xref: /openbmc/linux/mm/khugepaged.c (revision a31edb20)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 /* default scan 8*512 pte (or vmas) every 30 second */
60 static unsigned int khugepaged_pages_to_scan __read_mostly;
61 static unsigned int khugepaged_pages_collapsed;
62 static unsigned int khugepaged_full_scans;
63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
64 /* during fragmentation poll the hugepage allocator once every minute */
65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
66 static unsigned long khugepaged_sleep_expire;
67 static DEFINE_SPINLOCK(khugepaged_mm_lock);
68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
69 /*
70  * default collapse hugepages if there is at least one pte mapped like
71  * it would have happened if the vma was large enough during page
72  * fault.
73  */
74 static unsigned int khugepaged_max_ptes_none __read_mostly;
75 static unsigned int khugepaged_max_ptes_swap __read_mostly;
76 static unsigned int khugepaged_max_ptes_shared __read_mostly;
77 
78 #define MM_SLOTS_HASH_BITS 10
79 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
80 
81 static struct kmem_cache *mm_slot_cache __read_mostly;
82 
83 #define MAX_PTE_MAPPED_THP 8
84 
85 /**
86  * struct mm_slot - hash lookup from mm to mm_slot
87  * @hash: hash collision list
88  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
89  * @mm: the mm that this information is valid for
90  */
91 struct mm_slot {
92 	struct hlist_node hash;
93 	struct list_head mm_node;
94 	struct mm_struct *mm;
95 
96 	/* pte-mapped THP in this mm */
97 	int nr_pte_mapped_thp;
98 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
99 };
100 
101 /**
102  * struct khugepaged_scan - cursor for scanning
103  * @mm_head: the head of the mm list to scan
104  * @mm_slot: the current mm_slot we are scanning
105  * @address: the next address inside that to be scanned
106  *
107  * There is only the one khugepaged_scan instance of this cursor structure.
108  */
109 struct khugepaged_scan {
110 	struct list_head mm_head;
111 	struct mm_slot *mm_slot;
112 	unsigned long address;
113 };
114 
115 static struct khugepaged_scan khugepaged_scan = {
116 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
117 };
118 
119 #ifdef CONFIG_SYSFS
120 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
121 					 struct kobj_attribute *attr,
122 					 char *buf)
123 {
124 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
125 }
126 
127 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
128 					  struct kobj_attribute *attr,
129 					  const char *buf, size_t count)
130 {
131 	unsigned long msecs;
132 	int err;
133 
134 	err = kstrtoul(buf, 10, &msecs);
135 	if (err || msecs > UINT_MAX)
136 		return -EINVAL;
137 
138 	khugepaged_scan_sleep_millisecs = msecs;
139 	khugepaged_sleep_expire = 0;
140 	wake_up_interruptible(&khugepaged_wait);
141 
142 	return count;
143 }
144 static struct kobj_attribute scan_sleep_millisecs_attr =
145 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
146 	       scan_sleep_millisecs_store);
147 
148 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
149 					  struct kobj_attribute *attr,
150 					  char *buf)
151 {
152 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
153 }
154 
155 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
156 					   struct kobj_attribute *attr,
157 					   const char *buf, size_t count)
158 {
159 	unsigned long msecs;
160 	int err;
161 
162 	err = kstrtoul(buf, 10, &msecs);
163 	if (err || msecs > UINT_MAX)
164 		return -EINVAL;
165 
166 	khugepaged_alloc_sleep_millisecs = msecs;
167 	khugepaged_sleep_expire = 0;
168 	wake_up_interruptible(&khugepaged_wait);
169 
170 	return count;
171 }
172 static struct kobj_attribute alloc_sleep_millisecs_attr =
173 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
174 	       alloc_sleep_millisecs_store);
175 
176 static ssize_t pages_to_scan_show(struct kobject *kobj,
177 				  struct kobj_attribute *attr,
178 				  char *buf)
179 {
180 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
181 }
182 static ssize_t pages_to_scan_store(struct kobject *kobj,
183 				   struct kobj_attribute *attr,
184 				   const char *buf, size_t count)
185 {
186 	int err;
187 	unsigned long pages;
188 
189 	err = kstrtoul(buf, 10, &pages);
190 	if (err || !pages || pages > UINT_MAX)
191 		return -EINVAL;
192 
193 	khugepaged_pages_to_scan = pages;
194 
195 	return count;
196 }
197 static struct kobj_attribute pages_to_scan_attr =
198 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
199 	       pages_to_scan_store);
200 
201 static ssize_t pages_collapsed_show(struct kobject *kobj,
202 				    struct kobj_attribute *attr,
203 				    char *buf)
204 {
205 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
206 }
207 static struct kobj_attribute pages_collapsed_attr =
208 	__ATTR_RO(pages_collapsed);
209 
210 static ssize_t full_scans_show(struct kobject *kobj,
211 			       struct kobj_attribute *attr,
212 			       char *buf)
213 {
214 	return sprintf(buf, "%u\n", khugepaged_full_scans);
215 }
216 static struct kobj_attribute full_scans_attr =
217 	__ATTR_RO(full_scans);
218 
219 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
220 				      struct kobj_attribute *attr, char *buf)
221 {
222 	return single_hugepage_flag_show(kobj, attr, buf,
223 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
224 }
225 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
226 				       struct kobj_attribute *attr,
227 				       const char *buf, size_t count)
228 {
229 	return single_hugepage_flag_store(kobj, attr, buf, count,
230 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
231 }
232 static struct kobj_attribute khugepaged_defrag_attr =
233 	__ATTR(defrag, 0644, khugepaged_defrag_show,
234 	       khugepaged_defrag_store);
235 
236 /*
237  * max_ptes_none controls if khugepaged should collapse hugepages over
238  * any unmapped ptes in turn potentially increasing the memory
239  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
240  * reduce the available free memory in the system as it
241  * runs. Increasing max_ptes_none will instead potentially reduce the
242  * free memory in the system during the khugepaged scan.
243  */
244 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
245 					     struct kobj_attribute *attr,
246 					     char *buf)
247 {
248 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
249 }
250 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
251 					      struct kobj_attribute *attr,
252 					      const char *buf, size_t count)
253 {
254 	int err;
255 	unsigned long max_ptes_none;
256 
257 	err = kstrtoul(buf, 10, &max_ptes_none);
258 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
259 		return -EINVAL;
260 
261 	khugepaged_max_ptes_none = max_ptes_none;
262 
263 	return count;
264 }
265 static struct kobj_attribute khugepaged_max_ptes_none_attr =
266 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
267 	       khugepaged_max_ptes_none_store);
268 
269 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
270 					     struct kobj_attribute *attr,
271 					     char *buf)
272 {
273 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
274 }
275 
276 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
277 					      struct kobj_attribute *attr,
278 					      const char *buf, size_t count)
279 {
280 	int err;
281 	unsigned long max_ptes_swap;
282 
283 	err  = kstrtoul(buf, 10, &max_ptes_swap);
284 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
285 		return -EINVAL;
286 
287 	khugepaged_max_ptes_swap = max_ptes_swap;
288 
289 	return count;
290 }
291 
292 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
294 	       khugepaged_max_ptes_swap_store);
295 
296 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
297 					     struct kobj_attribute *attr,
298 					     char *buf)
299 {
300 	return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
301 }
302 
303 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
304 					      struct kobj_attribute *attr,
305 					      const char *buf, size_t count)
306 {
307 	int err;
308 	unsigned long max_ptes_shared;
309 
310 	err  = kstrtoul(buf, 10, &max_ptes_shared);
311 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
312 		return -EINVAL;
313 
314 	khugepaged_max_ptes_shared = max_ptes_shared;
315 
316 	return count;
317 }
318 
319 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
320 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
321 	       khugepaged_max_ptes_shared_store);
322 
323 static struct attribute *khugepaged_attr[] = {
324 	&khugepaged_defrag_attr.attr,
325 	&khugepaged_max_ptes_none_attr.attr,
326 	&khugepaged_max_ptes_swap_attr.attr,
327 	&khugepaged_max_ptes_shared_attr.attr,
328 	&pages_to_scan_attr.attr,
329 	&pages_collapsed_attr.attr,
330 	&full_scans_attr.attr,
331 	&scan_sleep_millisecs_attr.attr,
332 	&alloc_sleep_millisecs_attr.attr,
333 	NULL,
334 };
335 
336 struct attribute_group khugepaged_attr_group = {
337 	.attrs = khugepaged_attr,
338 	.name = "khugepaged",
339 };
340 #endif /* CONFIG_SYSFS */
341 
342 int hugepage_madvise(struct vm_area_struct *vma,
343 		     unsigned long *vm_flags, int advice)
344 {
345 	switch (advice) {
346 	case MADV_HUGEPAGE:
347 #ifdef CONFIG_S390
348 		/*
349 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
350 		 * can't handle this properly after s390_enable_sie, so we simply
351 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
352 		 */
353 		if (mm_has_pgste(vma->vm_mm))
354 			return 0;
355 #endif
356 		*vm_flags &= ~VM_NOHUGEPAGE;
357 		*vm_flags |= VM_HUGEPAGE;
358 		/*
359 		 * If the vma become good for khugepaged to scan,
360 		 * register it here without waiting a page fault that
361 		 * may not happen any time soon.
