xref: /openbmc/linux/mm/khugepaged.c (revision 98ddec80)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_PTE_NON_PRESENT,
32 	SCAN_PAGE_RO,
33 	SCAN_LACK_REFERENCED_PAGE,
34 	SCAN_PAGE_NULL,
35 	SCAN_SCAN_ABORT,
36 	SCAN_PAGE_COUNT,
37 	SCAN_PAGE_LRU,
38 	SCAN_PAGE_LOCK,
39 	SCAN_PAGE_ANON,
40 	SCAN_PAGE_COMPOUND,
41 	SCAN_ANY_PROCESS,
42 	SCAN_VMA_NULL,
43 	SCAN_VMA_CHECK,
44 	SCAN_ADDRESS_RANGE,
45 	SCAN_SWAP_CACHE_PAGE,
46 	SCAN_DEL_PAGE_LRU,
47 	SCAN_ALLOC_HUGE_PAGE_FAIL,
48 	SCAN_CGROUP_CHARGE_FAIL,
49 	SCAN_EXCEED_SWAP_PTE,
50 	SCAN_TRUNCATED,
51 };
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
55 
56 /* default scan 8*512 pte (or vmas) every 30 second */
57 static unsigned int khugepaged_pages_to_scan __read_mostly;
58 static unsigned int khugepaged_pages_collapsed;
59 static unsigned int khugepaged_full_scans;
60 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
61 /* during fragmentation poll the hugepage allocator once every minute */
62 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
63 static unsigned long khugepaged_sleep_expire;
64 static DEFINE_SPINLOCK(khugepaged_mm_lock);
65 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
66 /*
67  * default collapse hugepages if there is at least one pte mapped like
68  * it would have happened if the vma was large enough during page
69  * fault.
70  */
71 static unsigned int khugepaged_max_ptes_none __read_mostly;
72 static unsigned int khugepaged_max_ptes_swap __read_mostly;
73 
74 #define MM_SLOTS_HASH_BITS 10
75 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
76 
77 static struct kmem_cache *mm_slot_cache __read_mostly;
78 
79 /**
80  * struct mm_slot - hash lookup from mm to mm_slot
81  * @hash: hash collision list
82  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86 	struct hlist_node hash;
87 	struct list_head mm_node;
88 	struct mm_struct *mm;
89 };
90 
91 /**
92  * struct khugepaged_scan - cursor for scanning
93  * @mm_head: the head of the mm list to scan
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  *
97  * There is only the one khugepaged_scan instance of this cursor structure.
98  */
99 struct khugepaged_scan {
100 	struct list_head mm_head;
101 	struct mm_slot *mm_slot;
102 	unsigned long address;
103 };
104 
105 static struct khugepaged_scan khugepaged_scan = {
106 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107 };
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
111 					 struct kobj_attribute *attr,
112 					 char *buf)
113 {
114 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
115 }
116 
117 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
118 					  struct kobj_attribute *attr,
119 					  const char *buf, size_t count)
120 {
121 	unsigned long msecs;
122 	int err;
123 
124 	err = kstrtoul(buf, 10, &msecs);
125 	if (err || msecs > UINT_MAX)
126 		return -EINVAL;
127 
128 	khugepaged_scan_sleep_millisecs = msecs;
129 	khugepaged_sleep_expire = 0;
130 	wake_up_interruptible(&khugepaged_wait);
131 
132 	return count;
133 }
134 static struct kobj_attribute scan_sleep_millisecs_attr =
135 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
136 	       scan_sleep_millisecs_store);
137 
138 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
139 					  struct kobj_attribute *attr,
140 					  char *buf)
141 {
142 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
143 }
144 
145 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
146 					   struct kobj_attribute *attr,
147 					   const char *buf, size_t count)
148 {
149 	unsigned long msecs;
150 	int err;
151 
152 	err = kstrtoul(buf, 10, &msecs);
153 	if (err || msecs > UINT_MAX)
154 		return -EINVAL;
155 
156 	khugepaged_alloc_sleep_millisecs = msecs;
157 	khugepaged_sleep_expire = 0;
158 	wake_up_interruptible(&khugepaged_wait);
159 
160 	return count;
161 }
162 static struct kobj_attribute alloc_sleep_millisecs_attr =
163 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
164 	       alloc_sleep_millisecs_store);
165 
166 static ssize_t pages_to_scan_show(struct kobject *kobj,
167 				  struct kobj_attribute *attr,
168 				  char *buf)
169 {
170 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
171 }
172 static ssize_t pages_to_scan_store(struct kobject *kobj,
173 				   struct kobj_attribute *attr,
174 				   const char *buf, size_t count)
175 {
176 	int err;
177 	unsigned long pages;
178 
179 	err = kstrtoul(buf, 10, &pages);
180 	if (err || !pages || pages > UINT_MAX)
181 		return -EINVAL;
182 
183 	khugepaged_pages_to_scan = pages;
184 
185 	return count;
186 }
187 static struct kobj_attribute pages_to_scan_attr =
188 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
189 	       pages_to_scan_store);
190 
191 static ssize_t pages_collapsed_show(struct kobject *kobj,
192 				    struct kobj_attribute *attr,
193 				    char *buf)
194 {
195 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
196 }
197 static struct kobj_attribute pages_collapsed_attr =
198 	__ATTR_RO(pages_collapsed);
199 
200 static ssize_t full_scans_show(struct kobject *kobj,
201 			       struct kobj_attribute *attr,
202 			       char *buf)
203 {
204 	return sprintf(buf, "%u\n", khugepaged_full_scans);
205 }
206 static struct kobj_attribute full_scans_attr =
207 	__ATTR_RO(full_scans);
208 
209 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
210 				      struct kobj_attribute *attr, char *buf)
211 {
212 	return single_hugepage_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
214 }
215 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
216 				       struct kobj_attribute *attr,
217 				       const char *buf, size_t count)
218 {
219 	return single_hugepage_flag_store(kobj, attr, buf, count,
220 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221 }
222 static struct kobj_attribute khugepaged_defrag_attr =
223 	__ATTR(defrag, 0644, khugepaged_defrag_show,
224 	       khugepaged_defrag_store);
225 
226 /*
227  * max_ptes_none controls if khugepaged should collapse hugepages over
228  * any unmapped ptes in turn potentially increasing the memory
229  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
230  * reduce the available free memory in the system as it
231  * runs. Increasing max_ptes_none will instead potentially reduce the
232  * free memory in the system during the khugepaged scan.
