xref: /openbmc/linux/mm/khugepaged.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27 
28 enum scan_result {
29 	SCAN_FAIL,
30 	SCAN_SUCCEED,
31 	SCAN_PMD_NULL,
32 	SCAN_PMD_NONE,
33 	SCAN_PMD_MAPPED,
34 	SCAN_EXCEED_NONE_PTE,
35 	SCAN_EXCEED_SWAP_PTE,
36 	SCAN_EXCEED_SHARED_PTE,
37 	SCAN_PTE_NON_PRESENT,
38 	SCAN_PTE_UFFD_WP,
39 	SCAN_PTE_MAPPED_HUGEPAGE,
40 	SCAN_PAGE_RO,
41 	SCAN_LACK_REFERENCED_PAGE,
42 	SCAN_PAGE_NULL,
43 	SCAN_SCAN_ABORT,
44 	SCAN_PAGE_COUNT,
45 	SCAN_PAGE_LRU,
46 	SCAN_PAGE_LOCK,
47 	SCAN_PAGE_ANON,
48 	SCAN_PAGE_COMPOUND,
49 	SCAN_ANY_PROCESS,
50 	SCAN_VMA_NULL,
51 	SCAN_VMA_CHECK,
52 	SCAN_ADDRESS_RANGE,
53 	SCAN_DEL_PAGE_LRU,
54 	SCAN_ALLOC_HUGE_PAGE_FAIL,
55 	SCAN_CGROUP_CHARGE_FAIL,
56 	SCAN_TRUNCATED,
57 	SCAN_PAGE_HAS_PRIVATE,
58 };
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62 
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65 
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77  * default collapse hugepages if there is at least one pte mapped like
78  * it would have happened if the vma was large enough during page
79  * fault.
80  *
81  * Note that these are only respected if collapse was initiated by khugepaged.
82  */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86 
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89 
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91 
92 #define MAX_PTE_MAPPED_THP 8
93 
94 struct collapse_control {
95 	bool is_khugepaged;
96 
97 	/* Num pages scanned per node */
98 	u32 node_load[MAX_NUMNODES];
99 
100 	/* Last target selected in hpage_collapse_find_target_node() */
101 	int last_target_node;
102 };
103 
104 /**
105  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106  * @slot: hash lookup from mm to mm_slot
107  * @nr_pte_mapped_thp: number of pte mapped THP
108  * @pte_mapped_thp: address array corresponding pte mapped THP
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 
113 	/* pte-mapped THP in this mm */
114 	int nr_pte_mapped_thp;
115 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117 
118 /**
119  * struct khugepaged_scan - cursor for scanning
120  * @mm_head: the head of the mm list to scan
121  * @mm_slot: the current mm_slot we are scanning
122  * @address: the next address inside that to be scanned
123  *
124  * There is only the one khugepaged_scan instance of this cursor structure.
125  */
126 struct khugepaged_scan {
127 	struct list_head mm_head;
128 	struct khugepaged_mm_slot *mm_slot;
129 	unsigned long address;
130 };
131 
132 static struct khugepaged_scan khugepaged_scan = {
133 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135 
136 #ifdef CONFIG_SYSFS
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138 					 struct kobj_attribute *attr,
139 					 char *buf)
140 {
141 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143 
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145 					  struct kobj_attribute *attr,
146 					  const char *buf, size_t count)
147 {
148 	unsigned int msecs;
149 	int err;
150 
151 	err = kstrtouint(buf, 10, &msecs);
152 	if (err)
153 		return -EINVAL;
154 
155 	khugepaged_scan_sleep_millisecs = msecs;
156 	khugepaged_sleep_expire = 0;
157 	wake_up_interruptible(&khugepaged_wait);
158 
159 	return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162 	__ATTR_RW(scan_sleep_millisecs);
163 
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165 					  struct kobj_attribute *attr,
166 					  char *buf)
167 {
168 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170 
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172 					   struct kobj_attribute *attr,
173 					   const char *buf, size_t count)
174 {
175 	unsigned int msecs;
176 	int err;
177 
178 	err = kstrtouint(buf, 10, &msecs);
179 	if (err)
180 		return -EINVAL;
181 
182 	khugepaged_alloc_sleep_millisecs = msecs;
183 	khugepaged_sleep_expire = 0;
184 	wake_up_interruptible(&khugepaged_wait);
185 
186 	return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189 	__ATTR_RW(alloc_sleep_millisecs);
190 
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192 				  struct kobj_attribute *attr,
193 				  char *buf)
194 {
195 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198 				   struct kobj_attribute *attr,
199 				   const char *buf, size_t count)
200 {
201 	unsigned int pages;
202 	int err;
203 
204 	err = kstrtouint(buf, 10, &pages);
205 	if (err || !pages)
206 		return -EINVAL;
207 
208 	khugepaged_pages_to_scan = pages;
209 
210 	return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213 	__ATTR_RW(pages_to_scan);
214 
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216 				    struct kobj_attribute *attr,
217 				    char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222 	__ATTR_RO(pages_collapsed);
223 
224 static ssize_t full_scans_show(struct kobject *kobj,
225 			       struct kobj_attribute *attr,
226 			       char *buf)
227 {
228 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231 	__ATTR_RO(full_scans);
232 
233 static ssize_t defrag_show(struct kobject *kobj,
234 			   struct kobj_attribute *attr, char *buf)
235 {
236 	return single_hugepage_flag_show(kobj, attr, buf,
237 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
239 static ssize_t defrag_store(struct kobject *kobj,
240 			    struct kobj_attribute *attr,
241 			    const char *buf, size_t count)
242 {
243 	return single_hugepage_flag_store(kobj, attr, buf, count,
244 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247 	__ATTR_RW(defrag);
248 
249 /*
250  * max_ptes_none controls if khugepaged should collapse hugepages over
251  * any unmapped ptes in turn potentially increasing the memory
252  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253  * reduce the available free memory in the system as it
254  * runs. Increasing max_ptes_none will instead potentially reduce the
255  * free memory in the system during the khugepaged scan.
256  */
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258 				  struct kobj_attribute *attr,
259 				  char *buf)
260 {
261 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264 				   struct kobj_attribute *attr,
265 				   const char *buf, size_t count)
266 {
267 	int err;
268 	unsigned long max_ptes_none;
269 
270 	err = kstrtoul(buf, 10, &max_ptes_none);
271 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272 		return -EINVAL;
273 
274 	khugepaged_max_ptes_none = max_ptes_none;
275 
276 	return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279 	__ATTR_RW(max_ptes_none);
280 
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282 				  struct kobj_attribute *attr,
283 				  char *buf)
284 {
285 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287 
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289 				   struct kobj_attribute *attr,
290 				   const char *buf, size_t count)
291 {
292 	int err;
293 	unsigned long max_ptes_swap;
294 
295 	err  = kstrtoul(buf, 10, &max_ptes_swap);
296 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297 		return -EINVAL;
298 
299 	khugepaged_max_ptes_swap = max_ptes_swap;
300 
301 	return count;
302 }
303 
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305 	__ATTR_RW(max_ptes_swap);
306 
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308 				    struct kobj_attribute *attr,
309 				    char *buf)
310 {
311 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313 
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315 				     struct kobj_attribute *attr,
316 				     const char *buf, size_t count)
317 {
318 	int err;
319 	unsigned long max_ptes_shared;
320 
321 	err  = kstrtoul(buf, 10, &max_ptes_shared);
322 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323 		return -EINVAL;
324 
325 	khugepaged_max_ptes_shared = max_ptes_shared;
326 
327 	return count;
328 }
329 
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331 	__ATTR_RW(max_ptes_shared);
332 
333 static struct attribute *khugepaged_attr[] = {
334 	&khugepaged_defrag_attr.attr,
335 	&khugepaged_max_ptes_none_attr.attr,
336 	&khugepaged_max_ptes_swap_attr.attr,
337 	&khugepaged_max_ptes_shared_attr.attr,
338 	&pages_to_scan_attr.attr,
339 	&pages_collapsed_attr.attr,
340 	&full_scans_attr.attr,
341 	&scan_sleep_millisecs_attr.attr,
342 	&alloc_sleep_millisecs_attr.attr,
343 	NULL,
344 };
345 
346 struct attribute_group khugepaged_attr_group = {
347 	.attrs = khugepaged_attr,
348 	.name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351 
352 int hugepage_madvise(struct vm_area_struct *vma,
353 		     unsigned long *vm_flags, int advice)
354 {
355 	switch (advice) {
356 	case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358 		/*
359 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360 		 * can't handle this properly after s390_enable_sie, so we simply
361 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
362 		 */
363 		if (mm_has_pgste(vma->vm_mm))
364 			return 0;
365 #endif
366 		*vm_flags &= ~VM_NOHUGEPAGE;
367 		*vm_flags |= VM_HUGEPAGE;
368 		/*
369 		 * If the vma become good for khugepaged to scan,
370 		 * register it here without waiting a page fault that
371 		 * may not happen any time soon.
372 		 */
373 		khugepaged_enter_vma(vma, *vm_flags);
374 		break;
375 	case MADV_NOHUGEPAGE:
376 		*vm_flags &= ~VM_HUGEPAGE;
377 		*vm_flags |= VM_NOHUGEPAGE;
378 		/*
379 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380 		 * this vma even if we leave the mm registered in khugepaged if
381 		 * it got registered before VM_NOHUGEPAGE was set.
382 		 */
383 		break;
384 	}
385 
386 	return 0;
387 }
388 
389 int __init khugepaged_init(void)
390 {
391 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392 					  sizeof(struct khugepaged_mm_slot),
393 					  __alignof__(struct khugepaged_mm_slot),
394 					  0, NULL);
395 	if (!mm_slot_cache)
396 		return -ENOMEM;
397 
398 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 
403 	return 0;
404 }
405 
406 void __init khugepaged_destroy(void)
407 {
408 	kmem_cache_destroy(mm_slot_cache);
409 }
410 
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413 	return atomic_read(&mm->mm_users) == 0;
414 }
415 
416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418 	struct khugepaged_mm_slot *mm_slot;
419 	struct mm_slot *slot;
420 	int wakeup;
421 
422 	mm_slot = mm_slot_alloc(mm_slot_cache);
423 	if (!mm_slot)
424 		return;
425 
426 	slot = &mm_slot->slot;
427 
428 	/* __khugepaged_exit() must not run from under us */
429 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431 		mm_slot_free(mm_slot_cache, mm_slot);
432 		return;
433 	}
434 
435 	spin_lock(&khugepaged_mm_lock);
436 	mm_slot_insert(mm_slots_hash, mm, slot);
437 	/*
438 	 * Insert just behind the scanning cursor, to let the area settle
439 	 * down a little.