362 		 */
363 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
364 				khugepaged_enter_vma_merge(vma, *vm_flags))
365 			return -ENOMEM;
366 		break;
367 	case MADV_NOHUGEPAGE:
368 		*vm_flags &= ~VM_HUGEPAGE;
369 		*vm_flags |= VM_NOHUGEPAGE;
370 		/*
371 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
372 		 * this vma even if we leave the mm registered in khugepaged if
373 		 * it got registered before VM_NOHUGEPAGE was set.
374 		 */
375 		break;
376 	}
377 
378 	return 0;
379 }
380 
381 int __init khugepaged_init(void)
382 {
383 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
384 					  sizeof(struct mm_slot),
385 					  __alignof__(struct mm_slot), 0, NULL);
386 	if (!mm_slot_cache)
387 		return -ENOMEM;
388 
389 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
390 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
391 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
392 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
393 
394 	return 0;
395 }
396 
397 void __init khugepaged_destroy(void)
398 {
399 	kmem_cache_destroy(mm_slot_cache);
400 }
401 
402 static inline struct mm_slot *alloc_mm_slot(void)
403 {
404 	if (!mm_slot_cache)	/* initialization failed */
405 		return NULL;
406 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
407 }
408 
409 static inline void free_mm_slot(struct mm_slot *mm_slot)
410 {
411 	kmem_cache_free(mm_slot_cache, mm_slot);
412 }
413 
414 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
415 {
416 	struct mm_slot *mm_slot;
417 
418 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
419 		if (mm == mm_slot->mm)
420 			return mm_slot;
421 
422 	return NULL;
423 }
424 
425 static void insert_to_mm_slots_hash(struct mm_struct *mm,
426 				    struct mm_slot *mm_slot)
427 {
428 	mm_slot->mm = mm;
429 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
430 }
431 
432 static inline int khugepaged_test_exit(struct mm_struct *mm)
433 {
434 	return atomic_read(&mm->mm_users) == 0;
435 }
436 
437 static bool hugepage_vma_check(struct vm_area_struct *vma,
438 			       unsigned long vm_flags)
439 {
440 	if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
441 	    (vm_flags & VM_NOHUGEPAGE) ||
442 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
443 		return false;
444 
445 	if (shmem_file(vma->vm_file) ||
446 	    (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
447 	     vma->vm_file &&
448 	     (vm_flags & VM_DENYWRITE))) {
449 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
450 				HPAGE_PMD_NR);
451 	}
452 	if (!vma->anon_vma || vma->vm_ops)
453 		return false;
454 	if (vma_is_temporary_stack(vma))
455 		return false;
456 	return !(vm_flags & VM_NO_KHUGEPAGED);
457 }
458 
459 int __khugepaged_enter(struct mm_struct *mm)
460 {
461 	struct mm_slot *mm_slot;
462 	int wakeup;
463 
464 	mm_slot = alloc_mm_slot();
465 	if (!mm_slot)
466 		return -ENOMEM;
467 
468 	/* __khugepaged_exit() must not run from under us */
469 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
470 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
471 		free_mm_slot(mm_slot);
472 		return 0;
473 	}
474 
475 	spin_lock(&khugepaged_mm_lock);
476 	insert_to_mm_slots_hash(mm, mm_slot);
477 	/*
478 	 * Insert just behind the scanning cursor, to let the area settle
479 	 * down a little.
480 	 */
481 	wakeup = list_empty(&khugepaged_scan.mm_head);
482 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
483 	spin_unlock(&khugepaged_mm_lock);
484 
485 	mmgrab(mm);
486 	if (wakeup)
487 		wake_up_interruptible(&khugepaged_wait);
488 
489 	return 0;
490 }
491 
492 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
493 			       unsigned long vm_flags)
494 {
495 	unsigned long hstart, hend;
496 
497 	/*
498 	 * khugepaged only supports read-only files for non-shmem files.
499 	 * khugepaged does not yet work on special mappings. And
500 	 * file-private shmem THP is not supported.
501 	 */
502 	if (!hugepage_vma_check(vma, vm_flags))
503 		return 0;
504 
505 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
506 	hend = vma->vm_end & HPAGE_PMD_MASK;
507 	if (hstart < hend)
508 		return khugepaged_enter(vma, vm_flags);
509 	return 0;
510 }
511 
512 void __khugepaged_exit(struct mm_struct *mm)
513 {
514 	struct mm_slot *mm_slot;
515 	int free = 0;
516 
517 	spin_lock(&khugepaged_mm_lock);
518 	mm_slot = get_mm_slot(mm);
519 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
520 		hash_del(&mm_slot->hash);
521 		list_del(&mm_slot->mm_node);
522 		free = 1;
523 	}
524 	spin_unlock(&khugepaged_mm_lock);
525 
526 	if (free) {
527 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
528 		free_mm_slot(mm_slot);
529 		mmdrop(mm);
530 	} else if (mm_slot) {
531 		/*
532 		 * This is required to serialize against
533 		 * khugepaged_test_exit() (which is guaranteed to run
534 		 * under mmap sem read mode). Stop here (after we
535 		 * return all pagetables will be destroyed) until
536 		 * khugepaged has finished working on the pagetables
537 		 * under the mmap_lock.
538 		 */
539 		mmap_write_lock(mm);
540 		mmap_write_unlock(mm);
541 	}
542 }
543 
544 static void release_pte_page(struct page *page)
545 {
546 	mod_node_page_state(page_pgdat(page),
547 			NR_ISOLATED_ANON + page_is_file_lru(page),
548 			-compound_nr(page));
549 	unlock_page(page);
550 	putback_lru_page(page);
551 }
552 
553 static void release_pte_pages(pte_t *pte, pte_t *_pte,
554 		struct list_head *compound_pagelist)
555 {
556 	struct page *page, *tmp;
557 
558 	while (--_pte >= pte) {
559 		pte_t pteval = *_pte;
560 
561 		page = pte_page(pteval);
562 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
563 				!PageCompound(page))
564 			release_pte_page(page);
565 	}
566 
567 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
568 		list_del(&page->lru);
569 		release_pte_page(page);
570 	}
571 }
572 
573 static bool is_refcount_suitable(struct page *page)
574 {
575 	int expected_refcount;
576 
577 	expected_refcount = total_mapcount(page);
578 	if (PageSwapCache(page))
579 		expected_refcount += compound_nr(page);
580 
581 	return page_count(page) == expected_refcount;
582 }
583 
584 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
585 					unsigned long address,
586 					pte_t *pte,
587 					struct list_head *compound_pagelist)
588 {
589 	struct page *page = NULL;
590 	pte_t *_pte;
591 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
592 	bool writable = false;
593 
594 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
595 	     _pte++, address += PAGE_SIZE) {
596 		pte_t pteval = *_pte;
597 		if (pte_none(pteval) || (pte_present(pteval) &&
598 				is_zero_pfn(pte_pfn(pteval)))) {
599 			if (!userfaultfd_armed(vma) &&
600 			    ++none_or_zero <= khugepaged_max_ptes_none) {
601 				continue;
602 			} else {
603 				result = SCAN_EXCEED_NONE_PTE;
604 				goto out;
605 			}
606 		}
607 		if (!pte_present(pteval)) {
608 			result = SCAN_PTE_NON_PRESENT;
609 			goto out;
610 		}
611 		page = vm_normal_page(vma, address, pteval);
612 		if (unlikely(!page)) {
613 			result = SCAN_PAGE_NULL;
614 			goto out;
615 		}
616 
617 		VM_BUG_ON_PAGE(!PageAnon(page), page);
618 
619 		if (page_mapcount(page) > 1 &&
620 				++shared > khugepaged_max_ptes_shared) {
621 			result = SCAN_EXCEED_SHARED_PTE;
622 			goto out;
623 		}
624 
625 		if (PageCompound(page)) {
626 			struct page *p;
627 			page = compound_head(page);
628 
629 			/*
630 			 * Check if we have dealt with the compound page
631 			 * already
632 			 */
633 			list_for_each_entry(p, compound_pagelist, lru) {
634 				if (page == p)
635 					goto next;
636 			}
637 		}
638 
639 		/*
640 		 * We can do it before isolate_lru_page because the
641 		 * page can't be freed from under us. NOTE: PG_lock
642 		 * is needed to serialize against split_huge_page
643 		 * when invoked from the VM.
644 		 */
645 		if (!trylock_page(page)) {
646 			result = SCAN_PAGE_LOCK;
647 			goto out;
648 		}
649 
650 		/*
651 		 * Check if the page has any GUP (or other external) pins.
652 		 *
653 		 * The page table that maps the page has been already unlinked
654 		 * from the page table tree and this process cannot get
655 		 * an additinal pin on the page.