233  */
234 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
235 					     struct kobj_attribute *attr,
236 					     char *buf)
237 {
238 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
239 }
240 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
241 					      struct kobj_attribute *attr,
242 					      const char *buf, size_t count)
243 {
244 	int err;
245 	unsigned long max_ptes_none;
246 
247 	err = kstrtoul(buf, 10, &max_ptes_none);
248 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
249 		return -EINVAL;
250 
251 	khugepaged_max_ptes_none = max_ptes_none;
252 
253 	return count;
254 }
255 static struct kobj_attribute khugepaged_max_ptes_none_attr =
256 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
257 	       khugepaged_max_ptes_none_store);
258 
259 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
260 					     struct kobj_attribute *attr,
261 					     char *buf)
262 {
263 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
264 }
265 
266 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
267 					      struct kobj_attribute *attr,
268 					      const char *buf, size_t count)
269 {
270 	int err;
271 	unsigned long max_ptes_swap;
272 
273 	err  = kstrtoul(buf, 10, &max_ptes_swap);
274 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
275 		return -EINVAL;
276 
277 	khugepaged_max_ptes_swap = max_ptes_swap;
278 
279 	return count;
280 }
281 
282 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
283 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
284 	       khugepaged_max_ptes_swap_store);
285 
286 static struct attribute *khugepaged_attr[] = {
287 	&khugepaged_defrag_attr.attr,
288 	&khugepaged_max_ptes_none_attr.attr,
289 	&pages_to_scan_attr.attr,
290 	&pages_collapsed_attr.attr,
291 	&full_scans_attr.attr,
292 	&scan_sleep_millisecs_attr.attr,
293 	&alloc_sleep_millisecs_attr.attr,
294 	&khugepaged_max_ptes_swap_attr.attr,
295 	NULL,
296 };
297 
298 struct attribute_group khugepaged_attr_group = {
299 	.attrs = khugepaged_attr,
300 	.name = "khugepaged",
301 };
302 #endif /* CONFIG_SYSFS */
303 
304 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
305 
306 int hugepage_madvise(struct vm_area_struct *vma,
307 		     unsigned long *vm_flags, int advice)
308 {
309 	switch (advice) {
310 	case MADV_HUGEPAGE:
311 #ifdef CONFIG_S390
312 		/*
313 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
314 		 * can't handle this properly after s390_enable_sie, so we simply
315 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
316 		 */
317 		if (mm_has_pgste(vma->vm_mm))
318 			return 0;
319 #endif
320 		*vm_flags &= ~VM_NOHUGEPAGE;
321 		*vm_flags |= VM_HUGEPAGE;
322 		/*
323 		 * If the vma become good for khugepaged to scan,
324 		 * register it here without waiting a page fault that
325 		 * may not happen any time soon.
326 		 */
327 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
328 				khugepaged_enter_vma_merge(vma, *vm_flags))
329 			return -ENOMEM;
330 		break;
331 	case MADV_NOHUGEPAGE:
332 		*vm_flags &= ~VM_HUGEPAGE;
333 		*vm_flags |= VM_NOHUGEPAGE;
334 		/*
335 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
336 		 * this vma even if we leave the mm registered in khugepaged if
337 		 * it got registered before VM_NOHUGEPAGE was set.
338 		 */
339 		break;
340 	}
341 
342 	return 0;
343 }
344 
345 int __init khugepaged_init(void)
346 {
347 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
348 					  sizeof(struct mm_slot),
349 					  __alignof__(struct mm_slot), 0, NULL);
350 	if (!mm_slot_cache)
351 		return -ENOMEM;
352 
353 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
354 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
355 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
356 
357 	return 0;
358 }
359 
360 void __init khugepaged_destroy(void)
361 {
362 	kmem_cache_destroy(mm_slot_cache);
363 }
364 
365 static inline struct mm_slot *alloc_mm_slot(void)
366 {
367 	if (!mm_slot_cache)	/* initialization failed */
368 		return NULL;
369 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
370 }
371 
372 static inline void free_mm_slot(struct mm_slot *mm_slot)
373 {
374 	kmem_cache_free(mm_slot_cache, mm_slot);
375 }
376 
377 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
378 {
379 	struct mm_slot *mm_slot;
380 
381 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
382 		if (mm == mm_slot->mm)
383 			return mm_slot;
384 
385 	return NULL;
386 }
387 
388 static void insert_to_mm_slots_hash(struct mm_struct *mm,
389 				    struct mm_slot *mm_slot)
390 {
391 	mm_slot->mm = mm;
392 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
393 }
394 
395 static inline int khugepaged_test_exit(struct mm_struct *mm)
396 {
397 	return atomic_read(&mm->mm_users) == 0;
398 }
399 
400 int __khugepaged_enter(struct mm_struct *mm)
401 {
402 	struct mm_slot *mm_slot;
403 	int wakeup;
404 
405 	mm_slot = alloc_mm_slot();
406 	if (!mm_slot)
407 		return -ENOMEM;
408 
409 	/* __khugepaged_exit() must not run from under us */
410 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
411 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
412 		free_mm_slot(mm_slot);
413 		return 0;
414 	}
415 
416 	spin_lock(&khugepaged_mm_lock);
417 	insert_to_mm_slots_hash(mm, mm_slot);
418 	/*
419 	 * Insert just behind the scanning cursor, to let the area settle
420 	 * down a little.
421 	 */
422 	wakeup = list_empty(&khugepaged_scan.mm_head);
423 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
424 	spin_unlock(&khugepaged_mm_lock);
425 
426 	mmgrab(mm);
427 	if (wakeup)
428 		wake_up_interruptible(&khugepaged_wait);
429 
430 	return 0;
431 }
432 
433 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
434 			       unsigned long vm_flags)
435 {
436 	unsigned long hstart, hend;
437 	if (!vma->anon_vma)
438 		/*
439 		 * Not yet faulted in so we will register later in the
440 		 * page fault if needed.
441 		 */
442 		return 0;
443 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
444 		/* khugepaged not yet working on file or special mappings */
445 		return 0;
446 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
447 	hend = vma->vm_end & HPAGE_PMD_MASK;
448 	if (hstart < hend)
449 		return khugepaged_enter(vma, vm_flags);
450 	return 0;
451 }
452 
453 void __khugepaged_exit(struct mm_struct *mm)
454 {
455 	struct mm_slot *mm_slot;
456 	int free = 0;
457 
458 	spin_lock(&khugepaged_mm_lock);
459 	mm_slot = get_mm_slot(mm);
460 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
461 		hash_del(&mm_slot->hash);
462 		list_del(&mm_slot->mm_node);
463 		free = 1;
464 	}
465 	spin_unlock(&khugepaged_mm_lock);
466 
467 	if (free) {
468 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
469 		free_mm_slot(mm_slot);
470 		mmdrop(mm);
471 	} else if (mm_slot) {
472 		/*
473 		 * This is required to serialize against
474 		 * khugepaged_test_exit() (which is guaranteed to run
475 		 * under mmap sem read mode). Stop here (after we
476 		 * return all pagetables will be destroyed) until
477 		 * khugepaged has finished working on the pagetables
478 		 * under the mmap_sem.
479 		 */
480 		down_write(&mm->mmap_sem);
481 		up_write(&mm->mmap_sem);
482 	}
483 }
484 
485 static void release_pte_page(struct page *page)
486 {
487 	dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
488 	unlock_page(page);
489 	putback_lru_page(page);
490 }
491 
492 static void release_pte_pages(pte_t *pte, pte_t *_pte)
493 {
494 	while (--_pte >= pte) {
495 		pte_t pteval = *_pte;
496 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
497 			release_pte_page(pte_page(pteval));
498 	}
499 }
500 
501 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
502 					unsigned long address,
503 					pte_t *pte)
504 {
505 	struct page *page = NULL;
506 	pte_t *_pte;
507 	int none_or_zero = 0, result = 0, referenced = 0;
508 	bool writable = false;
509 
510 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
511 	     _pte++, address += PAGE_SIZE) {
512 		pte_t pteval = *_pte;
513 		if (pte_none(pteval) || (pte_present(pteval) &&
514 				is_zero_pfn(pte_pfn(pteval)))) {
515 			if (!userfaultfd_armed(vma) &&
516 			    ++none_or_zero <= khugepaged_max_ptes_none) {
517 				continue;
518 			} else {
519 				result = SCAN_EXCEED_NONE_PTE;
520 				goto out;
521 			}
522 		}
523 		if (!pte_present(pteval)) {
524 			result = SCAN_PTE_NON_PRESENT;
525 			goto out;
526 		}
527 		page = vm_normal_page(vma, address, pteval);
528 		if (unlikely(!page)) {
529 			result = SCAN_PAGE_NULL;
530 			goto out;
531 		}
532 
533 		/* TODO: teach khugepaged to collapse THP mapped with pte */
534 		if (PageCompound(page)) {
535 			result = SCAN_PAGE_COMPOUND;
536 			goto out;
537 		}
538 
539 		VM_BUG_ON_PAGE(!PageAnon(page), page);
540 
541 		/*
542 		 * We can do it before isolate_lru_page because the
543 		 * page can't be freed from under us. NOTE: PG_lock
544 		 * is needed to serialize against split_huge_page
545 		 * when invoked from the VM.