440 	 */
441 	wakeup = list_empty(&khugepaged_scan.mm_head);
442 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443 	spin_unlock(&khugepaged_mm_lock);
444 
445 	mmgrab(mm);
446 	if (wakeup)
447 		wake_up_interruptible(&khugepaged_wait);
448 }
449 
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451 			  unsigned long vm_flags)
452 {
453 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454 	    hugepage_flags_enabled()) {
455 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
456 			__khugepaged_enter(vma->vm_mm);
457 	}
458 }
459 
460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462 	struct khugepaged_mm_slot *mm_slot;
463 	struct mm_slot *slot;
464 	int free = 0;
465 
466 	spin_lock(&khugepaged_mm_lock);
467 	slot = mm_slot_lookup(mm_slots_hash, mm);
468 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470 		hash_del(&slot->hash);
471 		list_del(&slot->mm_node);
472 		free = 1;
473 	}
474 	spin_unlock(&khugepaged_mm_lock);
475 
476 	if (free) {
477 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478 		mm_slot_free(mm_slot_cache, mm_slot);
479 		mmdrop(mm);
480 	} else if (mm_slot) {
481 		/*
482 		 * This is required to serialize against
483 		 * hpage_collapse_test_exit() (which is guaranteed to run
484 		 * under mmap sem read mode). Stop here (after we return all
485 		 * pagetables will be destroyed) until khugepaged has finished
486 		 * working on the pagetables under the mmap_lock.
487 		 */
488 		mmap_write_lock(mm);
489 		mmap_write_unlock(mm);
490 	}
491 }
492 
493 static void release_pte_page(struct page *page)
494 {
495 	mod_node_page_state(page_pgdat(page),
496 			NR_ISOLATED_ANON + page_is_file_lru(page),
497 			-compound_nr(page));
498 	unlock_page(page);
499 	putback_lru_page(page);
500 }
501 
502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503 		struct list_head *compound_pagelist)
504 {
505 	struct page *page, *tmp;
506 
507 	while (--_pte >= pte) {
508 		pte_t pteval = *_pte;
509 
510 		page = pte_page(pteval);
511 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
512 				!PageCompound(page))
513 			release_pte_page(page);
514 	}
515 
516 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517 		list_del(&page->lru);
518 		release_pte_page(page);
519 	}
520 }
521 
522 static bool is_refcount_suitable(struct page *page)
523 {
524 	int expected_refcount;
525 
526 	expected_refcount = total_mapcount(page);
527 	if (PageSwapCache(page))
528 		expected_refcount += compound_nr(page);
529 
530 	return page_count(page) == expected_refcount;
531 }
532 
533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534 					unsigned long address,
535 					pte_t *pte,
536 					struct collapse_control *cc,
537 					struct list_head *compound_pagelist)
538 {
539 	struct page *page = NULL;
540 	pte_t *_pte;
541 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542 	bool writable = false;
543 
544 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545 	     _pte++, address += PAGE_SIZE) {
546 		pte_t pteval = *_pte;
547 		if (pte_none(pteval) || (pte_present(pteval) &&
548 				is_zero_pfn(pte_pfn(pteval)))) {
549 			++none_or_zero;
550 			if (!userfaultfd_armed(vma) &&
551 			    (!cc->is_khugepaged ||
552 			     none_or_zero <= khugepaged_max_ptes_none)) {
553 				continue;
554 			} else {
555 				result = SCAN_EXCEED_NONE_PTE;
556 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
557 				goto out;
558 			}
559 		}
560 		if (!pte_present(pteval)) {
561 			result = SCAN_PTE_NON_PRESENT;
562 			goto out;
563 		}
564 		page = vm_normal_page(vma, address, pteval);
565 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
566 			result = SCAN_PAGE_NULL;
567 			goto out;
568 		}
569 
570 		VM_BUG_ON_PAGE(!PageAnon(page), page);
571 
572 		if (page_mapcount(page) > 1) {
573 			++shared;
574 			if (cc->is_khugepaged &&
575 			    shared > khugepaged_max_ptes_shared) {
576 				result = SCAN_EXCEED_SHARED_PTE;
577 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
578 				goto out;
579 			}
580 		}
581 
582 		if (PageCompound(page)) {
583 			struct page *p;
584 			page = compound_head(page);
585 
586 			/*
587 			 * Check if we have dealt with the compound page
588 			 * already
589 			 */
590 			list_for_each_entry(p, compound_pagelist, lru) {
591 				if (page == p)
592 					goto next;
593 			}
594 		}
595 
596 		/*
597 		 * We can do it before isolate_lru_page because the
598 		 * page can't be freed from under us. NOTE: PG_lock
599 		 * is needed to serialize against split_huge_page
600 		 * when invoked from the VM.
601 		 */
602 		if (!trylock_page(page)) {
603 			result = SCAN_PAGE_LOCK;
604 			goto out;
605 		}
606 
607 		/*
608 		 * Check if the page has any GUP (or other external) pins.
609 		 *
610 		 * The page table that maps the page has been already unlinked
611 		 * from the page table tree and this process cannot get
612 		 * an additional pin on the page.
613 		 *
614 		 * New pins can come later if the page is shared across fork,
615 		 * but not from this process. The other process cannot write to
616 		 * the page, only trigger CoW.
617 		 */
618 		if (!is_refcount_suitable(page)) {
619 			unlock_page(page);
620 			result = SCAN_PAGE_COUNT;
621 			goto out;
622 		}
623 
624 		/*
625 		 * Isolate the page to avoid collapsing an hugepage
626 		 * currently in use by the VM.
627 		 */
628 		if (isolate_lru_page(page)) {
629 			unlock_page(page);
630 			result = SCAN_DEL_PAGE_LRU;
631 			goto out;
632 		}
633 		mod_node_page_state(page_pgdat(page),
634 				NR_ISOLATED_ANON + page_is_file_lru(page),
635 				compound_nr(page));
636 		VM_BUG_ON_PAGE(!PageLocked(page), page);
637 		VM_BUG_ON_PAGE(PageLRU(page), page);
638 
639 		if (PageCompound(page))
640 			list_add_tail(&page->lru, compound_pagelist);
641 next:
642 		/*
643 		 * If collapse was initiated by khugepaged, check that there is
644 		 * enough young pte to justify collapsing the page
645 		 */
646 		if (cc->is_khugepaged &&
647 		    (pte_young(pteval) || page_is_young(page) ||
648 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
649 								     address)))
650 			referenced++;
651 
652 		if (pte_write(pteval))
653 			writable = true;
654 	}
655 
656 	if (unlikely(!writable)) {
657 		result = SCAN_PAGE_RO;
658 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
659 		result = SCAN_LACK_REFERENCED_PAGE;
660 	} else {
661 		result = SCAN_SUCCEED;
662 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
663 						    referenced, writable, result);
664 		return result;
665 	}
666 out:
667 	release_pte_pages(pte, _pte, compound_pagelist);
668 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
669 					    referenced, writable, result);
670 	return result;
671 }
672 
673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
674 				      struct vm_area_struct *vma,
675 				      unsigned long address,
676 				      spinlock_t *ptl,
677 				      struct list_head *compound_pagelist)
678 {
679 	struct page *src_page, *tmp;
680 	pte_t *_pte;
681 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
682 				_pte++, page++, address += PAGE_SIZE) {
683 		pte_t pteval = *_pte;
684 
685 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
686 			clear_user_highpage(page, address);
687 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688 			if (is_zero_pfn(pte_pfn(pteval))) {
689 				/*
690 				 * ptl mostly unnecessary.
691 				 */
692 				spin_lock(ptl);
693 				ptep_clear(vma->vm_mm, address, _pte);
694 				spin_unlock(ptl);
695 			}
696 		} else {
697 			src_page = pte_page(pteval);
698 			copy_user_highpage(page, src_page, address, vma);
699 			if (!PageCompound(src_page))
700 				release_pte_page(src_page);
701 			/*
702 			 * ptl mostly unnecessary, but preempt has to
703 			 * be disabled to update the per-cpu stats
704 			 * inside page_remove_rmap().
705 			 */
706 			spin_lock(ptl);
707 			ptep_clear(vma->vm_mm, address, _pte);
708 			page_remove_rmap(src_page, vma, false);
709 			spin_unlock(ptl);
710 			free_page_and_swap_cache(src_page);
711 		}
712 	}
713 
714 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
715 		list_del(&src_page->lru);
716 		mod_node_page_state(page_pgdat(src_page),
717 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
718 				    -compound_nr(src_page));
719 		unlock_page(src_page);
720 		free_swap_cache(src_page);
721 		putback_lru_page(src_page);
722 	}
723 }
724 
725 static void khugepaged_alloc_sleep(void)
726 {
727 	DEFINE_WAIT(wait);
728 
729 	add_wait_queue(&khugepaged_wait, &wait);
730 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
731 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
732 	remove_wait_queue(&khugepaged_wait, &wait);
733 }
734 
735 struct collapse_control khugepaged_collapse_control = {
736 	.is_khugepaged = true,
737 	.last_target_node = NUMA_NO_NODE,
738 };
739 
740 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
741 {
742 	int i;
743 
744 	/*
745 	 * If node_reclaim_mode is disabled, then no extra effort is made to
746 	 * allocate memory locally.