656 		 *
657 		 * New pins can come later if the page is shared across fork,
658 		 * but not from this process. The other process cannot write to
659 		 * the page, only trigger CoW.
660 		 */
661 		if (!is_refcount_suitable(page)) {
662 			unlock_page(page);
663 			result = SCAN_PAGE_COUNT;
664 			goto out;
665 		}
666 		if (!pte_write(pteval) && PageSwapCache(page) &&
667 				!reuse_swap_page(page, NULL)) {
668 			/*
669 			 * Page is in the swap cache and cannot be re-used.
670 			 * It cannot be collapsed into a THP.
671 			 */
672 			unlock_page(page);
673 			result = SCAN_SWAP_CACHE_PAGE;
674 			goto out;
675 		}
676 
677 		/*
678 		 * Isolate the page to avoid collapsing an hugepage
679 		 * currently in use by the VM.
680 		 */
681 		if (isolate_lru_page(page)) {
682 			unlock_page(page);
683 			result = SCAN_DEL_PAGE_LRU;
684 			goto out;
685 		}
686 		mod_node_page_state(page_pgdat(page),
687 				NR_ISOLATED_ANON + page_is_file_lru(page),
688 				compound_nr(page));
689 		VM_BUG_ON_PAGE(!PageLocked(page), page);
690 		VM_BUG_ON_PAGE(PageLRU(page), page);
691 
692 		if (PageCompound(page))
693 			list_add_tail(&page->lru, compound_pagelist);
694 next:
695 		/* There should be enough young pte to collapse the page */
696 		if (pte_young(pteval) ||
697 		    page_is_young(page) || PageReferenced(page) ||
698 		    mmu_notifier_test_young(vma->vm_mm, address))
699 			referenced++;
700 
701 		if (pte_write(pteval))
702 			writable = true;
703 	}
704 	if (likely(writable)) {
705 		if (likely(referenced)) {
706 			result = SCAN_SUCCEED;
707 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
708 							    referenced, writable, result);
709 			return 1;
710 		}
711 	} else {
712 		result = SCAN_PAGE_RO;
713 	}
714 
715 out:
716 	release_pte_pages(pte, _pte, compound_pagelist);
717 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
718 					    referenced, writable, result);
719 	return 0;
720 }
721 
722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
723 				      struct vm_area_struct *vma,
724 				      unsigned long address,
725 				      spinlock_t *ptl,
726 				      struct list_head *compound_pagelist)
727 {
728 	struct page *src_page, *tmp;
729 	pte_t *_pte;
730 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
731 				_pte++, page++, address += PAGE_SIZE) {
732 		pte_t pteval = *_pte;
733 
734 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
735 			clear_user_highpage(page, address);
736 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
737 			if (is_zero_pfn(pte_pfn(pteval))) {
738 				/*
739 				 * ptl mostly unnecessary.
740 				 */
741 				spin_lock(ptl);
742 				/*
743 				 * paravirt calls inside pte_clear here are
744 				 * superfluous.
745 				 */
746 				pte_clear(vma->vm_mm, address, _pte);
747 				spin_unlock(ptl);
748 			}
749 		} else {
750 			src_page = pte_page(pteval);
751 			copy_user_highpage(page, src_page, address, vma);
752 			if (!PageCompound(src_page))
753 				release_pte_page(src_page);
754 			/*
755 			 * ptl mostly unnecessary, but preempt has to
756 			 * be disabled to update the per-cpu stats
757 			 * inside page_remove_rmap().
758 			 */
759 			spin_lock(ptl);
760 			/*
761 			 * paravirt calls inside pte_clear here are
762 			 * superfluous.
763 			 */
764 			pte_clear(vma->vm_mm, address, _pte);
765 			page_remove_rmap(src_page, false);
766 			spin_unlock(ptl);
767 			free_page_and_swap_cache(src_page);
768 		}
769 	}
770 
771 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
772 		list_del(&src_page->lru);
773 		release_pte_page(src_page);
774 	}
775 }
776 
777 static void khugepaged_alloc_sleep(void)
778 {
779 	DEFINE_WAIT(wait);
780 
781 	add_wait_queue(&khugepaged_wait, &wait);
782 	freezable_schedule_timeout_interruptible(
783 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
784 	remove_wait_queue(&khugepaged_wait, &wait);
785 }
786 
787 static int khugepaged_node_load[MAX_NUMNODES];
788 
789 static bool khugepaged_scan_abort(int nid)
790 {
791 	int i;
792 
793 	/*
794 	 * If node_reclaim_mode is disabled, then no extra effort is made to
795 	 * allocate memory locally.
796 	 */
797 	if (!node_reclaim_mode)
798 		return false;
799 
800 	/* If there is a count for this node already, it must be acceptable */
801 	if (khugepaged_node_load[nid])
802 		return false;
803 
804 	for (i = 0; i < MAX_NUMNODES; i++) {
805 		if (!khugepaged_node_load[i])
806 			continue;
807 		if (node_distance(nid, i) > node_reclaim_distance)
808 			return true;
809 	}
810 	return false;
811 }
812 
813 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
814 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
815 {
816 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
817 }
818 
819 #ifdef CONFIG_NUMA
820 static int khugepaged_find_target_node(void)
821 {
822 	static int last_khugepaged_target_node = NUMA_NO_NODE;
823 	int nid, target_node = 0, max_value = 0;
824 
825 	/* find first node with max normal pages hit */
826 	for (nid = 0; nid < MAX_NUMNODES; nid++)
827 		if (khugepaged_node_load[nid] > max_value) {
828 			max_value = khugepaged_node_load[nid];
829 			target_node = nid;
830 		}
831 
832 	/* do some balance if several nodes have the same hit record */
833 	if (target_node <= last_khugepaged_target_node)
834 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
835 				nid++)
836 			if (max_value == khugepaged_node_load[nid]) {
837 				target_node = nid;
838 				break;
839 			}
840 
841 	last_khugepaged_target_node = target_node;
842 	return target_node;
843 }
844 
845 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
846 {
847 	if (IS_ERR(*hpage)) {
848 		if (!*wait)
849 			return false;
850 
851 		*wait = false;
852 		*hpage = NULL;
853 		khugepaged_alloc_sleep();
854 	} else if (*hpage) {
855 		put_page(*hpage);
856 		*hpage = NULL;
857 	}
858 
859 	return true;
860 }
861 
862 static struct page *
863 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
864 {
865 	VM_BUG_ON_PAGE(*hpage, *hpage);
866 
867 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
868 	if (unlikely(!*hpage)) {
869 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
870 		*hpage = ERR_PTR(-ENOMEM);
871 		return NULL;
872 	}
873 
874 	prep_transhuge_page(*hpage);
875 	count_vm_event(THP_COLLAPSE_ALLOC);
876 	return *hpage;
877 }
878 #else
879 static int khugepaged_find_target_node(void)
880 {
881 	return 0;
882 }
883 
884 static inline struct page *alloc_khugepaged_hugepage(void)
885 {
886 	struct page *page;
887 
888 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
889 			   HPAGE_PMD_ORDER);
890 	if (page)
891 		prep_transhuge_page(page);
892 	return page;
893 }
894 
895 static struct page *khugepaged_alloc_hugepage(bool *wait)
896 {
897 	struct page *hpage;
898 
899 	do {
900 		hpage = alloc_khugepaged_hugepage();
901 		if (!hpage) {
902 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
903 			if (!*wait)
904 				return NULL;
905 
906 			*wait = false;
907 			khugepaged_alloc_sleep();
908 		} else
909 			count_vm_event(THP_COLLAPSE_ALLOC);
910 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
911 
912 	return hpage;
913 }
914 
915 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
916 {
917 	if (!*hpage)
918 		*hpage = khugepaged_alloc_hugepage(wait);
919 
920 	if (unlikely(!*hpage))
921 		return false;
922 
923 	return true;
924 }
925 
926 static struct page *
927 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
928 {
929 	VM_BUG_ON(!*hpage);
930 
931 	return  *hpage;
932 }
933 #endif
934 
935 /*
936  * If mmap_lock temporarily dropped, revalidate vma
937  * before taking mmap_lock.
938  * Return 0 if succeeds, otherwise return none-zero
939  * value (scan code).
940  */
941 
942 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
943 		struct vm_area_struct **vmap)
944 {
945 	struct vm_area_struct *vma;
946 	unsigned long hstart, hend;
947 
948 	if (unlikely(khugepaged_test_exit(mm)))
949 		return SCAN_ANY_PROCESS;
950 
951 	*vmap = vma = find_vma(mm, address);
952 	if (!vma)
953 		return SCAN_VMA_NULL;
954 
955 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
956 	hend = vma->vm_end & HPAGE_PMD_MASK;
957 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
958 		return SCAN_ADDRESS_RANGE;
959 	if (!hugepage_vma_check(vma, vma->vm_flags))
960 		return SCAN_VMA_CHECK;
961 	/* Anon VMA expected */
962 	if (!vma->anon_vma || vma->vm_ops)
963 		return SCAN_VMA_CHECK;
964 	return 0;
965 }
966 
967 /*
968  * Bring missing pages in from swap, to complete THP collapse.