546 		 */
547 		if (!trylock_page(page)) {
548 			result = SCAN_PAGE_LOCK;
549 			goto out;
550 		}
551 
552 		/*
553 		 * cannot use mapcount: can't collapse if there's a gup pin.
554 		 * The page must only be referenced by the scanned process
555 		 * and page swap cache.
556 		 */
557 		if (page_count(page) != 1 + PageSwapCache(page)) {
558 			unlock_page(page);
559 			result = SCAN_PAGE_COUNT;
560 			goto out;
561 		}
562 		if (pte_write(pteval)) {
563 			writable = true;
564 		} else {
565 			if (PageSwapCache(page) &&
566 			    !reuse_swap_page(page, NULL)) {
567 				unlock_page(page);
568 				result = SCAN_SWAP_CACHE_PAGE;
569 				goto out;
570 			}
571 			/*
572 			 * Page is not in the swap cache. It can be collapsed
573 			 * into a THP.
574 			 */
575 		}
576 
577 		/*
578 		 * Isolate the page to avoid collapsing an hugepage
579 		 * currently in use by the VM.
580 		 */
581 		if (isolate_lru_page(page)) {
582 			unlock_page(page);
583 			result = SCAN_DEL_PAGE_LRU;
584 			goto out;
585 		}
586 		inc_node_page_state(page,
587 				NR_ISOLATED_ANON + page_is_file_cache(page));
588 		VM_BUG_ON_PAGE(!PageLocked(page), page);
589 		VM_BUG_ON_PAGE(PageLRU(page), page);
590 
591 		/* There should be enough young pte to collapse the page */
592 		if (pte_young(pteval) ||
593 		    page_is_young(page) || PageReferenced(page) ||
594 		    mmu_notifier_test_young(vma->vm_mm, address))
595 			referenced++;
596 	}
597 	if (likely(writable)) {
598 		if (likely(referenced)) {
599 			result = SCAN_SUCCEED;
600 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
601 							    referenced, writable, result);
602 			return 1;
603 		}
604 	} else {
605 		result = SCAN_PAGE_RO;
606 	}
607 
608 out:
609 	release_pte_pages(pte, _pte);
610 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
611 					    referenced, writable, result);
612 	return 0;
613 }
614 
615 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
616 				      struct vm_area_struct *vma,
617 				      unsigned long address,
618 				      spinlock_t *ptl)
619 {
620 	pte_t *_pte;
621 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
622 				_pte++, page++, address += PAGE_SIZE) {
623 		pte_t pteval = *_pte;
624 		struct page *src_page;
625 
626 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
627 			clear_user_highpage(page, address);
628 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
629 			if (is_zero_pfn(pte_pfn(pteval))) {
630 				/*
631 				 * ptl mostly unnecessary.
632 				 */
633 				spin_lock(ptl);
634 				/*
635 				 * paravirt calls inside pte_clear here are
636 				 * superfluous.
637 				 */
638 				pte_clear(vma->vm_mm, address, _pte);
639 				spin_unlock(ptl);
640 			}
641 		} else {
642 			src_page = pte_page(pteval);
643 			copy_user_highpage(page, src_page, address, vma);
644 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
645 			release_pte_page(src_page);
646 			/*
647 			 * ptl mostly unnecessary, but preempt has to
648 			 * be disabled to update the per-cpu stats
649 			 * inside page_remove_rmap().
650 			 */
651 			spin_lock(ptl);
652 			/*
653 			 * paravirt calls inside pte_clear here are
654 			 * superfluous.
655 			 */
656 			pte_clear(vma->vm_mm, address, _pte);
657 			page_remove_rmap(src_page, false);
658 			spin_unlock(ptl);
659 			free_page_and_swap_cache(src_page);
660 		}
661 	}
662 }
663 
664 static void khugepaged_alloc_sleep(void)
665 {
666 	DEFINE_WAIT(wait);
667 
668 	add_wait_queue(&khugepaged_wait, &wait);
669 	freezable_schedule_timeout_interruptible(
670 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
671 	remove_wait_queue(&khugepaged_wait, &wait);
672 }
673 
674 static int khugepaged_node_load[MAX_NUMNODES];
675 
676 static bool khugepaged_scan_abort(int nid)
677 {
678 	int i;
679 
680 	/*
681 	 * If node_reclaim_mode is disabled, then no extra effort is made to
682 	 * allocate memory locally.
683 	 */
684 	if (!node_reclaim_mode)
685 		return false;
686 
687 	/* If there is a count for this node already, it must be acceptable */
688 	if (khugepaged_node_load[nid])
689 		return false;
690 
691 	for (i = 0; i < MAX_NUMNODES; i++) {
692 		if (!khugepaged_node_load[i])
693 			continue;
694 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
695 			return true;
696 	}
697 	return false;
698 }
699 
700 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
701 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
702 {
703 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
704 }
705 
706 #ifdef CONFIG_NUMA
707 static int khugepaged_find_target_node(void)
708 {
709 	static int last_khugepaged_target_node = NUMA_NO_NODE;
710 	int nid, target_node = 0, max_value = 0;
711 
712 	/* find first node with max normal pages hit */
713 	for (nid = 0; nid < MAX_NUMNODES; nid++)
714 		if (khugepaged_node_load[nid] > max_value) {
715 			max_value = khugepaged_node_load[nid];
716 			target_node = nid;
717 		}
718 
719 	/* do some balance if several nodes have the same hit record */
720 	if (target_node <= last_khugepaged_target_node)
721 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
722 				nid++)
723 			if (max_value == khugepaged_node_load[nid]) {
724 				target_node = nid;
725 				break;
726 			}
727 
728 	last_khugepaged_target_node = target_node;
729 	return target_node;
730 }
731 
732 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
733 {
734 	if (IS_ERR(*hpage)) {
735 		if (!*wait)
736 			return false;
737 
738 		*wait = false;
739 		*hpage = NULL;
740 		khugepaged_alloc_sleep();
741 	} else if (*hpage) {
742 		put_page(*hpage);
743 		*hpage = NULL;
744 	}
745 
746 	return true;
747 }
748 
749 static struct page *
750 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
751 {
752 	VM_BUG_ON_PAGE(*hpage, *hpage);
753 
754 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
755 	if (unlikely(!*hpage)) {
756 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
757 		*hpage = ERR_PTR(-ENOMEM);
758 		return NULL;
759 	}
760 
761 	prep_transhuge_page(*hpage);
762 	count_vm_event(THP_COLLAPSE_ALLOC);
763 	return *hpage;
764 }
765 #else
766 static int khugepaged_find_target_node(void)
767 {
768 	return 0;
769 }
770 
771 static inline struct page *alloc_khugepaged_hugepage(void)
772 {
773 	struct page *page;
774 
775 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
776 			   HPAGE_PMD_ORDER);
777 	if (page)
778 		prep_transhuge_page(page);
779 	return page;
780 }
781 
782 static struct page *khugepaged_alloc_hugepage(bool *wait)
783 {
784 	struct page *hpage;
785 
786 	do {
787 		hpage = alloc_khugepaged_hugepage();
788 		if (!hpage) {
789 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
790 			if (!*wait)
791 				return NULL;
792 
793 			*wait = false;
794 			khugepaged_alloc_sleep();
795 		} else
796 			count_vm_event(THP_COLLAPSE_ALLOC);
797 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
798 
799 	return hpage;
800 }
801 
802 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
803 {
804 	if (!*hpage)
805 		*hpage = khugepaged_alloc_hugepage(wait);
806 
807 	if (unlikely(!*hpage))
808 		return false;
809 
810 	return true;
811 }
812 
813 static struct page *
814 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
815 {
816 	VM_BUG_ON(!*hpage);
817 
818 	return  *hpage;
819 }
820 #endif
821 
822 static bool hugepage_vma_check(struct vm_area_struct *vma)
823 {
824 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
825 	    (vma->vm_flags & VM_NOHUGEPAGE) ||
826 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
827 		return false;
828 	if (shmem_file(vma->vm_file)) {
829 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830 			return false;
831 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832 				HPAGE_PMD_NR);
833 	}
834 	if (!vma->anon_vma || vma->vm_ops)
835 		return false;
836 	if (is_vma_temporary_stack(vma))
837 		return false;
838 	return !(vma->vm_flags & VM_NO_KHUGEPAGED);
839 }
840 
841 /*
842  * If mmap_sem temporarily dropped, revalidate vma
843  * before taking mmap_sem.
