xref: /openbmc/linux/mm/khugepaged.c (revision f9900dd0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 
27 enum scan_result {
28 	SCAN_FAIL,
29 	SCAN_SUCCEED,
30 	SCAN_PMD_NULL,
31 	SCAN_EXCEED_NONE_PTE,
32 	SCAN_EXCEED_SWAP_PTE,
33 	SCAN_EXCEED_SHARED_PTE,
34 	SCAN_PTE_NON_PRESENT,
35 	SCAN_PTE_UFFD_WP,
36 	SCAN_PAGE_RO,
37 	SCAN_LACK_REFERENCED_PAGE,
38 	SCAN_PAGE_NULL,
39 	SCAN_SCAN_ABORT,
40 	SCAN_PAGE_COUNT,
41 	SCAN_PAGE_LRU,
42 	SCAN_PAGE_LOCK,
43 	SCAN_PAGE_ANON,
44 	SCAN_PAGE_COMPOUND,
45 	SCAN_ANY_PROCESS,
46 	SCAN_VMA_NULL,
47 	SCAN_VMA_CHECK,
48 	SCAN_ADDRESS_RANGE,
49 	SCAN_SWAP_CACHE_PAGE,
50 	SCAN_DEL_PAGE_LRU,
51 	SCAN_ALLOC_HUGE_PAGE_FAIL,
52 	SCAN_CGROUP_CHARGE_FAIL,
53 	SCAN_TRUNCATED,
54 	SCAN_PAGE_HAS_PRIVATE,
55 };
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/huge_memory.h>
59 
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 
63 /* default scan 8*512 pte (or vmas) every 30 second */
64 static unsigned int khugepaged_pages_to_scan __read_mostly;
65 static unsigned int khugepaged_pages_collapsed;
66 static unsigned int khugepaged_full_scans;
67 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
68 /* during fragmentation poll the hugepage allocator once every minute */
69 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
70 static unsigned long khugepaged_sleep_expire;
71 static DEFINE_SPINLOCK(khugepaged_mm_lock);
72 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
73 /*
74  * default collapse hugepages if there is at least one pte mapped like
75  * it would have happened if the vma was large enough during page
76  * fault.
77  */
78 static unsigned int khugepaged_max_ptes_none __read_mostly;
79 static unsigned int khugepaged_max_ptes_swap __read_mostly;
80 static unsigned int khugepaged_max_ptes_shared __read_mostly;
81 
82 #define MM_SLOTS_HASH_BITS 10
83 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
84 
85 static struct kmem_cache *mm_slot_cache __read_mostly;
86 
87 #define MAX_PTE_MAPPED_THP 8
88 
89 /**
90  * struct mm_slot - hash lookup from mm to mm_slot
91  * @hash: hash collision list
92  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
93  * @mm: the mm that this information is valid for
94  * @nr_pte_mapped_thp: number of pte mapped THP
95  * @pte_mapped_thp: address array corresponding pte mapped THP
96  */
97 struct mm_slot {
98 	struct hlist_node hash;
99 	struct list_head mm_node;
100 	struct mm_struct *mm;
101 
102 	/* pte-mapped THP in this mm */
103 	int nr_pte_mapped_thp;
104 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
105 };
106 
107 /**
108  * struct khugepaged_scan - cursor for scanning
109  * @mm_head: the head of the mm list to scan
110  * @mm_slot: the current mm_slot we are scanning
111  * @address: the next address inside that to be scanned
112  *
113  * There is only the one khugepaged_scan instance of this cursor structure.
114  */
115 struct khugepaged_scan {
116 	struct list_head mm_head;
117 	struct mm_slot *mm_slot;
118 	unsigned long address;
119 };
120 
121 static struct khugepaged_scan khugepaged_scan = {
122 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
123 };
124 
125 #ifdef CONFIG_SYSFS
126 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
127 					 struct kobj_attribute *attr,
128 					 char *buf)
129 {
130 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
131 }
132 
133 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
134 					  struct kobj_attribute *attr,
135 					  const char *buf, size_t count)
136 {
137 	unsigned int msecs;
138 	int err;
139 
140 	err = kstrtouint(buf, 10, &msecs);
141 	if (err)
142 		return -EINVAL;
143 
144 	khugepaged_scan_sleep_millisecs = msecs;
145 	khugepaged_sleep_expire = 0;
146 	wake_up_interruptible(&khugepaged_wait);
147 
148 	return count;
149 }
150 static struct kobj_attribute scan_sleep_millisecs_attr =
151 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
152 	       scan_sleep_millisecs_store);
153 
154 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
155 					  struct kobj_attribute *attr,
156 					  char *buf)
157 {
158 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
159 }
160 
161 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
162 					   struct kobj_attribute *attr,
163 					   const char *buf, size_t count)
164 {
165 	unsigned int msecs;
166 	int err;
167 
168 	err = kstrtouint(buf, 10, &msecs);
169 	if (err)
170 		return -EINVAL;
171 
172 	khugepaged_alloc_sleep_millisecs = msecs;
173 	khugepaged_sleep_expire = 0;
174 	wake_up_interruptible(&khugepaged_wait);
175 
176 	return count;
177 }
178 static struct kobj_attribute alloc_sleep_millisecs_attr =
179 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
180 	       alloc_sleep_millisecs_store);
181 
182 static ssize_t pages_to_scan_show(struct kobject *kobj,
183 				  struct kobj_attribute *attr,
184 				  char *buf)
185 {
186 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
187 }
188 static ssize_t pages_to_scan_store(struct kobject *kobj,
189 				   struct kobj_attribute *attr,
190 				   const char *buf, size_t count)
191 {
192 	unsigned int pages;
193 	int err;
194 
195 	err = kstrtouint(buf, 10, &pages);
196 	if (err || !pages)
197 		return -EINVAL;
198 
199 	khugepaged_pages_to_scan = pages;
200 
201 	return count;
202 }
203 static struct kobj_attribute pages_to_scan_attr =
204 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
205 	       pages_to_scan_store);
206 
207 static ssize_t pages_collapsed_show(struct kobject *kobj,
208 				    struct kobj_attribute *attr,
209 				    char *buf)
210 {
211 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
212 }
213 static struct kobj_attribute pages_collapsed_attr =
214 	__ATTR_RO(pages_collapsed);
215 
216 static ssize_t full_scans_show(struct kobject *kobj,
217 			       struct kobj_attribute *attr,
218 			       char *buf)
219 {
220 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
221 }
222 static struct kobj_attribute full_scans_attr =
223 	__ATTR_RO(full_scans);
224 
225 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
226 				      struct kobj_attribute *attr, char *buf)
227 {
228 	return single_hugepage_flag_show(kobj, attr, buf,
229 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 }
231 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
232 				       struct kobj_attribute *attr,
233 				       const char *buf, size_t count)
234 {
235 	return single_hugepage_flag_store(kobj, attr, buf, count,
236 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
237 }
238 static struct kobj_attribute khugepaged_defrag_attr =
239 	__ATTR(defrag, 0644, khugepaged_defrag_show,
240 	       khugepaged_defrag_store);
241 
242 /*
243  * max_ptes_none controls if khugepaged should collapse hugepages over
244  * any unmapped ptes in turn potentially increasing the memory
245  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
246  * reduce the available free memory in the system as it
247  * runs. Increasing max_ptes_none will instead potentially reduce the
248  * free memory in the system during the khugepaged scan.
249  */
250 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
251 					     struct kobj_attribute *attr,
252 					     char *buf)
253 {
254 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
255 }
256 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
257 					      struct kobj_attribute *attr,
258 					      const char *buf, size_t count)
259 {
260 	int err;
261 	unsigned long max_ptes_none;
262 
263 	err = kstrtoul(buf, 10, &max_ptes_none);
264 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
265 		return -EINVAL;
266 
267 	khugepaged_max_ptes_none = max_ptes_none;
268 
269 	return count;
270 }
271 static struct kobj_attribute khugepaged_max_ptes_none_attr =
272 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
273 	       khugepaged_max_ptes_none_store);
274 
275 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
276 					     struct kobj_attribute *attr,
277 					     char *buf)
278 {
279 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
280 }
281 
282 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
283 					      struct kobj_attribute *attr,
284 					      const char *buf, size_t count)
285 {
286 	int err;
287 	unsigned long max_ptes_swap;
288 
289 	err  = kstrtoul(buf, 10, &max_ptes_swap);
290 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
291 		return -EINVAL;
292 
293 	khugepaged_max_ptes_swap = max_ptes_swap;
294 
295 	return count;
296 }
297 
298 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
299 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
300 	       khugepaged_max_ptes_swap_store);
301 
302 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
303 					       struct kobj_attribute *attr,
304 					       char *buf)
305 {
306 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
307 }
308 
309 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
310 					      struct kobj_attribute *attr,
311 					      const char *buf, size_t count)
312 {
313 	int err;
314 	unsigned long max_ptes_shared;
315 
316 	err  = kstrtoul(buf, 10, &max_ptes_shared);
317 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
318 		return -EINVAL;
319 
320 	khugepaged_max_ptes_shared = max_ptes_shared;
321 
322 	return count;
323 }
324 
325 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
326 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
327 	       khugepaged_max_ptes_shared_store);
328 
329 static struct attribute *khugepaged_attr[] = {
330 	&khugepaged_defrag_attr.attr,
331 	&khugepaged_max_ptes_none_attr.attr,
332 	&khugepaged_max_ptes_swap_attr.attr,
333 	&khugepaged_max_ptes_shared_attr.attr,
334 	&pages_to_scan_attr.attr,
335 	&pages_collapsed_attr.attr,
336 	&full_scans_attr.attr,
337 	&scan_sleep_millisecs_attr.attr,
338 	&alloc_sleep_millisecs_attr.attr,
339 	NULL,
340 };
341 
342 struct attribute_group khugepaged_attr_group = {
343 	.attrs = khugepaged_attr,
344 	.name = "khugepaged",
345 };
346 #endif /* CONFIG_SYSFS */
347 
348 int hugepage_madvise(struct vm_area_struct *vma,
349 		     unsigned long *vm_flags, int advice)
350 {
351 	switch (advice) {
352 	case MADV_HUGEPAGE:
353 #ifdef CONFIG_S390
354 		/*
355 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 		 * can't handle this properly after s390_enable_sie, so we simply
357 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 		 */
359 		if (mm_has_pgste(vma->vm_mm))
360 			return 0;
361 #endif
362 		*vm_flags &= ~VM_NOHUGEPAGE;
363 		*vm_flags |= VM_HUGEPAGE;
364 		/*
365 		 * If the vma become good for khugepaged to scan,
366 		 * register it here without waiting a page fault that
367 		 * may not happen any time soon.
