1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_folio(struct folio *folio) 494 { 495 node_stat_mod_folio(folio, 496 NR_ISOLATED_ANON + folio_is_file_lru(folio), 497 -folio_nr_pages(folio)); 498 folio_unlock(folio); 499 folio_putback_lru(folio); 500 } 501 502 static void release_pte_page(struct page *page) 503 { 504 release_pte_folio(page_folio(page)); 505 } 506 507 static void release_pte_pages(pte_t *pte, pte_t *_pte, 508 struct list_head *compound_pagelist) 509 { 510 struct folio *folio, *tmp; 511 512 while (--_pte >= pte) { 513 pte_t pteval = *_pte; 514 unsigned long pfn; 515 516 if (pte_none(pteval)) 517 continue; 518 pfn = pte_pfn(pteval); 519 if (is_zero_pfn(pfn)) 520 continue; 521 folio = pfn_folio(pfn); 522 if (folio_test_large(folio)) 523 continue; 524 release_pte_folio(folio); 525 } 526 527 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 528 list_del(&folio->lru); 529 release_pte_folio(folio); 530 } 531 } 532 533 static bool is_refcount_suitable(struct page *page) 534 { 535 int expected_refcount; 536 537 expected_refcount = total_mapcount(page); 538 if (PageSwapCache(page)) 539 expected_refcount += compound_nr(page); 540 541 return page_count(page) == expected_refcount; 542 } 543 544 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 545 unsigned long address, 546 pte_t *pte, 547 struct collapse_control *cc, 548 struct list_head *compound_pagelist) 549 { 550 struct page *page = NULL; 551 pte_t *_pte; 552 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 553 bool writable = false; 554 555 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 556 _pte++, address += PAGE_SIZE) { 557 pte_t pteval = *_pte; 558 if (pte_none(pteval) || (pte_present(pteval) && 559 is_zero_pfn(pte_pfn(pteval)))) { 560 ++none_or_zero; 561 if (!userfaultfd_armed(vma) && 562 (!cc->is_khugepaged || 563 none_or_zero <= khugepaged_max_ptes_none)) { 564 continue; 565 } else { 566 result = SCAN_EXCEED_NONE_PTE; 567 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 568 goto out; 569 } 570 } 571 if (!pte_present(pteval)) { 572 result = SCAN_PTE_NON_PRESENT; 573 goto out; 574 } 575 page = vm_normal_page(vma, address, pteval); 576 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 577 result = SCAN_PAGE_NULL; 578 goto out; 579 } 580 581 VM_BUG_ON_PAGE(!PageAnon(page), page); 582 583 if (page_mapcount(page) > 1) { 584 ++shared; 585 if (cc->is_khugepaged && 586 shared > khugepaged_max_ptes_shared) { 587 result = SCAN_EXCEED_SHARED_PTE; 588 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 589 goto out; 590 } 591 } 592 593 if (PageCompound(page)) { 594 struct page *p; 595 page = compound_head(page); 596 597 /* 598 * Check if we have dealt with the compound page 599 * already 600 */ 601 list_for_each_entry(p, compound_pagelist, lru) { 602 if (page == p) 603 goto next; 604 } 605 } 606 607 /* 608 * We can do it before isolate_lru_page because the 609 * page can't be freed from under us. NOTE: PG_lock 610 * is needed to serialize against split_huge_page 611 * when invoked from the VM. 612 */ 613 if (!trylock_page(page)) { 614 result = SCAN_PAGE_LOCK; 615 goto out; 616 } 617 618 /* 619 * Check if the page has any GUP (or other external) pins. 620 * 621 * The page table that maps the page has been already unlinked 622 * from the page table tree and this process cannot get 623 * an additional pin on the page. 624 * 625 * New pins can come later if the page is shared across fork, 626 * but not from this process. The other process cannot write to 627 * the page, only trigger CoW. 628 */ 629 if (!is_refcount_suitable(page)) { 630 unlock_page(page); 631 result = SCAN_PAGE_COUNT; 632 goto out; 633 } 634 635 /* 636 * Isolate the page to avoid collapsing an hugepage 637 * currently in use by the VM. 638 */ 639 if (!isolate_lru_page(page)) { 640 unlock_page(page); 641 result = SCAN_DEL_PAGE_LRU; 642 goto out; 643 } 644 mod_node_page_state(page_pgdat(page), 645 NR_ISOLATED_ANON + page_is_file_lru(page), 646 compound_nr(page)); 647 VM_BUG_ON_PAGE(!PageLocked(page), page); 648 VM_BUG_ON_PAGE(PageLRU(page), page); 649 650 if (PageCompound(page)) 651 list_add_tail(&page->lru, compound_pagelist); 652 next: 653 /* 654 * If collapse was initiated by khugepaged, check that there is 655 * enough young pte to justify collapsing the page 656 */ 657 if (cc->is_khugepaged && 658 (pte_young(pteval) || page_is_young(page) || 659 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 660 address))) 661 referenced++; 662 663 if (pte_write(pteval)) 664 writable = true; 665 } 666 667 if (unlikely(!writable)) { 668 result = SCAN_PAGE_RO; 669 } else if (unlikely(cc->is_khugepaged && !referenced)) { 670 result = SCAN_LACK_REFERENCED_PAGE; 671 } else { 672 result = SCAN_SUCCEED; 673 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 674 referenced, writable, result); 675 return result; 676 } 677 out: 678 release_pte_pages(pte, _pte, compound_pagelist); 679 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 680 referenced, writable, result); 681 return result; 682 } 683 684 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 685 struct vm_area_struct *vma, 686 unsigned long address, 687 spinlock_t *ptl, 688 struct list_head *compound_pagelist) 689 { 690 struct page *src_page, *tmp; 691 pte_t *_pte; 692 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 693 _pte++, page++, address += PAGE_SIZE) { 694 pte_t pteval = *_pte; 695 696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 697 clear_user_highpage(page, address); 698 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 699 if (is_zero_pfn(pte_pfn(pteval))) { 700 /* 701 * ptl mostly unnecessary. 702 */ 703 spin_lock(ptl); 704 ptep_clear(vma->vm_mm, address, _pte); 705 spin_unlock(ptl); 706 } 707 } else { 708 src_page = pte_page(pteval); 709 copy_user_highpage(page, src_page, address, vma); 710 if (!PageCompound(src_page)) 711 release_pte_page(src_page); 712 /* 713 * ptl mostly unnecessary, but preempt has to 714 * be disabled to update the per-cpu stats 715 * inside page_remove_rmap(). 716 */ 717 spin_lock(ptl); 718 ptep_clear(vma->vm_mm, address, _pte); 719 page_remove_rmap(src_page, vma, false); 720 spin_unlock(ptl); 721 free_page_and_swap_cache(src_page); 722 } 723 } 724 725 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 726 list_del(&src_page->lru); 727 mod_node_page_state(page_pgdat(src_page), 728 NR_ISOLATED_ANON + page_is_file_lru(src_page), 729 -compound_nr(src_page)); 730 unlock_page(src_page); 731 free_swap_cache(src_page); 732 putback_lru_page(src_page); 733 } 734 } 735 736 static void khugepaged_alloc_sleep(void) 737 { 738 DEFINE_WAIT(wait); 739 740 add_wait_queue(&khugepaged_wait, &wait); 741 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 742 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 743 remove_wait_queue(&khugepaged_wait, &wait); 744 } 745 746 struct collapse_control khugepaged_collapse_control = { 747 .is_khugepaged = true, 748 }; 749 750 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 751 { 752 int i; 753 754 /* 755 * If node_reclaim_mode is disabled, then no extra effort is made to 756 * allocate memory locally. 757 */ 758 if (!node_reclaim_enabled()) 759 return false; 760 761 /* If there is a count for this node already, it must be acceptable */ 762 if (cc->node_load[nid]) 763 return false; 764 765 for (i = 0; i < MAX_NUMNODES; i++) { 766 if (!cc->node_load[i]) 767 continue; 768 if (node_distance(nid, i) > node_reclaim_distance) 769 return true; 770 } 771 return false; 772 } 773 774 #define khugepaged_defrag() \ 775 (transparent_hugepage_flags & \ 776 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 777 778 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 779 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 780 { 781 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 782 } 783 784 #ifdef CONFIG_NUMA 785 static int hpage_collapse_find_target_node(struct collapse_control *cc) 786 { 787 int nid, target_node = 0, max_value = 0; 788 789 /* find first node with max normal pages hit */ 790 for (nid = 0; nid < MAX_NUMNODES; nid++) 791 if (cc->node_load[nid] > max_value) { 792 max_value = cc->node_load[nid]; 793 target_node = nid; 794 } 795 796 for_each_online_node(nid) { 797 if (max_value == cc->node_load[nid]) 798 node_set(nid, cc->alloc_nmask); 799 } 800 801 return target_node; 802 } 803 #else 804 static int hpage_collapse_find_target_node(struct collapse_control *cc) 805 { 806 return 0; 807 } 808 #endif 809 810 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 811 nodemask_t *nmask) 812 { 813 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 814 if (unlikely(!