844  * Return 0 if succeeds, otherwise return none-zero
845  * value (scan code).
846  */
847 
848 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849 		struct vm_area_struct **vmap)
850 {
851 	struct vm_area_struct *vma;
852 	unsigned long hstart, hend;
853 
854 	if (unlikely(khugepaged_test_exit(mm)))
855 		return SCAN_ANY_PROCESS;
856 
857 	*vmap = vma = find_vma(mm, address);
858 	if (!vma)
859 		return SCAN_VMA_NULL;
860 
861 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862 	hend = vma->vm_end & HPAGE_PMD_MASK;
863 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864 		return SCAN_ADDRESS_RANGE;
865 	if (!hugepage_vma_check(vma))
866 		return SCAN_VMA_CHECK;
867 	return 0;
868 }
869 
870 /*
871  * Bring missing pages in from swap, to complete THP collapse.
872  * Only done if khugepaged_scan_pmd believes it is worthwhile.
873  *
874  * Called and returns without pte mapped or spinlocks held,
875  * but with mmap_sem held to protect against vma changes.
876  */
877 
878 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879 					struct vm_area_struct *vma,
880 					unsigned long address, pmd_t *pmd,
881 					int referenced)
882 {
883 	int swapped_in = 0, ret = 0;
884 	struct vm_fault vmf = {
885 		.vma = vma,
886 		.address = address,
887 		.flags = FAULT_FLAG_ALLOW_RETRY,
888 		.pmd = pmd,
889 		.pgoff = linear_page_index(vma, address),
890 	};
891 
892 	/* we only decide to swapin, if there is enough young ptes */
893 	if (referenced < HPAGE_PMD_NR/2) {
894 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895 		return false;
896 	}
897 	vmf.pte = pte_offset_map(pmd, address);
898 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899 			vmf.pte++, vmf.address += PAGE_SIZE) {
900 		vmf.orig_pte = *vmf.pte;
901 		if (!is_swap_pte(vmf.orig_pte))
902 			continue;
903 		swapped_in++;
904 		ret = do_swap_page(&vmf);
905 
906 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 		if (ret & VM_FAULT_RETRY) {
908 			down_read(&mm->mmap_sem);
909 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
910 				/* vma is no longer available, don't continue to swapin */
911 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 				return false;
913 			}
914 			/* check if the pmd is still valid */
915 			if (mm_find_pmd(mm, address) != pmd) {
916 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
917 				return false;
918 			}
919 		}
920 		if (ret & VM_FAULT_ERROR) {
921 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
922 			return false;
923 		}
924 		/* pte is unmapped now, we need to map it */
925 		vmf.pte = pte_offset_map(pmd, vmf.address);
926 	}
927 	vmf.pte--;
928 	pte_unmap(vmf.pte);
929 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
930 	return true;
931 }
932 
933 static void collapse_huge_page(struct mm_struct *mm,
934 				   unsigned long address,
935 				   struct page **hpage,
936 				   int node, int referenced)
937 {
938 	pmd_t *pmd, _pmd;
939 	pte_t *pte;
940 	pgtable_t pgtable;
941 	struct page *new_page;
942 	spinlock_t *pmd_ptl, *pte_ptl;
943 	int isolated = 0, result = 0;
944 	struct mem_cgroup *memcg;
945 	struct vm_area_struct *vma;
946 	unsigned long mmun_start;	/* For mmu_notifiers */
947 	unsigned long mmun_end;		/* For mmu_notifiers */
948 	gfp_t gfp;
949 
950 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
951 
952 	/* Only allocate from the target node */
953 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
954 
955 	/*
956 	 * Before allocating the hugepage, release the mmap_sem read lock.
957 	 * The allocation can take potentially a long time if it involves
958 	 * sync compaction, and we do not need to hold the mmap_sem during
959 	 * that. We will recheck the vma after taking it again in write mode.
960 	 */
961 	up_read(&mm->mmap_sem);
962 	new_page = khugepaged_alloc_page(hpage, gfp, node);
963 	if (!new_page) {
964 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
965 		goto out_nolock;
966 	}
967 
968 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
969 		result = SCAN_CGROUP_CHARGE_FAIL;
970 		goto out_nolock;
971 	}
972 
973 	down_read(&mm->mmap_sem);
974 	result = hugepage_vma_revalidate(mm, address, &vma);
975 	if (result) {
976 		mem_cgroup_cancel_charge(new_page, memcg, true);
977 		up_read(&mm->mmap_sem);
978 		goto out_nolock;
979 	}
980 
981 	pmd = mm_find_pmd(mm, address);
982 	if (!pmd) {
983 		result = SCAN_PMD_NULL;
984 		mem_cgroup_cancel_charge(new_page, memcg, true);
985 		up_read(&mm->mmap_sem);
986 		goto out_nolock;
987 	}
988 
989 	/*
990 	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
991 	 * If it fails, we release mmap_sem and jump out_nolock.
992 	 * Continuing to collapse causes inconsistency.
993 	 */
994 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
995 		mem_cgroup_cancel_charge(new_page, memcg, true);
996 		up_read(&mm->mmap_sem);
997 		goto out_nolock;
998 	}
999 
1000 	up_read(&mm->mmap_sem);
1001 	/*
1002 	 * Prevent all access to pagetables with the exception of
1003 	 * gup_fast later handled by the ptep_clear_flush and the VM
1004 	 * handled by the anon_vma lock + PG_lock.
1005 	 */
1006 	down_write(&mm->mmap_sem);
1007 	result = hugepage_vma_revalidate(mm, address, &vma);
1008 	if (result)
1009 		goto out;
1010 	/* check if the pmd is still valid */
1011 	if (mm_find_pmd(mm, address) != pmd)
1012 		goto out;
1013 
1014 	anon_vma_lock_write(vma->anon_vma);
1015 
1016 	pte = pte_offset_map(pmd, address);
1017 	pte_ptl = pte_lockptr(mm, pmd);
1018 
1019 	mmun_start = address;
1020 	mmun_end   = address + HPAGE_PMD_SIZE;
1021 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1022 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1023 	/*
1024 	 * After this gup_fast can't run anymore. This also removes
1025 	 * any huge TLB entry from the CPU so we won't allow
1026 	 * huge and small TLB entries for the same virtual address
1027 	 * to avoid the risk of CPU bugs in that area.
1028 	 */
1029 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1030 	spin_unlock(pmd_ptl);
1031 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1032 
1033 	spin_lock(pte_ptl);
1034 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1035 	spin_unlock(pte_ptl);
1036 
1037 	if (unlikely(!isolated)) {
1038 		pte_unmap(pte);
1039 		spin_lock(pmd_ptl);
1040 		BUG_ON(!pmd_none(*pmd));
1041 		/*
1042 		 * We can only use set_pmd_at when establishing
1043 		 * hugepmds and never for establishing regular pmds that
1044 		 * points to regular pagetables. Use pmd_populate for that
1045 		 */
1046 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1047 		spin_unlock(pmd_ptl);
1048 		anon_vma_unlock_write(vma->anon_vma);
1049 		result = SCAN_FAIL;
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * All pages are isolated and locked so anon_vma rmap
1055 	 * can't run anymore.
