(ptr, KMEMLEAK_GREY); 747 } 748 749 /* 750 * Mark the object as black-colored so that it is ignored from scans and 751 * reporting. 752 */ 753 static void make_black_object(unsigned long ptr) 754 { 755 paint_ptr(ptr, KMEMLEAK_BLACK); 756 } 757 758 /* 759 * Add a scanning area to the object. If at least one such area is added, 760 * kmemleak will only scan these ranges rather than the whole memory block. 761 */ 762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 763 { 764 unsigned long flags; 765 struct kmemleak_object *object; 766 struct kmemleak_scan_area *area; 767 768 object = find_and_get_object(ptr, 1); 769 if (!object) { 770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 771 ptr); 772 return; 773 } 774 775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 776 if (!area) { 777 pr_warn("Cannot allocate a scan area\n"); 778 goto out; 779 } 780 781 spin_lock_irqsave(&object->lock, flags); 782 if (size == SIZE_MAX) { 783 size = object->pointer + object->size - ptr; 784 } else if (ptr + size > object->pointer + object->size) { 785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 786 dump_object_info(object); 787 kmem_cache_free(scan_area_cache, area); 788 goto out_unlock; 789 } 790 791 INIT_HLIST_NODE(&area->node); 792 area->start = ptr; 793 area->size = size; 794 795 hlist_add_head(&area->node, &object->area_list); 796 out_unlock: 797 spin_unlock_irqrestore(&object->lock, flags); 798 out: 799 put_object(object); 800 } 801 802 /* 803 * Any surplus references (object already gray) to 'ptr' are passed to 804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 805 * vm_struct may be used as an alternative reference to the vmalloc'ed object 806 * (see free_thread_stack()). 807 */ 808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 809 { 810 unsigned long flags; 811 struct kmemleak_object *object; 812 813 object = find_and_get_object(ptr, 0); 814 if (!object) { 815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 816 ptr); 817 return; 818 } 819 820 spin_lock_irqsave(&object->lock, flags); 821 object->excess_ref = excess_ref; 822 spin_unlock_irqrestore(&object->lock, flags); 823 put_object(object); 824 } 825 826 /* 827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 828 * pointer. Such object will not be scanned by kmemleak but references to it 829 * are searched. 830 */ 831 static void object_no_scan(unsigned long ptr) 832 { 833 unsigned long flags; 834 struct kmemleak_object *object; 835 836 object = find_and_get_object(ptr, 0); 837 if (!object) { 838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 839 return; 840 } 841 842 spin_lock_irqsave(&object->lock, flags); 843 object->flags |= OBJECT_NO_SCAN; 844 spin_unlock_irqrestore(&object->lock, flags); 845 put_object(object); 846 } 847 848 /* 849 * Log an early kmemleak_* call to the early_log buffer. These calls will be 850 * processed later once kmemleak is fully initialized. 851 */ 852 static void __init log_early(int op_type, const void *ptr, size_t size, 853 int min_count) 854 { 855 unsigned long flags; 856 struct early_log *log; 857 858 if (kmemleak_error) { 859 /* kmemleak stopped recording, just count the requests */ 860 crt_early_log++; 861 return; 862 } 863 864 if (crt_early_log >= ARRAY_SIZE(early_log)) { 865 crt_early_log++; 866 kmemleak_disable(); 867 return; 868 } 869 870 /* 871 * There is no need for locking since the kernel is still in UP mode 872 * at this stage. Disabling the IRQs is enough. 873 */ 874 local_irq_save(flags); 875 log = &early_log[crt_early_log]; 876 log->op_type = op_type; 877 log->ptr = ptr; 878 log->size = size; 879 log->min_count = min_count; 880 log->trace_len = __save_stack_trace(log->trace); 881 crt_early_log++; 882 local_irq_restore(flags); 883 } 884 885 /* 886 * Log an early allocated block and populate the stack trace. 887 */ 888 static void early_alloc(struct early_log *log) 889 { 890 struct kmemleak_object *object; 891 unsigned long flags; 892 int i; 893 894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 895 return; 896 897 /* 898 * RCU locking needed to ensure object is not freed via put_object(). 899 */ 900 rcu_read_lock(); 901 object = create_object((unsigned long)log->ptr, log->size, 902 log->min_count, GFP_ATOMIC); 903 if (!object) 904 goto out; 905 spin_lock_irqsave(&object->lock, flags); 906 for (i = 0; i < log->trace_len; i++) 907 object->trace[i] = log->trace[i]; 908 object->trace_len = log->trace_len; 909 spin_unlock_irqrestore(&object->lock, flags); 910 out: 911 rcu_read_unlock(); 912 } 913 914 /* 915 * Log an early allocated block and populate the stack trace. 