*hpage)) { 815 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 816 return false; 817 } 818 819 prep_transhuge_page(*hpage); 820 count_vm_event(THP_COLLAPSE_ALLOC); 821 return true; 822 } 823 824 /* 825 * If mmap_lock temporarily dropped, revalidate vma 826 * before taking mmap_lock. 827 * Returns enum scan_result value. 828 */ 829 830 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 831 bool expect_anon, 832 struct vm_area_struct **vmap, 833 struct collapse_control *cc) 834 { 835 struct vm_area_struct *vma; 836 837 if (unlikely(hpage_collapse_test_exit(mm))) 838 return SCAN_ANY_PROCESS; 839 840 *vmap = vma = find_vma(mm, address); 841 if (!vma) 842 return SCAN_VMA_NULL; 843 844 if (!transhuge_vma_suitable(vma, address)) 845 return SCAN_ADDRESS_RANGE; 846 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 847 cc->is_khugepaged)) 848 return SCAN_VMA_CHECK; 849 /* 850 * Anon VMA expected, the address may be unmapped then 851 * remapped to file after khugepaged reaquired the mmap_lock. 852 * 853 * hugepage_vma_check may return true for qualified file 854 * vmas. 855 */ 856 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 857 return SCAN_PAGE_ANON; 858 return SCAN_SUCCEED; 859 } 860 861 /* 862 * See pmd_trans_unstable() for how the result may change out from 863 * underneath us, even if we hold mmap_lock in read. 864 */ 865 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 866 unsigned long address, 867 pmd_t **pmd) 868 { 869 pmd_t pmde; 870 871 *pmd = mm_find_pmd(mm, address); 872 if (!*pmd) 873 return SCAN_PMD_NULL; 874 875 pmde = pmdp_get_lockless(*pmd); 876 877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 878 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 879 barrier(); 880 #endif 881 if (pmd_none(pmde)) 882 return SCAN_PMD_NONE; 883 if (!pmd_present(pmde)) 884 return SCAN_PMD_NULL; 885 if (pmd_trans_huge(pmde)) 886 return SCAN_PMD_MAPPED; 887 if (pmd_devmap(pmde)) 888 return SCAN_PMD_NULL; 889 if (pmd_bad(pmde)) 890 return SCAN_PMD_NULL; 891 return SCAN_SUCCEED; 892 } 893 894 static int check_pmd_still_valid(struct mm_struct *mm, 895 unsigned long address, 896 pmd_t *pmd) 897 { 898 pmd_t *new_pmd; 899 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 900 901 if (result != SCAN_SUCCEED) 902 return result; 903 if (new_pmd != pmd) 904 return SCAN_FAIL; 905 return SCAN_SUCCEED; 906 } 907 908 /* 909 * Bring missing pages in from swap, to complete THP collapse. 910 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 911 * 912 * Called and returns without pte mapped or spinlocks held. 913 * Note that if false is returned, mmap_lock will be released. 914 */ 915 916 static int __collapse_huge_page_swapin(struct mm_struct *mm, 917 struct vm_area_struct *vma, 918 unsigned long haddr, pmd_t *pmd, 919 int referenced) 920 { 921 int swapped_in = 0; 922 vm_fault_t ret = 0; 923 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 924 925 for (address = haddr; address < end; address += PAGE_SIZE) { 926 struct vm_fault vmf = { 927 .vma = vma, 928 .address = address, 929 .pgoff = linear_page_index(vma, haddr), 930 .flags = FAULT_FLAG_ALLOW_RETRY, 931 .pmd = pmd, 932 }; 933 934 vmf.pte = pte_offset_map(pmd, address); 935 vmf.orig_pte = *vmf.pte; 936 if (!is_swap_pte(vmf.orig_pte)) { 937 pte_unmap(vmf.pte); 938 continue; 939 } 940 ret = do_swap_page(&vmf); 941 942 /* 943 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 944 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 945 * we do not retry here and swap entry will remain in pagetable 946 * resulting in later failure. 947 */ 948 if (ret & VM_FAULT_RETRY) { 949 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 950 /* Likely, but not guaranteed, that page lock failed */ 951 return SCAN_PAGE_LOCK; 952 } 953 if (ret & VM_FAULT_ERROR) { 954 mmap_read_unlock(mm); 955 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 956 return SCAN_FAIL; 957 } 958 swapped_in++; 959 } 960 961 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 962 if (swapped_in) 963 lru_add_drain(); 964 965 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 966 return SCAN_SUCCEED; 967 } 968 969 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 970 struct collapse_control *cc) 971 { 972 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 973 GFP_TRANSHUGE); 974 int node = hpage_collapse_find_target_node(cc); 975 struct folio *folio; 976 977 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 978 return SCAN_ALLOC_HUGE_PAGE_FAIL; 979 980 folio = page_folio(*hpage); 981 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 982 folio_put(folio); 983 *hpage = NULL; 984 return SCAN_CGROUP_CHARGE_FAIL; 985 } 986 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 987 988 return SCAN_SUCCEED; 989 } 990 991 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 992 int referenced, int unmapped, 993 struct collapse_control *cc) 994 { 995 LIST_HEAD(compound_pagelist); 996 pmd_t *pmd, _pmd; 997 pte_t *pte; 998 pgtable_t pgtable; 999 struct page *hpage; 1000 spinlock_t *pmd_ptl, *pte_ptl; 1001 int result = SCAN_FAIL; 1002 struct vm_area_struct *vma; 1003 struct mmu_notifier_range range; 1004 1005 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1006 1007 /* 1008 * Before allocating the hugepage, release the mmap_lock read lock. 1009 * The allocation can take potentially a long time if it involves 1010 * sync compaction, and we do not need to hold the mmap_lock during 1011 * that. We will recheck the vma after taking it again in write mode. 1012 */ 1013 mmap_read_unlock(mm); 1014 1015 result = alloc_charge_hpage(&hpage, mm, cc); 1016 if (result != SCAN_SUCCEED) 1017 goto out_nolock; 1018 1019 mmap_read_lock(mm); 1020 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1021 if (result != SCAN_SUCCEED) { 1022 mmap_read_unlock(mm); 1023 goto out_nolock; 1024 } 1025 1026 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1027 if (result != SCAN_SUCCEED) { 1028 mmap_read_unlock(mm); 1029 goto out_nolock; 1030 } 1031 1032 if (unmapped) { 1033 /* 1034 * __collapse_huge_page_swapin will return with mmap_lock 1035 * released when it fails. So we jump out_nolock directly in 1036 * that case. Continuing to collapse causes inconsistency. 1037 */ 1038 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1039 referenced); 1040 if (result != SCAN_SUCCEED) 1041 goto out_nolock; 1042 } 1043 1044 mmap_read_unlock(mm); 1045 /* 1046 * Prevent all access to pagetables with the exception of 1047 * gup_fast later handled by the ptep_clear_flush and the VM 1048 * handled by the anon_vma lock + PG_lock. 1049 */ 1050 mmap_write_lock(mm); 1051 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1052 if (result != SCAN_SUCCEED) 1053 goto out_up_write; 1054 /* check if the pmd is still valid */ 1055 result = check_pmd_still_valid(mm, address, pmd); 1056 if (result != SCAN_SUCCEED) 1057 goto out_up_write; 1058 1059 anon_vma_lock_write(vma->anon_vma); 1060 1061 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1062 address + HPAGE_PMD_SIZE); 1063 mmu_notifier_invalidate_range_start(&range); 1064 1065 pte = pte_offset_map(pmd, address); 1066 pte_ptl = pte_lockptr(mm, pmd); 1067 1068 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1069 /* 1070 * This removes any huge TLB entry from the CPU so we won't allow 1071 * huge and small TLB entries for the same virtual address to 1072 * avoid the risk of CPU bugs in that area. 1073 * 1074 * Parallel fast GUP is fine since fast GUP will back off when 1075 * it detects PMD is changed. 