1056 	 */
1057 	anon_vma_unlock_write(vma->anon_vma);
1058 
1059 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1060 	pte_unmap(pte);
1061 	__SetPageUptodate(new_page);
1062 	pgtable = pmd_pgtable(_pmd);
1063 
1064 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1065 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1066 
1067 	/*
1068 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1069 	 * this is needed to avoid the copy_huge_page writes to become
1070 	 * visible after the set_pmd_at() write.
1071 	 */
1072 	smp_wmb();
1073 
1074 	spin_lock(pmd_ptl);
1075 	BUG_ON(!pmd_none(*pmd));
1076 	page_add_new_anon_rmap(new_page, vma, address, true);
1077 	mem_cgroup_commit_charge(new_page, memcg, false, true);
1078 	lru_cache_add_active_or_unevictable(new_page, vma);
1079 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1080 	set_pmd_at(mm, address, pmd, _pmd);
1081 	update_mmu_cache_pmd(vma, address, pmd);
1082 	spin_unlock(pmd_ptl);
1083 
1084 	*hpage = NULL;
1085 
1086 	khugepaged_pages_collapsed++;
1087 	result = SCAN_SUCCEED;
1088 out_up_write:
1089 	up_write(&mm->mmap_sem);
1090 out_nolock:
1091 	trace_mm_collapse_huge_page(mm, isolated, result);
1092 	return;
1093 out:
1094 	mem_cgroup_cancel_charge(new_page, memcg, true);
1095 	goto out_up_write;
1096 }
1097 
1098 static int khugepaged_scan_pmd(struct mm_struct *mm,
1099 			       struct vm_area_struct *vma,
1100 			       unsigned long address,
1101 			       struct page **hpage)
1102 {
1103 	pmd_t *pmd;
1104 	pte_t *pte, *_pte;
1105 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1106 	struct page *page = NULL;
1107 	unsigned long _address;
1108 	spinlock_t *ptl;
1109 	int node = NUMA_NO_NODE, unmapped = 0;
1110 	bool writable = false;
1111 
1112 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1113 
1114 	pmd = mm_find_pmd(mm, address);
1115 	if (!pmd) {
1116 		result = SCAN_PMD_NULL;
1117 		goto out;
1118 	}
1119 
1120 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1121 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1122 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1123 	     _pte++, _address += PAGE_SIZE) {
1124 		pte_t pteval = *_pte;
1125 		if (is_swap_pte(pteval)) {
1126 			if (++unmapped <= khugepaged_max_ptes_swap) {
1127 				continue;
1128 			} else {
1129 				result = SCAN_EXCEED_SWAP_PTE;
1130 				goto out_unmap;
1131 			}
1132 		}
1133 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1134 			if (!userfaultfd_armed(vma) &&
1135 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1136 				continue;
1137 			} else {
1138 				result = SCAN_EXCEED_NONE_PTE;
1139 				goto out_unmap;
1140 			}
1141 		}
1142 		if (!pte_present(pteval)) {
1143 			result = SCAN_PTE_NON_PRESENT;
1144 			goto out_unmap;
1145 		}
1146 		if (pte_write(pteval))
1147 			writable = true;
1148 
1149 		page = vm_normal_page(vma, _address, pteval);
1150 		if (unlikely(!page)) {
1151 			result = SCAN_PAGE_NULL;
1152 			goto out_unmap;
1153 		}
1154 
1155 		/* TODO: teach khugepaged to collapse THP mapped with pte */
1156 		if (PageCompound(page)) {
1157 			result = SCAN_PAGE_COMPOUND;
1158 			goto out_unmap;
1159 		}
1160 
1161 		/*
1162 		 * Record which node the original page is from and save this
1163 		 * information to khugepaged_node_load[].
1164 		 * Khupaged will allocate hugepage from the node has the max
1165 		 * hit record.
1166 		 */
1167 		node = page_to_nid(page);
1168 		if (khugepaged_scan_abort(node)) {
1169 			result = SCAN_SCAN_ABORT;
1170 			goto out_unmap;
1171 		}
1172 		khugepaged_node_load[node]++;
1173 		if (!PageLRU(page)) {
1174 			result = SCAN_PAGE_LRU;
1175 			goto out_unmap;
1176 		}
1177 		if (PageLocked(page)) {
1178 			result = SCAN_PAGE_LOCK;
1179 			goto out_unmap;
1180 		}
1181 		if (!PageAnon(page)) {
1182 			result = SCAN_PAGE_ANON;
1183 			goto out_unmap;
1184 		}
1185 
1186 		/*
1187 		 * cannot use mapcount: can't collapse if there's a gup pin.
1188 		 * The page must only be referenced by the scanned process
1189 		 * and page swap cache.
1190 		 */
1191 		if (page_count(page) != 1 + PageSwapCache(page)) {
1192 			result = SCAN_PAGE_COUNT;
1193 			goto out_unmap;
1194 		}
1195 		if (pte_young(pteval) ||
1196 		    page_is_young(page) || PageReferenced(page) ||
1197 		    mmu_notifier_test_young(vma->vm_mm, address))
1198 			referenced++;
1199 	}
1200 	if (writable) {
1201 		if (referenced) {
1202 			result = SCAN_SUCCEED;
1203 			ret = 1;
1204 		} else {
1205 			result = SCAN_LACK_REFERENCED_PAGE;
1206 		}
1207 	} else {
1208 		result = SCAN_PAGE_RO;
1209 	}
1210 out_unmap:
1211 	pte_unmap_unlock(pte, ptl);
1212 	if (ret) {
1213 		node = khugepaged_find_target_node();
1214 		/* collapse_huge_page will return with the mmap_sem released */
1215 		collapse_huge_page(mm, address, hpage, node, referenced);
1216 	}
1217 out:
1218 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1219 				     none_or_zero, result, unmapped);
1220 	return ret;
1221 }
1222 
1223 static void collect_mm_slot(struct mm_slot *mm_slot)
1224 {
1225 	struct mm_struct *mm = mm_slot->mm;
1226 
1227 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1228 
1229 	if (khugepaged_test_exit(mm)) {
1230 		/* free mm_slot */
1231 		hash_del(&mm_slot->hash);
1232 		list_del(&mm_slot->mm_node);
1233 
1234 		/*
1235 		 * Not strictly needed because the mm exited already.
1236 		 *
1237 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1238 		 */
1239 
1240 		/* khugepaged_mm_lock actually not necessary for the below */
1241 		free_mm_slot(mm_slot);
1242 		mmdrop(mm);
1243 	}
1244 }
1245 
1246 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1247 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1248 {
1249 	struct vm_area_struct *vma;
1250 	unsigned long addr;
1251 	pmd_t *pmd, _pmd;
1252 
1253 	i_mmap_lock_write(mapping);
1254 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1255 		/* probably overkill */
1256 		if (vma->anon_vma)
1257 			continue;
1258 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1259 		if (addr & ~HPAGE_PMD_MASK)
1260 			continue;
1261 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1262 			continue;
1263 		pmd = mm_find_pmd(vma->vm_mm, addr);
1264 		if (!pmd)
1265 			continue;
1266 		/*
1267 		 * We need exclusive mmap_sem to retract page table.
1268 		 * If trylock fails we would end up with pte-mapped THP after
1269 		 * re-fault. Not ideal, but it's more important to not disturb
1270 		 * the system too much.