969  * Only done if khugepaged_scan_pmd believes it is worthwhile.
970  *
971  * Called and returns without pte mapped or spinlocks held,
972  * but with mmap_lock held to protect against vma changes.
973  */
974 
975 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
976 					struct vm_area_struct *vma,
977 					unsigned long address, pmd_t *pmd,
978 					int referenced)
979 {
980 	int swapped_in = 0;
981 	vm_fault_t ret = 0;
982 	struct vm_fault vmf = {
983 		.vma = vma,
984 		.address = address,
985 		.flags = FAULT_FLAG_ALLOW_RETRY,
986 		.pmd = pmd,
987 		.pgoff = linear_page_index(vma, address),
988 	};
989 
990 	vmf.pte = pte_offset_map(pmd, address);
991 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
992 			vmf.pte++, vmf.address += PAGE_SIZE) {
993 		vmf.orig_pte = *vmf.pte;
994 		if (!is_swap_pte(vmf.orig_pte))
995 			continue;
996 		swapped_in++;
997 		ret = do_swap_page(&vmf);
998 
999 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1000 		if (ret & VM_FAULT_RETRY) {
1001 			mmap_read_lock(mm);
1002 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1003 				/* vma is no longer available, don't continue to swapin */
1004 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1005 				return false;
1006 			}
1007 			/* check if the pmd is still valid */
1008 			if (mm_find_pmd(mm, address) != pmd) {
1009 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1010 				return false;
1011 			}
1012 		}
1013 		if (ret & VM_FAULT_ERROR) {
1014 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1015 			return false;
1016 		}
1017 		/* pte is unmapped now, we need to map it */
1018 		vmf.pte = pte_offset_map(pmd, vmf.address);
1019 	}
1020 	vmf.pte--;
1021 	pte_unmap(vmf.pte);
1022 
1023 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1024 	if (swapped_in)
1025 		lru_add_drain();
1026 
1027 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1028 	return true;
1029 }
1030 
1031 static void collapse_huge_page(struct mm_struct *mm,
1032 				   unsigned long address,
1033 				   struct page **hpage,
1034 				   int node, int referenced, int unmapped)
1035 {
1036 	LIST_HEAD(compound_pagelist);
1037 	pmd_t *pmd, _pmd;
1038 	pte_t *pte;
1039 	pgtable_t pgtable;
1040 	struct page *new_page;
1041 	spinlock_t *pmd_ptl, *pte_ptl;
1042 	int isolated = 0, result = 0;
1043 	struct vm_area_struct *vma;
1044 	struct mmu_notifier_range range;
1045 	gfp_t gfp;
1046 
1047 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1048 
1049 	/* Only allocate from the target node */
1050 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1051 
1052 	/*
1053 	 * Before allocating the hugepage, release the mmap_lock read lock.
1054 	 * The allocation can take potentially a long time if it involves
1055 	 * sync compaction, and we do not need to hold the mmap_lock during
1056 	 * that. We will recheck the vma after taking it again in write mode.
1057 	 */
1058 	mmap_read_unlock(mm);
1059 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1060 	if (!new_page) {
1061 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1062 		goto out_nolock;
1063 	}
1064 
1065 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1066 		result = SCAN_CGROUP_CHARGE_FAIL;
1067 		goto out_nolock;
1068 	}
1069 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1070 
1071 	mmap_read_lock(mm);
1072 	result = hugepage_vma_revalidate(mm, address, &vma);
1073 	if (result) {
1074 		mmap_read_unlock(mm);
1075 		goto out_nolock;
1076 	}
1077 
1078 	pmd = mm_find_pmd(mm, address);
1079 	if (!pmd) {
1080 		result = SCAN_PMD_NULL;
1081 		mmap_read_unlock(mm);
1082 		goto out_nolock;
1083 	}
1084 
1085 	/*
1086 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1087 	 * If it fails, we release mmap_lock and jump out_nolock.
1088 	 * Continuing to collapse causes inconsistency.
1089 	 */
1090 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1091 						     pmd, referenced)) {
1092 		mmap_read_unlock(mm);
1093 		goto out_nolock;
1094 	}
1095 
1096 	mmap_read_unlock(mm);
1097 	/*
1098 	 * Prevent all access to pagetables with the exception of
1099 	 * gup_fast later handled by the ptep_clear_flush and the VM
1100 	 * handled by the anon_vma lock + PG_lock.
1101 	 */
1102 	mmap_write_lock(mm);
1103 	result = SCAN_ANY_PROCESS;
1104 	if (!mmget_still_valid(mm))
1105 		goto out;
1106 	result = hugepage_vma_revalidate(mm, address, &vma);
1107 	if (result)
1108 		goto out;
1109 	/* check if the pmd is still valid */
1110 	if (mm_find_pmd(mm, address) != pmd)
1111 		goto out;
1112 
1113 	anon_vma_lock_write(vma->anon_vma);
1114 
1115 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1116 				address, address + HPAGE_PMD_SIZE);
1117 	mmu_notifier_invalidate_range_start(&range);
1118 
1119 	pte = pte_offset_map(pmd, address);
1120 	pte_ptl = pte_lockptr(mm, pmd);
1121 
1122 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1123 	/*
1124 	 * After this gup_fast can't run anymore. This also removes
1125 	 * any huge TLB entry from the CPU so we won't allow
1126 	 * huge and small TLB entries for the same virtual address
1127 	 * to avoid the risk of CPU bugs in that area.
1128 	 */
1129 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1130 	spin_unlock(pmd_ptl);
1131 	mmu_notifier_invalidate_range_end(&range);
1132 
1133 	spin_lock(pte_ptl);
1134 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1135 			&compound_pagelist);
1136 	spin_unlock(pte_ptl);
1137 
1138 	if (unlikely(!isolated)) {
1139 		pte_unmap(pte);
1140 		spin_lock(pmd_ptl);
1141 		BUG_ON(!pmd_none(*pmd));
1142 		/*
1143 		 * We can only use set_pmd_at when establishing
1144 		 * hugepmds and never for establishing regular pmds that
1145 		 * points to regular pagetables. Use pmd_populate for that
1146 		 */
1147 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1148 		spin_unlock(pmd_ptl);
1149 		anon_vma_unlock_write(vma->anon_vma);
1150 		result = SCAN_FAIL;
1151 		goto out;
1152 	}
1153 
1154 	/*
1155 	 * All pages are isolated and locked so anon_vma rmap
1156 	 * can't run anymore.
1157 	 */
1158 	anon_vma_unlock_write(vma->anon_vma);
1159 
1160 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1161 			&compound_pagelist);
1162 	pte_unmap(pte);
1163 	__SetPageUptodate(new_page);
1164 	pgtable = pmd_pgtable(_pmd);
1165 
1166 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1167 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1168 
1169 	/*
1170 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1171 	 * this is needed to avoid the copy_huge_page writes to become
1172 	 * visible after the set_pmd_at() write.
1173 	 */
1174 	smp_wmb();
1175 
1176 	spin_lock(pmd_ptl);
1177 	BUG_ON(!pmd_none(*pmd));
1178 	page_add_new_anon_rmap(new_page, vma, address, true);
1179 	lru_cache_add_active_or_unevictable(new_page, vma);
1180 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1181 	set_pmd_at(mm, address, pmd, _pmd);
1182 	update_mmu_cache_pmd(vma, address, pmd);
1183 	spin_unlock(pmd_ptl);
1184 
1185 	*hpage = NULL;
1186 
1187 	khugepaged_pages_collapsed++;
1188 	result = SCAN_SUCCEED;
1189 out_up_write:
1190 	mmap_write_unlock(mm);
1191 out_nolock:
1192 	if (!IS_ERR_OR_NULL(*hpage))
1193 		mem_cgroup_uncharge(*hpage);
1194 	trace_mm_collapse_huge_page(mm, isolated, result);
1195 	return;
1196 out:
1197 	goto out_up_write;
1198 }
1199 
1200 static int khugepaged_scan_pmd(struct mm_struct *mm,
1201 			       struct vm_area_struct *vma,
1202 			       unsigned long address,
1203 			       struct page **hpage)
1204 {
1205 	pmd_t *pmd;
1206 	pte_t *pte, *_pte;
1207 	int ret = 0, result = 0, referenced = 0;
1208 	int none_or_zero = 0, shared = 0;
1209 	struct page *page = NULL;
1210 	unsigned long _address;
1211 	spinlock_t *ptl;
1212 	int node = NUMA_NO_NODE, unmapped = 0;
1213 	bool writable = false;
1214 
1215 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1216 
1217 	pmd = mm_find_pmd(mm, address);
1218 	if (!pmd) {
1219 		result = SCAN_PMD_NULL;
1220 		goto out;
1221 	}
1222 
1223 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1224 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1225 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1226 	     _pte++, _address += PAGE_SIZE) {
1227 		pte_t pteval = *_pte;
1228 		if (is_swap_pte(pteval)) {
1229 			if (++unmapped <= khugepaged_max_ptes_swap) {
1230 				/*
1231 				 * Always be strict with uffd-wp
1232 				 * enabled swap entries.  Please see
1233 				 * comment below for pte_uffd_wp().