368 		 */
369 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
370 				khugepaged_enter_vma_merge(vma, *vm_flags))
371 			return -ENOMEM;
372 		break;
373 	case MADV_NOHUGEPAGE:
374 		*vm_flags &= ~VM_HUGEPAGE;
375 		*vm_flags |= VM_NOHUGEPAGE;
376 		/*
377 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
378 		 * this vma even if we leave the mm registered in khugepaged if
379 		 * it got registered before VM_NOHUGEPAGE was set.
380 		 */
381 		break;
382 	}
383 
384 	return 0;
385 }
386 
387 int __init khugepaged_init(void)
388 {
389 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
390 					  sizeof(struct mm_slot),
391 					  __alignof__(struct mm_slot), 0, NULL);
392 	if (!mm_slot_cache)
393 		return -ENOMEM;
394 
395 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
396 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
397 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
398 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399 
400 	return 0;
401 }
402 
403 void __init khugepaged_destroy(void)
404 {
405 	kmem_cache_destroy(mm_slot_cache);
406 }
407 
408 static inline struct mm_slot *alloc_mm_slot(void)
409 {
410 	if (!mm_slot_cache)	/* initialization failed */
411 		return NULL;
412 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
413 }
414 
415 static inline void free_mm_slot(struct mm_slot *mm_slot)
416 {
417 	kmem_cache_free(mm_slot_cache, mm_slot);
418 }
419 
420 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
421 {
422 	struct mm_slot *mm_slot;
423 
424 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
425 		if (mm == mm_slot->mm)
426 			return mm_slot;
427 
428 	return NULL;
429 }
430 
431 static void insert_to_mm_slots_hash(struct mm_struct *mm,
432 				    struct mm_slot *mm_slot)
433 {
434 	mm_slot->mm = mm;
435 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
436 }
437 
438 static inline int khugepaged_test_exit(struct mm_struct *mm)
439 {
440 	return atomic_read(&mm->mm_users) == 0;
441 }
442 
443 static bool hugepage_vma_check(struct vm_area_struct *vma,
444 			       unsigned long vm_flags)
445 {
446 	if (!transhuge_vma_enabled(vma, vm_flags))
447 		return false;
448 
449 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
450 				vma->vm_pgoff, HPAGE_PMD_NR))
451 		return false;
452 
453 	/* Enabled via shmem mount options or sysfs settings. */
454 	if (shmem_file(vma->vm_file))
455 		return shmem_huge_enabled(vma);
456 
457 	/* THP settings require madvise. */
458 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
459 		return false;
460 
461 	/* Only regular file is valid */
462 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
463 	    (vm_flags & VM_EXEC)) {
464 		struct inode *inode = vma->vm_file->f_inode;
465 
466 		return !inode_is_open_for_write(inode) &&
467 			S_ISREG(inode->i_mode);
468 	}
469 
470 	if (!vma->anon_vma || vma->vm_ops)
471 		return false;
472 	if (vma_is_temporary_stack(vma))
473 		return false;
474 	return !(vm_flags & VM_NO_KHUGEPAGED);
475 }
476 
477 int __khugepaged_enter(struct mm_struct *mm)
478 {
479 	struct mm_slot *mm_slot;
480 	int wakeup;
481 
482 	mm_slot = alloc_mm_slot();
483 	if (!mm_slot)
484 		return -ENOMEM;
485 
486 	/* __khugepaged_exit() must not run from under us */
487 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
488 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
489 		free_mm_slot(mm_slot);
490 		return 0;
491 	}
492 
493 	spin_lock(&khugepaged_mm_lock);
494 	insert_to_mm_slots_hash(mm, mm_slot);
495 	/*
496 	 * Insert just behind the scanning cursor, to let the area settle
497 	 * down a little.
498 	 */
499 	wakeup = list_empty(&khugepaged_scan.mm_head);
500 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
501 	spin_unlock(&khugepaged_mm_lock);
502 
503 	mmgrab(mm);
504 	if (wakeup)
505 		wake_up_interruptible(&khugepaged_wait);
506 
507 	return 0;
508 }
509 
510 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
511 			       unsigned long vm_flags)
512 {
513 	unsigned long hstart, hend;
514 
515 	/*
516 	 * khugepaged only supports read-only files for non-shmem files.
517 	 * khugepaged does not yet work on special mappings. And
518 	 * file-private shmem THP is not supported.
519 	 */
520 	if (!hugepage_vma_check(vma, vm_flags))
521 		return 0;
522 
523 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
524 	hend = vma->vm_end & HPAGE_PMD_MASK;
525 	if (hstart < hend)
526 		return khugepaged_enter(vma, vm_flags);
527 	return 0;
528 }
529 
530 void __khugepaged_exit(struct mm_struct *mm)
531 {
532 	struct mm_slot *mm_slot;
533 	int free = 0;
534 
535 	spin_lock(&khugepaged_mm_lock);
536 	mm_slot = get_mm_slot(mm);
537 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
538 		hash_del(&mm_slot->hash);
539 		list_del(&mm_slot->mm_node);
540 		free = 1;
541 	}
542 	spin_unlock(&khugepaged_mm_lock);
543 
544 	if (free) {
545 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
546 		free_mm_slot(mm_slot);
547 		mmdrop(mm);
548 	} else if (mm_slot) {
549 		/*
550 		 * This is required to serialize against
551 		 * khugepaged_test_exit() (which is guaranteed to run
552 		 * under mmap sem read mode). Stop here (after we
553 		 * return all pagetables will be destroyed) until
554 		 * khugepaged has finished working on the pagetables
555 		 * under the mmap_lock.
556 		 */
557 		mmap_write_lock(mm);
558 		mmap_write_unlock(mm);
559 	}
560 }
561 
562 static void release_pte_page(struct page *page)
563 {
564 	mod_node_page_state(page_pgdat(page),
565 			NR_ISOLATED_ANON + page_is_file_lru(page),
566 			-compound_nr(page));
567 	unlock_page(page);
568 	putback_lru_page(page);
569 }
570 
571 static void release_pte_pages(pte_t *pte, pte_t *_pte,
572 		struct list_head *compound_pagelist)
573 {
574 	struct page *page, *tmp;
575 
576 	while (--_pte >= pte) {
577 		pte_t pteval = *_pte;
578 
579 		page = pte_page(pteval);
580 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
581 				!PageCompound(page))
582 			release_pte_page(page);
583 	}
584 
585 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
586 		list_del(&page->lru);
587 		release_pte_page(page);
588 	}
589 }
590 
591 static bool is_refcount_suitable(struct page *page)
592 {
593 	int expected_refcount;
594 
595 	expected_refcount = total_mapcount(page);
596 	if (PageSwapCache(page))
597 		expected_refcount += compound_nr(page);
598 
599 	return page_count(page) == expected_refcount;
600 }
601 
602 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
603 					unsigned long address,
604 					pte_t *pte,
605 					struct list_head *compound_pagelist)
606 {
607 	struct page *page = NULL;
608 	pte_t *_pte;
609 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
610 	bool writable = false;
611 
612 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
613 	     _pte++, address += PAGE_SIZE) {
614 		pte_t pteval = *_pte;
615 		if (pte_none(pteval) || (pte_present(pteval) &&
616 				is_zero_pfn(pte_pfn(pteval)))) {
617 			if (!userfaultfd_armed(vma) &&
618 			    ++none_or_zero <= khugepaged_max_ptes_none) {
619 				continue;
620 			} else {
621 				result = SCAN_EXCEED_NONE_PTE;
622 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
623 				goto out;
624 			}
625 		}
626 		if (!pte_present(pteval)) {
627 			result = SCAN_PTE_NON_PRESENT;
628 			goto out;
629 		}
630 		page = vm_normal_page(vma, address, pteval);
631 		if (unlikely(!page)) {
632 			result = SCAN_PAGE_NULL;
633 			goto out;
634 		}
635 
636 		VM_BUG_ON_PAGE(!PageAnon(page), page);
637 
638 		if (page_mapcount(page) > 1 &&
639 				++shared > khugepaged_max_ptes_shared) {
640 			result = SCAN_EXCEED_SHARED_PTE;
641 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
642 			goto out;
643 		}
644 
645 		if (PageCompound(page)) {
646 			struct page *p;
647 			page = compound_head(page);
648 
649 			/*
650 			 * Check if we have dealt with the compound page
651 			 * already
652 			 */
653 			list_for_each_entry(p, compound_pagelist, lru) {
654 				if (page == p)
655 					goto next;
656 			}
657 		}
658 
659 		/*
660 		 * We can do it before isolate_lru_page because the
661 		 * page can't be freed from under us. NOTE: PG_lock
662 		 * is needed to serialize against split_huge_page
663 		 * when invoked from the VM.