916 */ 917 static void early_alloc_percpu(struct early_log *log) 918 { 919 unsigned int cpu; 920 const void __percpu *ptr = log->ptr; 921 922 for_each_possible_cpu(cpu) { 923 log->ptr = per_cpu_ptr(ptr, cpu); 924 early_alloc(log); 925 } 926 } 927 928 /** 929 * kmemleak_alloc - register a newly allocated object 930 * @ptr: pointer to beginning of the object 931 * @size: size of the object 932 * @min_count: minimum number of references to this object. If during memory 933 * scanning a number of references less than @min_count is found, 934 * the object is reported as a memory leak. If @min_count is 0, 935 * the object is never reported as a leak. If @min_count is -1, 936 * the object is ignored (not scanned and not reported as a leak) 937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 938 * 939 * This function is called from the kernel allocators when a new object 940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 941 */ 942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 943 gfp_t gfp) 944 { 945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 946 947 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 948 create_object((unsigned long)ptr, size, min_count, gfp); 949 else if (kmemleak_early_log) 950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 951 } 952 EXPORT_SYMBOL_GPL(kmemleak_alloc); 953 954 /** 955 * kmemleak_alloc_percpu - register a newly allocated __percpu object 956 * @ptr: __percpu pointer to beginning of the object 957 * @size: size of the object 958 * @gfp: flags used for kmemleak internal memory allocations 959 * 960 * This function is called from the kernel percpu allocator when a new object 961 * (memory block) is allocated (alloc_percpu). 962 */ 963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 964 gfp_t gfp) 965 { 966 unsigned int cpu; 967 968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 969 970 /* 971 * Percpu allocations are only scanned and not reported as leaks 972 * (min_count is set to 0). 973 */ 974 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 975 for_each_possible_cpu(cpu) 976 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 977 size, 0, gfp); 978 else if (kmemleak_early_log) 979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 980 } 981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 982 983 /** 984 * kmemleak_vmalloc - register a newly vmalloc'ed object 985 * @area: pointer to vm_struct 986 * @size: size of the object 987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 988 * 989 * This function is called from the vmalloc() kernel allocator when a new 990 * object (memory block) is allocated. 991 */ 992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 993 { 994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 995 996 /* 997 * A min_count = 2 is needed because vm_struct contains a reference to 998 * the virtual address of the vmalloc'ed block. 999 */ 1000 if (kmemleak_enabled) { 1001 create_object((unsigned long)area->addr, size, 2, gfp); 1002 object_set_excess_ref((unsigned long)area, 1003 (unsigned long)area->addr); 1004 } else if (kmemleak_early_log) { 1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1006 /* reusing early_log.size for storing area->addr */ 1007 log_early(KMEMLEAK_SET_EXCESS_REF, 1008 area, (unsigned long)area->addr, 0); 1009 } 1010 } 1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1012 1013 /** 1014 * kmemleak_free - unregister a previously registered object 1015 * @ptr: pointer to beginning of the object 1016 * 1017 * This function is called from the kernel allocators when an object (memory 1018 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1019 */ 1020 void __ref kmemleak_free(const void *ptr) 1021 { 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1025 delete_object_full((unsigned long)ptr); 1026 else if (kmemleak_early_log) 1027 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1028 } 1029 EXPORT_SYMBOL_GPL(kmemleak_free); 1030 1031 /** 1032 * kmemleak_free_part - partially unregister a previously registered object 1033 * @ptr: pointer to the beginning or inside the object. This also 1034 * represents the start of the range to be freed 1035 * @size: size to be unregistered 1036 * 1037 * This function is called when only a part of a memory block is freed 1038 * (usually from the bootmem allocator). 1039 */ 1040 void __ref kmemleak_free_part(const void *ptr, size_t size) 1041 { 1042 pr_debug("%s(0x%p)\n", __func__, ptr); 1043 1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1045 delete_object_part((unsigned long)ptr, size); 1046 else if (kmemleak_early_log) 1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1048 } 1049 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1050 1051 /** 1052 * kmemleak_free_percpu - unregister a previously registered __percpu object 1053 * @ptr: __percpu pointer to beginning of the object 1054 * 1055 * This function is called from the kernel percpu allocator when an object 1056 * (memory block) is freed (free_percpu). 1057 */ 1058 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1059 { 1060 unsigned int cpu; 1061 1062 pr_debug("%s(0x%p)\n", __func__, ptr); 1063 1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1065 for_each_possible_cpu(cpu) 1066 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1067 cpu)); 1068 else if (kmemleak_early_log) 1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1070 } 1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1072 1073 /** 1074 * kmemleak_update_trace - update object allocation stack trace 1075 * @ptr: pointer to beginning of the object 1076 * 1077 * Override the object allocation stack trace for cases where the actual 1078 * allocation place is not always useful. 