1234 				 */
1235 				if (pte_swp_uffd_wp(pteval)) {
1236 					result = SCAN_PTE_UFFD_WP;
1237 					goto out_unmap;
1238 				}
1239 				continue;
1240 			} else {
1241 				result = SCAN_EXCEED_SWAP_PTE;
1242 				goto out_unmap;
1243 			}
1244 		}
1245 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1246 			if (!userfaultfd_armed(vma) &&
1247 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1248 				continue;
1249 			} else {
1250 				result = SCAN_EXCEED_NONE_PTE;
1251 				goto out_unmap;
1252 			}
1253 		}
1254 		if (!pte_present(pteval)) {
1255 			result = SCAN_PTE_NON_PRESENT;
1256 			goto out_unmap;
1257 		}
1258 		if (pte_uffd_wp(pteval)) {
1259 			/*
1260 			 * Don't collapse the page if any of the small
1261 			 * PTEs are armed with uffd write protection.
1262 			 * Here we can also mark the new huge pmd as
1263 			 * write protected if any of the small ones is
1264 			 * marked but that could bring uknown
1265 			 * userfault messages that falls outside of
1266 			 * the registered range.  So, just be simple.
1267 			 */
1268 			result = SCAN_PTE_UFFD_WP;
1269 			goto out_unmap;
1270 		}
1271 		if (pte_write(pteval))
1272 			writable = true;
1273 
1274 		page = vm_normal_page(vma, _address, pteval);
1275 		if (unlikely(!page)) {
1276 			result = SCAN_PAGE_NULL;
1277 			goto out_unmap;
1278 		}
1279 
1280 		if (page_mapcount(page) > 1 &&
1281 				++shared > khugepaged_max_ptes_shared) {
1282 			result = SCAN_EXCEED_SHARED_PTE;
1283 			goto out_unmap;
1284 		}
1285 
1286 		page = compound_head(page);
1287 
1288 		/*
1289 		 * Record which node the original page is from and save this
1290 		 * information to khugepaged_node_load[].
1291 		 * Khupaged will allocate hugepage from the node has the max
1292 		 * hit record.
1293 		 */
1294 		node = page_to_nid(page);
1295 		if (khugepaged_scan_abort(node)) {
1296 			result = SCAN_SCAN_ABORT;
1297 			goto out_unmap;
1298 		}
1299 		khugepaged_node_load[node]++;
1300 		if (!PageLRU(page)) {
1301 			result = SCAN_PAGE_LRU;
1302 			goto out_unmap;
1303 		}
1304 		if (PageLocked(page)) {
1305 			result = SCAN_PAGE_LOCK;
1306 			goto out_unmap;
1307 		}
1308 		if (!PageAnon(page)) {
1309 			result = SCAN_PAGE_ANON;
1310 			goto out_unmap;
1311 		}
1312 
1313 		/*
1314 		 * Check if the page has any GUP (or other external) pins.
1315 		 *
1316 		 * Here the check is racy it may see totmal_mapcount > refcount
1317 		 * in some cases.
1318 		 * For example, one process with one forked child process.
1319 		 * The parent has the PMD split due to MADV_DONTNEED, then
1320 		 * the child is trying unmap the whole PMD, but khugepaged
1321 		 * may be scanning the parent between the child has
1322 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1323 		 * khugepaged may see total_mapcount > refcount.
1324 		 *
1325 		 * But such case is ephemeral we could always retry collapse
1326 		 * later.  However it may report false positive if the page
1327 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1328 		 * will be done again later the risk seems low.
1329 		 */
1330 		if (!is_refcount_suitable(page)) {
1331 			result = SCAN_PAGE_COUNT;
1332 			goto out_unmap;
1333 		}
1334 		if (pte_young(pteval) ||
1335 		    page_is_young(page) || PageReferenced(page) ||
1336 		    mmu_notifier_test_young(vma->vm_mm, address))
1337 			referenced++;
1338 	}
1339 	if (!writable) {
1340 		result = SCAN_PAGE_RO;
1341 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1342 		result = SCAN_LACK_REFERENCED_PAGE;
1343 	} else {
1344 		result = SCAN_SUCCEED;
1345 		ret = 1;
1346 	}
1347 out_unmap:
1348 	pte_unmap_unlock(pte, ptl);
1349 	if (ret) {
1350 		node = khugepaged_find_target_node();
1351 		/* collapse_huge_page will return with the mmap_lock released */
1352 		collapse_huge_page(mm, address, hpage, node,
1353 				referenced, unmapped);
1354 	}
1355 out:
1356 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1357 				     none_or_zero, result, unmapped);
1358 	return ret;
1359 }
1360 
1361 static void collect_mm_slot(struct mm_slot *mm_slot)
1362 {
1363 	struct mm_struct *mm = mm_slot->mm;
1364 
1365 	lockdep_assert_held(&khugepaged_mm_lock);
1366 
1367 	if (khugepaged_test_exit(mm)) {
1368 		/* free mm_slot */
1369 		hash_del(&mm_slot->hash);
1370 		list_del(&mm_slot->mm_node);
1371 
1372 		/*
1373 		 * Not strictly needed because the mm exited already.
1374 		 *
1375 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1376 		 */
1377 
1378 		/* khugepaged_mm_lock actually not necessary for the below */
1379 		free_mm_slot(mm_slot);
1380 		mmdrop(mm);
1381 	}
1382 }
1383 
1384 #ifdef CONFIG_SHMEM
1385 /*
1386  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1387  * khugepaged should try to collapse the page table.
1388  */
1389 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1390 					 unsigned long addr)
1391 {
1392 	struct mm_slot *mm_slot;
1393 
1394 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1395 
1396 	spin_lock(&khugepaged_mm_lock);
1397 	mm_slot = get_mm_slot(mm);
1398 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1399 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1400 	spin_unlock(&khugepaged_mm_lock);
1401 	return 0;
1402 }
1403 
1404 /**
1405  * Try to collapse a pte-mapped THP for mm at address haddr.
1406  *
1407  * This function checks whether all the PTEs in the PMD are pointing to the
1408  * right THP. If so, retract the page table so the THP can refault in with
1409  * as pmd-mapped.
1410  */
1411 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1412 {
1413 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1414 	struct vm_area_struct *vma = find_vma(mm, haddr);
1415 	struct page *hpage = NULL;
1416 	pte_t *start_pte, *pte;
1417 	pmd_t *pmd, _pmd;
1418 	spinlock_t *ptl;
1419 	int count = 0;
1420 	int i;
1421 
1422 	if (!vma || !vma->vm_file ||
1423 	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1424 		return;
1425 
1426 	/*
1427 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1428 	 * collapsed by this mm. But we can still collapse if the page is
1429 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1430 	 * will not fail the vma for missing VM_HUGEPAGE
1431 	 */
1432 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1433 		return;
1434 
1435 	pmd = mm_find_pmd(mm, haddr);
1436 	if (!pmd)
1437 		return;
1438 
1439 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1440 
1441 	/* step 1: check all mapped PTEs are to the right huge page */
1442 	for (i = 0, addr = haddr, pte = start_pte;
1443 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1444 		struct page *page;
1445 
1446 		/* empty pte, skip */
1447 		if (pte_none(*pte))
1448 			continue;
1449 
1450 		/* page swapped out, abort */
1451 		if (!pte_present(*pte))
1452 			goto abort;
1453 
1454 		page = vm_normal_page(vma, addr, *pte);
1455 
1456 		if (!page || !PageCompound(page))
1457 			goto abort;
1458 
1459 		if (!hpage) {
1460 			hpage = compound_head(page);
1461 			/*
1462 			 * The mapping of the THP should not change.
1463 			 *
1464 			 * Note that uprobe, debugger, or MAP_PRIVATE may
1465 			 * change the page table, but the new page will
1466 			 * not pass PageCompound() check.
1467 			 */
1468 			if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1469 				goto abort;
1470 		}
1471 
1472 		/*
1473 		 * Confirm the page maps to the correct subpage.
1474 		 *
1475 		 * Note that uprobe, debugger, or MAP_PRIVATE may change
1476 		 * the page table, but the new page will not pass
1477 		 * PageCompound() check.