747 	 */
748 	if (!node_reclaim_enabled())
749 		return false;
750 
751 	/* If there is a count for this node already, it must be acceptable */
752 	if (cc->node_load[nid])
753 		return false;
754 
755 	for (i = 0; i < MAX_NUMNODES; i++) {
756 		if (!cc->node_load[i])
757 			continue;
758 		if (node_distance(nid, i) > node_reclaim_distance)
759 			return true;
760 	}
761 	return false;
762 }
763 
764 #define khugepaged_defrag()					\
765 	(transparent_hugepage_flags &				\
766 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
767 
768 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
769 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
770 {
771 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
772 }
773 
774 #ifdef CONFIG_NUMA
775 static int hpage_collapse_find_target_node(struct collapse_control *cc)
776 {
777 	int nid, target_node = 0, max_value = 0;
778 
779 	/* find first node with max normal pages hit */
780 	for (nid = 0; nid < MAX_NUMNODES; nid++)
781 		if (cc->node_load[nid] > max_value) {
782 			max_value = cc->node_load[nid];
783 			target_node = nid;
784 		}
785 
786 	/* do some balance if several nodes have the same hit record */
787 	if (target_node <= cc->last_target_node)
788 		for (nid = cc->last_target_node + 1; nid < MAX_NUMNODES;
789 		     nid++)
790 			if (max_value == cc->node_load[nid]) {
791 				target_node = nid;
792 				break;
793 			}
794 
795 	cc->last_target_node = target_node;
796 	return target_node;
797 }
798 #else
799 static int hpage_collapse_find_target_node(struct collapse_control *cc)
800 {
801 	return 0;
802 }
803 #endif
804 
805 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node)
806 {
807 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
808 	if (unlikely(!*hpage)) {
809 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
810 		return false;
811 	}
812 
813 	prep_transhuge_page(*hpage);
814 	count_vm_event(THP_COLLAPSE_ALLOC);
815 	return true;
816 }
817 
818 /*
819  * If mmap_lock temporarily dropped, revalidate vma
820  * before taking mmap_lock.
821  * Returns enum scan_result value.
822  */
823 
824 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
825 				   bool expect_anon,
826 				   struct vm_area_struct **vmap,
827 				   struct collapse_control *cc)
828 {
829 	struct vm_area_struct *vma;
830 
831 	if (unlikely(hpage_collapse_test_exit(mm)))
832 		return SCAN_ANY_PROCESS;
833 
834 	*vmap = vma = find_vma(mm, address);
835 	if (!vma)
836 		return SCAN_VMA_NULL;
837 
838 	if (!transhuge_vma_suitable(vma, address))
839 		return SCAN_ADDRESS_RANGE;
840 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
841 				cc->is_khugepaged))
842 		return SCAN_VMA_CHECK;
843 	/*
844 	 * Anon VMA expected, the address may be unmapped then
845 	 * remapped to file after khugepaged reaquired the mmap_lock.
846 	 *
847 	 * hugepage_vma_check may return true for qualified file
848 	 * vmas.
849 	 */
850 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
851 		return SCAN_PAGE_ANON;
852 	return SCAN_SUCCEED;
853 }
854 
855 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
856 				   unsigned long address,
857 				   pmd_t **pmd)
858 {
859 	pmd_t pmde;
860 
861 	*pmd = mm_find_pmd(mm, address);
862 	if (!*pmd)
863 		return SCAN_PMD_NULL;
864 
865 	pmde = pmd_read_atomic(*pmd);
866 
867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
868 	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
869 	barrier();
870 #endif
871 	if (pmd_none(pmde))
872 		return SCAN_PMD_NONE;
873 	if (pmd_trans_huge(pmde))
874 		return SCAN_PMD_MAPPED;
875 	if (pmd_bad(pmde))
876 		return SCAN_PMD_NULL;
877 	return SCAN_SUCCEED;
878 }
879 
880 static int check_pmd_still_valid(struct mm_struct *mm,
881 				 unsigned long address,
882 				 pmd_t *pmd)
883 {
884 	pmd_t *new_pmd;
885 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
886 
887 	if (result != SCAN_SUCCEED)
888 		return result;
889 	if (new_pmd != pmd)
890 		return SCAN_FAIL;
891 	return SCAN_SUCCEED;
892 }
893 
894 /*
895  * Bring missing pages in from swap, to complete THP collapse.
896  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
897  *
898  * Called and returns without pte mapped or spinlocks held.
899  * Note that if false is returned, mmap_lock will be released.
900  */
901 
902 static int __collapse_huge_page_swapin(struct mm_struct *mm,
903 				       struct vm_area_struct *vma,
904 				       unsigned long haddr, pmd_t *pmd,
905 				       int referenced)
906 {
907 	int swapped_in = 0;
908 	vm_fault_t ret = 0;
909 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
910 
911 	for (address = haddr; address < end; address += PAGE_SIZE) {
912 		struct vm_fault vmf = {
913 			.vma = vma,
914 			.address = address,
915 			.pgoff = linear_page_index(vma, haddr),
916 			.flags = FAULT_FLAG_ALLOW_RETRY,
917 			.pmd = pmd,
918 		};
919 
920 		vmf.pte = pte_offset_map(pmd, address);
921 		vmf.orig_pte = *vmf.pte;
922 		if (!is_swap_pte(vmf.orig_pte)) {
923 			pte_unmap(vmf.pte);
924 			continue;
925 		}
926 		ret = do_swap_page(&vmf);
927 
928 		/*
929 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
930 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
931 		 * we do not retry here and swap entry will remain in pagetable
932 		 * resulting in later failure.
933 		 */
934 		if (ret & VM_FAULT_RETRY) {
935 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
936 			/* Likely, but not guaranteed, that page lock failed */
937 			return SCAN_PAGE_LOCK;
938 		}
939 		if (ret & VM_FAULT_ERROR) {
940 			mmap_read_unlock(mm);
941 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
942 			return SCAN_FAIL;
943 		}
944 		swapped_in++;
945 	}
946 
947 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
948 	if (swapped_in)
949 		lru_add_drain();
950 
951 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
952 	return SCAN_SUCCEED;
953 }
954 
955 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
956 			      struct collapse_control *cc)
957 {
958 	/* Only allocate from the target node */
959 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
960 		     GFP_TRANSHUGE) | __GFP_THISNODE;
961 	int node = hpage_collapse_find_target_node(cc);
962 
963 	if (!hpage_collapse_alloc_page(hpage, gfp, node))
964 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
965 	if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
966 		return SCAN_CGROUP_CHARGE_FAIL;
967 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
968 	return SCAN_SUCCEED;
969 }
970 
971 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
972 			      int referenced, int unmapped,
973 			      struct collapse_control *cc)
974 {
975 	LIST_HEAD(compound_pagelist);
976 	pmd_t *pmd, _pmd;
977 	pte_t *pte;
978 	pgtable_t pgtable;
979 	struct page *hpage;
980 	spinlock_t *pmd_ptl, *pte_ptl;
981 	int result = SCAN_FAIL;
982 	struct vm_area_struct *vma;
983 	struct mmu_notifier_range range;
984 
985 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
986 
987 	/*
988 	 * Before allocating the hugepage, release the mmap_lock read lock.
989 	 * The allocation can take potentially a long time if it involves
990 	 * sync compaction, and we do not need to hold the mmap_lock during
991 	 * that. We will recheck the vma after taking it again in write mode.
992 	 */
993 	mmap_read_unlock(mm);
994 
995 	result = alloc_charge_hpage(&hpage, mm, cc);
996 	if (result != SCAN_SUCCEED)
997 		goto out_nolock;
998 
999 	mmap_read_lock(mm);
1000 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1001 	if (result != SCAN_SUCCEED) {
1002 		mmap_read_unlock(mm);
1003 		goto out_nolock;
1004 	}
1005 
1006 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1007 	if (result != SCAN_SUCCEED) {
1008 		mmap_read_unlock(mm);
1009 		goto out_nolock;
1010 	}
1011 
1012 	if (unmapped) {
1013 		/*
1014 		 * __collapse_huge_page_swapin will return with mmap_lock
1015 		 * released when it fails. So we jump out_nolock directly in
1016 		 * that case.  Continuing to collapse causes inconsistency.
1017 		 */
1018 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1019 						     referenced);
1020 		if (result != SCAN_SUCCEED)
1021 			goto out_nolock;
1022 	}
1023 
1024 	mmap_read_unlock(mm);
1025 	/*
1026 	 * Prevent all access to pagetables with the exception of
1027 	 * gup_fast later handled by the ptep_clear_flush and the VM
1028 	 * handled by the anon_vma lock + PG_lock.
1029 	 */
1030 	mmap_write_lock(mm);
1031 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1032 	if (result != SCAN_SUCCEED)
1033 		goto out_up_write;
1034 	/* check if the pmd is still valid */
1035 	result = check_pmd_still_valid(mm, address, pmd);
1036 	if (result != SCAN_SUCCEED)
1037 		goto out_up_write;
1038 
1039 	anon_vma_lock_write(vma->anon_vma);
1040 
1041 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1042 				address, address + HPAGE_PMD_SIZE);
1043 	mmu_notifier_invalidate_range_start(&range);
1044 
1045 	pte = pte_offset_map(pmd, address);
1046 	pte_ptl = pte_lockptr(mm, pmd);
1047 
1048 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1049 	/*
1050 	 * This removes any huge TLB entry from the CPU so we won't allow
1051 	 * huge and small TLB entries for the same virtual address to
1052 	 * avoid the risk of CPU bugs in that area.
1053 	 *
1054 	 * Parallel fast GUP is fine since fast GUP will back off when
1055 	 * it detects PMD is changed.
1056 	 */
1057 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1058 	spin_unlock(pmd_ptl);
1059 	mmu_notifier_invalidate_range_end(&range);
1060 
1061 	spin_lock(pte_ptl);
1062 	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1063 					       &compound_pagelist);
1064 	spin_unlock(pte_ptl);
1065 
1066 	if (unlikely(result != SCAN_SUCCEED)) {
1067 		pte_unmap(pte);
1068 		spin_lock(pmd_ptl);
1069 		BUG_ON(!pmd_none(*pmd));
1070 		/*
1071 		 * We can only use set_pmd_at when establishing
1072 		 * hugepmds and never for establishing regular pmds that
1073 		 * points to regular pagetables. Use pmd_populate for that
1074 		 */
1075 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1076 		spin_unlock(pmd_ptl);
1077 		anon_vma_unlock_write(vma->anon_vma);
1078 		goto out_up_write;
1079 	}
1080 
1081 	/*
1082 	 * All pages are isolated and locked so anon_vma rmap
1083 	 * can't run anymore.
1084 	 */
1085 	anon_vma_unlock_write(vma->anon_vma);
1086 
1087 	__collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1088 				  &compound_pagelist);
1089 	pte_unmap(pte);
1090 	/*
1091 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1092 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1093 	 * avoid the copy_huge_page writes to become visible after
1094 	 * the set_pmd_at() write.