1079 */ 1080 void __ref kmemleak_update_trace(const void *ptr) 1081 { 1082 struct kmemleak_object *object; 1083 unsigned long flags; 1084 1085 pr_debug("%s(0x%p)\n", __func__, ptr); 1086 1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1088 return; 1089 1090 object = find_and_get_object((unsigned long)ptr, 1); 1091 if (!object) { 1092 #ifdef DEBUG 1093 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1094 ptr); 1095 #endif 1096 return; 1097 } 1098 1099 spin_lock_irqsave(&object->lock, flags); 1100 object->trace_len = __save_stack_trace(object->trace); 1101 spin_unlock_irqrestore(&object->lock, flags); 1102 1103 put_object(object); 1104 } 1105 EXPORT_SYMBOL(kmemleak_update_trace); 1106 1107 /** 1108 * kmemleak_not_leak - mark an allocated object as false positive 1109 * @ptr: pointer to beginning of the object 1110 * 1111 * Calling this function on an object will cause the memory block to no longer 1112 * be reported as leak and always be scanned. 1113 */ 1114 void __ref kmemleak_not_leak(const void *ptr) 1115 { 1116 pr_debug("%s(0x%p)\n", __func__, ptr); 1117 1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1119 make_gray_object((unsigned long)ptr); 1120 else if (kmemleak_early_log) 1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1122 } 1123 EXPORT_SYMBOL(kmemleak_not_leak); 1124 1125 /** 1126 * kmemleak_ignore - ignore an allocated object 1127 * @ptr: pointer to beginning of the object 1128 * 1129 * Calling this function on an object will cause the memory block to be 1130 * ignored (not scanned and not reported as a leak). This is usually done when 1131 * it is known that the corresponding block is not a leak and does not contain 1132 * any references to other allocated memory blocks. 1133 */ 1134 void __ref kmemleak_ignore(const void *ptr) 1135 { 1136 pr_debug("%s(0x%p)\n", __func__, ptr); 1137 1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1139 make_black_object((unsigned long)ptr); 1140 else if (kmemleak_early_log) 1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1142 } 1143 EXPORT_SYMBOL(kmemleak_ignore); 1144 1145 /** 1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1147 * @ptr: pointer to beginning or inside the object. This also 1148 * represents the start of the scan area 1149 * @size: size of the scan area 1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1151 * 1152 * This function is used when it is known that only certain parts of an object 1153 * contain references to other objects. Kmemleak will only scan these areas 1154 * reducing the number false negatives. 1155 */ 1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1157 { 1158 pr_debug("%s(0x%p)\n", __func__, ptr); 1159 1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1161 add_scan_area((unsigned long)ptr, size, gfp); 1162 else if (kmemleak_early_log) 1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1164 } 1165 EXPORT_SYMBOL(kmemleak_scan_area); 1166 1167 /** 1168 * kmemleak_no_scan - do not scan an allocated object 1169 * @ptr: pointer to beginning of the object 1170 * 1171 * This function notifies kmemleak not to scan the given memory block. Useful 1172 * in situations where it is known that the given object does not contain any 1173 * references to other objects. Kmemleak will not scan such objects reducing 1174 * the number of false negatives. 1175 */ 1176 void __ref kmemleak_no_scan(const void *ptr) 1177 { 1178 pr_debug("%s(0x%p)\n", __func__, ptr); 1179 1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1181 object_no_scan((unsigned long)ptr); 1182 else if (kmemleak_early_log) 1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1184 } 1185 EXPORT_SYMBOL(kmemleak_no_scan); 1186 1187 /** 1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1189 * address argument 1190 * @phys: physical address of the object 1191 * @size: size of the object 1192 * @min_count: minimum number of references to this object. 1193 * See kmemleak_alloc() 1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1195 */ 1196 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1197 gfp_t gfp) 1198 { 1199 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1200 kmemleak_alloc(__va(phys), size, min_count, gfp); 1201 } 1202 EXPORT_SYMBOL(kmemleak_alloc_phys); 1203 1204 /** 1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1206 * physical address argument 1207 * @phys: physical address if the beginning or inside an object. This 1208 * also represents the start of the range to be freed 1209 * @size: size to be unregistered 1210 */ 1211 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1212 { 1213 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1214 kmemleak_free_part(__va(phys), size); 1215 } 1216 EXPORT_SYMBOL(kmemleak_free_part_phys); 1217 1218 /** 1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1220 * address argument 1221 * @phys: physical address of the object 1222 */ 1223 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1224 { 1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1226 kmemleak_not_leak(__va(phys)); 1227 } 1228 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1229 1230 /** 1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1232 * address argument 1233 * @phys: physical address of the object 1234 */ 1235 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1236 { 1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1238 kmemleak_ignore(__va(phys)); 1239 } 1240 EXPORT_SYMBOL(kmemleak_ignore_phys); 1241 1242 /* 1243 * Update an object's checksum and return true if it was modified. 