664 		 */
665 		if (!trylock_page(page)) {
666 			result = SCAN_PAGE_LOCK;
667 			goto out;
668 		}
669 
670 		/*
671 		 * Check if the page has any GUP (or other external) pins.
672 		 *
673 		 * The page table that maps the page has been already unlinked
674 		 * from the page table tree and this process cannot get
675 		 * an additional pin on the page.
676 		 *
677 		 * New pins can come later if the page is shared across fork,
678 		 * but not from this process. The other process cannot write to
679 		 * the page, only trigger CoW.
680 		 */
681 		if (!is_refcount_suitable(page)) {
682 			unlock_page(page);
683 			result = SCAN_PAGE_COUNT;
684 			goto out;
685 		}
686 		if (!pte_write(pteval) && PageSwapCache(page) &&
687 				!reuse_swap_page(page)) {
688 			/*
689 			 * Page is in the swap cache and cannot be re-used.
690 			 * It cannot be collapsed into a THP.
691 			 */
692 			unlock_page(page);
693 			result = SCAN_SWAP_CACHE_PAGE;
694 			goto out;
695 		}
696 
697 		/*
698 		 * Isolate the page to avoid collapsing an hugepage
699 		 * currently in use by the VM.
700 		 */
701 		if (isolate_lru_page(page)) {
702 			unlock_page(page);
703 			result = SCAN_DEL_PAGE_LRU;
704 			goto out;
705 		}
706 		mod_node_page_state(page_pgdat(page),
707 				NR_ISOLATED_ANON + page_is_file_lru(page),
708 				compound_nr(page));
709 		VM_BUG_ON_PAGE(!PageLocked(page), page);
710 		VM_BUG_ON_PAGE(PageLRU(page), page);
711 
712 		if (PageCompound(page))
713 			list_add_tail(&page->lru, compound_pagelist);
714 next:
715 		/* There should be enough young pte to collapse the page */
716 		if (pte_young(pteval) ||
717 		    page_is_young(page) || PageReferenced(page) ||
718 		    mmu_notifier_test_young(vma->vm_mm, address))
719 			referenced++;
720 
721 		if (pte_write(pteval))
722 			writable = true;
723 	}
724 
725 	if (unlikely(!writable)) {
726 		result = SCAN_PAGE_RO;
727 	} else if (unlikely(!referenced)) {
728 		result = SCAN_LACK_REFERENCED_PAGE;
729 	} else {
730 		result = SCAN_SUCCEED;
731 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
732 						    referenced, writable, result);
733 		return 1;
734 	}
735 out:
736 	release_pte_pages(pte, _pte, compound_pagelist);
737 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
738 					    referenced, writable, result);
739 	return 0;
740 }
741 
742 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
743 				      struct vm_area_struct *vma,
744 				      unsigned long address,
745 				      spinlock_t *ptl,
746 				      struct list_head *compound_pagelist)
747 {
748 	struct page *src_page, *tmp;
749 	pte_t *_pte;
750 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
751 				_pte++, page++, address += PAGE_SIZE) {
752 		pte_t pteval = *_pte;
753 
754 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
755 			clear_user_highpage(page, address);
756 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
757 			if (is_zero_pfn(pte_pfn(pteval))) {
758 				/*
759 				 * ptl mostly unnecessary.
760 				 */
761 				spin_lock(ptl);
762 				ptep_clear(vma->vm_mm, address, _pte);
763 				spin_unlock(ptl);
764 			}
765 		} else {
766 			src_page = pte_page(pteval);
767 			copy_user_highpage(page, src_page, address, vma);
768 			if (!PageCompound(src_page))
769 				release_pte_page(src_page);
770 			/*
771 			 * ptl mostly unnecessary, but preempt has to
772 			 * be disabled to update the per-cpu stats
773 			 * inside page_remove_rmap().
774 			 */
775 			spin_lock(ptl);
776 			ptep_clear(vma->vm_mm, address, _pte);
777 			page_remove_rmap(src_page, false);
778 			spin_unlock(ptl);
779 			free_page_and_swap_cache(src_page);
780 		}
781 	}
782 
783 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
784 		list_del(&src_page->lru);
785 		release_pte_page(src_page);
786 	}
787 }
788 
789 static void khugepaged_alloc_sleep(void)
790 {
791 	DEFINE_WAIT(wait);
792 
793 	add_wait_queue(&khugepaged_wait, &wait);
794 	freezable_schedule_timeout_interruptible(
795 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
796 	remove_wait_queue(&khugepaged_wait, &wait);
797 }
798 
799 static int khugepaged_node_load[MAX_NUMNODES];
800 
801 static bool khugepaged_scan_abort(int nid)
802 {
803 	int i;
804 
805 	/*
806 	 * If node_reclaim_mode is disabled, then no extra effort is made to
807 	 * allocate memory locally.
808 	 */
809 	if (!node_reclaim_enabled())
810 		return false;
811 
812 	/* If there is a count for this node already, it must be acceptable */
813 	if (khugepaged_node_load[nid])
814 		return false;
815 
816 	for (i = 0; i < MAX_NUMNODES; i++) {
817 		if (!khugepaged_node_load[i])
818 			continue;
819 		if (node_distance(nid, i) > node_reclaim_distance)
820 			return true;
821 	}
822 	return false;
823 }
824 
825 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
826 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
827 {
828 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
829 }
830 
831 #ifdef CONFIG_NUMA
832 static int khugepaged_find_target_node(void)
833 {
834 	static int last_khugepaged_target_node = NUMA_NO_NODE;
835 	int nid, target_node = 0, max_value = 0;
836 
837 	/* find first node with max normal pages hit */
838 	for (nid = 0; nid < MAX_NUMNODES; nid++)
839 		if (khugepaged_node_load[nid] > max_value) {
840 			max_value = khugepaged_node_load[nid];
841 			target_node = nid;
842 		}
843 
844 	/* do some balance if several nodes have the same hit record */
845 	if (target_node <= last_khugepaged_target_node)
846 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
847 				nid++)
848 			if (max_value == khugepaged_node_load[nid]) {
849 				target_node = nid;
850 				break;
851 			}
852 
853 	last_khugepaged_target_node = target_node;
854 	return target_node;
855 }
856 
857 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
858 {
859 	if (IS_ERR(*hpage)) {
860 		if (!*wait)
861 			return false;
862 
863 		*wait = false;
864 		*hpage = NULL;
865 		khugepaged_alloc_sleep();
866 	} else if (*hpage) {
867 		put_page(*hpage);
868 		*hpage = NULL;
869 	}
870 
871 	return true;
872 }
873 
874 static struct page *
875 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
876 {
877 	VM_BUG_ON_PAGE(*hpage, *hpage);
878 
879 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
880 	if (unlikely(!*hpage)) {
881 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
882 		*hpage = ERR_PTR(-ENOMEM);
883 		return NULL;
884 	}
885 
886 	prep_transhuge_page(*hpage);
887 	count_vm_event(THP_COLLAPSE_ALLOC);
888 	return *hpage;
889 }
890 #else
891 static int khugepaged_find_target_node(void)
892 {
893 	return 0;
894 }
895 
896 static inline struct page *alloc_khugepaged_hugepage(void)
897 {
898 	struct page *page;
899 
900 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
901 			   HPAGE_PMD_ORDER);
902 	if (page)
903 		prep_transhuge_page(page);
904 	return page;
905 }
906 
907 static struct page *khugepaged_alloc_hugepage(bool *wait)
908 {
909 	struct page *hpage;
910 
911 	do {
912 		hpage = alloc_khugepaged_hugepage();
913 		if (!hpage) {
914 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
915 			if (!*wait)
916 				return NULL;
917 
918 			*wait = false;
919 			khugepaged_alloc_sleep();
920 		} else
921 			count_vm_event(THP_COLLAPSE_ALLOC);
922 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
923 
924 	return hpage;
925 }
926 
927 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
928 {
929 	/*
930 	 * If the hpage allocated earlier was briefly exposed in page cache
931 	 * before collapse_file() failed, it is possible that racing lookups
932 	 * have not yet completed, and would then be unpleasantly surprised by
933 	 * finding the hpage reused for the same mapping at a different offset.
934 	 * Just release the previous allocation if there is any danger of that.
935 	 */
936 	if (*hpage && page_count(*hpage) > 1) {
937 		put_page(*hpage);
938 		*hpage = NULL;
939 	}
940 
941 	if (!*hpage)
942 		*hpage = khugepaged_alloc_hugepage(wait);
943 
944 	if (unlikely(!*hpage))
945 		return false;
946 
947 	return true;
948 }
949 
950 static struct page *
951 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
952 {
953 	VM_BUG_ON(!*hpage);
954 
955 	return  *hpage;
956 }
957 #endif
958 
959 /*
960  * If mmap_lock temporarily dropped, revalidate vma
961  * before taking mmap_lock.