1095 	 */
1096 	__SetPageUptodate(hpage);
1097 	pgtable = pmd_pgtable(_pmd);
1098 
1099 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1100 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1101 
1102 	spin_lock(pmd_ptl);
1103 	BUG_ON(!pmd_none(*pmd));
1104 	page_add_new_anon_rmap(hpage, vma, address);
1105 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1106 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1107 	set_pmd_at(mm, address, pmd, _pmd);
1108 	update_mmu_cache_pmd(vma, address, pmd);
1109 	spin_unlock(pmd_ptl);
1110 
1111 	hpage = NULL;
1112 
1113 	result = SCAN_SUCCEED;
1114 out_up_write:
1115 	mmap_write_unlock(mm);
1116 out_nolock:
1117 	if (hpage) {
1118 		mem_cgroup_uncharge(page_folio(hpage));
1119 		put_page(hpage);
1120 	}
1121 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1122 	return result;
1123 }
1124 
1125 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1126 				   struct vm_area_struct *vma,
1127 				   unsigned long address, bool *mmap_locked,
1128 				   struct collapse_control *cc)
1129 {
1130 	pmd_t *pmd;
1131 	pte_t *pte, *_pte;
1132 	int result = SCAN_FAIL, referenced = 0;
1133 	int none_or_zero = 0, shared = 0;
1134 	struct page *page = NULL;
1135 	unsigned long _address;
1136 	spinlock_t *ptl;
1137 	int node = NUMA_NO_NODE, unmapped = 0;
1138 	bool writable = false;
1139 
1140 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1141 
1142 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1143 	if (result != SCAN_SUCCEED)
1144 		goto out;
1145 
1146 	memset(cc->node_load, 0, sizeof(cc->node_load));
1147 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1148 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1149 	     _pte++, _address += PAGE_SIZE) {
1150 		pte_t pteval = *_pte;
1151 		if (is_swap_pte(pteval)) {
1152 			++unmapped;
1153 			if (!cc->is_khugepaged ||
1154 			    unmapped <= khugepaged_max_ptes_swap) {
1155 				/*
1156 				 * Always be strict with uffd-wp
1157 				 * enabled swap entries.  Please see
1158 				 * comment below for pte_uffd_wp().
1159 				 */
1160 				if (pte_swp_uffd_wp(pteval)) {
1161 					result = SCAN_PTE_UFFD_WP;
1162 					goto out_unmap;
1163 				}
1164 				continue;
1165 			} else {
1166 				result = SCAN_EXCEED_SWAP_PTE;
1167 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1168 				goto out_unmap;
1169 			}
1170 		}
1171 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1172 			++none_or_zero;
1173 			if (!userfaultfd_armed(vma) &&
1174 			    (!cc->is_khugepaged ||
1175 			     none_or_zero <= khugepaged_max_ptes_none)) {
1176 				continue;
1177 			} else {
1178 				result = SCAN_EXCEED_NONE_PTE;
1179 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1180 				goto out_unmap;
1181 			}
1182 		}
1183 		if (pte_uffd_wp(pteval)) {
1184 			/*
1185 			 * Don't collapse the page if any of the small
1186 			 * PTEs are armed with uffd write protection.
1187 			 * Here we can also mark the new huge pmd as
1188 			 * write protected if any of the small ones is
1189 			 * marked but that could bring unknown
1190 			 * userfault messages that falls outside of
1191 			 * the registered range.  So, just be simple.
1192 			 */
1193 			result = SCAN_PTE_UFFD_WP;
1194 			goto out_unmap;
1195 		}
1196 		if (pte_write(pteval))
1197 			writable = true;
1198 
1199 		page = vm_normal_page(vma, _address, pteval);
1200 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1201 			result = SCAN_PAGE_NULL;
1202 			goto out_unmap;
1203 		}
1204 
1205 		if (page_mapcount(page) > 1) {
1206 			++shared;
1207 			if (cc->is_khugepaged &&
1208 			    shared > khugepaged_max_ptes_shared) {
1209 				result = SCAN_EXCEED_SHARED_PTE;
1210 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1211 				goto out_unmap;
1212 			}
1213 		}
1214 
1215 		page = compound_head(page);
1216 
1217 		/*
1218 		 * Record which node the original page is from and save this
1219 		 * information to cc->node_load[].
1220 		 * Khugepaged will allocate hugepage from the node has the max
1221 		 * hit record.
1222 		 */
1223 		node = page_to_nid(page);
1224 		if (hpage_collapse_scan_abort(node, cc)) {
1225 			result = SCAN_SCAN_ABORT;
1226 			goto out_unmap;
1227 		}
1228 		cc->node_load[node]++;
1229 		if (!PageLRU(page)) {
1230 			result = SCAN_PAGE_LRU;
1231 			goto out_unmap;
1232 		}
1233 		if (PageLocked(page)) {
1234 			result = SCAN_PAGE_LOCK;
1235 			goto out_unmap;
1236 		}
1237 		if (!PageAnon(page)) {
1238 			result = SCAN_PAGE_ANON;
1239 			goto out_unmap;
1240 		}
1241 
1242 		/*
1243 		 * Check if the page has any GUP (or other external) pins.
1244 		 *
1245 		 * Here the check is racy it may see total_mapcount > refcount
1246 		 * in some cases.
1247 		 * For example, one process with one forked child process.
1248 		 * The parent has the PMD split due to MADV_DONTNEED, then
1249 		 * the child is trying unmap the whole PMD, but khugepaged
1250 		 * may be scanning the parent between the child has
1251 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1252 		 * khugepaged may see total_mapcount > refcount.
1253 		 *
1254 		 * But such case is ephemeral we could always retry collapse
1255 		 * later.  However it may report false positive if the page
1256 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1257 		 * will be done again later the risk seems low.
1258 		 */
1259 		if (!is_refcount_suitable(page)) {
1260 			result = SCAN_PAGE_COUNT;
1261 			goto out_unmap;
1262 		}
1263 
1264 		/*
1265 		 * If collapse was initiated by khugepaged, check that there is
1266 		 * enough young pte to justify collapsing the page
1267 		 */
1268 		if (cc->is_khugepaged &&
1269 		    (pte_young(pteval) || page_is_young(page) ||
1270 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1271 								     address)))
1272 			referenced++;
1273 	}
1274 	if (!writable) {
1275 		result = SCAN_PAGE_RO;
1276 	} else if (cc->is_khugepaged &&
1277 		   (!referenced ||
1278 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1279 		result = SCAN_LACK_REFERENCED_PAGE;
1280 	} else {
1281 		result = SCAN_SUCCEED;
1282 	}
1283 out_unmap:
1284 	pte_unmap_unlock(pte, ptl);
1285 	if (result == SCAN_SUCCEED) {
1286 		result = collapse_huge_page(mm, address, referenced,
1287 					    unmapped, cc);
1288 		/* collapse_huge_page will return with the mmap_lock released */
1289 		*mmap_locked = false;
1290 	}
1291 out:
1292 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1293 				     none_or_zero, result, unmapped);
1294 	return result;
1295 }
1296 
1297 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1298 {
1299 	struct mm_slot *slot = &mm_slot->slot;
1300 	struct mm_struct *mm = slot->mm;
1301 
1302 	lockdep_assert_held(&khugepaged_mm_lock);
1303 
1304 	if (hpage_collapse_test_exit(mm)) {
1305 		/* free mm_slot */
1306 		hash_del(&slot->hash);
1307 		list_del(&slot->mm_node);
1308 
1309 		/*
1310 		 * Not strictly needed because the mm exited already.
1311 		 *
1312 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1313 		 */
1314 
1315 		/* khugepaged_mm_lock actually not necessary for the below */
1316 		mm_slot_free(mm_slot_cache, mm_slot);
1317 		mmdrop(mm);
1318 	}
1319 }
1320 
1321 #ifdef CONFIG_SHMEM
1322 /*
1323  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1324  * khugepaged should try to collapse the page table.
1325  *
1326  * Note that following race exists:
1327  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1328  *     emptying the A's ->pte_mapped_thp[] array.
1329  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1330  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1331  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1332  *     ->pte-mapped_thp[] array.
1333  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1334  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1335  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1336  * Thus, it's possible the same address is added multiple times for the same
1337  * mm_struct.  Should this happen, we'll simply attempt
1338  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1339  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1340  * attempts will return quickly (without grabbing any additional locks) when
1341  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1342  * check, and since this is a rare occurrence, the cost of preventing this
1343  * "multiple-add" is thought to be more expensive than just handling it, should
1344  * it occur.
1345  */
1346 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1347 					  unsigned long addr)
1348 {
1349 	struct khugepaged_mm_slot *mm_slot;
1350 	struct mm_slot *slot;
1351 	bool ret = false;
1352 
1353 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1354 
1355 	spin_lock(&khugepaged_mm_lock);
1356 	slot = mm_slot_lookup(mm_slots_hash, mm);
1357 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1358 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1359 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1360 		ret = true;
1361 	}
1362 	spin_unlock(&khugepaged_mm_lock);
1363 	return ret;
1364 }
1365 
1366 /* hpage must be locked, and mmap_lock must be held in write */
1367 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1368 			pmd_t *pmdp, struct page *hpage)
1369 {
1370 	struct vm_fault vmf = {
1371 		.vma = vma,
1372 		.address = addr,
1373 		.flags = 0,
1374 		.pmd = pmdp,
1375 	};
1376 
1377 	VM_BUG_ON(!PageTransHuge(hpage));
1378 	mmap_assert_write_locked(vma->vm_mm);
1379 
1380 	if (do_set_pmd(&vmf, hpage))
1381 		return SCAN_FAIL;
1382 
1383 	get_page(hpage);
1384 	return SCAN_SUCCEED;
1385 }
1386 
1387 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1388 				  unsigned long addr, pmd_t *pmdp)
1389 {
1390 	spinlock_t *ptl;
1391 	pmd_t pmd;
1392 
1393 	mmap_assert_write_locked(mm);
1394 	ptl = pmd_lock(vma->vm_mm, pmdp);
1395 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1396 	spin_unlock(ptl);
1397 	mm_dec_nr_ptes(mm);
1398 	page_table_check_pte_clear_range(mm, addr, pmd);
1399 	pte_free(mm, pmd_pgtable(pmd));
1400 }
1401 
1402 /**
1403  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1404  * address haddr.