1244 */ 1245 static bool update_checksum(struct kmemleak_object *object) 1246 { 1247 u32 old_csum = object->checksum; 1248 1249 kasan_disable_current(); 1250 object->checksum = crc32(0, (void *)object->pointer, object->size); 1251 kasan_enable_current(); 1252 1253 return object->checksum != old_csum; 1254 } 1255 1256 /* 1257 * Update an object's references. object->lock must be held by the caller. 1258 */ 1259 static void update_refs(struct kmemleak_object *object) 1260 { 1261 if (!color_white(object)) { 1262 /* non-orphan, ignored or new */ 1263 return; 1264 } 1265 1266 /* 1267 * Increase the object's reference count (number of pointers to the 1268 * memory block). If this count reaches the required minimum, the 1269 * object's color will become gray and it will be added to the 1270 * gray_list. 1271 */ 1272 object->count++; 1273 if (color_gray(object)) { 1274 /* put_object() called when removing from gray_list */ 1275 WARN_ON(!get_object(object)); 1276 list_add_tail(&object->gray_list, &gray_list); 1277 } 1278 } 1279 1280 /* 1281 * Memory scanning is a long process and it needs to be interruptable. This 1282 * function checks whether such interrupt condition occurred. 1283 */ 1284 static int scan_should_stop(void) 1285 { 1286 if (!kmemleak_enabled) 1287 return 1; 1288 1289 /* 1290 * This function may be called from either process or kthread context, 1291 * hence the need to check for both stop conditions. 1292 */ 1293 if (current->mm) 1294 return signal_pending(current); 1295 else 1296 return kthread_should_stop(); 1297 1298 return 0; 1299 } 1300 1301 /* 1302 * Scan a memory block (exclusive range) for valid pointers and add those 1303 * found to the gray list. 1304 */ 1305 static void scan_block(void *_start, void *_end, 1306 struct kmemleak_object *scanned) 1307 { 1308 unsigned long *ptr; 1309 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1310 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1311 unsigned long flags; 1312 unsigned long untagged_ptr; 1313 1314 read_lock_irqsave(&kmemleak_lock, flags); 1315 for (ptr = start; ptr < end; ptr++) { 1316 struct kmemleak_object *object; 1317 unsigned long pointer; 1318 unsigned long excess_ref; 1319 1320 if (scan_should_stop()) 1321 break; 1322 1323 kasan_disable_current(); 1324 pointer = *ptr; 1325 kasan_enable_current(); 1326 1327 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1328 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1329 continue; 1330 1331 /* 1332 * No need for get_object() here since we hold kmemleak_lock. 1333 * object->use_count cannot be dropped to 0 while the object 1334 * is still present in object_tree_root and object_list 1335 * (with updates protected by kmemleak_lock). 1336 */ 1337 object = lookup_object(pointer, 1); 1338 if (!object) 1339 continue; 1340 if (object == scanned) 1341 /* self referenced, ignore */ 1342 continue; 1343 1344 /* 1345 * Avoid the lockdep recursive warning on object->lock being 1346 * previously acquired in scan_object(). These locks are 1347 * enclosed by scan_mutex. 1348 */ 1349 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1350 /* only pass surplus references (object already gray) */ 1351 if (color_gray(object)) { 1352 excess_ref = object->excess_ref; 1353 /* no need for update_refs() if object already gray */ 1354 } else { 1355 excess_ref = 0; 1356 update_refs(object); 1357 } 1358 spin_unlock(&object->lock); 1359 1360 if (excess_ref) { 1361 object = lookup_object(excess_ref, 0); 1362 if (!object) 1363 continue; 1364 if (object == scanned) 1365 /* circular reference, ignore */ 1366 continue; 1367 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1368 update_refs(object); 1369 spin_unlock(&object->lock); 1370 } 1371 } 1372 read_unlock_irqrestore(&kmemleak_lock, flags); 1373 } 1374 1375 /* 1376 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1377 */ 1378 #ifdef CONFIG_SMP 1379 static void scan_large_block(void *start, void *end) 1380 { 1381 void *next; 1382 1383 while (start < end) { 1384 next = min(start + MAX_SCAN_SIZE, end); 1385 scan_block(start, next, NULL); 1386 start = next; 1387 cond_resched(); 1388 } 1389 } 1390 #endif 1391 1392 /* 1393 * Scan a memory block corresponding to a kmemleak_object. A condition is 1394 * that object->use_count >= 1. 1395 */ 1396 static void scan_object(struct kmemleak_object *object) 1397 { 1398 struct kmemleak_scan_area *area; 1399 unsigned long flags; 1400 1401 /* 1402 * Once the object->lock is acquired, the corresponding memory block 1403 * cannot be freed (the same lock is acquired in delete_object). 1404 */ 1405 spin_lock_irqsave(&object->lock, flags); 1406 if (object->flags & OBJECT_NO_SCAN) 1407 goto out; 1408 if (!