1076 */ 1077 _pmd = pmdp_collapse_flush(vma, address, pmd); 1078 spin_unlock(pmd_ptl); 1079 mmu_notifier_invalidate_range_end(&range); 1080 tlb_remove_table_sync_one(); 1081 1082 spin_lock(pte_ptl); 1083 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1084 &compound_pagelist); 1085 spin_unlock(pte_ptl); 1086 1087 if (unlikely(result != SCAN_SUCCEED)) { 1088 pte_unmap(pte); 1089 spin_lock(pmd_ptl); 1090 BUG_ON(!pmd_none(*pmd)); 1091 /* 1092 * We can only use set_pmd_at when establishing 1093 * hugepmds and never for establishing regular pmds that 1094 * points to regular pagetables. Use pmd_populate for that 1095 */ 1096 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1097 spin_unlock(pmd_ptl); 1098 anon_vma_unlock_write(vma->anon_vma); 1099 goto out_up_write; 1100 } 1101 1102 /* 1103 * All pages are isolated and locked so anon_vma rmap 1104 * can't run anymore. 1105 */ 1106 anon_vma_unlock_write(vma->anon_vma); 1107 1108 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1109 &compound_pagelist); 1110 pte_unmap(pte); 1111 /* 1112 * spin_lock() below is not the equivalent of smp_wmb(), but 1113 * the smp_wmb() inside __SetPageUptodate() can be reused to 1114 * avoid the copy_huge_page writes to become visible after 1115 * the set_pmd_at() write. 1116 */ 1117 __SetPageUptodate(hpage); 1118 pgtable = pmd_pgtable(_pmd); 1119 1120 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1121 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1122 1123 spin_lock(pmd_ptl); 1124 BUG_ON(!pmd_none(*pmd)); 1125 page_add_new_anon_rmap(hpage, vma, address); 1126 lru_cache_add_inactive_or_unevictable(hpage, vma); 1127 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1128 set_pmd_at(mm, address, pmd, _pmd); 1129 update_mmu_cache_pmd(vma, address, pmd); 1130 spin_unlock(pmd_ptl); 1131 1132 hpage = NULL; 1133 1134 result = SCAN_SUCCEED; 1135 out_up_write: 1136 mmap_write_unlock(mm); 1137 out_nolock: 1138 if (hpage) 1139 put_page(hpage); 1140 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1141 return result; 1142 } 1143 1144 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1145 struct vm_area_struct *vma, 1146 unsigned long address, bool *mmap_locked, 1147 struct collapse_control *cc) 1148 { 1149 pmd_t *pmd; 1150 pte_t *pte, *_pte; 1151 int result = SCAN_FAIL, referenced = 0; 1152 int none_or_zero = 0, shared = 0; 1153 struct page *page = NULL; 1154 unsigned long _address; 1155 spinlock_t *ptl; 1156 int node = NUMA_NO_NODE, unmapped = 0; 1157 bool writable = false; 1158 1159 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1160 1161 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1162 if (result != SCAN_SUCCEED) 1163 goto out; 1164 1165 memset(cc->node_load, 0, sizeof(cc->node_load)); 1166 nodes_clear(cc->alloc_nmask); 1167 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1168 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1169 _pte++, _address += PAGE_SIZE) { 1170 pte_t pteval = *_pte; 1171 if (is_swap_pte(pteval)) { 1172 ++unmapped; 1173 if (!cc->is_khugepaged || 1174 unmapped <= khugepaged_max_ptes_swap) { 1175 /* 1176 * Always be strict with uffd-wp 1177 * enabled swap entries. Please see 1178 * comment below for pte_uffd_wp(). 1179 */ 1180 if (pte_swp_uffd_wp(pteval)) { 1181 result = SCAN_PTE_UFFD_WP; 1182 goto out_unmap; 1183 } 1184 continue; 1185 } else { 1186 result = SCAN_EXCEED_SWAP_PTE; 1187 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1188 goto out_unmap; 1189 } 1190 } 1191 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1192 ++none_or_zero; 1193 if (!userfaultfd_armed(vma) && 1194 (!cc->is_khugepaged || 1195 none_or_zero <= khugepaged_max_ptes_none)) { 1196 continue; 1197 } else { 1198 result = SCAN_EXCEED_NONE_PTE; 1199 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1200 goto out_unmap; 1201 } 1202 } 1203 if (pte_uffd_wp(pteval)) { 1204 /* 1205 * Don't collapse the page if any of the small 1206 * PTEs are armed with uffd write protection. 1207 * Here we can also mark the new huge pmd as 1208 * write protected if any of the small ones is 1209 * marked but that could bring unknown 1210 * userfault messages that falls outside of 1211 * the registered range. So, just be simple. 1212 */ 1213 result = SCAN_PTE_UFFD_WP; 1214 goto out_unmap; 1215 } 1216 if (pte_write(pteval)) 1217 writable = true; 1218 1219 page = vm_normal_page(vma, _address, pteval); 1220 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1221 result = SCAN_PAGE_NULL; 1222 goto out_unmap; 1223 } 1224 1225 if (page_mapcount(page) > 1) { 1226 ++shared; 1227 if (cc->is_khugepaged && 1228 shared > khugepaged_max_ptes_shared) { 1229 result = SCAN_EXCEED_SHARED_PTE; 1230 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1231 goto out_unmap; 1232 } 1233 } 1234 1235 page = compound_head(page); 1236 1237 /* 1238 * Record which node the original page is from and save this 1239 * information to cc->node_load[]. 1240 * Khugepaged will allocate hugepage from the node has the max 1241 * hit record. 1242 */ 1243 node = page_to_nid(page); 1244 if (hpage_collapse_scan_abort(node, cc)) { 1245 result = SCAN_SCAN_ABORT; 1246 goto out_unmap; 1247 } 1248 cc->node_load[node]++; 1249 if (!PageLRU(page)) { 1250 result = SCAN_PAGE_LRU; 1251 goto out_unmap; 1252 } 1253 if (PageLocked(page)) { 1254 result = SCAN_PAGE_LOCK; 1255 goto out_unmap; 1256 } 1257 if (!PageAnon(page)) { 1258 result = SCAN_PAGE_ANON; 1259 goto out_unmap; 1260 } 1261 1262 /* 1263 * Check if the page has any GUP (or other external) pins. 1264 * 1265 * Here the check may be racy: 1266 * it may see total_mapcount > refcount in some cases? 1267 * But such case is ephemeral we could always retry collapse 1268 * later. However it may report false positive if the page 1269 * has excessive GUP pins (i.e. 512). Anyway the same check 1270 * will be done again later the risk seems low. 1271 */ 1272 if (!is_refcount_suitable(page)) { 1273 result = SCAN_PAGE_COUNT; 1274 goto out_unmap; 1275 } 1276 1277 /* 1278 * If collapse was initiated by khugepaged, check that there is 1279 * enough young pte to justify collapsing the page 1280 */ 1281 if (cc->is_khugepaged && 1282 (pte_young(pteval) || page_is_young(page) || 1283 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1284 address))) 1285 referenced++; 1286 } 1287 if (!writable) { 1288 result = SCAN_PAGE_RO; 1289 } else if (cc->is_khugepaged && 1290 (!referenced || 1291 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1292 result = SCAN_LACK_REFERENCED_PAGE; 1293 } else { 1294 result = SCAN_SUCCEED; 1295 } 1296 out_unmap: 1297 pte_unmap_unlock(pte, ptl); 1298 if (result == SCAN_SUCCEED) { 1299 result = collapse_huge_page(mm, address, referenced, 1300 unmapped, cc); 1301 /* collapse_huge_page will return with the mmap_lock released */ 1302 *mmap_locked = false; 1303 } 1304 out: 1305 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1306 none_or_zero, result, unmapped); 1307 return result; 1308 } 1309 1310 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1311 { 1312 struct mm_slot *slot = &mm_slot->slot; 1313 struct mm_struct *mm = slot->mm; 1314 1315 lockdep_assert_held(&khugepaged_mm_lock); 1316 1317 if (hpage_collapse_test_exit(mm)) { 1318 /* free mm_slot */ 1319 hash_del(&slot->hash); 1320 list_del(&slot->mm_node); 1321 1322 /* 1323 * Not strictly needed because the mm exited already. 1324 * 1325 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1326 */ 1327 1328 /* khugepaged_mm_lock actually not necessary for the below */ 1329 mm_slot_free(mm_slot_cache, mm_slot); 1330 mmdrop(mm); 1331 } 1332 } 1333 1334 #ifdef CONFIG_SHMEM 1335 /* 1336 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1337 * khugepaged should try to collapse the page table. 1338 * 1339 * Note that following race exists: 1340 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1341 * emptying the A's ->pte_mapped_thp[] array. 1342 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1343 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1344 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1345 * ->pte-mapped_thp[] array. 