1405  *
1406  * @mm: process address space where collapse happens
1407  * @addr: THP collapse address
1408  * @install_pmd: If a huge PMD should be installed
1409  *
1410  * This function checks whether all the PTEs in the PMD are pointing to the
1411  * right THP. If so, retract the page table so the THP can refault in with
1412  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1413  */
1414 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1415 			    bool install_pmd)
1416 {
1417 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1418 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1419 	struct page *hpage;
1420 	pte_t *start_pte, *pte;
1421 	pmd_t *pmd;
1422 	spinlock_t *ptl;
1423 	int count = 0, result = SCAN_FAIL;
1424 	int i;
1425 
1426 	mmap_assert_write_locked(mm);
1427 
1428 	/* Fast check before locking page if already PMD-mapped */
1429 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1430 	if (result == SCAN_PMD_MAPPED)
1431 		return result;
1432 
1433 	if (!vma || !vma->vm_file ||
1434 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1435 		return SCAN_VMA_CHECK;
1436 
1437 	/*
1438 	 * If we are here, we've succeeded in replacing all the native pages
1439 	 * in the page cache with a single hugepage. If a mm were to fault-in
1440 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1441 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1442 	 * analogously elide sysfs THP settings here.
1443 	 */
1444 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1445 		return SCAN_VMA_CHECK;
1446 
1447 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1448 	if (userfaultfd_wp(vma))
1449 		return SCAN_PTE_UFFD_WP;
1450 
1451 	hpage = find_lock_page(vma->vm_file->f_mapping,
1452 			       linear_page_index(vma, haddr));
1453 	if (!hpage)
1454 		return SCAN_PAGE_NULL;
1455 
1456 	if (!PageHead(hpage)) {
1457 		result = SCAN_FAIL;
1458 		goto drop_hpage;
1459 	}
1460 
1461 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1462 		result = SCAN_PAGE_COMPOUND;
1463 		goto drop_hpage;
1464 	}
1465 
1466 	switch (result) {
1467 	case SCAN_SUCCEED:
1468 		break;
1469 	case SCAN_PMD_NONE:
1470 		/*
1471 		 * In MADV_COLLAPSE path, possible race with khugepaged where
1472 		 * all pte entries have been removed and pmd cleared.  If so,
1473 		 * skip all the pte checks and just update the pmd mapping.
1474 		 */
1475 		goto maybe_install_pmd;
1476 	default:
1477 		goto drop_hpage;
1478 	}
1479 
1480 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1481 	result = SCAN_FAIL;
1482 
1483 	/* step 1: check all mapped PTEs are to the right huge page */
1484 	for (i = 0, addr = haddr, pte = start_pte;
1485 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1486 		struct page *page;
1487 
1488 		/* empty pte, skip */
1489 		if (pte_none(*pte))
1490 			continue;
1491 
1492 		/* page swapped out, abort */
1493 		if (!pte_present(*pte)) {
1494 			result = SCAN_PTE_NON_PRESENT;
1495 			goto abort;
1496 		}
1497 
1498 		page = vm_normal_page(vma, addr, *pte);
1499 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1500 			page = NULL;
1501 		/*
1502 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1503 		 * page table, but the new page will not be a subpage of hpage.
1504 		 */
1505 		if (hpage + i != page)
1506 			goto abort;
1507 		count++;
1508 	}
1509 
1510 	/* step 2: adjust rmap */
1511 	for (i = 0, addr = haddr, pte = start_pte;
1512 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1513 		struct page *page;
1514 
1515 		if (pte_none(*pte))
1516 			continue;
1517 		page = vm_normal_page(vma, addr, *pte);
1518 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1519 			goto abort;
1520 		page_remove_rmap(page, vma, false);
1521 	}
1522 
1523 	pte_unmap_unlock(start_pte, ptl);
1524 
1525 	/* step 3: set proper refcount and mm_counters. */
1526 	if (count) {
1527 		page_ref_sub(hpage, count);
1528 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1529 	}
1530 
1531 	/* step 4: remove pte entries */
1532 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1533 
1534 maybe_install_pmd:
1535 	/* step 5: install pmd entry */
1536 	result = install_pmd
1537 			? set_huge_pmd(vma, haddr, pmd, hpage)
1538 			: SCAN_SUCCEED;
1539 
1540 drop_hpage:
1541 	unlock_page(hpage);
1542 	put_page(hpage);
1543 	return result;
1544 
1545 abort:
1546 	pte_unmap_unlock(start_pte, ptl);
1547 	goto drop_hpage;
1548 }
1549 
1550 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1551 {
1552 	struct mm_slot *slot = &mm_slot->slot;
1553 	struct mm_struct *mm = slot->mm;
1554 	int i;
1555 
1556 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1557 		return;
1558 
1559 	if (!mmap_write_trylock(mm))
1560 		return;
1561 
1562 	if (unlikely(hpage_collapse_test_exit(mm)))
1563 		goto out;
1564 
1565 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1566 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1567 
1568 out:
1569 	mm_slot->nr_pte_mapped_thp = 0;
1570 	mmap_write_unlock(mm);
1571 }
1572 
1573 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1574 			       struct mm_struct *target_mm,
1575 			       unsigned long target_addr, struct page *hpage,
1576 			       struct collapse_control *cc)
1577 {
1578 	struct vm_area_struct *vma;
1579 	int target_result = SCAN_FAIL;
1580 
1581 	i_mmap_lock_write(mapping);
1582 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1583 		int result = SCAN_FAIL;
1584 		struct mm_struct *mm = NULL;
1585 		unsigned long addr = 0;
1586 		pmd_t *pmd;
1587 		bool is_target = false;
1588 
1589 		/*
1590 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1591 		 * got written to. These VMAs are likely not worth investing
1592 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1593 		 * later.
1594 		 *
1595 		 * Note that vma->anon_vma check is racy: it can be set up after
1596 		 * the check but before we took mmap_lock by the fault path.
1597 		 * But page lock would prevent establishing any new ptes of the
1598 		 * page, so we are safe.
1599 		 *
1600 		 * An alternative would be drop the check, but check that page
1601 		 * table is clear before calling pmdp_collapse_flush() under
1602 		 * ptl. It has higher chance to recover THP for the VMA, but
1603 		 * has higher cost too.
1604 		 */
1605 		if (vma->anon_vma) {
1606 			result = SCAN_PAGE_ANON;
1607 			goto next;
1608 		}
1609 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1610 		if (addr & ~HPAGE_PMD_MASK ||
1611 		    vma->vm_end < addr + HPAGE_PMD_SIZE) {
1612 			result = SCAN_VMA_CHECK;
1613 			goto next;
1614 		}
1615 		mm = vma->vm_mm;
1616 		is_target = mm == target_mm && addr == target_addr;
1617 		result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1618 		if (result != SCAN_SUCCEED)
1619 			goto next;
1620 		/*
1621 		 * We need exclusive mmap_lock to retract page table.
1622 		 *
1623 		 * We use trylock due to lock inversion: we need to acquire
1624 		 * mmap_lock while holding page lock. Fault path does it in
1625 		 * reverse order. Trylock is a way to avoid deadlock.
1626 		 *
1627 		 * Also, it's not MADV_COLLAPSE's job to collapse other
1628 		 * mappings - let khugepaged take care of them later.
1629 		 */
1630 		result = SCAN_PTE_MAPPED_HUGEPAGE;
1631 		if ((cc->is_khugepaged || is_target) &&
1632 		    mmap_write_trylock(mm)) {
1633 			/*
1634 			 * When a vma is registered with uffd-wp, we can't
1635 			 * recycle the pmd pgtable because there can be pte
1636 			 * markers installed.  Skip it only, so the rest mm/vma
1637 			 * can still have the same file mapped hugely, however
1638 			 * it'll always mapped in small page size for uffd-wp
1639 			 * registered ranges.
1640 			 */
1641 			if (hpage_collapse_test_exit(mm)) {
1642 				result = SCAN_ANY_PROCESS;
1643 				goto unlock_next;
1644 			}
1645 			if (userfaultfd_wp(vma)) {
1646 				result = SCAN_PTE_UFFD_WP;
1647 				goto unlock_next;
1648 			}
1649 			collapse_and_free_pmd(mm, vma, addr, pmd);
1650 			if (!cc->is_khugepaged && is_target)
1651 				result = set_huge_pmd(vma, addr, pmd, hpage);
1652 			else
1653 				result = SCAN_SUCCEED;
1654 
1655 unlock_next:
1656 			mmap_write_unlock(mm);
1657 			goto next;
1658 		}
1659 		/*
1660 		 * Calling context will handle target mm/addr. Otherwise, let
1661 		 * khugepaged try again later.
1662 		 */
1663 		if (!is_target) {
1664 			khugepaged_add_pte_mapped_thp(mm, addr);
1665 			continue;
1666 		}
1667 next:
1668 		if (is_target)
1669 			target_result = result;
1670 	}
1671 	i_mmap_unlock_write(mapping);
1672 	return target_result;
1673 }
1674 
1675 /**
1676  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1677  *
1678  * @mm: process address space where collapse happens
1679  * @addr: virtual collapse start address
1680  * @file: file that collapse on
1681  * @start: collapse start address
1682  * @cc: collapse context and scratchpad
1683  *
1684  * Basic scheme is simple, details are more complex:
1685  *  - allocate and lock a new huge page;
1686  *  - scan page cache replacing old pages with the new one
1687  *    + swap/gup in pages if necessary;
1688  *    + fill in gaps;
1689  *    + keep old pages around in case rollback is required;
1690  *  - if replacing succeeds:
1691  *    + copy data over;
1692  *    + free old pages;
1693  *    + unlock huge page;
1694  *  - if replacing failed;
1695  *    + put all pages back and unfreeze them;
1696  *    + restore gaps in the page cache;
1697  *    + unlock and free huge page;
1698  */
1699 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1700 			 struct file *file, pgoff_t start,
1701 			 struct collapse_control *cc)
1702 {
1703 	struct address_space *mapping = file->f_mapping;
1704 	struct page *hpage;
1705 	pgoff_t index, end = start + HPAGE_PMD_NR;
1706 	LIST_HEAD(pagelist);
1707 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1708 	int nr_none = 0, result = SCAN_SUCCEED;
1709 	bool is_shmem = shmem_file(file);
1710 	int nr;
1711 
1712 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1713 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1714 
1715 	result = alloc_charge_hpage(&hpage, mm, cc);
1716 	if (result != SCAN_SUCCEED)
1717 		goto out;
1718 
1719 	/*
1720 	 * Ensure we have slots for all the pages in the range.  This is
1721 	 * almost certainly a no-op because most of the pages must be present
1722 	 */
1723 	do {
1724 		xas_lock_irq(&xas);
1725 		xas_create_range(&xas);
1726 		if (!xas_error(&xas))
1727 			break;
1728 		xas_unlock_irq(&xas);
1729 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1730 			result = SCAN_FAIL;
1731 			goto out;
1732 		}
1733 	} while (1);
1734 
1735 	__SetPageLocked(hpage);
1736 	if (is_shmem)
1737 		__SetPageSwapBacked(hpage);
1738 	hpage->index = start;
1739 	hpage->mapping = mapping;
1740 
1741 	/*
1742 	 * At this point the hpage is locked and not up-to-date.