962  * Return 0 if succeeds, otherwise return none-zero
963  * value (scan code).
964  */
965 
966 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
967 		struct vm_area_struct **vmap)
968 {
969 	struct vm_area_struct *vma;
970 	unsigned long hstart, hend;
971 
972 	if (unlikely(khugepaged_test_exit(mm)))
973 		return SCAN_ANY_PROCESS;
974 
975 	*vmap = vma = find_vma(mm, address);
976 	if (!vma)
977 		return SCAN_VMA_NULL;
978 
979 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
980 	hend = vma->vm_end & HPAGE_PMD_MASK;
981 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
982 		return SCAN_ADDRESS_RANGE;
983 	if (!hugepage_vma_check(vma, vma->vm_flags))
984 		return SCAN_VMA_CHECK;
985 	/* Anon VMA expected */
986 	if (!vma->anon_vma || vma->vm_ops)
987 		return SCAN_VMA_CHECK;
988 	return 0;
989 }
990 
991 /*
992  * Bring missing pages in from swap, to complete THP collapse.
993  * Only done if khugepaged_scan_pmd believes it is worthwhile.
994  *
995  * Called and returns without pte mapped or spinlocks held,
996  * but with mmap_lock held to protect against vma changes.
997  */
998 
999 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1000 					struct vm_area_struct *vma,
1001 					unsigned long haddr, pmd_t *pmd,
1002 					int referenced)
1003 {
1004 	int swapped_in = 0;
1005 	vm_fault_t ret = 0;
1006 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1007 
1008 	for (address = haddr; address < end; address += PAGE_SIZE) {
1009 		struct vm_fault vmf = {
1010 			.vma = vma,
1011 			.address = address,
1012 			.pgoff = linear_page_index(vma, haddr),
1013 			.flags = FAULT_FLAG_ALLOW_RETRY,
1014 			.pmd = pmd,
1015 		};
1016 
1017 		vmf.pte = pte_offset_map(pmd, address);
1018 		vmf.orig_pte = *vmf.pte;
1019 		if (!is_swap_pte(vmf.orig_pte)) {
1020 			pte_unmap(vmf.pte);
1021 			continue;
1022 		}
1023 		swapped_in++;
1024 		ret = do_swap_page(&vmf);
1025 
1026 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1027 		if (ret & VM_FAULT_RETRY) {
1028 			mmap_read_lock(mm);
1029 			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1030 				/* vma is no longer available, don't continue to swapin */
1031 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1032 				return false;
1033 			}
1034 			/* check if the pmd is still valid */
1035 			if (mm_find_pmd(mm, haddr) != pmd) {
1036 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037 				return false;
1038 			}
1039 		}
1040 		if (ret & VM_FAULT_ERROR) {
1041 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042 			return false;
1043 		}
1044 	}
1045 
1046 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1047 	if (swapped_in)
1048 		lru_add_drain();
1049 
1050 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1051 	return true;
1052 }
1053 
1054 static void collapse_huge_page(struct mm_struct *mm,
1055 				   unsigned long address,
1056 				   struct page **hpage,
1057 				   int node, int referenced, int unmapped)
1058 {
1059 	LIST_HEAD(compound_pagelist);
1060 	pmd_t *pmd, _pmd;
1061 	pte_t *pte;
1062 	pgtable_t pgtable;
1063 	struct page *new_page;
1064 	spinlock_t *pmd_ptl, *pte_ptl;
1065 	int isolated = 0, result = 0;
1066 	struct vm_area_struct *vma;
1067 	struct mmu_notifier_range range;
1068 	gfp_t gfp;
1069 
1070 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1071 
1072 	/* Only allocate from the target node */
1073 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1074 
1075 	/*
1076 	 * Before allocating the hugepage, release the mmap_lock read lock.
1077 	 * The allocation can take potentially a long time if it involves
1078 	 * sync compaction, and we do not need to hold the mmap_lock during
1079 	 * that. We will recheck the vma after taking it again in write mode.
1080 	 */
1081 	mmap_read_unlock(mm);
1082 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1083 	if (!new_page) {
1084 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1085 		goto out_nolock;
1086 	}
1087 
1088 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1089 		result = SCAN_CGROUP_CHARGE_FAIL;
1090 		goto out_nolock;
1091 	}
1092 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1093 
1094 	mmap_read_lock(mm);
1095 	result = hugepage_vma_revalidate(mm, address, &vma);
1096 	if (result) {
1097 		mmap_read_unlock(mm);
1098 		goto out_nolock;
1099 	}
1100 
1101 	pmd = mm_find_pmd(mm, address);
1102 	if (!pmd) {
1103 		result = SCAN_PMD_NULL;
1104 		mmap_read_unlock(mm);
1105 		goto out_nolock;
1106 	}
1107 
1108 	/*
1109 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1110 	 * If it fails, we release mmap_lock and jump out_nolock.
1111 	 * Continuing to collapse causes inconsistency.
1112 	 */
1113 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1114 						     pmd, referenced)) {
1115 		mmap_read_unlock(mm);
1116 		goto out_nolock;
1117 	}
1118 
1119 	mmap_read_unlock(mm);
1120 	/*
1121 	 * Prevent all access to pagetables with the exception of
1122 	 * gup_fast later handled by the ptep_clear_flush and the VM
1123 	 * handled by the anon_vma lock + PG_lock.
1124 	 */
1125 	mmap_write_lock(mm);
1126 	result = hugepage_vma_revalidate(mm, address, &vma);
1127 	if (result)
1128 		goto out_up_write;
1129 	/* check if the pmd is still valid */
1130 	if (mm_find_pmd(mm, address) != pmd)
1131 		goto out_up_write;
1132 
1133 	anon_vma_lock_write(vma->anon_vma);
1134 
1135 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1136 				address, address + HPAGE_PMD_SIZE);
1137 	mmu_notifier_invalidate_range_start(&range);
1138 
1139 	pte = pte_offset_map(pmd, address);
1140 	pte_ptl = pte_lockptr(mm, pmd);
1141 
1142 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1143 	/*
1144 	 * After this gup_fast can't run anymore. This also removes
1145 	 * any huge TLB entry from the CPU so we won't allow
1146 	 * huge and small TLB entries for the same virtual address
1147 	 * to avoid the risk of CPU bugs in that area.
1148 	 */
1149 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1150 	spin_unlock(pmd_ptl);
1151 	mmu_notifier_invalidate_range_end(&range);
1152 
1153 	spin_lock(pte_ptl);
1154 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1155 			&compound_pagelist);
1156 	spin_unlock(pte_ptl);
1157 
1158 	if (unlikely(!isolated)) {
1159 		pte_unmap(pte);
1160 		spin_lock(pmd_ptl);
1161 		BUG_ON(!pmd_none(*pmd));
1162 		/*
1163 		 * We can only use set_pmd_at when establishing
1164 		 * hugepmds and never for establishing regular pmds that
1165 		 * points to regular pagetables. Use pmd_populate for that
1166 		 */
1167 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1168 		spin_unlock(pmd_ptl);
1169 		anon_vma_unlock_write(vma->anon_vma);
1170 		result = SCAN_FAIL;
1171 		goto out_up_write;
1172 	}
1173 
1174 	/*
1175 	 * All pages are isolated and locked so anon_vma rmap
1176 	 * can't run anymore.
1177 	 */
1178 	anon_vma_unlock_write(vma->anon_vma);
1179 
1180 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1181 			&compound_pagelist);
1182 	pte_unmap(pte);
1183 	/*
1184 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1185 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1186 	 * avoid the copy_huge_page writes to become visible after
1187 	 * the set_pmd_at() write.
1188 	 */
1189 	__SetPageUptodate(new_page);
1190 	pgtable = pmd_pgtable(_pmd);
1191 
1192 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1193 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1194 
1195 	spin_lock(pmd_ptl);
1196 	BUG_ON(!pmd_none(*pmd));
1197 	page_add_new_anon_rmap(new_page, vma, address, true);
1198 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1199 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1200 	set_pmd_at(mm, address, pmd, _pmd);
1201 	update_mmu_cache_pmd(vma, address, pmd);
1202 	spin_unlock(pmd_ptl);
1203 
1204 	*hpage = NULL;
1205 
1206 	khugepaged_pages_collapsed++;
1207 	result = SCAN_SUCCEED;
1208 out_up_write:
1209 	mmap_write_unlock(mm);
1210 out_nolock:
1211 	if (!IS_ERR_OR_NULL(*hpage))
1212 		mem_cgroup_uncharge(page_folio(*hpage));
1213 	trace_mm_collapse_huge_page(mm, isolated, result);
1214 	return;
1215 }
1216 
1217 static int khugepaged_scan_pmd(struct mm_struct *mm,
1218 			       struct vm_area_struct *vma,
1219 			       unsigned long address,
1220 			       struct page **hpage)
1221 {
1222 	pmd_t *pmd;
1223 	pte_t *pte, *_pte;
1224 	int ret = 0, result = 0, referenced = 0;
1225 	int none_or_zero = 0, shared = 0;
1226 	struct page *page = NULL;
1227 	unsigned long _address;
1228 	spinlock_t *ptl;
1229 	int node = NUMA_NO_NODE, unmapped = 0;
1230 	bool writable = false;
1231 
1232 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1233 
1234 	pmd = mm_find_pmd(mm, address);
1235 	if (!pmd) {
1236 		result = SCAN_PMD_NULL;
1237 		goto out;
1238 	}
1239 
1240 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1241 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1242 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1243 	     _pte++, _address += PAGE_SIZE) {
1244 		pte_t pteval = *_pte;
1245 		if (is_swap_pte(pteval)) {
1246 			if (++unmapped <= khugepaged_max_ptes_swap) {
1247 				/*
1248 				 * Always be strict with uffd-wp
1249 				 * enabled swap entries.  Please see
1250 				 * comment below for pte_uffd_wp().