1346 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1347 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1348 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1349 * Thus, it's possible the same address is added multiple times for the same 1350 * mm_struct. Should this happen, we'll simply attempt 1351 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1352 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1353 * attempts will return quickly (without grabbing any additional locks) when 1354 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1355 * check, and since this is a rare occurrence, the cost of preventing this 1356 * "multiple-add" is thought to be more expensive than just handling it, should 1357 * it occur. 1358 */ 1359 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1360 unsigned long addr) 1361 { 1362 struct khugepaged_mm_slot *mm_slot; 1363 struct mm_slot *slot; 1364 bool ret = false; 1365 1366 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1367 1368 spin_lock(&khugepaged_mm_lock); 1369 slot = mm_slot_lookup(mm_slots_hash, mm); 1370 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1371 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1372 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1373 ret = true; 1374 } 1375 spin_unlock(&khugepaged_mm_lock); 1376 return ret; 1377 } 1378 1379 /* hpage must be locked, and mmap_lock must be held in write */ 1380 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1381 pmd_t *pmdp, struct page *hpage) 1382 { 1383 struct vm_fault vmf = { 1384 .vma = vma, 1385 .address = addr, 1386 .flags = 0, 1387 .pmd = pmdp, 1388 }; 1389 1390 VM_BUG_ON(!PageTransHuge(hpage)); 1391 mmap_assert_write_locked(vma->vm_mm); 1392 1393 if (do_set_pmd(&vmf, hpage)) 1394 return SCAN_FAIL; 1395 1396 get_page(hpage); 1397 return SCAN_SUCCEED; 1398 } 1399 1400 /* 1401 * A note about locking: 1402 * Trying to take the page table spinlocks would be useless here because those 1403 * are only used to synchronize: 1404 * 1405 * - modifying terminal entries (ones that point to a data page, not to another 1406 * page table) 1407 * - installing *new* non-terminal entries 1408 * 1409 * Instead, we need roughly the same kind of protection as free_pgtables() or 1410 * mm_take_all_locks() (but only for a single VMA): 1411 * The mmap lock together with this VMA's rmap locks covers all paths towards 1412 * the page table entries we're messing with here, except for hardware page 1413 * table walks and lockless_pages_from_mm(). 1414 */ 1415 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1416 unsigned long addr, pmd_t *pmdp) 1417 { 1418 pmd_t pmd; 1419 struct mmu_notifier_range range; 1420 1421 mmap_assert_write_locked(mm); 1422 if (vma->vm_file) 1423 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1424 /* 1425 * All anon_vmas attached to the VMA have the same root and are 1426 * therefore locked by the same lock. 1427 */ 1428 if (vma->anon_vma) 1429 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1430 1431 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1432 addr + HPAGE_PMD_SIZE); 1433 mmu_notifier_invalidate_range_start(&range); 1434 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1435 tlb_remove_table_sync_one(); 1436 mmu_notifier_invalidate_range_end(&range); 1437 mm_dec_nr_ptes(mm); 1438 page_table_check_pte_clear_range(mm, addr, pmd); 1439 pte_free(mm, pmd_pgtable(pmd)); 1440 } 1441 1442 /** 1443 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1444 * address haddr. 1445 * 1446 * @mm: process address space where collapse happens 1447 * @addr: THP collapse address 1448 * @install_pmd: If a huge PMD should be installed 1449 * 1450 * This function checks whether all the PTEs in the PMD are pointing to the 1451 * right THP. If so, retract the page table so the THP can refault in with 1452 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1453 */ 1454 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1455 bool install_pmd) 1456 { 1457 unsigned long haddr = addr & HPAGE_PMD_MASK; 1458 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1459 struct page *hpage; 1460 pte_t *start_pte, *pte; 1461 pmd_t *pmd; 1462 spinlock_t *ptl; 1463 int count = 0, result = SCAN_FAIL; 1464 int i; 1465 1466 mmap_assert_write_locked(mm); 1467 1468 /* Fast check before locking page if already PMD-mapped */ 1469 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1470 if (result == SCAN_PMD_MAPPED) 1471 return result; 1472 1473 if (!vma || !vma->vm_file || 1474 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1475 return SCAN_VMA_CHECK; 1476 1477 /* 1478 * If we are here, we've succeeded in replacing all the native pages 1479 * in the page cache with a single hugepage. If a mm were to fault-in 1480 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1481 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1482 * analogously elide sysfs THP settings here. 1483 */ 1484 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1485 return SCAN_VMA_CHECK; 1486 1487 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1488 if (userfaultfd_wp(vma)) 1489 return SCAN_PTE_UFFD_WP; 1490 1491 hpage = find_lock_page(vma->vm_file->f_mapping, 1492 linear_page_index(vma, haddr)); 1493 if (!hpage) 1494 return SCAN_PAGE_NULL; 1495 1496 if (!PageHead(hpage)) { 1497 result = SCAN_FAIL; 1498 goto drop_hpage; 1499 } 1500 1501 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1502 result = SCAN_PAGE_COMPOUND; 1503 goto drop_hpage; 1504 } 1505 1506 switch (result) { 1507 case SCAN_SUCCEED: 1508 break; 1509 case SCAN_PMD_NONE: 1510 /* 1511 * In MADV_COLLAPSE path, possible race with khugepaged where 1512 * all pte entries have been removed and pmd cleared. If so, 1513 * skip all the pte checks and just update the pmd mapping. 1514 */ 1515 goto maybe_install_pmd; 1516 default: 1517 goto drop_hpage; 1518 } 1519 1520 /* 1521 * We need to lock the mapping so that from here on, only GUP-fast and 1522 * hardware page walks can access the parts of the page tables that 1523 * we're operating on. 1524 * See collapse_and_free_pmd(). 1525 */ 1526 i_mmap_lock_write(vma->vm_file->f_mapping); 1527 1528 /* 1529 * This spinlock should be unnecessary: Nobody else should be accessing 1530 * the page tables under spinlock protection here, only 1531 * lockless_pages_from_mm() and the hardware page walker can access page 1532 * tables while all the high-level locks are held in write mode. 1533 */ 1534 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1535 result = SCAN_FAIL; 1536 1537 /* step 1: check all mapped PTEs are to the right huge page */ 1538 for (i = 0, addr = haddr, pte = start_pte; 1539 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1540 struct page *page; 1541 1542 /* empty pte, skip */ 1543 if (pte_none(*pte)) 1544 continue; 1545 1546 /* page swapped out, abort */ 1547 if (!pte_present(*pte)) { 1548 result = SCAN_PTE_NON_PRESENT; 1549 goto abort; 1550 } 1551 1552 page = vm_normal_page(vma, addr, *pte); 1553 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1554 page = NULL; 1555 /* 1556 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1557 * page table, but the new page will not be a subpage of hpage. 