1478 		 */
1479 		if (WARN_ON(hpage + i != page))
1480 			goto abort;
1481 		count++;
1482 	}
1483 
1484 	/* step 2: adjust rmap */
1485 	for (i = 0, addr = haddr, pte = start_pte;
1486 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1487 		struct page *page;
1488 
1489 		if (pte_none(*pte))
1490 			continue;
1491 		page = vm_normal_page(vma, addr, *pte);
1492 		page_remove_rmap(page, false);
1493 	}
1494 
1495 	pte_unmap_unlock(start_pte, ptl);
1496 
1497 	/* step 3: set proper refcount and mm_counters. */
1498 	if (hpage) {
1499 		page_ref_sub(hpage, count);
1500 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1501 	}
1502 
1503 	/* step 4: collapse pmd */
1504 	ptl = pmd_lock(vma->vm_mm, pmd);
1505 	_pmd = pmdp_collapse_flush(vma, addr, pmd);
1506 	spin_unlock(ptl);
1507 	mm_dec_nr_ptes(mm);
1508 	pte_free(mm, pmd_pgtable(_pmd));
1509 	return;
1510 
1511 abort:
1512 	pte_unmap_unlock(start_pte, ptl);
1513 }
1514 
1515 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1516 {
1517 	struct mm_struct *mm = mm_slot->mm;
1518 	int i;
1519 
1520 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1521 		return 0;
1522 
1523 	if (!mmap_write_trylock(mm))
1524 		return -EBUSY;
1525 
1526 	if (unlikely(khugepaged_test_exit(mm)))
1527 		goto out;
1528 
1529 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1530 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1531 
1532 out:
1533 	mm_slot->nr_pte_mapped_thp = 0;
1534 	mmap_write_unlock(mm);
1535 	return 0;
1536 }
1537 
1538 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1539 {
1540 	struct vm_area_struct *vma;
1541 	unsigned long addr;
1542 	pmd_t *pmd, _pmd;
1543 
1544 	i_mmap_lock_write(mapping);
1545 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1546 		/*
1547 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1548 		 * got written to. These VMAs are likely not worth investing
1549 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1550 		 * later.
1551 		 *
1552 		 * Not that vma->anon_vma check is racy: it can be set up after
1553 		 * the check but before we took mmap_lock by the fault path.
1554 		 * But page lock would prevent establishing any new ptes of the
1555 		 * page, so we are safe.
1556 		 *
1557 		 * An alternative would be drop the check, but check that page
1558 		 * table is clear before calling pmdp_collapse_flush() under
1559 		 * ptl. It has higher chance to recover THP for the VMA, but
1560 		 * has higher cost too.
1561 		 */
1562 		if (vma->anon_vma)
1563 			continue;
1564 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1565 		if (addr & ~HPAGE_PMD_MASK)
1566 			continue;
1567 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1568 			continue;
1569 		pmd = mm_find_pmd(vma->vm_mm, addr);
1570 		if (!pmd)
1571 			continue;
1572 		/*
1573 		 * We need exclusive mmap_lock to retract page table.
1574 		 *
1575 		 * We use trylock due to lock inversion: we need to acquire
1576 		 * mmap_lock while holding page lock. Fault path does it in
1577 		 * reverse order. Trylock is a way to avoid deadlock.
1578 		 */
1579 		if (mmap_write_trylock(vma->vm_mm)) {
1580 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1581 			/* assume page table is clear */
1582 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
1583 			spin_unlock(ptl);
1584 			mmap_write_unlock(vma->vm_mm);
1585 			mm_dec_nr_ptes(vma->vm_mm);
1586 			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1587 		} else {
1588 			/* Try again later */
1589 			khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1590 		}
1591 	}
1592 	i_mmap_unlock_write(mapping);
1593 }
1594 
1595 /**
1596  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1597  *
1598  * Basic scheme is simple, details are more complex:
1599  *  - allocate and lock a new huge page;
1600  *  - scan page cache replacing old pages with the new one
1601  *    + swap/gup in pages if necessary;
1602  *    + fill in gaps;
1603  *    + keep old pages around in case rollback is required;
1604  *  - if replacing succeeds:
1605  *    + copy data over;
1606  *    + free old pages;
1607  *    + unlock huge page;
1608  *  - if replacing failed;
1609  *    + put all pages back and unfreeze them;
1610  *    + restore gaps in the page cache;
1611  *    + unlock and free huge page;
1612  */
1613 static void collapse_file(struct mm_struct *mm,
1614 		struct file *file, pgoff_t start,
1615 		struct page **hpage, int node)
1616 {
1617 	struct address_space *mapping = file->f_mapping;
1618 	gfp_t gfp;
1619 	struct page *new_page;
1620 	pgoff_t index, end = start + HPAGE_PMD_NR;
1621 	LIST_HEAD(pagelist);
1622 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1623 	int nr_none = 0, result = SCAN_SUCCEED;
1624 	bool is_shmem = shmem_file(file);
1625 
1626 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1627 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1628 
1629 	/* Only allocate from the target node */
1630 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1631 
1632 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1633 	if (!new_page) {
1634 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1635 		goto out;
1636 	}
1637 
1638 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1639 		result = SCAN_CGROUP_CHARGE_FAIL;
1640 		goto out;
1641 	}
1642 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1643 
1644 	/* This will be less messy when we use multi-index entries */
1645 	do {
1646 		xas_lock_irq(&xas);
1647 		xas_create_range(&xas);
1648 		if (!xas_error(&xas))
1649 			break;
1650 		xas_unlock_irq(&xas);
1651 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1652 			result = SCAN_FAIL;
1653 			goto out;
1654 		}
1655 	} while (1);
1656 
1657 	__SetPageLocked(new_page);
1658 	if (is_shmem)
1659 		__SetPageSwapBacked(new_page);
1660 	new_page->index = start;
1661 	new_page->mapping = mapping;
1662 
1663 	/*
1664 	 * At this point the new_page is locked and not up-to-date.
1665 	 * It's safe to insert it into the page cache, because nobody would
1666 	 * be able to map it or use it in another way until we unlock it.
1667 	 */
1668 
1669 	xas_set(&xas, start);
1670 	for (index = start; index < end; index++) {
1671 		struct page *page = xas_next(&xas);
1672 
1673 		VM_BUG_ON(index != xas.xa_index);
1674 		if (is_shmem) {
1675 			if (!page) {
1676 				/*
1677 				 * Stop if extent has been truncated or
1678 				 * hole-punched, and is now completely
1679 				 * empty.
1680 				 */
1681 				if (index == start) {
1682 					if (!xas_next_entry(&xas, end - 1)) {
1683 						result = SCAN_TRUNCATED;
1684 						goto xa_locked;
1685 					}
1686 					xas_set(&xas, index);
1687 				}
1688 				if (!shmem_charge(mapping->host, 1)) {
1689 					result = SCAN_FAIL;
1690 					goto xa_locked;
1691 				}
1692 				xas_store(&xas, new_page);
1693 				nr_none++;
1694 				continue;
1695 			}
1696 
1697 			if (xa_is_value(page) || !PageUptodate(page)) {
1698 				xas_unlock_irq(&xas);
1699 				/* swap in or instantiate fallocated page */
1700 				if (shmem_getpage(mapping->host, index, &page,
1701 						  SGP_NOHUGE)) {
1702 					result = SCAN_FAIL;
1703 					goto xa_unlocked;
1704 				}
1705 			} else if (trylock_page(page)) {
1706 				get_page(page);
1707 				xas_unlock_irq(&xas);
1708 			} else {
1709 				result = SCAN_PAGE_LOCK;
1710 				goto xa_locked;
1711 			}
1712 		} else {	/* !is_shmem */
1713 			if (!page || xa_is_value(page)) {
1714 				xas_unlock_irq(&xas);
1715 				page_cache_sync_readahead(mapping, &file->f_ra,
1716 							  file, index,
1717 							  PAGE_SIZE);
1718 				/* drain pagevecs to help isolate_lru_page() */
1719 				lru_add_drain();
1720 				page = find_lock_page(mapping, index);
1721 				if (unlikely(page == NULL)) {
1722 					result = SCAN_FAIL;
1723 					goto xa_unlocked;
1724 				}
1725 			} else if (PageDirty(page)) {
1726 				/*
1727 				 * khugepaged only works on read-only fd,
1728 				 * so this page is dirty because it hasn't
1729 				 * been flushed since first write. There
1730 				 * won't be new dirty pages.
1731 				 *
1732 				 * Trigger async flush here and hope the
1733 				 * writeback is done when khugepaged
1734 				 * revisits this page.
1735 				 *
1736 				 * This is a one-off situation. We are not
1737 				 * forcing writeback in loop.
1738 				 */
1739 				xas_unlock_irq(&xas);
1740 				filemap_flush(mapping);
1741 				result = SCAN_FAIL;
1742 				goto xa_unlocked;
1743 			} else if (trylock_page(page)) {
1744 				get_page(page);
1745 				xas_unlock_irq(&xas);
1746 			} else {
1747 				result = SCAN_PAGE_LOCK;
1748 				goto xa_locked;
1749 			}
1750 		}
1751 
1752 		/*
1753 		 * The page must be locked, so we can drop the i_pages lock
1754 		 * without racing with truncate.
1755 		 */
1756 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1757 
1758 		/* make sure the page is up to date */
1759 		if (unlikely(!PageUptodate(page))) {
1760 			result = SCAN_FAIL;
1761 			goto out_unlock;
1762 		}
1763 
1764 		/*
1765 		 * If file was truncated then extended, or hole-punched, before
1766 		 * we locked the first page, then a THP might be there already.