(object->flags & OBJECT_ALLOCATED)) 1409 /* already freed object */ 1410 goto out; 1411 if (hlist_empty(&object->area_list)) { 1412 void *start = (void *)object->pointer; 1413 void *end = (void *)(object->pointer + object->size); 1414 void *next; 1415 1416 do { 1417 next = min(start + MAX_SCAN_SIZE, end); 1418 scan_block(start, next, object); 1419 1420 start = next; 1421 if (start >= end) 1422 break; 1423 1424 spin_unlock_irqrestore(&object->lock, flags); 1425 cond_resched(); 1426 spin_lock_irqsave(&object->lock, flags); 1427 } while (object->flags & OBJECT_ALLOCATED); 1428 } else 1429 hlist_for_each_entry(area, &object->area_list, node) 1430 scan_block((void *)area->start, 1431 (void *)(area->start + area->size), 1432 object); 1433 out: 1434 spin_unlock_irqrestore(&object->lock, flags); 1435 } 1436 1437 /* 1438 * Scan the objects already referenced (gray objects). More objects will be 1439 * referenced and, if there are no memory leaks, all the objects are scanned. 1440 */ 1441 static void scan_gray_list(void) 1442 { 1443 struct kmemleak_object *object, *tmp; 1444 1445 /* 1446 * The list traversal is safe for both tail additions and removals 1447 * from inside the loop. The kmemleak objects cannot be freed from 1448 * outside the loop because their use_count was incremented. 1449 */ 1450 object = list_entry(gray_list.next, typeof(*object), gray_list); 1451 while (&object->gray_list != &gray_list) { 1452 cond_resched(); 1453 1454 /* may add new objects to the list */ 1455 if (!scan_should_stop()) 1456 scan_object(object); 1457 1458 tmp = list_entry(object->gray_list.next, typeof(*object), 1459 gray_list); 1460 1461 /* remove the object from the list and release it */ 1462 list_del(&object->gray_list); 1463 put_object(object); 1464 1465 object = tmp; 1466 } 1467 WARN_ON(!list_empty(&gray_list)); 1468 } 1469 1470 /* 1471 * Scan data sections and all the referenced memory blocks allocated via the 1472 * kernel's standard allocators. This function must be called with the 1473 * scan_mutex held. 1474 */ 1475 static void kmemleak_scan(void) 1476 { 1477 unsigned long flags; 1478 struct kmemleak_object *object; 1479 int i; 1480 int new_leaks = 0; 1481 1482 jiffies_last_scan = jiffies; 1483 1484 /* prepare the kmemleak_object's */ 1485 rcu_read_lock(); 1486 list_for_each_entry_rcu(object, &object_list, object_list) { 1487 spin_lock_irqsave(&object->lock, flags); 1488 #ifdef DEBUG 1489 /* 1490 * With a few exceptions there should be a maximum of 1491 * 1 reference to any object at this point. 1492 */ 1493 if (atomic_read(&object->use_count) > 1) { 1494 pr_debug("object->use_count = %d\n", 1495 atomic_read(&object->use_count)); 1496 dump_object_info(object); 1497 } 1498 #endif 1499 /* reset the reference count (whiten the object) */ 1500 object->count = 0; 1501 if (color_gray(object) && get_object(object)) 1502 list_add_tail(&object->gray_list, &gray_list); 1503 1504 spin_unlock_irqrestore(&object->lock, flags); 1505 } 1506 rcu_read_unlock(); 1507 1508 #ifdef CONFIG_SMP 1509 /* per-cpu sections scanning */ 1510 for_each_possible_cpu(i) 1511 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1512 __per_cpu_end + per_cpu_offset(i)); 1513 #endif 1514 1515 /* 1516 * Struct page scanning for each node. 1517 */ 1518 get_online_mems(); 1519 for_each_online_node(i) { 1520 unsigned long start_pfn = node_start_pfn(i); 1521 unsigned long end_pfn = node_end_pfn(i); 1522 unsigned long pfn; 1523 1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1525 struct page *page = pfn_to_online_page(pfn); 1526 1527 if (!page) 1528 continue; 1529 1530 /* only scan pages belonging to this node */ 1531 if (page_to_nid(page) != i) 1532 continue; 1533 /* only scan if page is in use */ 1534 if (page_count(page) == 0) 1535 continue; 1536 scan_block(page, page + 1, NULL); 1537 if (!(pfn & 63)) 1538 cond_resched(); 1539 } 1540 } 1541 put_online_mems(); 1542 1543 /* 1544 * Scanning the task stacks (may introduce false negatives). 1545 */ 1546 if (kmemleak_stack_scan) { 1547 struct task_struct *p, *g; 1548 1549 read_lock(&tasklist_lock); 1550 do_each_thread(g, p) { 1551 void *stack = try_get_task_stack(p); 1552 if (stack) { 1553 scan_block(stack, stack + THREAD_SIZE, NULL); 1554 put_task_stack(p); 1555 } 1556 } while_each_thread(g, p); 1557 read_unlock(&tasklist_lock); 1558 } 1559 1560 /* 1561 * Scan the objects already referenced from the sections scanned 1562 * above. 1563 */ 1564 scan_gray_list(); 1565 1566 /* 1567 * Check for new or unreferenced objects modified since the previous 1568 * scan and color them gray until the next scan. 1569 */ 1570 rcu_read_lock(); 1571 list_for_each_entry_rcu(object, &object_list, object_list) { 1572 spin_lock_irqsave(&object->lock, flags); 1573 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1574 && update_checksum(object) && get_object(object)) { 1575 /* color it gray temporarily */ 1576 object->count = object->min_count; 1577 list_add_tail(&object->gray_list, &gray_list); 1578 } 1579 spin_unlock_irqrestore(&object->lock, flags); 1580 } 1581 rcu_read_unlock(); 1582 1583 /* 1584 * Re-scan the gray list for modified unreferenced objects. 