1558 */ 1559 if (hpage + i != page) 1560 goto abort; 1561 count++; 1562 } 1563 1564 /* step 2: adjust rmap */ 1565 for (i = 0, addr = haddr, pte = start_pte; 1566 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1567 struct page *page; 1568 1569 if (pte_none(*pte)) 1570 continue; 1571 page = vm_normal_page(vma, addr, *pte); 1572 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1573 goto abort; 1574 page_remove_rmap(page, vma, false); 1575 } 1576 1577 pte_unmap_unlock(start_pte, ptl); 1578 1579 /* step 3: set proper refcount and mm_counters. */ 1580 if (count) { 1581 page_ref_sub(hpage, count); 1582 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1583 } 1584 1585 /* step 4: remove pte entries */ 1586 /* we make no change to anon, but protect concurrent anon page lookup */ 1587 if (vma->anon_vma) 1588 anon_vma_lock_write(vma->anon_vma); 1589 1590 collapse_and_free_pmd(mm, vma, haddr, pmd); 1591 1592 if (vma->anon_vma) 1593 anon_vma_unlock_write(vma->anon_vma); 1594 i_mmap_unlock_write(vma->vm_file->f_mapping); 1595 1596 maybe_install_pmd: 1597 /* step 5: install pmd entry */ 1598 result = install_pmd 1599 ? set_huge_pmd(vma, haddr, pmd, hpage) 1600 : SCAN_SUCCEED; 1601 1602 drop_hpage: 1603 unlock_page(hpage); 1604 put_page(hpage); 1605 return result; 1606 1607 abort: 1608 pte_unmap_unlock(start_pte, ptl); 1609 i_mmap_unlock_write(vma->vm_file->f_mapping); 1610 goto drop_hpage; 1611 } 1612 1613 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1614 { 1615 struct mm_slot *slot = &mm_slot->slot; 1616 struct mm_struct *mm = slot->mm; 1617 int i; 1618 1619 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1620 return; 1621 1622 if (!mmap_write_trylock(mm)) 1623 return; 1624 1625 if (unlikely(hpage_collapse_test_exit(mm))) 1626 goto out; 1627 1628 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1629 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1630 1631 out: 1632 mm_slot->nr_pte_mapped_thp = 0; 1633 mmap_write_unlock(mm); 1634 } 1635 1636 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1637 struct mm_struct *target_mm, 1638 unsigned long target_addr, struct page *hpage, 1639 struct collapse_control *cc) 1640 { 1641 struct vm_area_struct *vma; 1642 int target_result = SCAN_FAIL; 1643 1644 i_mmap_lock_write(mapping); 1645 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1646 int result = SCAN_FAIL; 1647 struct mm_struct *mm = NULL; 1648 unsigned long addr = 0; 1649 pmd_t *pmd; 1650 bool is_target = false; 1651 1652 /* 1653 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1654 * got written to. These VMAs are likely not worth investing 1655 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1656 * later. 1657 * 1658 * Note that vma->anon_vma check is racy: it can be set up after 1659 * the check but before we took mmap_lock by the fault path. 1660 * But page lock would prevent establishing any new ptes of the 1661 * page, so we are safe. 1662 * 1663 * An alternative would be drop the check, but check that page 1664 * table is clear before calling pmdp_collapse_flush() under 1665 * ptl. It has higher chance to recover THP for the VMA, but 1666 * has higher cost too. It would also probably require locking 1667 * the anon_vma. 1668 */ 1669 if (READ_ONCE(vma->anon_vma)) { 1670 result = SCAN_PAGE_ANON; 1671 goto next; 1672 } 1673 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1674 if (addr & ~HPAGE_PMD_MASK || 1675 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1676 result = SCAN_VMA_CHECK; 1677 goto next; 1678 } 1679 mm = vma->vm_mm; 1680 is_target = mm == target_mm && addr == target_addr; 1681 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1682 if (result != SCAN_SUCCEED) 1683 goto next; 1684 /* 1685 * We need exclusive mmap_lock to retract page table. 1686 * 1687 * We use trylock due to lock inversion: we need to acquire 1688 * mmap_lock while holding page lock. Fault path does it in 1689 * reverse order. Trylock is a way to avoid deadlock. 1690 * 1691 * Also, it's not MADV_COLLAPSE's job to collapse other 1692 * mappings - let khugepaged take care of them later. 1693 */ 1694 result = SCAN_PTE_MAPPED_HUGEPAGE; 1695 if ((cc->is_khugepaged || is_target) && 1696 mmap_write_trylock(mm)) { 1697 /* 1698 * Re-check whether we have an ->anon_vma, because 1699 * collapse_and_free_pmd() requires that either no 1700 * ->anon_vma exists or the anon_vma is locked. 1701 * We already checked ->anon_vma above, but that check 1702 * is racy because ->anon_vma can be populated under the 1703 * mmap lock in read mode. 1704 */ 1705 if (vma->anon_vma) { 1706 result = SCAN_PAGE_ANON; 1707 goto unlock_next; 1708 } 1709 /* 1710 * When a vma is registered with uffd-wp, we can't 1711 * recycle the pmd pgtable because there can be pte 1712 * markers installed. Skip it only, so the rest mm/vma 1713 * can still have the same file mapped hugely, however 1714 * it'll always mapped in small page size for uffd-wp 1715 * registered ranges. 1716 */ 1717 if (hpage_collapse_test_exit(mm)) { 1718 result = SCAN_ANY_PROCESS; 1719 goto unlock_next; 1720 } 1721 if (userfaultfd_wp(vma)) { 1722 result = SCAN_PTE_UFFD_WP; 1723 goto unlock_next; 1724 } 1725 collapse_and_free_pmd(mm, vma, addr, pmd); 1726 if (!cc->is_khugepaged && is_target) 1727 result = set_huge_pmd(vma, addr, pmd, hpage); 1728 else 1729 result = SCAN_SUCCEED; 1730 1731 unlock_next: 1732 mmap_write_unlock(mm); 1733 goto next; 1734 } 1735 /* 1736 * Calling context will handle target mm/addr. Otherwise, let 1737 * khugepaged try again later. 1738 */ 1739 if (!is_target) { 1740 khugepaged_add_pte_mapped_thp(mm, addr); 1741 continue; 1742 } 1743 next: 1744 if (is_target) 1745 target_result = result; 1746 } 1747 i_mmap_unlock_write(mapping); 1748 return target_result; 1749 } 1750 1751 /** 1752 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1753 * 1754 * @mm: process address space where collapse happens 1755 * @addr: virtual collapse start address 1756 * @file: file that collapse on 1757 * @start: collapse start address 1758 * @cc: collapse context and scratchpad 1759 * 1760 * Basic scheme is simple, details are more complex: 1761 * - allocate and lock a new huge page; 1762 * - scan page cache replacing old pages with the new one 1763 * + swap/gup in pages if necessary; 1764 * + fill in gaps; 1765 * + keep old pages around in case rollback is required; 1766 * - if replacing succeeds: 1767 * + copy data over; 1768 * + free old pages; 1769 * + unlock huge page; 1770 * - if replacing failed; 1771 * + put all pages back and unfreeze them; 1772 * + restore gaps in the page cache; 1773 * + unlock and free huge page; 1774 */ 1775 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1776 struct file *file, pgoff_t start, 1777 struct collapse_control *cc) 1778 { 1779 struct address_space *mapping = file->f_mapping; 1780 struct page *hpage; 1781 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1782 LIST_HEAD(pagelist); 1783 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1784 int nr_none = 0, result = SCAN_SUCCEED; 1785 bool is_shmem = shmem_file(file); 1786 int nr = 0; 1787 1788 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1789 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1790 1791 result = alloc_charge_hpage(&hpage, mm, cc); 1792 if (result != SCAN_SUCCEED) 1793 goto out; 1794 1795 /* 1796 * Ensure we have slots for all the pages in the range. This is 1797 * almost certainly a no-op because most of the pages must be present 1798 */ 1799 do { 1800 xas_lock_irq(&xas); 1801 xas_create_range(&xas); 1802 if (!xas_error(&xas)) 1803 break; 1804 xas_unlock_irq(&xas); 1805 if (!xas_nomem(&xas, GFP_KERNEL)) { 1806 result = SCAN_FAIL; 1807 goto out; 1808 } 1809 } while (1); 1810 1811 __SetPageLocked(hpage); 1812 if (is_shmem) 1813 __SetPageSwapBacked(hpage); 1814 hpage->index = start; 1815 hpage->mapping = mapping; 1816 1817 /* 1818 * At this point the hpage is locked and not up-to-date. 1819 * It's safe to insert it into the page cache, because nobody would 1820 * be able to map it or use it in another way until we unlock it. 1821 */ 1822 1823 xas_set(&xas, start); 1824 for (index = start; index < end; index++) { 1825 struct page *page = xas_next(&xas); 1826 struct folio *folio; 1827 1828 VM_BUG_ON(index != xas.xa_index); 1829 if (is_shmem) { 1830 if (!page) { 1831 /* 1832 * Stop if extent has been truncated or 1833 * hole-punched, and is now completely 1834 * empty. 