1271 		 */
1272 		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1273 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1274 			/* assume page table is clear */
1275 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
1276 			spin_unlock(ptl);
1277 			up_write(&vma->vm_mm->mmap_sem);
1278 			mm_dec_nr_ptes(vma->vm_mm);
1279 			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1280 		}
1281 	}
1282 	i_mmap_unlock_write(mapping);
1283 }
1284 
1285 /**
1286  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1287  *
1288  * Basic scheme is simple, details are more complex:
1289  *  - allocate and freeze a new huge page;
1290  *  - scan over radix tree replacing old pages the new one
1291  *    + swap in pages if necessary;
1292  *    + fill in gaps;
1293  *    + keep old pages around in case if rollback is required;
1294  *  - if replacing succeed:
1295  *    + copy data over;
1296  *    + free old pages;
1297  *    + unfreeze huge page;
1298  *  - if replacing failed;
1299  *    + put all pages back and unfreeze them;
1300  *    + restore gaps in the radix-tree;
1301  *    + free huge page;
1302  */
1303 static void collapse_shmem(struct mm_struct *mm,
1304 		struct address_space *mapping, pgoff_t start,
1305 		struct page **hpage, int node)
1306 {
1307 	gfp_t gfp;
1308 	struct page *page, *new_page, *tmp;
1309 	struct mem_cgroup *memcg;
1310 	pgoff_t index, end = start + HPAGE_PMD_NR;
1311 	LIST_HEAD(pagelist);
1312 	struct radix_tree_iter iter;
1313 	void **slot;
1314 	int nr_none = 0, result = SCAN_SUCCEED;
1315 
1316 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1317 
1318 	/* Only allocate from the target node */
1319 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1320 
1321 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1322 	if (!new_page) {
1323 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1324 		goto out;
1325 	}
1326 
1327 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1328 		result = SCAN_CGROUP_CHARGE_FAIL;
1329 		goto out;
1330 	}
1331 
1332 	new_page->index = start;
1333 	new_page->mapping = mapping;
1334 	__SetPageSwapBacked(new_page);
1335 	__SetPageLocked(new_page);
1336 	BUG_ON(!page_ref_freeze(new_page, 1));
1337 
1338 
1339 	/*
1340 	 * At this point the new_page is 'frozen' (page_count() is zero), locked
1341 	 * and not up-to-date. It's safe to insert it into radix tree, because
1342 	 * nobody would be able to map it or use it in other way until we
1343 	 * unfreeze it.
1344 	 */
1345 
1346 	index = start;
1347 	xa_lock_irq(&mapping->i_pages);
1348 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1349 		int n = min(iter.index, end) - index;
1350 
1351 		/*
1352 		 * Handle holes in the radix tree: charge it from shmem and
1353 		 * insert relevant subpage of new_page into the radix-tree.
1354 		 */
1355 		if (n && !shmem_charge(mapping->host, n)) {
1356 			result = SCAN_FAIL;
1357 			break;
1358 		}
1359 		nr_none += n;
1360 		for (; index < min(iter.index, end); index++) {
1361 			radix_tree_insert(&mapping->i_pages, index,
1362 					new_page + (index % HPAGE_PMD_NR));
1363 		}
1364 
1365 		/* We are done. */
1366 		if (index >= end)
1367 			break;
1368 
1369 		page = radix_tree_deref_slot_protected(slot,
1370 				&mapping->i_pages.xa_lock);
1371 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1372 			xa_unlock_irq(&mapping->i_pages);
1373 			/* swap in or instantiate fallocated page */
1374 			if (shmem_getpage(mapping->host, index, &page,
1375 						SGP_NOHUGE)) {
1376 				result = SCAN_FAIL;
1377 				goto tree_unlocked;
1378 			}
1379 			xa_lock_irq(&mapping->i_pages);
1380 		} else if (trylock_page(page)) {
1381 			get_page(page);
1382 		} else {
1383 			result = SCAN_PAGE_LOCK;
1384 			break;
1385 		}
1386 
1387 		/*
1388 		 * The page must be locked, so we can drop the i_pages lock
1389 		 * without racing with truncate.
1390 		 */
1391 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1392 		VM_BUG_ON_PAGE(!PageUptodate(page), page);
1393 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1394 
1395 		if (page_mapping(page) != mapping) {
1396 			result = SCAN_TRUNCATED;
1397 			goto out_unlock;
1398 		}
1399 		xa_unlock_irq(&mapping->i_pages);
1400 
1401 		if (isolate_lru_page(page)) {
1402 			result = SCAN_DEL_PAGE_LRU;
1403 			goto out_isolate_failed;
1404 		}
1405 
1406 		if (page_mapped(page))
1407 			unmap_mapping_pages(mapping, index, 1, false);
1408 
1409 		xa_lock_irq(&mapping->i_pages);
1410 
1411 		slot = radix_tree_lookup_slot(&mapping->i_pages, index);
1412 		VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1413 					&mapping->i_pages.xa_lock), page);
1414 		VM_BUG_ON_PAGE(page_mapped(page), page);
1415 
1416 		/*
1417 		 * The page is expected to have page_count() == 3:
1418 		 *  - we hold a pin on it;
1419 		 *  - one reference from radix tree;
1420 		 *  - one from isolate_lru_page;
1421 		 */
1422 		if (!page_ref_freeze(page, 3)) {
1423 			result = SCAN_PAGE_COUNT;
1424 			goto out_lru;
1425 		}
1426 
1427 		/*
1428 		 * Add the page to the list to be able to undo the collapse if
1429 		 * something go wrong.
1430 		 */
1431 		list_add_tail(&page->lru, &pagelist);
1432 
1433 		/* Finally, replace with the new page. */
1434 		radix_tree_replace_slot(&mapping->i_pages, slot,
1435 				new_page + (index % HPAGE_PMD_NR));
1436 
1437 		slot = radix_tree_iter_resume(slot, &iter);
1438 		index++;
1439 		continue;
1440 out_lru:
1441 		xa_unlock_irq(&mapping->i_pages);
1442 		putback_lru_page(page);
1443 out_isolate_failed:
1444 		unlock_page(page);
1445 		put_page(page);
1446 		goto tree_unlocked;
1447 out_unlock:
1448 		unlock_page(page);
1449 		put_page(page);
1450 		break;
1451 	}
1452 
1453 	/*
1454 	 * Handle hole in radix tree at the end of the range.
1455 	 * This code only triggers if there's nothing in radix tree
1456 	 * beyond 'end'.
1457 	 */
1458 	if (result == SCAN_SUCCEED && index < end) {
1459 		int n = end - index;
1460 
1461 		if (!shmem_charge(mapping->host, n)) {
1462 			result = SCAN_FAIL;
1463 			goto tree_locked;
1464 		}
1465 
1466 		for (; index < end; index++) {
1467 			radix_tree_insert(&mapping->i_pages, index,
1468 					new_page + (index % HPAGE_PMD_NR));
1469 		}
1470 		nr_none += n;
1471 	}
1472 
1473 tree_locked:
1474 	xa_unlock_irq(&mapping->i_pages);
1475 tree_unlocked:
1476 
1477 	if (result == SCAN_SUCCEED) {
1478 		unsigned long flags;
1479 		struct zone *zone = page_zone(new_page);
1480 
1481 		/*
1482 		 * Replacing old pages with new one has succeed, now we need to
1483 		 * copy the content and free old pages.
1484 		 */
1485 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1487 					page);
1488 			list_del(&page->lru);
1489 			unlock_page(page);
1490 			page_ref_unfreeze(page, 1);
1491 			page->mapping = NULL;
1492 			ClearPageActive(page);
1493 			ClearPageUnevictable(page);
1494 			put_page(page);
1495 		}
1496 
1497 		local_irq_save(flags);
1498 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1499 		if (nr_none) {
1500 			__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1501 			__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1502 		}
1503 		local_irq_restore(flags);
1504 
1505 		/*
1506 		 * Remove pte page tables, so we can re-faulti
1507 		 * the page as huge.