1743 	 * It's safe to insert it into the page cache, because nobody would
1744 	 * be able to map it or use it in another way until we unlock it.
1745 	 */
1746 
1747 	xas_set(&xas, start);
1748 	for (index = start; index < end; index++) {
1749 		struct page *page = xas_next(&xas);
1750 
1751 		VM_BUG_ON(index != xas.xa_index);
1752 		if (is_shmem) {
1753 			if (!page) {
1754 				/*
1755 				 * Stop if extent has been truncated or
1756 				 * hole-punched, and is now completely
1757 				 * empty.
1758 				 */
1759 				if (index == start) {
1760 					if (!xas_next_entry(&xas, end - 1)) {
1761 						result = SCAN_TRUNCATED;
1762 						goto xa_locked;
1763 					}
1764 					xas_set(&xas, index);
1765 				}
1766 				if (!shmem_charge(mapping->host, 1)) {
1767 					result = SCAN_FAIL;
1768 					goto xa_locked;
1769 				}
1770 				xas_store(&xas, hpage);
1771 				nr_none++;
1772 				continue;
1773 			}
1774 
1775 			if (xa_is_value(page) || !PageUptodate(page)) {
1776 				struct folio *folio;
1777 
1778 				xas_unlock_irq(&xas);
1779 				/* swap in or instantiate fallocated page */
1780 				if (shmem_get_folio(mapping->host, index,
1781 						&folio, SGP_NOALLOC)) {
1782 					result = SCAN_FAIL;
1783 					goto xa_unlocked;
1784 				}
1785 				page = folio_file_page(folio, index);
1786 			} else if (trylock_page(page)) {
1787 				get_page(page);
1788 				xas_unlock_irq(&xas);
1789 			} else {
1790 				result = SCAN_PAGE_LOCK;
1791 				goto xa_locked;
1792 			}
1793 		} else {	/* !is_shmem */
1794 			if (!page || xa_is_value(page)) {
1795 				xas_unlock_irq(&xas);
1796 				page_cache_sync_readahead(mapping, &file->f_ra,
1797 							  file, index,
1798 							  end - index);
1799 				/* drain pagevecs to help isolate_lru_page() */
1800 				lru_add_drain();
1801 				page = find_lock_page(mapping, index);
1802 				if (unlikely(page == NULL)) {
1803 					result = SCAN_FAIL;
1804 					goto xa_unlocked;
1805 				}
1806 			} else if (PageDirty(page)) {
1807 				/*
1808 				 * khugepaged only works on read-only fd,
1809 				 * so this page is dirty because it hasn't
1810 				 * been flushed since first write. There
1811 				 * won't be new dirty pages.
1812 				 *
1813 				 * Trigger async flush here and hope the
1814 				 * writeback is done when khugepaged
1815 				 * revisits this page.
1816 				 *
1817 				 * This is a one-off situation. We are not
1818 				 * forcing writeback in loop.
1819 				 */
1820 				xas_unlock_irq(&xas);
1821 				filemap_flush(mapping);
1822 				result = SCAN_FAIL;
1823 				goto xa_unlocked;
1824 			} else if (PageWriteback(page)) {
1825 				xas_unlock_irq(&xas);
1826 				result = SCAN_FAIL;
1827 				goto xa_unlocked;
1828 			} else if (trylock_page(page)) {
1829 				get_page(page);
1830 				xas_unlock_irq(&xas);
1831 			} else {
1832 				result = SCAN_PAGE_LOCK;
1833 				goto xa_locked;
1834 			}
1835 		}
1836 
1837 		/*
1838 		 * The page must be locked, so we can drop the i_pages lock
1839 		 * without racing with truncate.
1840 		 */
1841 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1842 
1843 		/* make sure the page is up to date */
1844 		if (unlikely(!PageUptodate(page))) {
1845 			result = SCAN_FAIL;
1846 			goto out_unlock;
1847 		}
1848 
1849 		/*
1850 		 * If file was truncated then extended, or hole-punched, before
1851 		 * we locked the first page, then a THP might be there already.
1852 		 * This will be discovered on the first iteration.
1853 		 */
1854 		if (PageTransCompound(page)) {
1855 			struct page *head = compound_head(page);
1856 
1857 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1858 					head->index == start
1859 					/* Maybe PMD-mapped */
1860 					? SCAN_PTE_MAPPED_HUGEPAGE
1861 					: SCAN_PAGE_COMPOUND;
1862 			goto out_unlock;
1863 		}
1864 
1865 		if (page_mapping(page) != mapping) {
1866 			result = SCAN_TRUNCATED;
1867 			goto out_unlock;
1868 		}
1869 
1870 		if (!is_shmem && (PageDirty(page) ||
1871 				  PageWriteback(page))) {
1872 			/*
1873 			 * khugepaged only works on read-only fd, so this
1874 			 * page is dirty because it hasn't been flushed
1875 			 * since first write.
1876 			 */
1877 			result = SCAN_FAIL;
1878 			goto out_unlock;
1879 		}
1880 
1881 		if (isolate_lru_page(page)) {
1882 			result = SCAN_DEL_PAGE_LRU;
1883 			goto out_unlock;
1884 		}
1885 
1886 		if (page_has_private(page) &&
1887 		    !try_to_release_page(page, GFP_KERNEL)) {
1888 			result = SCAN_PAGE_HAS_PRIVATE;
1889 			putback_lru_page(page);
1890 			goto out_unlock;
1891 		}
1892 
1893 		if (page_mapped(page))
1894 			try_to_unmap(page_folio(page),
1895 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1896 
1897 		xas_lock_irq(&xas);
1898 		xas_set(&xas, index);
1899 
1900 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1901 
1902 		/*
1903 		 * The page is expected to have page_count() == 3:
1904 		 *  - we hold a pin on it;
1905 		 *  - one reference from page cache;
1906 		 *  - one from isolate_lru_page;
1907 		 */
1908 		if (!page_ref_freeze(page, 3)) {
1909 			result = SCAN_PAGE_COUNT;
1910 			xas_unlock_irq(&xas);
1911 			putback_lru_page(page);
1912 			goto out_unlock;
1913 		}
1914 
1915 		/*
1916 		 * Add the page to the list to be able to undo the collapse if
1917 		 * something go wrong.
1918 		 */
1919 		list_add_tail(&page->lru, &pagelist);
1920 
1921 		/* Finally, replace with the new page. */
1922 		xas_store(&xas, hpage);
1923 		continue;
1924 out_unlock:
1925 		unlock_page(page);
1926 		put_page(page);
1927 		goto xa_unlocked;
1928 	}
1929 	nr = thp_nr_pages(hpage);
1930 
1931 	if (is_shmem)
1932 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1933 	else {
1934 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1935 		filemap_nr_thps_inc(mapping);
1936 		/*
1937 		 * Paired with smp_mb() in do_dentry_open() to ensure
1938 		 * i_writecount is up to date and the update to nr_thps is
1939 		 * visible. Ensures the page cache will be truncated if the
1940 		 * file is opened writable.
1941 		 */
1942 		smp_mb();
1943 		if (inode_is_open_for_write(mapping->host)) {
1944 			result = SCAN_FAIL;
1945 			__mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
1946 			filemap_nr_thps_dec(mapping);
1947 			goto xa_locked;
1948 		}
1949 	}
1950 
1951 	if (nr_none) {
1952 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
1953 		/* nr_none is always 0 for non-shmem. */
1954 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
1955 	}
1956 
1957 	/* Join all the small entries into a single multi-index entry */
1958 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1959 	xas_store(&xas, hpage);
1960 xa_locked:
1961 	xas_unlock_irq(&xas);
1962 xa_unlocked:
1963 
1964 	/*
1965 	 * If collapse is successful, flush must be done now before copying.
1966 	 * If collapse is unsuccessful, does flush actually need to be done?
1967 	 * Do it anyway, to clear the state.
1968 	 */
1969 	try_to_unmap_flush();
1970 
1971 	if (result == SCAN_SUCCEED) {
1972 		struct page *page, *tmp;
1973 
1974 		/*
1975 		 * Replacing old pages with new one has succeeded, now we
1976 		 * need to copy the content and free the old pages.
1977 		 */
1978 		index = start;
1979 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1980 			while (index < page->index) {
1981 				clear_highpage(hpage + (index % HPAGE_PMD_NR));
1982 				index++;
1983 			}
1984 			copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
1985 				      page);
1986 			list_del(&page->lru);
1987 			page->mapping = NULL;
1988 			page_ref_unfreeze(page, 1);
1989 			ClearPageActive(page);
1990 			ClearPageUnevictable(page);
1991 			unlock_page(page);
1992 			put_page(page);
1993 			index++;
1994 		}
1995 		while (index < end) {
1996 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
1997 			index++;
1998 		}
1999 
2000 		SetPageUptodate(hpage);
2001 		page_ref_add(hpage, HPAGE_PMD_NR - 1);
2002 		if (is_shmem)
2003 			set_page_dirty(hpage);
2004 		lru_cache_add(hpage);
2005 
2006 		/*
2007 		 * Remove pte page tables, so we can re-fault the page as huge.