1767 		 */
1768 		if (PageTransCompound(page)) {
1769 			result = SCAN_PAGE_COMPOUND;
1770 			goto out_unlock;
1771 		}
1772 
1773 		if (page_mapping(page) != mapping) {
1774 			result = SCAN_TRUNCATED;
1775 			goto out_unlock;
1776 		}
1777 
1778 		if (!is_shmem && PageDirty(page)) {
1779 			/*
1780 			 * khugepaged only works on read-only fd, so this
1781 			 * page is dirty because it hasn't been flushed
1782 			 * since first write.
1783 			 */
1784 			result = SCAN_FAIL;
1785 			goto out_unlock;
1786 		}
1787 
1788 		if (isolate_lru_page(page)) {
1789 			result = SCAN_DEL_PAGE_LRU;
1790 			goto out_unlock;
1791 		}
1792 
1793 		if (page_has_private(page) &&
1794 		    !try_to_release_page(page, GFP_KERNEL)) {
1795 			result = SCAN_PAGE_HAS_PRIVATE;
1796 			putback_lru_page(page);
1797 			goto out_unlock;
1798 		}
1799 
1800 		if (page_mapped(page))
1801 			unmap_mapping_pages(mapping, index, 1, false);
1802 
1803 		xas_lock_irq(&xas);
1804 		xas_set(&xas, index);
1805 
1806 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1807 		VM_BUG_ON_PAGE(page_mapped(page), page);
1808 
1809 		/*
1810 		 * The page is expected to have page_count() == 3:
1811 		 *  - we hold a pin on it;
1812 		 *  - one reference from page cache;
1813 		 *  - one from isolate_lru_page;
1814 		 */
1815 		if (!page_ref_freeze(page, 3)) {
1816 			result = SCAN_PAGE_COUNT;
1817 			xas_unlock_irq(&xas);
1818 			putback_lru_page(page);
1819 			goto out_unlock;
1820 		}
1821 
1822 		/*
1823 		 * Add the page to the list to be able to undo the collapse if
1824 		 * something go wrong.
1825 		 */
1826 		list_add_tail(&page->lru, &pagelist);
1827 
1828 		/* Finally, replace with the new page. */
1829 		xas_store(&xas, new_page);
1830 		continue;
1831 out_unlock:
1832 		unlock_page(page);
1833 		put_page(page);
1834 		goto xa_unlocked;
1835 	}
1836 
1837 	if (is_shmem)
1838 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1839 	else {
1840 		__inc_node_page_state(new_page, NR_FILE_THPS);
1841 		filemap_nr_thps_inc(mapping);
1842 	}
1843 
1844 	if (nr_none) {
1845 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1846 		if (is_shmem)
1847 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1848 	}
1849 
1850 xa_locked:
1851 	xas_unlock_irq(&xas);
1852 xa_unlocked:
1853 
1854 	if (result == SCAN_SUCCEED) {
1855 		struct page *page, *tmp;
1856 
1857 		/*
1858 		 * Replacing old pages with new one has succeeded, now we
1859 		 * need to copy the content and free the old pages.
1860 		 */
1861 		index = start;
1862 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1863 			while (index < page->index) {
1864 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1865 				index++;
1866 			}
1867 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1868 					page);
1869 			list_del(&page->lru);
1870 			page->mapping = NULL;
1871 			page_ref_unfreeze(page, 1);
1872 			ClearPageActive(page);
1873 			ClearPageUnevictable(page);
1874 			unlock_page(page);
1875 			put_page(page);
1876 			index++;
1877 		}
1878 		while (index < end) {
1879 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1880 			index++;
1881 		}
1882 
1883 		SetPageUptodate(new_page);
1884 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1885 		if (is_shmem)
1886 			set_page_dirty(new_page);
1887 		lru_cache_add(new_page);
1888 
1889 		/*
1890 		 * Remove pte page tables, so we can re-fault the page as huge.
1891 		 */
1892 		retract_page_tables(mapping, start);
1893 		*hpage = NULL;
1894 
1895 		khugepaged_pages_collapsed++;
1896 	} else {
1897 		struct page *page;
1898 
1899 		/* Something went wrong: roll back page cache changes */
1900 		xas_lock_irq(&xas);
1901 		mapping->nrpages -= nr_none;
1902 
1903 		if (is_shmem)
1904 			shmem_uncharge(mapping->host, nr_none);
1905 
1906 		xas_set(&xas, start);
1907 		xas_for_each(&xas, page, end - 1) {
1908 			page = list_first_entry_or_null(&pagelist,
1909 					struct page, lru);
1910 			if (!page || xas.xa_index < page->index) {
1911 				if (!nr_none)
1912 					break;
1913 				nr_none--;
1914 				/* Put holes back where they were */
1915 				xas_store(&xas, NULL);
1916 				continue;
1917 			}
1918 
1919 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1920 
1921 			/* Unfreeze the page. */
1922 			list_del(&page->lru);
1923 			page_ref_unfreeze(page, 2);
1924 			xas_store(&xas, page);
1925 			xas_pause(&xas);
1926 			xas_unlock_irq(&xas);
1927 			unlock_page(page);
1928 			putback_lru_page(page);
1929 			xas_lock_irq(&xas);
1930 		}
1931 		VM_BUG_ON(nr_none);
1932 		xas_unlock_irq(&xas);
1933 
1934 		new_page->mapping = NULL;
1935 	}
1936 
1937 	unlock_page(new_page);
1938 out:
1939 	VM_BUG_ON(!list_empty(&pagelist));
1940 	if (!IS_ERR_OR_NULL(*hpage))
1941 		mem_cgroup_uncharge(*hpage);
1942 	/* TODO: tracepoints */
1943 }
1944 
1945 static void khugepaged_scan_file(struct mm_struct *mm,
1946 		struct file *file, pgoff_t start, struct page **hpage)
1947 {
1948 	struct page *page = NULL;
1949 	struct address_space *mapping = file->f_mapping;
1950 	XA_STATE(xas, &mapping->i_pages, start);
1951 	int present, swap;
1952 	int node = NUMA_NO_NODE;
1953 	int result = SCAN_SUCCEED;
1954 
1955 	present = 0;
1956 	swap = 0;
1957 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1958 	rcu_read_lock();
1959 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1960 		if (xas_retry(&xas, page))
1961 			continue;
1962 
1963 		if (xa_is_value(page)) {
1964 			if (++swap > khugepaged_max_ptes_swap) {
1965 				result = SCAN_EXCEED_SWAP_PTE;
1966 				break;
1967 			}
1968 			continue;
1969 		}
1970 
1971 		if (PageTransCompound(page)) {
1972 			result = SCAN_PAGE_COMPOUND;
1973 			break;
1974 		}
1975 
1976 		node = page_to_nid(page);
1977 		if (khugepaged_scan_abort(node)) {
1978 			result = SCAN_SCAN_ABORT;
1979 			break;
1980 		}
1981 		khugepaged_node_load[node]++;
1982 
1983 		if (!PageLRU(page)) {
1984 			result = SCAN_PAGE_LRU;
1985 			break;
1986 		}
1987 
1988 		if (page_count(page) !=
1989 		    1 + page_mapcount(page) + page_has_private(page)) {
1990 			result = SCAN_PAGE_COUNT;
1991 			break;
1992 		}
1993 
1994 		/*
1995 		 * We probably should check if the page is referenced here, but
1996 		 * nobody would transfer pte_young() to PageReferenced() for us.
1997 		 * And rmap walk here is just too costly...
1998 		 */
1999 
2000 		present++;
2001 
2002 		if (need_resched()) {
2003 			xas_pause(&xas);
2004 			cond_resched_rcu();
2005 		}
2006 	}
2007 	rcu_read_unlock();
2008 
2009 	if (result == SCAN_SUCCEED) {
2010 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2011 			result = SCAN_EXCEED_NONE_PTE;
2012 		} else {
2013 			node = khugepaged_find_target_node();
2014 			collapse_file(mm, file, start, hpage, node);
2015 		}
2016 	}
2017 
2018 	/* TODO: tracepoints */
2019 }
2020 #else
2021 static void khugepaged_scan_file(struct mm_struct *mm,
2022 		struct file *file, pgoff_t start, struct page **hpage)
2023 {
2024 	BUILD_BUG();
2025 }
2026 
2027 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2028 {
2029 	return 0;
2030 }
2031 #endif
2032 
2033 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2034 					    struct page **hpage)
2035 	__releases(&khugepaged_mm_lock)
2036 	__acquires(&khugepaged_mm_lock)
2037 {
2038 	struct mm_slot *mm_slot;
2039 	struct mm_struct *mm;
2040 	struct vm_area_struct *vma;
2041 	int progress = 0;
2042 
2043 	VM_BUG_ON(!pages);
2044 	lockdep_assert_held(&khugepaged_mm_lock);
2045 
2046 	if (khugepaged_scan.mm_slot)
2047 		mm_slot = khugepaged_scan.mm_slot;
2048 	else {
2049 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2050 				     struct mm_slot, mm_node);
2051 		khugepaged_scan.address = 0;
2052 		khugepaged_scan.mm_slot = mm_slot;
2053 	}
2054 	spin_unlock(&khugepaged_mm_lock);
2055 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2056 
2057 	mm = mm_slot->mm;
2058 	/*
2059 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2060 	 * the next mm on the list.