1585 */ 1586 scan_gray_list(); 1587 1588 /* 1589 * If scanning was stopped do not report any new unreferenced objects. 1590 */ 1591 if (scan_should_stop()) 1592 return; 1593 1594 /* 1595 * Scanning result reporting. 1596 */ 1597 rcu_read_lock(); 1598 list_for_each_entry_rcu(object, &object_list, object_list) { 1599 spin_lock_irqsave(&object->lock, flags); 1600 if (unreferenced_object(object) && 1601 !(object->flags & OBJECT_REPORTED)) { 1602 object->flags |= OBJECT_REPORTED; 1603 1604 if (kmemleak_verbose) 1605 print_unreferenced(NULL, object); 1606 1607 new_leaks++; 1608 } 1609 spin_unlock_irqrestore(&object->lock, flags); 1610 } 1611 rcu_read_unlock(); 1612 1613 if (new_leaks) { 1614 kmemleak_found_leaks = true; 1615 1616 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1617 new_leaks); 1618 } 1619 1620 } 1621 1622 /* 1623 * Thread function performing automatic memory scanning. Unreferenced objects 1624 * at the end of a memory scan are reported but only the first time. 1625 */ 1626 static int kmemleak_scan_thread(void *arg) 1627 { 1628 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1629 1630 pr_info("Automatic memory scanning thread started\n"); 1631 set_user_nice(current, 10); 1632 1633 /* 1634 * Wait before the first scan to allow the system to fully initialize. 1635 */ 1636 if (first_run) { 1637 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1638 first_run = 0; 1639 while (timeout && !kthread_should_stop()) 1640 timeout = schedule_timeout_interruptible(timeout); 1641 } 1642 1643 while (!kthread_should_stop()) { 1644 signed long timeout = jiffies_scan_wait; 1645 1646 mutex_lock(&scan_mutex); 1647 kmemleak_scan(); 1648 mutex_unlock(&scan_mutex); 1649 1650 /* wait before the next scan */ 1651 while (timeout && !kthread_should_stop()) 1652 timeout = schedule_timeout_interruptible(timeout); 1653 } 1654 1655 pr_info("Automatic memory scanning thread ended\n"); 1656 1657 return 0; 1658 } 1659 1660 /* 1661 * Start the automatic memory scanning thread. This function must be called 1662 * with the scan_mutex held. 1663 */ 1664 static void start_scan_thread(void) 1665 { 1666 if (scan_thread) 1667 return; 1668 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1669 if (IS_ERR(scan_thread)) { 1670 pr_warn("Failed to create the scan thread\n"); 1671 scan_thread = NULL; 1672 } 1673 } 1674 1675 /* 1676 * Stop the automatic memory scanning thread. 1677 */ 1678 static void stop_scan_thread(void) 1679 { 1680 if (scan_thread) { 1681 kthread_stop(scan_thread); 1682 scan_thread = NULL; 1683 } 1684 } 1685 1686 /* 1687 * Iterate over the object_list and return the first valid object at or after 1688 * the required position with its use_count incremented. The function triggers 1689 * a memory scanning when the pos argument points to the first position. 1690 */ 1691 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1692 { 1693 struct kmemleak_object *object; 1694 loff_t n = *pos; 1695 int err; 1696 1697 err = mutex_lock_interruptible(&scan_mutex); 1698 if (err < 0) 1699 return ERR_PTR(err); 1700 1701 rcu_read_lock(); 1702 list_for_each_entry_rcu(object, &object_list, object_list) { 1703 if (n-- > 0) 1704 continue; 1705 if (get_object(object)) 1706 goto out; 1707 } 1708 object = NULL; 1709 out: 1710 return object; 1711 } 1712 1713 /* 1714 * Return the next object in the object_list. The function decrements the 1715 * use_count of the previous object and increases that of the next one. 1716 */ 1717 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1718 { 1719 struct kmemleak_object *prev_obj = v; 1720 struct kmemleak_object *next_obj = NULL; 1721 struct kmemleak_object *obj = prev_obj; 1722 1723 ++(*pos); 1724 1725 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1726 if (get_object(obj)) { 1727 next_obj = obj; 1728 break; 1729 } 1730 } 1731 1732 put_object(prev_obj); 1733 return next_obj; 1734 } 1735 1736 /* 1737 * Decrement the use_count of the last object required, if any. 1738 */ 1739 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1740 { 1741 if (!IS_ERR(v)) { 1742 /* 1743 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1744 * waiting was interrupted, so only release it if !IS_ERR. 1745 */ 1746 rcu_read_unlock(); 1747 mutex_unlock(&scan_mutex); 1748 if (v) 1749 put_object(v); 1750 } 1751 } 1752 1753 /* 1754 * Print the information for an unreferenced object to the seq file. 1755 */ 1756 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1757 { 1758 struct kmemleak_object *object = v; 1759 unsigned long flags; 1760 1761 spin_lock_irqsave(&object->lock, flags); 1762 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1763 print_unreferenced(seq, object); 1764 spin_unlock_irqrestore(&object->lock, flags); 1765 return 0; 1766 } 1767 1768 static const struct seq_operations kmemleak_seq_ops = { 1769 .start = kmemleak_seq_start, 1770 .next = kmemleak_seq_next, 1771 .stop = kmemleak_seq_stop, 1772 .show = kmemleak_seq_show, 1773 }; 1774 1775 static int kmemleak_open(struct inode *inode, struct file *file) 1776 { 1777 return seq_open(file, &kmemleak_seq_ops); 1778 } 1779 1780 static int dump_str_object_info(const char *str) 1781 { 1782 unsigned long flags; 1783 struct kmemleak_object *object; 1784 unsigned long addr; 1785 1786 if (kstrtoul(str, 0, &addr)) 1787 return -EINVAL; 1788 object = find_and_get_object(addr, 0); 1789 if (!object) { 1790 pr_info("Unknown object at 0x%08lx\n", addr); 1791 return -EINVAL; 1792 } 1793 1794 spin_lock_irqsave(&object->lock, flags); 1795 dump_object_info(object); 1796 spin_unlock_irqrestore(&object->lock, flags); 1797 1798 put_object(object); 1799 return 0; 1800 } 1801 1802 /* 1803 * We use grey instead of black to ensure we can do future scans on the same 1804 * objects. If we did not do future scans these black objects could 1805 * potentially contain references to newly allocated objects in the future and 1806 * we'd end up with false positives. 