2008 		 */
2009 		result = retract_page_tables(mapping, start, mm, addr, hpage,
2010 					     cc);
2011 		unlock_page(hpage);
2012 		hpage = NULL;
2013 	} else {
2014 		struct page *page;
2015 
2016 		/* Something went wrong: roll back page cache changes */
2017 		xas_lock_irq(&xas);
2018 		if (nr_none) {
2019 			mapping->nrpages -= nr_none;
2020 			shmem_uncharge(mapping->host, nr_none);
2021 		}
2022 
2023 		xas_set(&xas, start);
2024 		xas_for_each(&xas, page, end - 1) {
2025 			page = list_first_entry_or_null(&pagelist,
2026 					struct page, lru);
2027 			if (!page || xas.xa_index < page->index) {
2028 				if (!nr_none)
2029 					break;
2030 				nr_none--;
2031 				/* Put holes back where they were */
2032 				xas_store(&xas, NULL);
2033 				continue;
2034 			}
2035 
2036 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2037 
2038 			/* Unfreeze the page. */
2039 			list_del(&page->lru);
2040 			page_ref_unfreeze(page, 2);
2041 			xas_store(&xas, page);
2042 			xas_pause(&xas);
2043 			xas_unlock_irq(&xas);
2044 			unlock_page(page);
2045 			putback_lru_page(page);
2046 			xas_lock_irq(&xas);
2047 		}
2048 		VM_BUG_ON(nr_none);
2049 		xas_unlock_irq(&xas);
2050 
2051 		hpage->mapping = NULL;
2052 	}
2053 
2054 	if (hpage)
2055 		unlock_page(hpage);
2056 out:
2057 	VM_BUG_ON(!list_empty(&pagelist));
2058 	if (hpage) {
2059 		mem_cgroup_uncharge(page_folio(hpage));
2060 		put_page(hpage);
2061 	}
2062 	/* TODO: tracepoints */
2063 	return result;
2064 }
2065 
2066 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2067 				    struct file *file, pgoff_t start,
2068 				    struct collapse_control *cc)
2069 {
2070 	struct page *page = NULL;
2071 	struct address_space *mapping = file->f_mapping;
2072 	XA_STATE(xas, &mapping->i_pages, start);
2073 	int present, swap;
2074 	int node = NUMA_NO_NODE;
2075 	int result = SCAN_SUCCEED;
2076 
2077 	present = 0;
2078 	swap = 0;
2079 	memset(cc->node_load, 0, sizeof(cc->node_load));
2080 	rcu_read_lock();
2081 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2082 		if (xas_retry(&xas, page))
2083 			continue;
2084 
2085 		if (xa_is_value(page)) {
2086 			++swap;
2087 			if (cc->is_khugepaged &&
2088 			    swap > khugepaged_max_ptes_swap) {
2089 				result = SCAN_EXCEED_SWAP_PTE;
2090 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2091 				break;
2092 			}
2093 			continue;
2094 		}
2095 
2096 		/*
2097 		 * TODO: khugepaged should compact smaller compound pages
2098 		 * into a PMD sized page
2099 		 */
2100 		if (PageTransCompound(page)) {
2101 			struct page *head = compound_head(page);
2102 
2103 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2104 					head->index == start
2105 					/* Maybe PMD-mapped */
2106 					? SCAN_PTE_MAPPED_HUGEPAGE
2107 					: SCAN_PAGE_COMPOUND;
2108 			/*
2109 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2110 			 * by the caller won't touch the page cache, and so
2111 			 * it's safe to skip LRU and refcount checks before
2112 			 * returning.
2113 			 */
2114 			break;
2115 		}
2116 
2117 		node = page_to_nid(page);
2118 		if (hpage_collapse_scan_abort(node, cc)) {
2119 			result = SCAN_SCAN_ABORT;
2120 			break;
2121 		}
2122 		cc->node_load[node]++;
2123 
2124 		if (!PageLRU(page)) {
2125 			result = SCAN_PAGE_LRU;
2126 			break;
2127 		}
2128 
2129 		if (page_count(page) !=
2130 		    1 + page_mapcount(page) + page_has_private(page)) {
2131 			result = SCAN_PAGE_COUNT;
2132 			break;
2133 		}
2134 
2135 		/*
2136 		 * We probably should check if the page is referenced here, but
2137 		 * nobody would transfer pte_young() to PageReferenced() for us.
2138 		 * And rmap walk here is just too costly...
2139 		 */
2140 
2141 		present++;
2142 
2143 		if (need_resched()) {
2144 			xas_pause(&xas);
2145 			cond_resched_rcu();
2146 		}
2147 	}
2148 	rcu_read_unlock();
2149 
2150 	if (result == SCAN_SUCCEED) {
2151 		if (cc->is_khugepaged &&
2152 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2153 			result = SCAN_EXCEED_NONE_PTE;
2154 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2155 		} else {
2156 			result = collapse_file(mm, addr, file, start, cc);
2157 		}
2158 	}
2159 
2160 	trace_mm_khugepaged_scan_file(mm, page, file->f_path.dentry->d_iname,
2161 				      present, swap, result);
2162 	return result;
2163 }
2164 #else
2165 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2166 				    struct file *file, pgoff_t start,
2167 				    struct collapse_control *cc)
2168 {
2169 	BUILD_BUG();
2170 }
2171 
2172 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2173 {
2174 }
2175 
2176 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2177 					  unsigned long addr)
2178 {
2179 	return false;
2180 }
2181 #endif
2182 
2183 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2184 					    struct collapse_control *cc)
2185 	__releases(&khugepaged_mm_lock)
2186 	__acquires(&khugepaged_mm_lock)
2187 {
2188 	struct vma_iterator vmi;
2189 	struct khugepaged_mm_slot *mm_slot;
2190 	struct mm_slot *slot;
2191 	struct mm_struct *mm;
2192 	struct vm_area_struct *vma;
2193 	int progress = 0;
2194 
2195 	VM_BUG_ON(!pages);
2196 	lockdep_assert_held(&khugepaged_mm_lock);
2197 	*result = SCAN_FAIL;
2198 
2199 	if (khugepaged_scan.mm_slot) {
2200 		mm_slot = khugepaged_scan.mm_slot;
2201 		slot = &mm_slot->slot;
2202 	} else {
2203 		slot = list_entry(khugepaged_scan.mm_head.next,
2204 				     struct mm_slot, mm_node);
2205 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2206 		khugepaged_scan.address = 0;
2207 		khugepaged_scan.mm_slot = mm_slot;
2208 	}
2209 	spin_unlock(&khugepaged_mm_lock);
2210 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2211 
2212 	mm = slot->mm;
2213 	/*
2214 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2215 	 * the next mm on the list.
2216 	 */
2217 	vma = NULL;
2218 	if (unlikely(!mmap_read_trylock(mm)))
2219 		goto breakouterloop_mmap_lock;
2220 
2221 	progress++;
2222 	if (unlikely(hpage_collapse_test_exit(mm)))
2223 		goto breakouterloop;
2224 
2225 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2226 	for_each_vma(vmi, vma) {
2227 		unsigned long hstart, hend;
2228 
2229 		cond_resched();
2230 		if (unlikely(hpage_collapse_test_exit(mm))) {
2231 			progress++;
2232 			break;
2233 		}
2234 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2235 skip:
2236 			progress++;
2237 			continue;
2238 		}
2239 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2240 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2241 		if (khugepaged_scan.address > hend)
2242 			goto skip;
2243 		if (khugepaged_scan.address < hstart)
2244 			khugepaged_scan.address = hstart;
2245 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2246 
2247 		while (khugepaged_scan.address < hend) {
2248 			bool mmap_locked = true;
2249 
2250 			cond_resched();
2251 			if (unlikely(hpage_collapse_test_exit(mm)))
2252 				goto breakouterloop;
2253 
2254 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2255 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2256 				  hend);
2257 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2258 				struct file *file = get_file(vma->vm_file);
2259 				pgoff_t pgoff = linear_page_index(vma,
2260 						khugepaged_scan.address);
2261 
2262 				mmap_read_unlock(mm);
2263 				*result = hpage_collapse_scan_file(mm,
2264 								   khugepaged_scan.address,
2265 								   file, pgoff, cc);
2266 				mmap_locked = false;
2267 				fput(file);
2268 			} else {
2269 				*result = hpage_collapse_scan_pmd(mm, vma,
2270 								  khugepaged_scan.address,
2271 								  &mmap_locked,
2272 								  cc);
2273 			}
2274 			switch (*result) {
2275 			case SCAN_PTE_MAPPED_HUGEPAGE: {
2276 				pmd_t *pmd;
2277 
2278 				*result = find_pmd_or_thp_or_none(mm,
2279 								  khugepaged_scan.address,
2280 								  &pmd);
2281 				if (*result != SCAN_SUCCEED)
2282 					break;
2283 				if (!khugepaged_add_pte_mapped_thp(mm,
2284 								   khugepaged_scan.address))
2285 					break;
2286 			} fallthrough;
2287 			case SCAN_SUCCEED:
2288 				++khugepaged_pages_collapsed;
2289 				break;
2290 			default:
2291 				break;
2292 			}
2293 
2294 			/* move to next address */
2295 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2296 			progress += HPAGE_PMD_NR;
2297 			if (!mmap_locked)
2298 				/*
2299 				 * We released mmap_lock so break loop.  Note
2300 				 * that we drop mmap_lock before all hugepage
2301 				 * allocations, so if allocation fails, we are
2302 				 * guaranteed to break here and report the
2303 				 * correct result back to caller.
2304 				 */
2305 				goto breakouterloop_mmap_lock;
2306 			if (progress >= pages)
2307 				goto breakouterloop;
2308 		}
2309 	}
2310 breakouterloop:
2311 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2312 breakouterloop_mmap_lock:
2313 
2314 	spin_lock(&khugepaged_mm_lock);
2315 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2316 	/*
2317 	 * Release the current mm_slot if this mm is about to die, or
2318 	 * if we scanned all vmas of this mm.
2319 	 */
2320 	if (hpage_collapse_test_exit(mm) || !vma) {
2321 		/*
2322 		 * Make sure that if mm_users is reaching zero while
2323 		 * khugepaged runs here, khugepaged_exit will find
2324 		 * mm_slot not pointing to the exiting mm.