1251 				 */
1252 				if (pte_swp_uffd_wp(pteval)) {
1253 					result = SCAN_PTE_UFFD_WP;
1254 					goto out_unmap;
1255 				}
1256 				continue;
1257 			} else {
1258 				result = SCAN_EXCEED_SWAP_PTE;
1259 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1260 				goto out_unmap;
1261 			}
1262 		}
1263 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1264 			if (!userfaultfd_armed(vma) &&
1265 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1266 				continue;
1267 			} else {
1268 				result = SCAN_EXCEED_NONE_PTE;
1269 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1270 				goto out_unmap;
1271 			}
1272 		}
1273 		if (pte_uffd_wp(pteval)) {
1274 			/*
1275 			 * Don't collapse the page if any of the small
1276 			 * PTEs are armed with uffd write protection.
1277 			 * Here we can also mark the new huge pmd as
1278 			 * write protected if any of the small ones is
1279 			 * marked but that could bring unknown
1280 			 * userfault messages that falls outside of
1281 			 * the registered range.  So, just be simple.
1282 			 */
1283 			result = SCAN_PTE_UFFD_WP;
1284 			goto out_unmap;
1285 		}
1286 		if (pte_write(pteval))
1287 			writable = true;
1288 
1289 		page = vm_normal_page(vma, _address, pteval);
1290 		if (unlikely(!page)) {
1291 			result = SCAN_PAGE_NULL;
1292 			goto out_unmap;
1293 		}
1294 
1295 		if (page_mapcount(page) > 1 &&
1296 				++shared > khugepaged_max_ptes_shared) {
1297 			result = SCAN_EXCEED_SHARED_PTE;
1298 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1299 			goto out_unmap;
1300 		}
1301 
1302 		page = compound_head(page);
1303 
1304 		/*
1305 		 * Record which node the original page is from and save this
1306 		 * information to khugepaged_node_load[].
1307 		 * Khugepaged will allocate hugepage from the node has the max
1308 		 * hit record.
1309 		 */
1310 		node = page_to_nid(page);
1311 		if (khugepaged_scan_abort(node)) {
1312 			result = SCAN_SCAN_ABORT;
1313 			goto out_unmap;
1314 		}
1315 		khugepaged_node_load[node]++;
1316 		if (!PageLRU(page)) {
1317 			result = SCAN_PAGE_LRU;
1318 			goto out_unmap;
1319 		}
1320 		if (PageLocked(page)) {
1321 			result = SCAN_PAGE_LOCK;
1322 			goto out_unmap;
1323 		}
1324 		if (!PageAnon(page)) {
1325 			result = SCAN_PAGE_ANON;
1326 			goto out_unmap;
1327 		}
1328 
1329 		/*
1330 		 * Check if the page has any GUP (or other external) pins.
1331 		 *
1332 		 * Here the check is racy it may see totmal_mapcount > refcount
1333 		 * in some cases.
1334 		 * For example, one process with one forked child process.
1335 		 * The parent has the PMD split due to MADV_DONTNEED, then
1336 		 * the child is trying unmap the whole PMD, but khugepaged
1337 		 * may be scanning the parent between the child has
1338 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1339 		 * khugepaged may see total_mapcount > refcount.
1340 		 *
1341 		 * But such case is ephemeral we could always retry collapse
1342 		 * later.  However it may report false positive if the page
1343 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1344 		 * will be done again later the risk seems low.
1345 		 */
1346 		if (!is_refcount_suitable(page)) {
1347 			result = SCAN_PAGE_COUNT;
1348 			goto out_unmap;
1349 		}
1350 		if (pte_young(pteval) ||
1351 		    page_is_young(page) || PageReferenced(page) ||
1352 		    mmu_notifier_test_young(vma->vm_mm, address))
1353 			referenced++;
1354 	}
1355 	if (!writable) {
1356 		result = SCAN_PAGE_RO;
1357 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1358 		result = SCAN_LACK_REFERENCED_PAGE;
1359 	} else {
1360 		result = SCAN_SUCCEED;
1361 		ret = 1;
1362 	}
1363 out_unmap:
1364 	pte_unmap_unlock(pte, ptl);
1365 	if (ret) {
1366 		node = khugepaged_find_target_node();
1367 		/* collapse_huge_page will return with the mmap_lock released */
1368 		collapse_huge_page(mm, address, hpage, node,
1369 				referenced, unmapped);
1370 	}
1371 out:
1372 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1373 				     none_or_zero, result, unmapped);
1374 	return ret;
1375 }
1376 
1377 static void collect_mm_slot(struct mm_slot *mm_slot)
1378 {
1379 	struct mm_struct *mm = mm_slot->mm;
1380 
1381 	lockdep_assert_held(&khugepaged_mm_lock);
1382 
1383 	if (khugepaged_test_exit(mm)) {
1384 		/* free mm_slot */
1385 		hash_del(&mm_slot->hash);
1386 		list_del(&mm_slot->mm_node);
1387 
1388 		/*
1389 		 * Not strictly needed because the mm exited already.
1390 		 *
1391 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1392 		 */
1393 
1394 		/* khugepaged_mm_lock actually not necessary for the below */
1395 		free_mm_slot(mm_slot);
1396 		mmdrop(mm);
1397 	}
1398 }
1399 
1400 #ifdef CONFIG_SHMEM
1401 /*
1402  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1403  * khugepaged should try to collapse the page table.
1404  */
1405 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1406 					 unsigned long addr)
1407 {
1408 	struct mm_slot *mm_slot;
1409 
1410 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1411 
1412 	spin_lock(&khugepaged_mm_lock);
1413 	mm_slot = get_mm_slot(mm);
1414 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1415 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1416 	spin_unlock(&khugepaged_mm_lock);
1417 	return 0;
1418 }
1419 
1420 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1421 				  unsigned long addr, pmd_t *pmdp)
1422 {
1423 	spinlock_t *ptl;
1424 	pmd_t pmd;
1425 
1426 	mmap_assert_write_locked(mm);
1427 	ptl = pmd_lock(vma->vm_mm, pmdp);
1428 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1429 	spin_unlock(ptl);
1430 	mm_dec_nr_ptes(mm);
1431 	page_table_check_pte_clear_range(mm, addr, pmd);
1432 	pte_free(mm, pmd_pgtable(pmd));
1433 }
1434 
1435 /**
1436  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1437  * address haddr.
1438  *
1439  * @mm: process address space where collapse happens
1440  * @addr: THP collapse address
1441  *
1442  * This function checks whether all the PTEs in the PMD are pointing to the
1443  * right THP. If so, retract the page table so the THP can refault in with
1444  * as pmd-mapped.
1445  */
1446 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1447 {
1448 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1449 	struct vm_area_struct *vma = find_vma(mm, haddr);
1450 	struct page *hpage;
1451 	pte_t *start_pte, *pte;
1452 	pmd_t *pmd;
1453 	spinlock_t *ptl;
1454 	int count = 0;
1455 	int i;
1456 
1457 	if (!vma || !vma->vm_file ||
1458 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1459 		return;
1460 
1461 	/*
1462 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1463 	 * collapsed by this mm. But we can still collapse if the page is
1464 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1465 	 * will not fail the vma for missing VM_HUGEPAGE
1466 	 */
1467 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1468 		return;
1469 
1470 	hpage = find_lock_page(vma->vm_file->f_mapping,
1471 			       linear_page_index(vma, haddr));
1472 	if (!hpage)
1473 		return;
1474 
1475 	if (!PageHead(hpage))
1476 		goto drop_hpage;
1477 
1478 	pmd = mm_find_pmd(mm, haddr);
1479 	if (!pmd)
1480 		goto drop_hpage;
1481 
1482 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1483 
1484 	/* step 1: check all mapped PTEs are to the right huge page */
1485 	for (i = 0, addr = haddr, pte = start_pte;
1486 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1487 		struct page *page;
1488 
1489 		/* empty pte, skip */
1490 		if (pte_none(*pte))
1491 			continue;
1492 
1493 		/* page swapped out, abort */
1494 		if (!pte_present(*pte))
1495 			goto abort;
1496 
1497 		page = vm_normal_page(vma, addr, *pte);
1498 
1499 		/*
1500 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1501 		 * page table, but the new page will not be a subpage of hpage.