2061 	 */
2062 	vma = NULL;
2063 	if (unlikely(!mmap_read_trylock(mm)))
2064 		goto breakouterloop_mmap_lock;
2065 	if (likely(!khugepaged_test_exit(mm)))
2066 		vma = find_vma(mm, khugepaged_scan.address);
2067 
2068 	progress++;
2069 	for (; vma; vma = vma->vm_next) {
2070 		unsigned long hstart, hend;
2071 
2072 		cond_resched();
2073 		if (unlikely(khugepaged_test_exit(mm))) {
2074 			progress++;
2075 			break;
2076 		}
2077 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2078 skip:
2079 			progress++;
2080 			continue;
2081 		}
2082 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2083 		hend = vma->vm_end & HPAGE_PMD_MASK;
2084 		if (hstart >= hend)
2085 			goto skip;
2086 		if (khugepaged_scan.address > hend)
2087 			goto skip;
2088 		if (khugepaged_scan.address < hstart)
2089 			khugepaged_scan.address = hstart;
2090 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2091 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2092 			goto skip;
2093 
2094 		while (khugepaged_scan.address < hend) {
2095 			int ret;
2096 			cond_resched();
2097 			if (unlikely(khugepaged_test_exit(mm)))
2098 				goto breakouterloop;
2099 
2100 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2101 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2102 				  hend);
2103 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2104 				struct file *file = get_file(vma->vm_file);
2105 				pgoff_t pgoff = linear_page_index(vma,
2106 						khugepaged_scan.address);
2107 
2108 				mmap_read_unlock(mm);
2109 				ret = 1;
2110 				khugepaged_scan_file(mm, file, pgoff, hpage);
2111 				fput(file);
2112 			} else {
2113 				ret = khugepaged_scan_pmd(mm, vma,
2114 						khugepaged_scan.address,
2115 						hpage);
2116 			}
2117 			/* move to next address */
2118 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2119 			progress += HPAGE_PMD_NR;
2120 			if (ret)
2121 				/* we released mmap_lock so break loop */
2122 				goto breakouterloop_mmap_lock;
2123 			if (progress >= pages)
2124 				goto breakouterloop;
2125 		}
2126 	}
2127 breakouterloop:
2128 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2129 breakouterloop_mmap_lock:
2130 
2131 	spin_lock(&khugepaged_mm_lock);
2132 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2133 	/*
2134 	 * Release the current mm_slot if this mm is about to die, or
2135 	 * if we scanned all vmas of this mm.
2136 	 */
2137 	if (khugepaged_test_exit(mm) || !vma) {
2138 		/*
2139 		 * Make sure that if mm_users is reaching zero while
2140 		 * khugepaged runs here, khugepaged_exit will find
2141 		 * mm_slot not pointing to the exiting mm.
2142 		 */
2143 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2144 			khugepaged_scan.mm_slot = list_entry(
2145 				mm_slot->mm_node.next,
2146 				struct mm_slot, mm_node);
2147 			khugepaged_scan.address = 0;
2148 		} else {
2149 			khugepaged_scan.mm_slot = NULL;
2150 			khugepaged_full_scans++;
2151 		}
2152 
2153 		collect_mm_slot(mm_slot);
2154 	}
2155 
2156 	return progress;
2157 }
2158 
2159 static int khugepaged_has_work(void)
2160 {
2161 	return !list_empty(&khugepaged_scan.mm_head) &&
2162 		khugepaged_enabled();
2163 }
2164 
2165 static int khugepaged_wait_event(void)
2166 {
2167 	return !list_empty(&khugepaged_scan.mm_head) ||
2168 		kthread_should_stop();
2169 }
2170 
2171 static void khugepaged_do_scan(void)
2172 {
2173 	struct page *hpage = NULL;
2174 	unsigned int progress = 0, pass_through_head = 0;
2175 	unsigned int pages = khugepaged_pages_to_scan;
2176 	bool wait = true;
2177 
2178 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2179 
2180 	lru_add_drain_all();
2181 
2182 	while (progress < pages) {
2183 		if (!khugepaged_prealloc_page(&hpage, &wait))
2184 			break;
2185 
2186 		cond_resched();
2187 
2188 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2189 			break;
2190 
2191 		spin_lock(&khugepaged_mm_lock);
2192 		if (!khugepaged_scan.mm_slot)
2193 			pass_through_head++;
2194 		if (khugepaged_has_work() &&
2195 		    pass_through_head < 2)
2196 			progress += khugepaged_scan_mm_slot(pages - progress,
2197 							    &hpage);
2198 		else
2199 			progress = pages;
2200 		spin_unlock(&khugepaged_mm_lock);
2201 	}
2202 
2203 	if (!IS_ERR_OR_NULL(hpage))
2204 		put_page(hpage);
2205 }
2206 
2207 static bool khugepaged_should_wakeup(void)
2208 {
2209 	return kthread_should_stop() ||
2210 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2211 }
2212 
2213 static void khugepaged_wait_work(void)
2214 {
2215 	if (khugepaged_has_work()) {
2216 		const unsigned long scan_sleep_jiffies =
2217 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2218 
2219 		if (!scan_sleep_jiffies)
2220 			return;
2221 
2222 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2223 		wait_event_freezable_timeout(khugepaged_wait,
2224 					     khugepaged_should_wakeup(),
2225 					     scan_sleep_jiffies);
2226 		return;
2227 	}
2228 
2229 	if (khugepaged_enabled())
2230 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2231 }
2232 
2233 static int khugepaged(void *none)
2234 {
2235 	struct mm_slot *mm_slot;
2236 
2237 	set_freezable();
2238 	set_user_nice(current, MAX_NICE);
2239 
2240 	while (!kthread_should_stop()) {
2241 		khugepaged_do_scan();
2242 		khugepaged_wait_work();
2243 	}
2244 
2245 	spin_lock(&khugepaged_mm_lock);
2246 	mm_slot = khugepaged_scan.mm_slot;
2247 	khugepaged_scan.mm_slot = NULL;
2248 	if (mm_slot)
2249 		collect_mm_slot(mm_slot);
2250 	spin_unlock(&khugepaged_mm_lock);
2251 	return 0;
2252 }
2253 
2254 static void set_recommended_min_free_kbytes(void)
2255 {
2256 	struct zone *zone;
2257 	int nr_zones = 0;
2258 	unsigned long recommended_min;
2259 
2260 	for_each_populated_zone(zone) {
2261 		/*
2262 		 * We don't need to worry about fragmentation of
2263 		 * ZONE_MOVABLE since it only has movable pages.
2264 		 */
2265 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2266 			continue;
2267 
2268 		nr_zones++;
2269 	}
2270 
2271 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2272 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2273 
2274 	/*
2275 	 * Make sure that on average at least two pageblocks are almost free
2276 	 * of another type, one for a migratetype to fall back to and a
2277 	 * second to avoid subsequent fallbacks of other types There are 3
2278 	 * MIGRATE_TYPES we care about.
2279 	 */
2280 	recommended_min += pageblock_nr_pages * nr_zones *
2281 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2282 
2283 	/* don't ever allow to reserve more than 5% of the lowmem */
2284 	recommended_min = min(recommended_min,
2285 			      (unsigned long) nr_free_buffer_pages() / 20);
2286 	recommended_min <<= (PAGE_SHIFT-10);
2287 
2288 	if (recommended_min > min_free_kbytes) {
2289 		if (user_min_free_kbytes >= 0)
2290 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2291 				min_free_kbytes, recommended_min);
2292 
2293 		min_free_kbytes = recommended_min;
2294 	}
2295 	setup_per_zone_wmarks();
2296 }
2297 
2298 int start_stop_khugepaged(void)
2299 {
2300 	static struct task_struct *khugepaged_thread __read_mostly;
2301 	static DEFINE_MUTEX(khugepaged_mutex);
2302 	int err = 0;
2303 
2304 	mutex_lock(&khugepaged_mutex);
2305 	if (khugepaged_enabled()) {
2306 		if (!khugepaged_thread)
2307 			khugepaged_thread = kthread_run(khugepaged, NULL,
2308 							"khugepaged");
2309 		if (IS_ERR(khugepaged_thread)) {
2310 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2311 			err = PTR_ERR(khugepaged_thread);
2312 			khugepaged_thread = NULL;
2313 			goto fail;
2314 		}
2315 
2316 		if (!list_empty(&khugepaged_scan.mm_head))
2317 			wake_up_interruptible(&khugepaged_wait);
2318 
2319 		set_recommended_min_free_kbytes();
2320 	} else if (khugepaged_thread) {
2321 		kthread_stop(khugepaged_thread);
2322 		khugepaged_thread = NULL;
2323 	}
2324 fail:
2325 	mutex_unlock(&khugepaged_mutex);
2326 	return err;
2327 }
2328