1508 		 */
1509 		retract_page_tables(mapping, start);
1510 
1511 		/* Everything is ready, let's unfreeze the new_page */
1512 		set_page_dirty(new_page);
1513 		SetPageUptodate(new_page);
1514 		page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1515 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1516 		lru_cache_add_anon(new_page);
1517 		unlock_page(new_page);
1518 
1519 		*hpage = NULL;
1520 	} else {
1521 		/* Something went wrong: rollback changes to the radix-tree */
1522 		shmem_uncharge(mapping->host, nr_none);
1523 		xa_lock_irq(&mapping->i_pages);
1524 		radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1525 			if (iter.index >= end)
1526 				break;
1527 			page = list_first_entry_or_null(&pagelist,
1528 					struct page, lru);
1529 			if (!page || iter.index < page->index) {
1530 				if (!nr_none)
1531 					break;
1532 				nr_none--;
1533 				/* Put holes back where they were */
1534 				radix_tree_delete(&mapping->i_pages, iter.index);
1535 				continue;
1536 			}
1537 
1538 			VM_BUG_ON_PAGE(page->index != iter.index, page);
1539 
1540 			/* Unfreeze the page. */
1541 			list_del(&page->lru);
1542 			page_ref_unfreeze(page, 2);
1543 			radix_tree_replace_slot(&mapping->i_pages, slot, page);
1544 			slot = radix_tree_iter_resume(slot, &iter);
1545 			xa_unlock_irq(&mapping->i_pages);
1546 			putback_lru_page(page);
1547 			unlock_page(page);
1548 			xa_lock_irq(&mapping->i_pages);
1549 		}
1550 		VM_BUG_ON(nr_none);
1551 		xa_unlock_irq(&mapping->i_pages);
1552 
1553 		/* Unfreeze new_page, caller would take care about freeing it */
1554 		page_ref_unfreeze(new_page, 1);
1555 		mem_cgroup_cancel_charge(new_page, memcg, true);
1556 		unlock_page(new_page);
1557 		new_page->mapping = NULL;
1558 	}
1559 out:
1560 	VM_BUG_ON(!list_empty(&pagelist));
1561 	/* TODO: tracepoints */
1562 }
1563 
1564 static void khugepaged_scan_shmem(struct mm_struct *mm,
1565 		struct address_space *mapping,
1566 		pgoff_t start, struct page **hpage)
1567 {
1568 	struct page *page = NULL;
1569 	struct radix_tree_iter iter;
1570 	void **slot;
1571 	int present, swap;
1572 	int node = NUMA_NO_NODE;
1573 	int result = SCAN_SUCCEED;
1574 
1575 	present = 0;
1576 	swap = 0;
1577 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1578 	rcu_read_lock();
1579 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1580 		if (iter.index >= start + HPAGE_PMD_NR)
1581 			break;
1582 
1583 		page = radix_tree_deref_slot(slot);
1584 		if (radix_tree_deref_retry(page)) {
1585 			slot = radix_tree_iter_retry(&iter);
1586 			continue;
1587 		}
1588 
1589 		if (radix_tree_exception(page)) {
1590 			if (++swap > khugepaged_max_ptes_swap) {
1591 				result = SCAN_EXCEED_SWAP_PTE;
1592 				break;
1593 			}
1594 			continue;
1595 		}
1596 
1597 		if (PageTransCompound(page)) {
1598 			result = SCAN_PAGE_COMPOUND;
1599 			break;
1600 		}
1601 
1602 		node = page_to_nid(page);
1603 		if (khugepaged_scan_abort(node)) {
1604 			result = SCAN_SCAN_ABORT;
1605 			break;
1606 		}
1607 		khugepaged_node_load[node]++;
1608 
1609 		if (!PageLRU(page)) {
1610 			result = SCAN_PAGE_LRU;
1611 			break;
1612 		}
1613 
1614 		if (page_count(page) != 1 + page_mapcount(page)) {
1615 			result = SCAN_PAGE_COUNT;
1616 			break;
1617 		}
1618 
1619 		/*
1620 		 * We probably should check if the page is referenced here, but
1621 		 * nobody would transfer pte_young() to PageReferenced() for us.
1622 		 * And rmap walk here is just too costly...
1623 		 */
1624 
1625 		present++;
1626 
1627 		if (need_resched()) {
1628 			slot = radix_tree_iter_resume(slot, &iter);
1629 			cond_resched_rcu();
1630 		}
1631 	}
1632 	rcu_read_unlock();
1633 
1634 	if (result == SCAN_SUCCEED) {
1635 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1636 			result = SCAN_EXCEED_NONE_PTE;
1637 		} else {
1638 			node = khugepaged_find_target_node();
1639 			collapse_shmem(mm, mapping, start, hpage, node);
1640 		}
1641 	}
1642 
1643 	/* TODO: tracepoints */
1644 }
1645 #else
1646 static void khugepaged_scan_shmem(struct mm_struct *mm,
1647 		struct address_space *mapping,
1648 		pgoff_t start, struct page **hpage)
1649 {
1650 	BUILD_BUG();
1651 }
1652 #endif
1653 
1654 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1655 					    struct page **hpage)
1656 	__releases(&khugepaged_mm_lock)
1657 	__acquires(&khugepaged_mm_lock)
1658 {
1659 	struct mm_slot *mm_slot;
1660 	struct mm_struct *mm;
1661 	struct vm_area_struct *vma;
1662 	int progress = 0;
1663 
1664 	VM_BUG_ON(!pages);
1665 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1666 
1667 	if (khugepaged_scan.mm_slot)
1668 		mm_slot = khugepaged_scan.mm_slot;
1669 	else {
1670 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
1671 				     struct mm_slot, mm_node);
1672 		khugepaged_scan.address = 0;
1673 		khugepaged_scan.mm_slot = mm_slot;
1674 	}
1675 	spin_unlock(&khugepaged_mm_lock);
1676 
1677 	mm = mm_slot->mm;
1678 	/*
1679 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
1680 	 * the next mm on the list.
1681 	 */
1682 	vma = NULL;
1683 	if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1684 		goto breakouterloop_mmap_sem;
1685 	if (likely(!khugepaged_test_exit(mm)))
1686 		vma = find_vma(mm, khugepaged_scan.address);
1687 
1688 	progress++;
1689 	for (; vma; vma = vma->vm_next) {
1690 		unsigned long hstart, hend;
1691 
1692 		cond_resched();
1693 		if (unlikely(khugepaged_test_exit(mm))) {
1694 			progress++;
1695 			break;
1696 		}
1697 		if (!hugepage_vma_check(vma)) {
1698 skip:
1699 			progress++;
1700 			continue;
1701 		}
1702 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1703 		hend = vma->vm_end & HPAGE_PMD_MASK;
1704 		if (hstart >= hend)
1705 			goto skip;
1706 		if (khugepaged_scan.address > hend)
1707 			goto skip;
1708 		if (khugepaged_scan.address < hstart)
1709 			khugepaged_scan.address = hstart;
1710 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1711 
1712 		while (khugepaged_scan.address < hend) {
1713 			int ret;
1714 			cond_resched();
1715 			if (unlikely(khugepaged_test_exit(mm)))
1716 				goto breakouterloop;
1717 
1718 			VM_BUG_ON(khugepaged_scan.address < hstart ||
1719 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
1720 				  hend);
1721 			if (shmem_file(vma->vm_file)) {
1722 				struct file *file;
1723 				pgoff_t pgoff = linear_page_index(vma,
1724 						khugepaged_scan.address);
1725 				if (!shmem_huge_enabled(vma))
1726 					goto skip;
1727 				file = get_file(vma->vm_file);
1728 				up_read(&mm->mmap_sem);
1729 				ret = 1;
1730 				khugepaged_scan_shmem(mm, file->f_mapping,
1731 						pgoff, hpage);
1732 				fput(file);
1733 			} else {
1734 				ret = khugepaged_scan_pmd(mm, vma,
1735 						khugepaged_scan.address,
1736 						hpage);
1737 			}
1738 			/* move to next address */
1739 			khugepaged_scan.address += HPAGE_PMD_SIZE;
1740 			progress += HPAGE_PMD_NR;
1741 			if (ret)
1742 				/* we released mmap_sem so break loop */
1743 				goto breakouterloop_mmap_sem;
1744 			if (progress >= pages)
1745 				goto breakouterloop;
1746 		}
1747 	}
1748 breakouterloop:
1749 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1750 breakouterloop_mmap_sem:
1751 
1752 	spin_lock(&khugepaged_mm_lock);
1753 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1754 	/*
1755 	 * Release the current mm_slot if this mm is about to die, or
1756 	 * if we scanned all vmas of this mm.