1502 		 */
1503 		if (hpage + i != page)
1504 			goto abort;
1505 		count++;
1506 	}
1507 
1508 	/* step 2: adjust rmap */
1509 	for (i = 0, addr = haddr, pte = start_pte;
1510 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1511 		struct page *page;
1512 
1513 		if (pte_none(*pte))
1514 			continue;
1515 		page = vm_normal_page(vma, addr, *pte);
1516 		page_remove_rmap(page, false);
1517 	}
1518 
1519 	pte_unmap_unlock(start_pte, ptl);
1520 
1521 	/* step 3: set proper refcount and mm_counters. */
1522 	if (count) {
1523 		page_ref_sub(hpage, count);
1524 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1525 	}
1526 
1527 	/* step 4: collapse pmd */
1528 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1529 drop_hpage:
1530 	unlock_page(hpage);
1531 	put_page(hpage);
1532 	return;
1533 
1534 abort:
1535 	pte_unmap_unlock(start_pte, ptl);
1536 	goto drop_hpage;
1537 }
1538 
1539 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1540 {
1541 	struct mm_struct *mm = mm_slot->mm;
1542 	int i;
1543 
1544 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1545 		return;
1546 
1547 	if (!mmap_write_trylock(mm))
1548 		return;
1549 
1550 	if (unlikely(khugepaged_test_exit(mm)))
1551 		goto out;
1552 
1553 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1554 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1555 
1556 out:
1557 	mm_slot->nr_pte_mapped_thp = 0;
1558 	mmap_write_unlock(mm);
1559 }
1560 
1561 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1562 {
1563 	struct vm_area_struct *vma;
1564 	struct mm_struct *mm;
1565 	unsigned long addr;
1566 	pmd_t *pmd;
1567 
1568 	i_mmap_lock_write(mapping);
1569 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1570 		/*
1571 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1572 		 * got written to. These VMAs are likely not worth investing
1573 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1574 		 * later.
1575 		 *
1576 		 * Not that vma->anon_vma check is racy: it can be set up after
1577 		 * the check but before we took mmap_lock by the fault path.
1578 		 * But page lock would prevent establishing any new ptes of the
1579 		 * page, so we are safe.
1580 		 *
1581 		 * An alternative would be drop the check, but check that page
1582 		 * table is clear before calling pmdp_collapse_flush() under
1583 		 * ptl. It has higher chance to recover THP for the VMA, but
1584 		 * has higher cost too.
1585 		 */
1586 		if (vma->anon_vma)
1587 			continue;
1588 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1589 		if (addr & ~HPAGE_PMD_MASK)
1590 			continue;
1591 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1592 			continue;
1593 		mm = vma->vm_mm;
1594 		pmd = mm_find_pmd(mm, addr);
1595 		if (!pmd)
1596 			continue;
1597 		/*
1598 		 * We need exclusive mmap_lock to retract page table.
1599 		 *
1600 		 * We use trylock due to lock inversion: we need to acquire
1601 		 * mmap_lock while holding page lock. Fault path does it in
1602 		 * reverse order. Trylock is a way to avoid deadlock.
1603 		 */
1604 		if (mmap_write_trylock(mm)) {
1605 			if (!khugepaged_test_exit(mm))
1606 				collapse_and_free_pmd(mm, vma, addr, pmd);
1607 			mmap_write_unlock(mm);
1608 		} else {
1609 			/* Try again later */
1610 			khugepaged_add_pte_mapped_thp(mm, addr);
1611 		}
1612 	}
1613 	i_mmap_unlock_write(mapping);
1614 }
1615 
1616 /**
1617  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1618  *
1619  * @mm: process address space where collapse happens
1620  * @file: file that collapse on
1621  * @start: collapse start address
1622  * @hpage: new allocated huge page for collapse
1623  * @node: appointed node the new huge page allocate from
1624  *
1625  * Basic scheme is simple, details are more complex:
1626  *  - allocate and lock a new huge page;
1627  *  - scan page cache replacing old pages with the new one
1628  *    + swap/gup in pages if necessary;
1629  *    + fill in gaps;
1630  *    + keep old pages around in case rollback is required;
1631  *  - if replacing succeeds:
1632  *    + copy data over;
1633  *    + free old pages;
1634  *    + unlock huge page;
1635  *  - if replacing failed;
1636  *    + put all pages back and unfreeze them;
1637  *    + restore gaps in the page cache;
1638  *    + unlock and free huge page;
1639  */
1640 static void collapse_file(struct mm_struct *mm,
1641 		struct file *file, pgoff_t start,
1642 		struct page **hpage, int node)
1643 {
1644 	struct address_space *mapping = file->f_mapping;
1645 	gfp_t gfp;
1646 	struct page *new_page;
1647 	pgoff_t index, end = start + HPAGE_PMD_NR;
1648 	LIST_HEAD(pagelist);
1649 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1650 	int nr_none = 0, result = SCAN_SUCCEED;
1651 	bool is_shmem = shmem_file(file);
1652 	int nr;
1653 
1654 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1655 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1656 
1657 	/* Only allocate from the target node */
1658 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1659 
1660 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1661 	if (!new_page) {
1662 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1663 		goto out;
1664 	}
1665 
1666 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1667 		result = SCAN_CGROUP_CHARGE_FAIL;
1668 		goto out;
1669 	}
1670 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1671 
1672 	/*
1673 	 * Ensure we have slots for all the pages in the range.  This is
1674 	 * almost certainly a no-op because most of the pages must be present
1675 	 */
1676 	do {
1677 		xas_lock_irq(&xas);
1678 		xas_create_range(&xas);
1679 		if (!xas_error(&xas))
1680 			break;
1681 		xas_unlock_irq(&xas);
1682 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1683 			result = SCAN_FAIL;
1684 			goto out;
1685 		}
1686 	} while (1);
1687 
1688 	__SetPageLocked(new_page);
1689 	if (is_shmem)
1690 		__SetPageSwapBacked(new_page);
1691 	new_page->index = start;
1692 	new_page->mapping = mapping;
1693 
1694 	/*
1695 	 * At this point the new_page is locked and not up-to-date.
1696 	 * It's safe to insert it into the page cache, because nobody would
1697 	 * be able to map it or use it in another way until we unlock it.
1698 	 */
1699 
1700 	xas_set(&xas, start);
1701 	for (index = start; index < end; index++) {
1702 		struct page *page = xas_next(&xas);
1703 
1704 		VM_BUG_ON(index != xas.xa_index);
1705 		if (is_shmem) {
1706 			if (!page) {
1707 				/*
1708 				 * Stop if extent has been truncated or
1709 				 * hole-punched, and is now completely
1710 				 * empty.
1711 				 */
1712 				if (index == start) {
1713 					if (!xas_next_entry(&xas, end - 1)) {
1714 						result = SCAN_TRUNCATED;
1715 						goto xa_locked;
1716 					}
1717 					xas_set(&xas, index);
1718 				}
1719 				if (!shmem_charge(mapping->host, 1)) {
1720 					result = SCAN_FAIL;
1721 					goto xa_locked;
1722 				}
1723 				xas_store(&xas, new_page);
1724 				nr_none++;
1725 				continue;
1726 			}
1727 
1728 			if (xa_is_value(page) || !PageUptodate(page)) {
1729 				xas_unlock_irq(&xas);
1730 				/* swap in or instantiate fallocated page */
1731 				if (shmem_getpage(mapping->host, index, &page,
1732 						  SGP_NOALLOC)) {
1733 					result = SCAN_FAIL;
1734 					goto xa_unlocked;
1735 				}
1736 			} else if (trylock_page(page)) {
1737 				get_page(page);
1738 				xas_unlock_irq(&xas);
1739 			} else {
1740 				result = SCAN_PAGE_LOCK;
1741 				goto xa_locked;
1742 			}
1743 		} else {	/* !is_shmem */
1744 			if (!page || xa_is_value(page)) {
1745 				xas_unlock_irq(&xas);
1746 				page_cache_sync_readahead(mapping, &file->f_ra,
1747 							  file, index,
1748 							  end - index);
1749 				/* drain pagevecs to help isolate_lru_page() */
1750 				lru_add_drain();
1751 				page = find_lock_page(mapping, index);
1752 				if (unlikely(page == NULL)) {
1753 					result = SCAN_FAIL;
1754 					goto xa_unlocked;
1755 				}
1756 			} else if (PageDirty(page)) {
1757 				/*
1758 				 * khugepaged only works on read-only fd,
1759 				 * so this page is dirty because it hasn't
1760 				 * been flushed since first write. There
1761 				 * won't be new dirty pages.
1762 				 *
1763 				 * Trigger async flush here and hope the
1764 				 * writeback is done when khugepaged
1765 				 * revisits this page.
1766 				 *
1767 				 * This is a one-off situation. We are not
1768 				 * forcing writeback in loop.
1769 				 */
1770 				xas_unlock_irq(&xas);
1771 				filemap_flush(mapping);
1772 				result = SCAN_FAIL;
1773 				goto xa_unlocked;
1774 			} else if (PageWriteback(page)) {
1775 				xas_unlock_irq(&xas);
1776 				result = SCAN_FAIL;
1777 				goto xa_unlocked;
1778 			} else if (trylock_page(page)) {
1779 				get_page(page);
1780 				xas_unlock_irq(&xas);
1781 			} else {
1782 				result = SCAN_PAGE_LOCK;
1783 				goto xa_locked;
1784 			}
1785 		}
1786 
1787 		/*
1788 		 * The page must be locked, so we can drop the i_pages lock
1789 		 * without racing with truncate.
1790 		 */
1791 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1792 
1793 		/* make sure the page is up to date */
1794 		if (unlikely(!PageUptodate(page))) {
1795 			result = SCAN_FAIL;
1796 			goto out_unlock;
1797 		}
1798 
1799 		/*
1800 		 * If file was truncated then extended, or hole-punched, before
1801 		 * we locked the first page, then a THP might be there already.