1835 */ 1836 if (index == start) { 1837 if (!xas_next_entry(&xas, end - 1)) { 1838 result = SCAN_TRUNCATED; 1839 goto xa_locked; 1840 } 1841 xas_set(&xas, index); 1842 } 1843 if (!shmem_charge(mapping->host, 1)) { 1844 result = SCAN_FAIL; 1845 goto xa_locked; 1846 } 1847 xas_store(&xas, hpage); 1848 nr_none++; 1849 continue; 1850 } 1851 1852 if (xa_is_value(page) || !PageUptodate(page)) { 1853 xas_unlock_irq(&xas); 1854 /* swap in or instantiate fallocated page */ 1855 if (shmem_get_folio(mapping->host, index, 1856 &folio, SGP_NOALLOC)) { 1857 result = SCAN_FAIL; 1858 goto xa_unlocked; 1859 } 1860 page = folio_file_page(folio, index); 1861 } else if (trylock_page(page)) { 1862 get_page(page); 1863 xas_unlock_irq(&xas); 1864 } else { 1865 result = SCAN_PAGE_LOCK; 1866 goto xa_locked; 1867 } 1868 } else { /* !is_shmem */ 1869 if (!page || xa_is_value(page)) { 1870 xas_unlock_irq(&xas); 1871 page_cache_sync_readahead(mapping, &file->f_ra, 1872 file, index, 1873 end - index); 1874 /* drain pagevecs to help isolate_lru_page() */ 1875 lru_add_drain(); 1876 page = find_lock_page(mapping, index); 1877 if (unlikely(page == NULL)) { 1878 result = SCAN_FAIL; 1879 goto xa_unlocked; 1880 } 1881 } else if (PageDirty(page)) { 1882 /* 1883 * khugepaged only works on read-only fd, 1884 * so this page is dirty because it hasn't 1885 * been flushed since first write. There 1886 * won't be new dirty pages. 1887 * 1888 * Trigger async flush here and hope the 1889 * writeback is done when khugepaged 1890 * revisits this page. 1891 * 1892 * This is a one-off situation. We are not 1893 * forcing writeback in loop. 1894 */ 1895 xas_unlock_irq(&xas); 1896 filemap_flush(mapping); 1897 result = SCAN_FAIL; 1898 goto xa_unlocked; 1899 } else if (PageWriteback(page)) { 1900 xas_unlock_irq(&xas); 1901 result = SCAN_FAIL; 1902 goto xa_unlocked; 1903 } else if (trylock_page(page)) { 1904 get_page(page); 1905 xas_unlock_irq(&xas); 1906 } else { 1907 result = SCAN_PAGE_LOCK; 1908 goto xa_locked; 1909 } 1910 } 1911 1912 /* 1913 * The page must be locked, so we can drop the i_pages lock 1914 * without racing with truncate. 1915 */ 1916 VM_BUG_ON_PAGE(!PageLocked(page), page); 1917 1918 /* make sure the page is up to date */ 1919 if (unlikely(!PageUptodate(page))) { 1920 result = SCAN_FAIL; 1921 goto out_unlock; 1922 } 1923 1924 /* 1925 * If file was truncated then extended, or hole-punched, before 1926 * we locked the first page, then a THP might be there already. 1927 * This will be discovered on the first iteration. 1928 */ 1929 if (PageTransCompound(page)) { 1930 struct page *head = compound_head(page); 1931 1932 result = compound_order(head) == HPAGE_PMD_ORDER && 1933 head->index == start 1934 /* Maybe PMD-mapped */ 1935 ? SCAN_PTE_MAPPED_HUGEPAGE 1936 : SCAN_PAGE_COMPOUND; 1937 goto out_unlock; 1938 } 1939 1940 folio = page_folio(page); 1941 1942 if (folio_mapping(folio) != mapping) { 1943 result = SCAN_TRUNCATED; 1944 goto out_unlock; 1945 } 1946 1947 if (!is_shmem && (folio_test_dirty(folio) || 1948 folio_test_writeback(folio))) { 1949 /* 1950 * khugepaged only works on read-only fd, so this 1951 * page is dirty because it hasn't been flushed 1952 * since first write. 1953 */ 1954 result = SCAN_FAIL; 1955 goto out_unlock; 1956 } 1957 1958 if (!folio_isolate_lru(folio)) { 1959 result = SCAN_DEL_PAGE_LRU; 1960 goto out_unlock; 1961 } 1962 1963 if (folio_has_private(folio) && 1964 !filemap_release_folio(folio, GFP_KERNEL)) { 1965 result = SCAN_PAGE_HAS_PRIVATE; 1966 folio_putback_lru(folio); 1967 goto out_unlock; 1968 } 1969 1970 if (folio_mapped(folio)) 1971 try_to_unmap(folio, 1972 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1973 1974 xas_lock_irq(&xas); 1975 xas_set(&xas, index); 1976 1977 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1978 1979 /* 1980 * The page is expected to have page_count() == 3: 1981 * - we hold a pin on it; 1982 * - one reference from page cache; 1983 * - one from isolate_lru_page; 1984 */ 1985 if (!page_ref_freeze(page, 3)) { 1986 result = SCAN_PAGE_COUNT; 1987 xas_unlock_irq(&xas); 1988 putback_lru_page(page); 1989 goto out_unlock; 1990 } 1991 1992 /* 1993 * Add the page to the list to be able to undo the collapse if 1994 * something go wrong. 1995 */ 1996 list_add_tail(&page->lru, &pagelist); 1997 1998 /* Finally, replace with the new page. */ 1999 xas_store(&xas, hpage); 2000 continue; 2001 out_unlock: 2002 unlock_page(page); 2003 put_page(page); 2004 goto xa_unlocked; 2005 } 2006 nr = thp_nr_pages(hpage); 2007 2008 if (is_shmem) 2009 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2010 else { 2011 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2012 filemap_nr_thps_inc(mapping); 2013 /* 2014 * Paired with smp_mb() in do_dentry_open() to ensure 2015 * i_writecount is up to date and the update to nr_thps is 2016 * visible. Ensures the page cache will be truncated if the 2017 * file is opened writable. 2018 */ 2019 smp_mb(); 2020 if (inode_is_open_for_write(mapping->host)) { 2021 result = SCAN_FAIL; 2022 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 2023 filemap_nr_thps_dec(mapping); 2024 goto xa_locked; 2025 } 2026 } 2027 2028 if (nr_none) { 2029 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2030 /* nr_none is always 0 for non-shmem. */ 2031 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2032 } 2033 2034 /* Join all the small entries into a single multi-index entry */ 2035 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2036 xas_store(&xas, hpage); 2037 xa_locked: 2038 xas_unlock_irq(&xas); 2039 xa_unlocked: 2040 2041 /* 2042 * If collapse is successful, flush must be done now before copying. 2043 * If collapse is unsuccessful, does flush actually need to be done? 2044 * Do it anyway, to clear the state. 2045 */ 2046 try_to_unmap_flush(); 2047 2048 if (result == SCAN_SUCCEED) { 2049 struct page *page, *tmp; 2050 struct folio *folio; 2051 2052 /* 2053 * Replacing old pages with new one has succeeded, now we 2054 * need to copy the content and free the old pages. 2055 */ 2056 index = start; 2057 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2058 while (index < page->index) { 2059 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2060 index++; 2061 } 2062 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2063 page); 2064 list_del(&page->lru); 2065 page->mapping = NULL; 2066 page_ref_unfreeze(page, 1); 2067 ClearPageActive(page); 2068 ClearPageUnevictable(page); 2069 unlock_page(page); 2070 put_page(page); 2071 index++; 2072 } 2073 while (index < end) { 2074 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2075 index++; 2076 } 2077 2078 folio = page_folio(hpage); 2079 folio_mark_uptodate(folio); 2080 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2081 2082 if (is_shmem) 2083 folio_mark_dirty(folio); 2084 folio_add_lru(folio); 2085 2086 /* 2087 * Remove pte page tables, so we can re-fault the page as huge. 2088 */ 2089 result = retract_page_tables(mapping, start, mm, addr, hpage, 2090 cc); 2091 unlock_page(hpage); 2092 hpage = NULL; 2093 } else { 2094 struct page *page; 2095 2096 /* Something went wrong: roll back page cache changes */ 2097 xas_lock_irq(&xas); 2098 if (nr_none) { 2099 mapping->nrpages -= nr_none; 2100 shmem_uncharge(mapping->host, nr_none); 2101 } 2102 2103 xas_set(&xas, start); 2104 xas_for_each(&xas, page, end - 1) { 2105 page = list_first_entry_or_null(&pagelist, 2106 struct page, lru); 2107 if (!page || xas.xa_index < page->index) { 2108 if (!nr_none) 2109 break; 2110 nr_none--; 2111 /* Put holes back where they were */ 2112 xas_store(&xas, NULL); 2113 continue; 2114 } 2115 2116 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2117 2118 /* Unfreeze the page. */ 2119 list_del(&page->lru); 2120 page_ref_unfreeze(page, 2); 2121 xas_store(&xas, page); 2122 xas_pause(&xas); 2123 xas_unlock_irq(&xas); 2124 unlock_page(page); 2125 putback_lru_page(page); 2126 xas_lock_irq(&xas); 2127 } 2128 VM_BUG_ON(nr_none); 2129 xas_unlock_irq(&xas); 2130 2131 hpage->mapping = NULL; 2132 } 2133 2134 if (hpage) 2135 unlock_page(hpage); 2136 out: 2137 VM_BUG_ON(!list_empty(&pagelist)); 2138 if (hpage) 2139 put_page(hpage); 2140 2141 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2142 return result; 2143 } 2144 2145 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2146 struct file *file, pgoff_t start, 2147 struct collapse_control *cc) 2148 { 2149 struct page *page = NULL; 2150 struct address_space *mapping = file->f_mapping; 2151 XA_STATE(xas, &mapping->i_pages, start); 2152 int present, swap; 2153 int node = NUMA_NO_NODE; 2154 int result = SCAN_SUCCEED; 2155 2156 present = 0; 2157 swap = 0; 2158 memset(cc->node_load, 0, sizeof(cc->node_load)); 2159 nodes_clear(cc->alloc_nmask); 2160 rcu_read_lock(); 2161 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2162 if (xas_retry(&xas, page)) 2163 continue; 2164 2165 if (xa_is_value(page)) { 2166 ++swap; 2167 if (cc->is_khugepaged && 2168 swap > khugepaged_max_ptes_swap) { 2169 result = SCAN_EXCEED_SWAP_PTE; 2170 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2171 break; 2172 } 2173 continue; 2174 } 2175 2176 /* 2177 * TODO: khugepaged should compact smaller compound pages 2178 * into a PMD sized page 2179 */ 2180 if (PageTransCompound(page)) { 2181 struct page *head = compound_head(page); 2182 2183 result = compound_order(head) == HPAGE_PMD_ORDER && 2184 head->index == start 2185 /* Maybe PMD-mapped */ 2186 ? SCAN_PTE_MAPPED_HUGEPAGE 2187 : SCAN_PAGE_COMPOUND; 2188 /* 2189 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2190 * by the caller won't touch the page cache, and so 2191 * it's safe to skip LRU and refcount checks before 2192 * returning. 