2325 		 */
2326 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2327 			slot = list_entry(slot->mm_node.next,
2328 					  struct mm_slot, mm_node);
2329 			khugepaged_scan.mm_slot =
2330 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2331 			khugepaged_scan.address = 0;
2332 		} else {
2333 			khugepaged_scan.mm_slot = NULL;
2334 			khugepaged_full_scans++;
2335 		}
2336 
2337 		collect_mm_slot(mm_slot);
2338 	}
2339 
2340 	return progress;
2341 }
2342 
2343 static int khugepaged_has_work(void)
2344 {
2345 	return !list_empty(&khugepaged_scan.mm_head) &&
2346 		hugepage_flags_enabled();
2347 }
2348 
2349 static int khugepaged_wait_event(void)
2350 {
2351 	return !list_empty(&khugepaged_scan.mm_head) ||
2352 		kthread_should_stop();
2353 }
2354 
2355 static void khugepaged_do_scan(struct collapse_control *cc)
2356 {
2357 	unsigned int progress = 0, pass_through_head = 0;
2358 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2359 	bool wait = true;
2360 	int result = SCAN_SUCCEED;
2361 
2362 	lru_add_drain_all();
2363 
2364 	while (true) {
2365 		cond_resched();
2366 
2367 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2368 			break;
2369 
2370 		spin_lock(&khugepaged_mm_lock);
2371 		if (!khugepaged_scan.mm_slot)
2372 			pass_through_head++;
2373 		if (khugepaged_has_work() &&
2374 		    pass_through_head < 2)
2375 			progress += khugepaged_scan_mm_slot(pages - progress,
2376 							    &result, cc);
2377 		else
2378 			progress = pages;
2379 		spin_unlock(&khugepaged_mm_lock);
2380 
2381 		if (progress >= pages)
2382 			break;
2383 
2384 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2385 			/*
2386 			 * If fail to allocate the first time, try to sleep for
2387 			 * a while.  When hit again, cancel the scan.
2388 			 */
2389 			if (!wait)
2390 				break;
2391 			wait = false;
2392 			khugepaged_alloc_sleep();
2393 		}
2394 	}
2395 }
2396 
2397 static bool khugepaged_should_wakeup(void)
2398 {
2399 	return kthread_should_stop() ||
2400 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2401 }
2402 
2403 static void khugepaged_wait_work(void)
2404 {
2405 	if (khugepaged_has_work()) {
2406 		const unsigned long scan_sleep_jiffies =
2407 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2408 
2409 		if (!scan_sleep_jiffies)
2410 			return;
2411 
2412 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2413 		wait_event_freezable_timeout(khugepaged_wait,
2414 					     khugepaged_should_wakeup(),
2415 					     scan_sleep_jiffies);
2416 		return;
2417 	}
2418 
2419 	if (hugepage_flags_enabled())
2420 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2421 }
2422 
2423 static int khugepaged(void *none)
2424 {
2425 	struct khugepaged_mm_slot *mm_slot;
2426 
2427 	set_freezable();
2428 	set_user_nice(current, MAX_NICE);
2429 
2430 	while (!kthread_should_stop()) {
2431 		khugepaged_do_scan(&khugepaged_collapse_control);
2432 		khugepaged_wait_work();
2433 	}
2434 
2435 	spin_lock(&khugepaged_mm_lock);
2436 	mm_slot = khugepaged_scan.mm_slot;
2437 	khugepaged_scan.mm_slot = NULL;
2438 	if (mm_slot)
2439 		collect_mm_slot(mm_slot);
2440 	spin_unlock(&khugepaged_mm_lock);
2441 	return 0;
2442 }
2443 
2444 static void set_recommended_min_free_kbytes(void)
2445 {
2446 	struct zone *zone;
2447 	int nr_zones = 0;
2448 	unsigned long recommended_min;
2449 
2450 	if (!hugepage_flags_enabled()) {
2451 		calculate_min_free_kbytes();
2452 		goto update_wmarks;
2453 	}
2454 
2455 	for_each_populated_zone(zone) {
2456 		/*
2457 		 * We don't need to worry about fragmentation of
2458 		 * ZONE_MOVABLE since it only has movable pages.
2459 		 */
2460 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2461 			continue;
2462 
2463 		nr_zones++;
2464 	}
2465 
2466 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2467 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2468 
2469 	/*
2470 	 * Make sure that on average at least two pageblocks are almost free
2471 	 * of another type, one for a migratetype to fall back to and a
2472 	 * second to avoid subsequent fallbacks of other types There are 3
2473 	 * MIGRATE_TYPES we care about.
2474 	 */
2475 	recommended_min += pageblock_nr_pages * nr_zones *
2476 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2477 
2478 	/* don't ever allow to reserve more than 5% of the lowmem */
2479 	recommended_min = min(recommended_min,
2480 			      (unsigned long) nr_free_buffer_pages() / 20);
2481 	recommended_min <<= (PAGE_SHIFT-10);
2482 
2483 	if (recommended_min > min_free_kbytes) {
2484 		if (user_min_free_kbytes >= 0)
2485 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2486 				min_free_kbytes, recommended_min);
2487 
2488 		min_free_kbytes = recommended_min;
2489 	}
2490 
2491 update_wmarks:
2492 	setup_per_zone_wmarks();
2493 }
2494 
2495 int start_stop_khugepaged(void)
2496 {
2497 	int err = 0;
2498 
2499 	mutex_lock(&khugepaged_mutex);
2500 	if (hugepage_flags_enabled()) {
2501 		if (!khugepaged_thread)
2502 			khugepaged_thread = kthread_run(khugepaged, NULL,
2503 							"khugepaged");
2504 		if (IS_ERR(khugepaged_thread)) {
2505 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2506 			err = PTR_ERR(khugepaged_thread);
2507 			khugepaged_thread = NULL;
2508 			goto fail;
2509 		}
2510 
2511 		if (!list_empty(&khugepaged_scan.mm_head))
2512 			wake_up_interruptible(&khugepaged_wait);
2513 	} else if (khugepaged_thread) {
2514 		kthread_stop(khugepaged_thread);
2515 		khugepaged_thread = NULL;
2516 	}
2517 	set_recommended_min_free_kbytes();
2518 fail:
2519 	mutex_unlock(&khugepaged_mutex);
2520 	return err;
2521 }
2522 
2523 void khugepaged_min_free_kbytes_update(void)
2524 {
2525 	mutex_lock(&khugepaged_mutex);
2526 	if (hugepage_flags_enabled() && khugepaged_thread)
2527 		set_recommended_min_free_kbytes();
2528 	mutex_unlock(&khugepaged_mutex);
2529 }
2530 
2531 static int madvise_collapse_errno(enum scan_result r)
2532 {
2533 	/*
2534 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2535 	 * actionable feedback to caller, so they may take an appropriate
2536 	 * fallback measure depending on the nature of the failure.
2537 	 */
2538 	switch (r) {
2539 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2540 		return -ENOMEM;
2541 	case SCAN_CGROUP_CHARGE_FAIL:
2542 		return -EBUSY;
2543 	/* Resource temporary unavailable - trying again might succeed */
2544 	case SCAN_PAGE_LOCK:
2545 	case SCAN_PAGE_LRU:
2546 	case SCAN_DEL_PAGE_LRU:
2547 		return -EAGAIN;
2548 	/*
2549 	 * Other: Trying again likely not to succeed / error intrinsic to
2550 	 * specified memory range. khugepaged likely won't be able to collapse
2551 	 * either.
2552 	 */
2553 	default:
2554 		return -EINVAL;
2555 	}
2556 }
2557 
2558 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2559 		     unsigned long start, unsigned long end)
2560 {
2561 	struct collapse_control *cc;
2562 	struct mm_struct *mm = vma->vm_mm;
2563 	unsigned long hstart, hend, addr;
2564 	int thps = 0, last_fail = SCAN_FAIL;
2565 	bool mmap_locked = true;
2566 
2567 	BUG_ON(vma->vm_start > start);
2568 	BUG_ON(vma->vm_end < end);
2569 
2570 	*prev = vma;
2571 
2572 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2573 		return -EINVAL;
2574 
2575 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2576 	if (!cc)
2577 		return -ENOMEM;
2578 	cc->is_khugepaged = false;
2579 	cc->last_target_node = NUMA_NO_NODE;
2580 
2581 	mmgrab(mm);
2582 	lru_add_drain_all();
2583 
2584 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2585 	hend = end & HPAGE_PMD_MASK;
2586 
2587 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2588 		int result = SCAN_FAIL;
2589 
2590 		if (!mmap_locked) {
2591 			cond_resched();
2592 			mmap_read_lock(mm);
2593 			mmap_locked = true;
2594 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2595 							 cc);
2596 			if (result  != SCAN_SUCCEED) {
2597 				last_fail = result;
2598 				goto out_nolock;
2599 			}
2600 
2601 			hend = vma->vm_end & HPAGE_PMD_MASK;
2602 		}
2603 		mmap_assert_locked(mm);
2604 		memset(cc->node_load, 0, sizeof(cc->node_load));
2605 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2606 			struct file *file = get_file(vma->vm_file);
2607 			pgoff_t pgoff = linear_page_index(vma, addr);
2608 
2609 			mmap_read_unlock(mm);
2610 			mmap_locked = false;
2611 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2612 							  cc);
2613 			fput(file);
2614 		} else {
2615 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2616 							 &mmap_locked, cc);
2617 		}
2618 		if (!mmap_locked)
2619 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2620 
2621 handle_result:
2622 		switch (result) {
2623 		case SCAN_SUCCEED:
2624 		case SCAN_PMD_MAPPED:
2625 			++thps;
2626 			break;
2627 		case SCAN_PTE_MAPPED_HUGEPAGE:
2628 			BUG_ON(mmap_locked);
2629 			BUG_ON(*prev);
2630 			mmap_write_lock(mm);
2631 			result = collapse_pte_mapped_thp(mm, addr, true);
2632 			mmap_write_unlock(mm);
2633 			goto handle_result;
2634 		/* Whitelisted set of results where continuing OK */
2635 		case SCAN_PMD_NULL:
2636 		case SCAN_PTE_NON_PRESENT:
2637 		case SCAN_PTE_UFFD_WP:
2638 		case SCAN_PAGE_RO:
2639 		case SCAN_LACK_REFERENCED_PAGE:
2640 		case SCAN_PAGE_NULL:
2641 		case SCAN_PAGE_COUNT:
2642 		case SCAN_PAGE_LOCK:
2643 		case SCAN_PAGE_COMPOUND:
2644 		case SCAN_PAGE_LRU:
2645 		case SCAN_DEL_PAGE_LRU:
2646 			last_fail = result;
2647 			break;
2648 		default:
2649 			last_fail = result;
2650 			/* Other error, exit */
2651 			goto out_maybelock;
2652 		}
2653 	}
2654 
2655 out_maybelock:
2656 	/* Caller expects us to hold mmap_lock on return */
2657 	if (!mmap_locked)
2658 		mmap_read_lock(mm);
2659 out_nolock:
2660 	mmap_assert_locked(mm);
2661 	mmdrop(mm);
2662 	kfree(cc);
2663 
2664 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2665 			: madvise_collapse_errno(last_fail);
2666 }
2667