1807 */ 1808 static void kmemleak_clear(void) 1809 { 1810 struct kmemleak_object *object; 1811 unsigned long flags; 1812 1813 rcu_read_lock(); 1814 list_for_each_entry_rcu(object, &object_list, object_list) { 1815 spin_lock_irqsave(&object->lock, flags); 1816 if ((object->flags & OBJECT_REPORTED) && 1817 unreferenced_object(object)) 1818 __paint_it(object, KMEMLEAK_GREY); 1819 spin_unlock_irqrestore(&object->lock, flags); 1820 } 1821 rcu_read_unlock(); 1822 1823 kmemleak_found_leaks = false; 1824 } 1825 1826 static void __kmemleak_do_cleanup(void); 1827 1828 /* 1829 * File write operation to configure kmemleak at run-time. The following 1830 * commands can be written to the /sys/kernel/debug/kmemleak file: 1831 * off - disable kmemleak (irreversible) 1832 * stack=on - enable the task stacks scanning 1833 * stack=off - disable the tasks stacks scanning 1834 * scan=on - start the automatic memory scanning thread 1835 * scan=off - stop the automatic memory scanning thread 1836 * scan=... - set the automatic memory scanning period in seconds (0 to 1837 * disable it) 1838 * scan - trigger a memory scan 1839 * clear - mark all current reported unreferenced kmemleak objects as 1840 * grey to ignore printing them, or free all kmemleak objects 1841 * if kmemleak has been disabled. 1842 * dump=... - dump information about the object found at the given address 1843 */ 1844 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1845 size_t size, loff_t *ppos) 1846 { 1847 char buf[64]; 1848 int buf_size; 1849 int ret; 1850 1851 buf_size = min(size, (sizeof(buf) - 1)); 1852 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1853 return -EFAULT; 1854 buf[buf_size] = 0; 1855 1856 ret = mutex_lock_interruptible(&scan_mutex); 1857 if (ret < 0) 1858 return ret; 1859 1860 if (strncmp(buf, "clear", 5) == 0) { 1861 if (kmemleak_enabled) 1862 kmemleak_clear(); 1863 else 1864 __kmemleak_do_cleanup(); 1865 goto out; 1866 } 1867 1868 if (!kmemleak_enabled) { 1869 ret = -EBUSY; 1870 goto out; 1871 } 1872 1873 if (strncmp(buf, "off", 3) == 0) 1874 kmemleak_disable(); 1875 else if (strncmp(buf, "stack=on", 8) == 0) 1876 kmemleak_stack_scan = 1; 1877 else if (strncmp(buf, "stack=off", 9) == 0) 1878 kmemleak_stack_scan = 0; 1879 else if (strncmp(buf, "scan=on", 7) == 0) 1880 start_scan_thread(); 1881 else if (strncmp(buf, "scan=off", 8) == 0) 1882 stop_scan_thread(); 1883 else if (strncmp(buf, "scan=", 5) == 0) { 1884 unsigned long secs; 1885 1886 ret = kstrtoul(buf + 5, 0, &secs); 1887 if (ret < 0) 1888 goto out; 1889 stop_scan_thread(); 1890 if (secs) { 1891 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1892 start_scan_thread(); 1893 } 1894 } else if (strncmp(buf, "scan", 4) == 0) 1895 kmemleak_scan(); 1896 else if (strncmp(buf, "dump=", 5) == 0) 1897 ret = dump_str_object_info(buf + 5); 1898 else 1899 ret = -EINVAL; 1900 1901 out: 1902 mutex_unlock(&scan_mutex); 1903 if (ret < 0) 1904 return ret; 1905 1906 /* ignore the rest of the buffer, only one command at a time */ 1907 *ppos += size; 1908 return size; 1909 } 1910 1911 static const struct file_operations kmemleak_fops = { 1912 .owner = THIS_MODULE, 1913 .open = kmemleak_open, 1914 .read = seq_read, 1915 .write = kmemleak_write, 1916 .llseek = seq_lseek, 1917 .release = seq_release, 1918 }; 1919 1920 static void __kmemleak_do_cleanup(void) 1921 { 1922 struct kmemleak_object *object; 1923 1924 rcu_read_lock(); 1925 list_for_each_entry_rcu(object, &object_list, object_list) 1926 delete_object_full(object->pointer); 1927 rcu_read_unlock(); 1928 } 1929 1930 /* 1931 * Stop the memory scanning thread and free the kmemleak internal objects if 1932 * no previous scan thread (otherwise, kmemleak may still have some useful 1933 * information on memory leaks). 1934 */ 1935 static void kmemleak_do_cleanup(struct work_struct *work) 1936 { 1937 stop_scan_thread(); 1938 1939 mutex_lock(&scan_mutex); 1940 /* 1941 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1942 * longer track object freeing. Ordering of the scan thread stopping and 1943 * the memory accesses below is guaranteed by the kthread_stop() 1944 * function. 1945 */ 1946 kmemleak_free_enabled = 0; 1947 mutex_unlock(&scan_mutex); 1948 1949 if (!kmemleak_found_leaks) 1950 __kmemleak_do_cleanup(); 1951 else 1952 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1953 } 1954 1955 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1956 1957 /* 1958 * Disable kmemleak. No memory allocation/freeing will be traced once this 1959 * function is called. Disabling kmemleak is an irreversible operation. 