2193 */ 2194 break; 2195 } 2196 2197 node = page_to_nid(page); 2198 if (hpage_collapse_scan_abort(node, cc)) { 2199 result = SCAN_SCAN_ABORT; 2200 break; 2201 } 2202 cc->node_load[node]++; 2203 2204 if (!PageLRU(page)) { 2205 result = SCAN_PAGE_LRU; 2206 break; 2207 } 2208 2209 if (page_count(page) != 2210 1 + page_mapcount(page) + page_has_private(page)) { 2211 result = SCAN_PAGE_COUNT; 2212 break; 2213 } 2214 2215 /* 2216 * We probably should check if the page is referenced here, but 2217 * nobody would transfer pte_young() to PageReferenced() for us. 2218 * And rmap walk here is just too costly... 2219 */ 2220 2221 present++; 2222 2223 if (need_resched()) { 2224 xas_pause(&xas); 2225 cond_resched_rcu(); 2226 } 2227 } 2228 rcu_read_unlock(); 2229 2230 if (result == SCAN_SUCCEED) { 2231 if (cc->is_khugepaged && 2232 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2233 result = SCAN_EXCEED_NONE_PTE; 2234 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2235 } else { 2236 result = collapse_file(mm, addr, file, start, cc); 2237 } 2238 } 2239 2240 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2241 return result; 2242 } 2243 #else 2244 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2245 struct file *file, pgoff_t start, 2246 struct collapse_control *cc) 2247 { 2248 BUILD_BUG(); 2249 } 2250 2251 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2252 { 2253 } 2254 2255 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2256 unsigned long addr) 2257 { 2258 return false; 2259 } 2260 #endif 2261 2262 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2263 struct collapse_control *cc) 2264 __releases(&khugepaged_mm_lock) 2265 __acquires(&khugepaged_mm_lock) 2266 { 2267 struct vma_iterator vmi; 2268 struct khugepaged_mm_slot *mm_slot; 2269 struct mm_slot *slot; 2270 struct mm_struct *mm; 2271 struct vm_area_struct *vma; 2272 int progress = 0; 2273 2274 VM_BUG_ON(!pages); 2275 lockdep_assert_held(&khugepaged_mm_lock); 2276 *result = SCAN_FAIL; 2277 2278 if (khugepaged_scan.mm_slot) { 2279 mm_slot = khugepaged_scan.mm_slot; 2280 slot = &mm_slot->slot; 2281 } else { 2282 slot = list_entry(khugepaged_scan.mm_head.next, 2283 struct mm_slot, mm_node); 2284 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2285 khugepaged_scan.address = 0; 2286 khugepaged_scan.mm_slot = mm_slot; 2287 } 2288 spin_unlock(&khugepaged_mm_lock); 2289 khugepaged_collapse_pte_mapped_thps(mm_slot); 2290 2291 mm = slot->mm; 2292 /* 2293 * Don't wait for semaphore (to avoid long wait times). Just move to 2294 * the next mm on the list. 2295 */ 2296 vma = NULL; 2297 if (unlikely(!mmap_read_trylock(mm))) 2298 goto breakouterloop_mmap_lock; 2299 2300 progress++; 2301 if (unlikely(hpage_collapse_test_exit(mm))) 2302 goto breakouterloop; 2303 2304 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2305 for_each_vma(vmi, vma) { 2306 unsigned long hstart, hend; 2307 2308 cond_resched(); 2309 if (unlikely(hpage_collapse_test_exit(mm))) { 2310 progress++; 2311 break; 2312 } 2313 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2314 skip: 2315 progress++; 2316 continue; 2317 } 2318 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2319 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2320 if (khugepaged_scan.address > hend) 2321 goto skip; 2322 if (khugepaged_scan.address < hstart) 2323 khugepaged_scan.address = hstart; 2324 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2325 2326 while (khugepaged_scan.address < hend) { 2327 bool mmap_locked = true; 2328 2329 cond_resched(); 2330 if (unlikely(hpage_collapse_test_exit(mm))) 2331 goto breakouterloop; 2332 2333 VM_BUG_ON(khugepaged_scan.address < hstart || 2334 khugepaged_scan.address + HPAGE_PMD_SIZE > 2335 hend); 2336 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2337 struct file *file = get_file(vma->vm_file); 2338 pgoff_t pgoff = linear_page_index(vma, 2339 khugepaged_scan.address); 2340 2341 mmap_read_unlock(mm); 2342 *result = hpage_collapse_scan_file(mm, 2343 khugepaged_scan.address, 2344 file, pgoff, cc); 2345 mmap_locked = false; 2346 fput(file); 2347 } else { 2348 *result = hpage_collapse_scan_pmd(mm, vma, 2349 khugepaged_scan.address, 2350 &mmap_locked, 2351 cc); 2352 } 2353 switch (*result) { 2354 case SCAN_PTE_MAPPED_HUGEPAGE: { 2355 pmd_t *pmd; 2356 2357 *result = find_pmd_or_thp_or_none(mm, 2358 khugepaged_scan.address, 2359 &pmd); 2360 if (*result != SCAN_SUCCEED) 2361 break; 2362 if (!khugepaged_add_pte_mapped_thp(mm, 2363 khugepaged_scan.address)) 2364 break; 2365 } fallthrough; 2366 case SCAN_SUCCEED: 2367 ++khugepaged_pages_collapsed; 2368 break; 2369 default: 2370 break; 2371 } 2372 2373 /* move to next address */ 2374 khugepaged_scan.address += HPAGE_PMD_SIZE; 2375 progress += HPAGE_PMD_NR; 2376 if (!mmap_locked) 2377 /* 2378 * We released mmap_lock so break loop. Note 2379 * that we drop mmap_lock before all hugepage 2380 * allocations, so if allocation fails, we are 2381 * guaranteed to break here and report the 2382 * correct result back to caller. 2383 */ 2384 goto breakouterloop_mmap_lock; 2385 if (progress >= pages) 2386 goto breakouterloop; 2387 } 2388 } 2389 breakouterloop: 2390 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2391 breakouterloop_mmap_lock: 2392 2393 spin_lock(&khugepaged_mm_lock); 2394 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2395 /* 2396 * Release the current mm_slot if this mm is about to die, or 2397 * if we scanned all vmas of this mm. 2398 */ 2399 if (hpage_collapse_test_exit(mm) || !vma) { 2400 /* 2401 * Make sure that if mm_users is reaching zero while 2402 * khugepaged runs here, khugepaged_exit will find 2403 * mm_slot not pointing to the exiting mm. 2404 */ 2405 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2406 slot = list_entry(slot->mm_node.next, 2407 struct mm_slot, mm_node); 2408 khugepaged_scan.mm_slot = 2409 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2410 khugepaged_scan.address = 0; 2411 } else { 2412 khugepaged_scan.mm_slot = NULL; 2413 khugepaged_full_scans++; 2414 } 2415 2416 collect_mm_slot(mm_slot); 2417 } 2418 2419 return progress; 2420 } 2421 2422 static int khugepaged_has_work(void) 2423 { 2424 return !list_empty(&khugepaged_scan.mm_head) && 2425 hugepage_flags_enabled(); 2426 } 2427 2428 static int khugepaged_wait_event(void) 2429 { 2430 return !list_empty(&khugepaged_scan.mm_head) || 2431 kthread_should_stop(); 2432 } 2433 2434 static void khugepaged_do_scan(struct collapse_control *cc) 2435 { 2436 unsigned int progress = 0, pass_through_head = 0; 2437 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2438 bool wait = true; 2439 int result = SCAN_SUCCEED; 2440 2441 lru_add_drain_all(); 2442 2443 while (true) { 2444 cond_resched(); 2445 2446 if (unlikely(kthread_should_stop() || try_to_freeze())) 2447 break; 2448 2449 spin_lock(&khugepaged_mm_lock); 2450 if (!khugepaged_scan.mm_slot) 2451 pass_through_head++; 2452 if (khugepaged_has_work() && 2453 pass_through_head < 2) 2454 progress += khugepaged_scan_mm_slot(pages - progress, 2455 &result, cc); 