1802 		 */
1803 		if (PageTransCompound(page)) {
1804 			result = SCAN_PAGE_COMPOUND;
1805 			goto out_unlock;
1806 		}
1807 
1808 		if (page_mapping(page) != mapping) {
1809 			result = SCAN_TRUNCATED;
1810 			goto out_unlock;
1811 		}
1812 
1813 		if (!is_shmem && (PageDirty(page) ||
1814 				  PageWriteback(page))) {
1815 			/*
1816 			 * khugepaged only works on read-only fd, so this
1817 			 * page is dirty because it hasn't been flushed
1818 			 * since first write.
1819 			 */
1820 			result = SCAN_FAIL;
1821 			goto out_unlock;
1822 		}
1823 
1824 		if (isolate_lru_page(page)) {
1825 			result = SCAN_DEL_PAGE_LRU;
1826 			goto out_unlock;
1827 		}
1828 
1829 		if (page_has_private(page) &&
1830 		    !try_to_release_page(page, GFP_KERNEL)) {
1831 			result = SCAN_PAGE_HAS_PRIVATE;
1832 			putback_lru_page(page);
1833 			goto out_unlock;
1834 		}
1835 
1836 		if (page_mapped(page))
1837 			unmap_mapping_pages(mapping, index, 1, false);
1838 
1839 		xas_lock_irq(&xas);
1840 		xas_set(&xas, index);
1841 
1842 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1843 		VM_BUG_ON_PAGE(page_mapped(page), page);
1844 
1845 		/*
1846 		 * The page is expected to have page_count() == 3:
1847 		 *  - we hold a pin on it;
1848 		 *  - one reference from page cache;
1849 		 *  - one from isolate_lru_page;
1850 		 */
1851 		if (!page_ref_freeze(page, 3)) {
1852 			result = SCAN_PAGE_COUNT;
1853 			xas_unlock_irq(&xas);
1854 			putback_lru_page(page);
1855 			goto out_unlock;
1856 		}
1857 
1858 		/*
1859 		 * Add the page to the list to be able to undo the collapse if
1860 		 * something go wrong.
1861 		 */
1862 		list_add_tail(&page->lru, &pagelist);
1863 
1864 		/* Finally, replace with the new page. */
1865 		xas_store(&xas, new_page);
1866 		continue;
1867 out_unlock:
1868 		unlock_page(page);
1869 		put_page(page);
1870 		goto xa_unlocked;
1871 	}
1872 	nr = thp_nr_pages(new_page);
1873 
1874 	if (is_shmem)
1875 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1876 	else {
1877 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1878 		filemap_nr_thps_inc(mapping);
1879 		/*
1880 		 * Paired with smp_mb() in do_dentry_open() to ensure
1881 		 * i_writecount is up to date and the update to nr_thps is
1882 		 * visible. Ensures the page cache will be truncated if the
1883 		 * file is opened writable.
1884 		 */
1885 		smp_mb();
1886 		if (inode_is_open_for_write(mapping->host)) {
1887 			result = SCAN_FAIL;
1888 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1889 			filemap_nr_thps_dec(mapping);
1890 			goto xa_locked;
1891 		}
1892 	}
1893 
1894 	if (nr_none) {
1895 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1896 		if (is_shmem)
1897 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1898 	}
1899 
1900 	/* Join all the small entries into a single multi-index entry */
1901 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1902 	xas_store(&xas, new_page);
1903 xa_locked:
1904 	xas_unlock_irq(&xas);
1905 xa_unlocked:
1906 
1907 	if (result == SCAN_SUCCEED) {
1908 		struct page *page, *tmp;
1909 
1910 		/*
1911 		 * Replacing old pages with new one has succeeded, now we
1912 		 * need to copy the content and free the old pages.
1913 		 */
1914 		index = start;
1915 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1916 			while (index < page->index) {
1917 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1918 				index++;
1919 			}
1920 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1921 					page);
1922 			list_del(&page->lru);
1923 			page->mapping = NULL;
1924 			page_ref_unfreeze(page, 1);
1925 			ClearPageActive(page);
1926 			ClearPageUnevictable(page);
1927 			unlock_page(page);
1928 			put_page(page);
1929 			index++;
1930 		}
1931 		while (index < end) {
1932 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1933 			index++;
1934 		}
1935 
1936 		SetPageUptodate(new_page);
1937 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1938 		if (is_shmem)
1939 			set_page_dirty(new_page);
1940 		lru_cache_add(new_page);
1941 
1942 		/*
1943 		 * Remove pte page tables, so we can re-fault the page as huge.
1944 		 */
1945 		retract_page_tables(mapping, start);
1946 		*hpage = NULL;
1947 
1948 		khugepaged_pages_collapsed++;
1949 	} else {
1950 		struct page *page;
1951 
1952 		/* Something went wrong: roll back page cache changes */
1953 		xas_lock_irq(&xas);
1954 		mapping->nrpages -= nr_none;
1955 
1956 		if (is_shmem)
1957 			shmem_uncharge(mapping->host, nr_none);
1958 
1959 		xas_set(&xas, start);
1960 		xas_for_each(&xas, page, end - 1) {
1961 			page = list_first_entry_or_null(&pagelist,
1962 					struct page, lru);
1963 			if (!page || xas.xa_index < page->index) {
1964 				if (!nr_none)
1965 					break;
1966 				nr_none--;
1967 				/* Put holes back where they were */
1968 				xas_store(&xas, NULL);
1969 				continue;
1970 			}
1971 
1972 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1973 
1974 			/* Unfreeze the page. */
1975 			list_del(&page->lru);
1976 			page_ref_unfreeze(page, 2);
1977 			xas_store(&xas, page);
1978 			xas_pause(&xas);
1979 			xas_unlock_irq(&xas);
1980 			unlock_page(page);
1981 			putback_lru_page(page);
1982 			xas_lock_irq(&xas);
1983 		}
1984 		VM_BUG_ON(nr_none);
1985 		xas_unlock_irq(&xas);
1986 
1987 		new_page->mapping = NULL;
1988 	}
1989 
1990 	unlock_page(new_page);
1991 out:
1992 	VM_BUG_ON(!list_empty(&pagelist));
1993 	if (!IS_ERR_OR_NULL(*hpage))
1994 		mem_cgroup_uncharge(page_folio(*hpage));
1995 	/* TODO: tracepoints */
1996 }
1997 
1998 static void khugepaged_scan_file(struct mm_struct *mm,
1999 		struct file *file, pgoff_t start, struct page **hpage)
2000 {
2001 	struct page *page = NULL;
2002 	struct address_space *mapping = file->f_mapping;
2003 	XA_STATE(xas, &mapping->i_pages, start);
2004 	int present, swap;
2005 	int node = NUMA_NO_NODE;
2006 	int result = SCAN_SUCCEED;
2007 
2008 	present = 0;
2009 	swap = 0;
2010 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2011 	rcu_read_lock();
2012 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2013 		if (xas_retry(&xas, page))
2014 			continue;
2015 
2016 		if (xa_is_value(page)) {
2017 			if (++swap > khugepaged_max_ptes_swap) {
2018 				result = SCAN_EXCEED_SWAP_PTE;
2019 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2020 				break;
2021 			}
2022 			continue;
2023 		}
2024 
2025 		/*
2026 		 * XXX: khugepaged should compact smaller compound pages
2027 		 * into a PMD sized page
2028 		 */
2029 		if (PageTransCompound(page)) {
2030 			result = SCAN_PAGE_COMPOUND;
2031 			break;
2032 		}
2033 
2034 		node = page_to_nid(page);
2035 		if (khugepaged_scan_abort(node)) {
2036 			result = SCAN_SCAN_ABORT;
2037 			break;
2038 		}
2039 		khugepaged_node_load[node]++;
2040 
2041 		if (!PageLRU(page)) {
2042 			result = SCAN_PAGE_LRU;
2043 			break;
2044 		}
2045 
2046 		if (page_count(page) !=
2047 		    1 + page_mapcount(page) + page_has_private(page)) {
2048 			result = SCAN_PAGE_COUNT;
2049 			break;
2050 		}
2051 
2052 		/*
2053 		 * We probably should check if the page is referenced here, but
2054 		 * nobody would transfer pte_young() to PageReferenced() for us.
2055 		 * And rmap walk here is just too costly...
2056 		 */
2057 
2058 		present++;
2059 
2060 		if (need_resched()) {
2061 			xas_pause(&xas);
2062 			cond_resched_rcu();
2063 		}
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	if (result == SCAN_SUCCEED) {
2068 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2069 			result = SCAN_EXCEED_NONE_PTE;
2070 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2071 		} else {
2072 			node = khugepaged_find_target_node();
2073 			collapse_file(mm, file, start, hpage, node);
2074 		}
2075 	}
2076 
2077 	/* TODO: tracepoints */
2078 }
2079 #else
2080 static void khugepaged_scan_file(struct mm_struct *mm,
2081 		struct file *file, pgoff_t start, struct page **hpage)
2082 {
2083 	BUILD_BUG();
2084 }
2085 
2086 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2087 {
2088 }
2089 #endif
2090 
2091 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2092 					    struct page **hpage)
2093 	__releases(&khugepaged_mm_lock)
2094 	__acquires(&khugepaged_mm_lock)
2095 {
2096 	struct mm_slot *mm_slot;
2097 	struct mm_struct *mm;
2098 	struct vm_area_struct *vma;
2099 	int progress = 0;
2100 
2101 	VM_BUG_ON(!pages);
2102 	lockdep_assert_held(&khugepaged_mm_lock);
2103 
2104 	if (khugepaged_scan.mm_slot)
2105 		mm_slot = khugepaged_scan.mm_slot;
2106 	else {
2107 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2108 				     struct mm_slot, mm_node);
2109 		khugepaged_scan.address = 0;
2110 		khugepaged_scan.mm_slot = mm_slot;
2111 	}
2112 	spin_unlock(&khugepaged_mm_lock);
2113 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2114 
2115 	mm = mm_slot->mm;
2116 	/*
2117 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2118 	 * the next mm on the list.