1960 */ 1961 static void kmemleak_disable(void) 1962 { 1963 /* atomically check whether it was already invoked */ 1964 if (cmpxchg(&kmemleak_error, 0, 1)) 1965 return; 1966 1967 /* stop any memory operation tracing */ 1968 kmemleak_enabled = 0; 1969 1970 /* check whether it is too early for a kernel thread */ 1971 if (kmemleak_initialized) 1972 schedule_work(&cleanup_work); 1973 else 1974 kmemleak_free_enabled = 0; 1975 1976 pr_info("Kernel memory leak detector disabled\n"); 1977 } 1978 1979 /* 1980 * Allow boot-time kmemleak disabling (enabled by default). 1981 */ 1982 static int __init kmemleak_boot_config(char *str) 1983 { 1984 if (!str) 1985 return -EINVAL; 1986 if (strcmp(str, "off") == 0) 1987 kmemleak_disable(); 1988 else if (strcmp(str, "on") == 0) 1989 kmemleak_skip_disable = 1; 1990 else 1991 return -EINVAL; 1992 return 0; 1993 } 1994 early_param("kmemleak", kmemleak_boot_config); 1995 1996 static void __init print_log_trace(struct early_log *log) 1997 { 1998 pr_notice("Early log backtrace:\n"); 1999 stack_trace_print(log->trace, log->trace_len, 2); 2000 } 2001 2002 /* 2003 * Kmemleak initialization. 2004 */ 2005 void __init kmemleak_init(void) 2006 { 2007 int i; 2008 unsigned long flags; 2009 2010 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2011 if (!kmemleak_skip_disable) { 2012 kmemleak_early_log = 0; 2013 kmemleak_disable(); 2014 return; 2015 } 2016 #endif 2017 2018 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2019 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2020 2021 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2022 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2023 2024 if (crt_early_log > ARRAY_SIZE(early_log)) 2025 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2026 crt_early_log); 2027 2028 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2029 local_irq_save(flags); 2030 kmemleak_early_log = 0; 2031 if (kmemleak_error) { 2032 local_irq_restore(flags); 2033 return; 2034 } else { 2035 kmemleak_enabled = 1; 2036 kmemleak_free_enabled = 1; 2037 } 2038 local_irq_restore(flags); 2039 2040 /* register the data/bss sections */ 2041 create_object((unsigned long)_sdata, _edata - _sdata, 2042 KMEMLEAK_GREY, GFP_ATOMIC); 2043 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2044 KMEMLEAK_GREY, GFP_ATOMIC); 2045 /* only register .data..ro_after_init if not within .data */ 2046 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata) 2047 create_object((unsigned long)__start_ro_after_init, 2048 __end_ro_after_init - __start_ro_after_init, 2049 KMEMLEAK_GREY, GFP_ATOMIC); 2050 2051 /* 2052 * This is the point where tracking allocations is safe. Automatic 2053 * scanning is started during the late initcall. Add the early logged 2054 * callbacks to the kmemleak infrastructure. 2055 */ 2056 for (i = 0; i < crt_early_log; i++) { 2057 struct early_log *log = &early_log[i]; 2058 2059 switch (log->op_type) { 2060 case KMEMLEAK_ALLOC: 2061 early_alloc(log); 2062 break; 2063 case KMEMLEAK_ALLOC_PERCPU: 2064 early_alloc_percpu(log); 2065 break; 2066 case KMEMLEAK_FREE: 2067 kmemleak_free(log->ptr); 2068 break; 2069 case KMEMLEAK_FREE_PART: 2070 kmemleak_free_part(log->ptr, log->size); 2071 break; 2072 case KMEMLEAK_FREE_PERCPU: 2073 kmemleak_free_percpu(log->ptr); 2074 break; 2075 case KMEMLEAK_NOT_LEAK: 2076 kmemleak_not_leak(log->ptr); 2077 break; 2078 case KMEMLEAK_IGNORE: 2079 kmemleak_ignore(log->ptr); 2080 break; 2081 case KMEMLEAK_SCAN_AREA: 2082 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2083 break; 2084 case KMEMLEAK_NO_SCAN: 2085 kmemleak_no_scan(log->ptr); 2086 break; 2087 case KMEMLEAK_SET_EXCESS_REF: 2088 object_set_excess_ref((unsigned long)log->ptr, 2089 log->excess_ref); 2090 break; 2091 default: 2092 kmemleak_warn("Unknown early log operation: %d\n", 2093 log->op_type); 2094 } 2095 2096 if (kmemleak_warning) { 2097 print_log_trace(log); 2098 kmemleak_warning = 0; 2099 } 2100 } 2101 } 2102 2103 /* 2104 * Late initialization function. 2105 */ 2106 static int __init kmemleak_late_init(void) 2107 { 2108 struct dentry *dentry; 2109 2110 kmemleak_initialized = 1; 2111 2112 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, 2113 &kmemleak_fops); 2114 if (!dentry) 2115 pr_warn("Failed to create the debugfs kmemleak file\n"); 2116 2117 if (kmemleak_error) { 2118 /* 2119 * Some error occurred and kmemleak was disabled. There is a 2120 * small chance that kmemleak_disable() was called immediately 2121 * after setting kmemleak_initialized and we may end up with 2122 * two clean-up threads but serialized by scan_mutex. 2123 */ 2124 schedule_work(&cleanup_work); 2125 return -ENOMEM; 2126 } 2127 2128 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2129 mutex_lock(&scan_mutex); 2130 start_scan_thread(); 2131 mutex_unlock(&scan_mutex); 2132 } 2133 2134 pr_info("Kernel memory leak detector initialized\n"); 2135 2136 return 0; 2137 } 2138 late_initcall(kmemleak_late_init); 2139