1757 	 */
1758 	if (khugepaged_test_exit(mm) || !vma) {
1759 		/*
1760 		 * Make sure that if mm_users is reaching zero while
1761 		 * khugepaged runs here, khugepaged_exit will find
1762 		 * mm_slot not pointing to the exiting mm.
1763 		 */
1764 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1765 			khugepaged_scan.mm_slot = list_entry(
1766 				mm_slot->mm_node.next,
1767 				struct mm_slot, mm_node);
1768 			khugepaged_scan.address = 0;
1769 		} else {
1770 			khugepaged_scan.mm_slot = NULL;
1771 			khugepaged_full_scans++;
1772 		}
1773 
1774 		collect_mm_slot(mm_slot);
1775 	}
1776 
1777 	return progress;
1778 }
1779 
1780 static int khugepaged_has_work(void)
1781 {
1782 	return !list_empty(&khugepaged_scan.mm_head) &&
1783 		khugepaged_enabled();
1784 }
1785 
1786 static int khugepaged_wait_event(void)
1787 {
1788 	return !list_empty(&khugepaged_scan.mm_head) ||
1789 		kthread_should_stop();
1790 }
1791 
1792 static void khugepaged_do_scan(void)
1793 {
1794 	struct page *hpage = NULL;
1795 	unsigned int progress = 0, pass_through_head = 0;
1796 	unsigned int pages = khugepaged_pages_to_scan;
1797 	bool wait = true;
1798 
1799 	barrier(); /* write khugepaged_pages_to_scan to local stack */
1800 
1801 	while (progress < pages) {
1802 		if (!khugepaged_prealloc_page(&hpage, &wait))
1803 			break;
1804 
1805 		cond_resched();
1806 
1807 		if (unlikely(kthread_should_stop() || try_to_freeze()))
1808 			break;
1809 
1810 		spin_lock(&khugepaged_mm_lock);
1811 		if (!khugepaged_scan.mm_slot)
1812 			pass_through_head++;
1813 		if (khugepaged_has_work() &&
1814 		    pass_through_head < 2)
1815 			progress += khugepaged_scan_mm_slot(pages - progress,
1816 							    &hpage);
1817 		else
1818 			progress = pages;
1819 		spin_unlock(&khugepaged_mm_lock);
1820 	}
1821 
1822 	if (!IS_ERR_OR_NULL(hpage))
1823 		put_page(hpage);
1824 }
1825 
1826 static bool khugepaged_should_wakeup(void)
1827 {
1828 	return kthread_should_stop() ||
1829 	       time_after_eq(jiffies, khugepaged_sleep_expire);
1830 }
1831 
1832 static void khugepaged_wait_work(void)
1833 {
1834 	if (khugepaged_has_work()) {
1835 		const unsigned long scan_sleep_jiffies =
1836 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1837 
1838 		if (!scan_sleep_jiffies)
1839 			return;
1840 
1841 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1842 		wait_event_freezable_timeout(khugepaged_wait,
1843 					     khugepaged_should_wakeup(),
1844 					     scan_sleep_jiffies);
1845 		return;
1846 	}
1847 
1848 	if (khugepaged_enabled())
1849 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1850 }
1851 
1852 static int khugepaged(void *none)
1853 {
1854 	struct mm_slot *mm_slot;
1855 
1856 	set_freezable();
1857 	set_user_nice(current, MAX_NICE);
1858 
1859 	while (!kthread_should_stop()) {
1860 		khugepaged_do_scan();
1861 		khugepaged_wait_work();
1862 	}
1863 
1864 	spin_lock(&khugepaged_mm_lock);
1865 	mm_slot = khugepaged_scan.mm_slot;
1866 	khugepaged_scan.mm_slot = NULL;
1867 	if (mm_slot)
1868 		collect_mm_slot(mm_slot);
1869 	spin_unlock(&khugepaged_mm_lock);
1870 	return 0;
1871 }
1872 
1873 static void set_recommended_min_free_kbytes(void)
1874 {
1875 	struct zone *zone;
1876 	int nr_zones = 0;
1877 	unsigned long recommended_min;
1878 
1879 	for_each_populated_zone(zone) {
1880 		/*
1881 		 * We don't need to worry about fragmentation of
1882 		 * ZONE_MOVABLE since it only has movable pages.
1883 		 */
1884 		if (zone_idx(zone) > gfp_zone(GFP_USER))
1885 			continue;
1886 
1887 		nr_zones++;
1888 	}
1889 
1890 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1891 	recommended_min = pageblock_nr_pages * nr_zones * 2;
1892 
1893 	/*
1894 	 * Make sure that on average at least two pageblocks are almost free
1895 	 * of another type, one for a migratetype to fall back to and a
1896 	 * second to avoid subsequent fallbacks of other types There are 3
1897 	 * MIGRATE_TYPES we care about.
1898 	 */
1899 	recommended_min += pageblock_nr_pages * nr_zones *
1900 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1901 
1902 	/* don't ever allow to reserve more than 5% of the lowmem */
1903 	recommended_min = min(recommended_min,
1904 			      (unsigned long) nr_free_buffer_pages() / 20);
1905 	recommended_min <<= (PAGE_SHIFT-10);
1906 
1907 	if (recommended_min > min_free_kbytes) {
1908 		if (user_min_free_kbytes >= 0)
1909 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1910 				min_free_kbytes, recommended_min);
1911 
1912 		min_free_kbytes = recommended_min;
1913 	}
1914 	setup_per_zone_wmarks();
1915 }
1916 
1917 int start_stop_khugepaged(void)
1918 {
1919 	static struct task_struct *khugepaged_thread __read_mostly;
1920 	static DEFINE_MUTEX(khugepaged_mutex);
1921 	int err = 0;
1922 
1923 	mutex_lock(&khugepaged_mutex);
1924 	if (khugepaged_enabled()) {
1925 		if (!khugepaged_thread)
1926 			khugepaged_thread = kthread_run(khugepaged, NULL,
1927 							"khugepaged");
1928 		if (IS_ERR(khugepaged_thread)) {
1929 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1930 			err = PTR_ERR(khugepaged_thread);
1931 			khugepaged_thread = NULL;
1932 			goto fail;
1933 		}
1934 
1935 		if (!list_empty(&khugepaged_scan.mm_head))
1936 			wake_up_interruptible(&khugepaged_wait);
1937 
1938 		set_recommended_min_free_kbytes();
1939 	} else if (khugepaged_thread) {
1940 		kthread_stop(khugepaged_thread);
1941 		khugepaged_thread = NULL;
1942 	}
1943 fail:
1944 	mutex_unlock(&khugepaged_mutex);
1945 	return err;
1946 }
1947