2119 	 */
2120 	vma = NULL;
2121 	if (unlikely(!mmap_read_trylock(mm)))
2122 		goto breakouterloop_mmap_lock;
2123 	if (likely(!khugepaged_test_exit(mm)))
2124 		vma = find_vma(mm, khugepaged_scan.address);
2125 
2126 	progress++;
2127 	for (; vma; vma = vma->vm_next) {
2128 		unsigned long hstart, hend;
2129 
2130 		cond_resched();
2131 		if (unlikely(khugepaged_test_exit(mm))) {
2132 			progress++;
2133 			break;
2134 		}
2135 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2136 skip:
2137 			progress++;
2138 			continue;
2139 		}
2140 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2141 		hend = vma->vm_end & HPAGE_PMD_MASK;
2142 		if (hstart >= hend)
2143 			goto skip;
2144 		if (khugepaged_scan.address > hend)
2145 			goto skip;
2146 		if (khugepaged_scan.address < hstart)
2147 			khugepaged_scan.address = hstart;
2148 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2149 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2150 			goto skip;
2151 
2152 		while (khugepaged_scan.address < hend) {
2153 			int ret;
2154 			cond_resched();
2155 			if (unlikely(khugepaged_test_exit(mm)))
2156 				goto breakouterloop;
2157 
2158 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2159 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2160 				  hend);
2161 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2162 				struct file *file = get_file(vma->vm_file);
2163 				pgoff_t pgoff = linear_page_index(vma,
2164 						khugepaged_scan.address);
2165 
2166 				mmap_read_unlock(mm);
2167 				ret = 1;
2168 				khugepaged_scan_file(mm, file, pgoff, hpage);
2169 				fput(file);
2170 			} else {
2171 				ret = khugepaged_scan_pmd(mm, vma,
2172 						khugepaged_scan.address,
2173 						hpage);
2174 			}
2175 			/* move to next address */
2176 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2177 			progress += HPAGE_PMD_NR;
2178 			if (ret)
2179 				/* we released mmap_lock so break loop */
2180 				goto breakouterloop_mmap_lock;
2181 			if (progress >= pages)
2182 				goto breakouterloop;
2183 		}
2184 	}
2185 breakouterloop:
2186 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2187 breakouterloop_mmap_lock:
2188 
2189 	spin_lock(&khugepaged_mm_lock);
2190 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2191 	/*
2192 	 * Release the current mm_slot if this mm is about to die, or
2193 	 * if we scanned all vmas of this mm.
2194 	 */
2195 	if (khugepaged_test_exit(mm) || !vma) {
2196 		/*
2197 		 * Make sure that if mm_users is reaching zero while
2198 		 * khugepaged runs here, khugepaged_exit will find
2199 		 * mm_slot not pointing to the exiting mm.
2200 		 */
2201 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2202 			khugepaged_scan.mm_slot = list_entry(
2203 				mm_slot->mm_node.next,
2204 				struct mm_slot, mm_node);
2205 			khugepaged_scan.address = 0;
2206 		} else {
2207 			khugepaged_scan.mm_slot = NULL;
2208 			khugepaged_full_scans++;
2209 		}
2210 
2211 		collect_mm_slot(mm_slot);
2212 	}
2213 
2214 	return progress;
2215 }
2216 
2217 static int khugepaged_has_work(void)
2218 {
2219 	return !list_empty(&khugepaged_scan.mm_head) &&
2220 		khugepaged_enabled();
2221 }
2222 
2223 static int khugepaged_wait_event(void)
2224 {
2225 	return !list_empty(&khugepaged_scan.mm_head) ||
2226 		kthread_should_stop();
2227 }
2228 
2229 static void khugepaged_do_scan(void)
2230 {
2231 	struct page *hpage = NULL;
2232 	unsigned int progress = 0, pass_through_head = 0;
2233 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2234 	bool wait = true;
2235 
2236 	lru_add_drain_all();
2237 
2238 	while (progress < pages) {
2239 		if (!khugepaged_prealloc_page(&hpage, &wait))
2240 			break;
2241 
2242 		cond_resched();
2243 
2244 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2245 			break;
2246 
2247 		spin_lock(&khugepaged_mm_lock);
2248 		if (!khugepaged_scan.mm_slot)
2249 			pass_through_head++;
2250 		if (khugepaged_has_work() &&
2251 		    pass_through_head < 2)
2252 			progress += khugepaged_scan_mm_slot(pages - progress,
2253 							    &hpage);
2254 		else
2255 			progress = pages;
2256 		spin_unlock(&khugepaged_mm_lock);
2257 	}
2258 
2259 	if (!IS_ERR_OR_NULL(hpage))
2260 		put_page(hpage);
2261 }
2262 
2263 static bool khugepaged_should_wakeup(void)
2264 {
2265 	return kthread_should_stop() ||
2266 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2267 }
2268 
2269 static void khugepaged_wait_work(void)
2270 {
2271 	if (khugepaged_has_work()) {
2272 		const unsigned long scan_sleep_jiffies =
2273 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2274 
2275 		if (!scan_sleep_jiffies)
2276 			return;
2277 
2278 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2279 		wait_event_freezable_timeout(khugepaged_wait,
2280 					     khugepaged_should_wakeup(),
2281 					     scan_sleep_jiffies);
2282 		return;
2283 	}
2284 
2285 	if (khugepaged_enabled())
2286 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2287 }
2288 
2289 static int khugepaged(void *none)
2290 {
2291 	struct mm_slot *mm_slot;
2292 
2293 	set_freezable();
2294 	set_user_nice(current, MAX_NICE);
2295 
2296 	while (!kthread_should_stop()) {
2297 		khugepaged_do_scan();
2298 		khugepaged_wait_work();
2299 	}
2300 
2301 	spin_lock(&khugepaged_mm_lock);
2302 	mm_slot = khugepaged_scan.mm_slot;
2303 	khugepaged_scan.mm_slot = NULL;
2304 	if (mm_slot)
2305 		collect_mm_slot(mm_slot);
2306 	spin_unlock(&khugepaged_mm_lock);
2307 	return 0;
2308 }
2309 
2310 static void set_recommended_min_free_kbytes(void)
2311 {
2312 	struct zone *zone;
2313 	int nr_zones = 0;
2314 	unsigned long recommended_min;
2315 
2316 	if (!khugepaged_enabled()) {
2317 		calculate_min_free_kbytes();
2318 		goto update_wmarks;
2319 	}
2320 
2321 	for_each_populated_zone(zone) {
2322 		/*
2323 		 * We don't need to worry about fragmentation of
2324 		 * ZONE_MOVABLE since it only has movable pages.
2325 		 */
2326 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2327 			continue;
2328 
2329 		nr_zones++;
2330 	}
2331 
2332 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2333 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2334 
2335 	/*
2336 	 * Make sure that on average at least two pageblocks are almost free
2337 	 * of another type, one for a migratetype to fall back to and a
2338 	 * second to avoid subsequent fallbacks of other types There are 3
2339 	 * MIGRATE_TYPES we care about.
2340 	 */
2341 	recommended_min += pageblock_nr_pages * nr_zones *
2342 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2343 
2344 	/* don't ever allow to reserve more than 5% of the lowmem */
2345 	recommended_min = min(recommended_min,
2346 			      (unsigned long) nr_free_buffer_pages() / 20);
2347 	recommended_min <<= (PAGE_SHIFT-10);
2348 
2349 	if (recommended_min > min_free_kbytes) {
2350 		if (user_min_free_kbytes >= 0)
2351 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2352 				min_free_kbytes, recommended_min);
2353 
2354 		min_free_kbytes = recommended_min;
2355 	}
2356 
2357 update_wmarks:
2358 	setup_per_zone_wmarks();
2359 }
2360 
2361 int start_stop_khugepaged(void)
2362 {
2363 	int err = 0;
2364 
2365 	mutex_lock(&khugepaged_mutex);
2366 	if (khugepaged_enabled()) {
2367 		if (!khugepaged_thread)
2368 			khugepaged_thread = kthread_run(khugepaged, NULL,
2369 							"khugepaged");
2370 		if (IS_ERR(khugepaged_thread)) {
2371 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2372 			err = PTR_ERR(khugepaged_thread);
2373 			khugepaged_thread = NULL;
2374 			goto fail;
2375 		}
2376 
2377 		if (!list_empty(&khugepaged_scan.mm_head))
2378 			wake_up_interruptible(&khugepaged_wait);
2379 	} else if (khugepaged_thread) {
2380 		kthread_stop(khugepaged_thread);
2381 		khugepaged_thread = NULL;
2382 	}
2383 	set_recommended_min_free_kbytes();
2384 fail:
2385 	mutex_unlock(&khugepaged_mutex);
2386 	return err;
2387 }
2388 
2389 void khugepaged_min_free_kbytes_update(void)
2390 {
2391 	mutex_lock(&khugepaged_mutex);
2392 	if (khugepaged_enabled() && khugepaged_thread)
2393 		set_recommended_min_free_kbytes();
2394 	mutex_unlock(&khugepaged_mutex);
2395 }
2396