2456 else 2457 progress = pages; 2458 spin_unlock(&khugepaged_mm_lock); 2459 2460 if (progress >= pages) 2461 break; 2462 2463 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2464 /* 2465 * If fail to allocate the first time, try to sleep for 2466 * a while. When hit again, cancel the scan. 2467 */ 2468 if (!wait) 2469 break; 2470 wait = false; 2471 khugepaged_alloc_sleep(); 2472 } 2473 } 2474 } 2475 2476 static bool khugepaged_should_wakeup(void) 2477 { 2478 return kthread_should_stop() || 2479 time_after_eq(jiffies, khugepaged_sleep_expire); 2480 } 2481 2482 static void khugepaged_wait_work(void) 2483 { 2484 if (khugepaged_has_work()) { 2485 const unsigned long scan_sleep_jiffies = 2486 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2487 2488 if (!scan_sleep_jiffies) 2489 return; 2490 2491 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2492 wait_event_freezable_timeout(khugepaged_wait, 2493 khugepaged_should_wakeup(), 2494 scan_sleep_jiffies); 2495 return; 2496 } 2497 2498 if (hugepage_flags_enabled()) 2499 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2500 } 2501 2502 static int khugepaged(void *none) 2503 { 2504 struct khugepaged_mm_slot *mm_slot; 2505 2506 set_freezable(); 2507 set_user_nice(current, MAX_NICE); 2508 2509 while (!kthread_should_stop()) { 2510 khugepaged_do_scan(&khugepaged_collapse_control); 2511 khugepaged_wait_work(); 2512 } 2513 2514 spin_lock(&khugepaged_mm_lock); 2515 mm_slot = khugepaged_scan.mm_slot; 2516 khugepaged_scan.mm_slot = NULL; 2517 if (mm_slot) 2518 collect_mm_slot(mm_slot); 2519 spin_unlock(&khugepaged_mm_lock); 2520 return 0; 2521 } 2522 2523 static void set_recommended_min_free_kbytes(void) 2524 { 2525 struct zone *zone; 2526 int nr_zones = 0; 2527 unsigned long recommended_min; 2528 2529 if (!hugepage_flags_enabled()) { 2530 calculate_min_free_kbytes(); 2531 goto update_wmarks; 2532 } 2533 2534 for_each_populated_zone(zone) { 2535 /* 2536 * We don't need to worry about fragmentation of 2537 * ZONE_MOVABLE since it only has movable pages. 2538 */ 2539 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2540 continue; 2541 2542 nr_zones++; 2543 } 2544 2545 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2546 recommended_min = pageblock_nr_pages * nr_zones * 2; 2547 2548 /* 2549 * Make sure that on average at least two pageblocks are almost free 2550 * of another type, one for a migratetype to fall back to and a 2551 * second to avoid subsequent fallbacks of other types There are 3 2552 * MIGRATE_TYPES we care about. 2553 */ 2554 recommended_min += pageblock_nr_pages * nr_zones * 2555 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2556 2557 /* don't ever allow to reserve more than 5% of the lowmem */ 2558 recommended_min = min(recommended_min, 2559 (unsigned long) nr_free_buffer_pages() / 20); 2560 recommended_min <<= (PAGE_SHIFT-10); 2561 2562 if (recommended_min > min_free_kbytes) { 2563 if (user_min_free_kbytes >= 0) 2564 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2565 min_free_kbytes, recommended_min); 2566 2567 min_free_kbytes = recommended_min; 2568 } 2569 2570 update_wmarks: 2571 setup_per_zone_wmarks(); 2572 } 2573 2574 int start_stop_khugepaged(void) 2575 { 2576 int err = 0; 2577 2578 mutex_lock(&khugepaged_mutex); 2579 if (hugepage_flags_enabled()) { 2580 if (!khugepaged_thread) 2581 khugepaged_thread = kthread_run(khugepaged, NULL, 2582 "khugepaged"); 2583 if (IS_ERR(khugepaged_thread)) { 2584 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2585 err = PTR_ERR(khugepaged_thread); 2586 khugepaged_thread = NULL; 2587 goto fail; 2588 } 2589 2590 if (!list_empty(&khugepaged_scan.mm_head)) 2591 wake_up_interruptible(&khugepaged_wait); 2592 } else if (khugepaged_thread) { 2593 kthread_stop(khugepaged_thread); 2594 khugepaged_thread = NULL; 2595 } 2596 set_recommended_min_free_kbytes(); 2597 fail: 2598 mutex_unlock(&khugepaged_mutex); 2599 return err; 2600 } 2601 2602 void khugepaged_min_free_kbytes_update(void) 2603 { 2604 mutex_lock(&khugepaged_mutex); 2605 if (hugepage_flags_enabled() && khugepaged_thread) 2606 set_recommended_min_free_kbytes(); 2607 mutex_unlock(&khugepaged_mutex); 2608 } 2609 2610 bool current_is_khugepaged(void) 2611 { 2612 return kthread_func(current) == khugepaged; 2613 } 2614 2615 static int madvise_collapse_errno(enum scan_result r) 2616 { 2617 /* 2618 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2619 * actionable feedback to caller, so they may take an appropriate 2620 * fallback measure depending on the nature of the failure. 2621 */ 2622 switch (r) { 2623 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2624 return -ENOMEM; 2625 case SCAN_CGROUP_CHARGE_FAIL: 2626 return -EBUSY; 2627 /* Resource temporary unavailable - trying again might succeed */ 2628 case SCAN_PAGE_COUNT: 2629 case SCAN_PAGE_LOCK: 2630 case SCAN_PAGE_LRU: 2631 case SCAN_DEL_PAGE_LRU: 2632 return -EAGAIN; 2633 /* 2634 * Other: Trying again likely not to succeed / error intrinsic to 2635 * specified memory range. khugepaged likely won't be able to collapse 2636 * either. 2637 */ 2638 default: 2639 return -EINVAL; 2640 } 2641 } 2642 2643 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2644 unsigned long start, unsigned long end) 2645 { 2646 struct collapse_control *cc; 2647 struct mm_struct *mm = vma->vm_mm; 2648 unsigned long hstart, hend, addr; 2649 int thps = 0, last_fail = SCAN_FAIL; 2650 bool mmap_locked = true; 2651 2652 BUG_ON(vma->vm_start > start); 2653 BUG_ON(vma->vm_end < end); 2654 2655 *prev = vma; 2656 2657 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2658 return -EINVAL; 2659 2660 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2661 if (!cc) 2662 return -ENOMEM; 2663 cc->is_khugepaged = false; 2664 2665 mmgrab(mm); 2666 lru_add_drain_all(); 2667 2668 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2669 hend = end & HPAGE_PMD_MASK; 2670 2671 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2672 int result = SCAN_FAIL; 2673 2674 if (!mmap_locked) { 2675 cond_resched(); 2676 mmap_read_lock(mm); 2677 mmap_locked = true; 2678 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2679 cc); 2680 if (result != SCAN_SUCCEED) { 2681 last_fail = result; 2682 goto out_nolock; 2683 } 2684 2685 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2686 } 2687 mmap_assert_locked(mm); 2688 memset(cc->node_load, 0, sizeof(cc->node_load)); 2689 nodes_clear(cc->alloc_nmask); 2690 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2691 struct file *file = get_file(vma->vm_file); 2692 pgoff_t pgoff = linear_page_index(vma, addr); 2693 2694 mmap_read_unlock(mm); 2695 mmap_locked = false; 2696 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2697 cc); 2698 fput(file); 2699 } else { 2700 result = hpage_collapse_scan_pmd(mm, vma, addr, 2701 &mmap_locked, cc); 2702 } 2703 if (!mmap_locked) 2704 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2705 2706 handle_result: 2707 switch (result) { 2708 case SCAN_SUCCEED: 2709 case SCAN_PMD_MAPPED: 2710 ++thps; 2711 break; 2712 case SCAN_PTE_MAPPED_HUGEPAGE: 2713 BUG_ON(mmap_locked); 2714 BUG_ON(*prev); 2715 mmap_write_lock(mm); 2716 result = collapse_pte_mapped_thp(mm, addr, true); 2717 mmap_write_unlock(mm); 2718 goto handle_result; 2719 /* Whitelisted set of results where continuing OK */ 2720 case SCAN_PMD_NULL: 2721 case SCAN_PTE_NON_PRESENT: 2722 case SCAN_PTE_UFFD_WP: 2723 case SCAN_PAGE_RO: 2724 case SCAN_LACK_REFERENCED_PAGE: 2725 case SCAN_PAGE_NULL: 2726 case SCAN_PAGE_COUNT: 2727 case SCAN_PAGE_LOCK: 2728 case SCAN_PAGE_COMPOUND: 2729 case SCAN_PAGE_LRU: 2730 case SCAN_DEL_PAGE_LRU: 2731 last_fail = result; 2732 break; 2733 default: 2734 last_fail = result; 2735 /* Other error, exit */ 2736 goto out_maybelock; 2737 } 2738 } 2739 2740 out_maybelock: 2741 /* Caller expects us to hold mmap_lock on return */ 2742 if (!mmap_locked) 2743 mmap_read_lock(mm); 2744 out_nolock: 2745 mmap_assert_locked(mm); 2746 mmdrop(mm); 2747 kfree(cc); 2748 2749 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2750 : madvise_collapse_errno(last_fail); 2751 } 2752