1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/swapops.h> 20 #include <linux/shmem_fs.h> 21 22 #include <asm/tlb.h> 23 #include <asm/pgalloc.h> 24 #include "internal.h" 25 26 enum scan_result { 27 SCAN_FAIL, 28 SCAN_SUCCEED, 29 SCAN_PMD_NULL, 30 SCAN_EXCEED_NONE_PTE, 31 SCAN_EXCEED_SWAP_PTE, 32 SCAN_EXCEED_SHARED_PTE, 33 SCAN_PTE_NON_PRESENT, 34 SCAN_PTE_UFFD_WP, 35 SCAN_PAGE_RO, 36 SCAN_LACK_REFERENCED_PAGE, 37 SCAN_PAGE_NULL, 38 SCAN_SCAN_ABORT, 39 SCAN_PAGE_COUNT, 40 SCAN_PAGE_LRU, 41 SCAN_PAGE_LOCK, 42 SCAN_PAGE_ANON, 43 SCAN_PAGE_COMPOUND, 44 SCAN_ANY_PROCESS, 45 SCAN_VMA_NULL, 46 SCAN_VMA_CHECK, 47 SCAN_ADDRESS_RANGE, 48 SCAN_SWAP_CACHE_PAGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 /* default scan 8*512 pte (or vmas) every 30 second */ 60 static unsigned int khugepaged_pages_to_scan __read_mostly; 61 static unsigned int khugepaged_pages_collapsed; 62 static unsigned int khugepaged_full_scans; 63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 64 /* during fragmentation poll the hugepage allocator once every minute */ 65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 66 static unsigned long khugepaged_sleep_expire; 67 static DEFINE_SPINLOCK(khugepaged_mm_lock); 68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 69 /* 70 * default collapse hugepages if there is at least one pte mapped like 71 * it would have happened if the vma was large enough during page 72 * fault. 73 */ 74 static unsigned int khugepaged_max_ptes_none __read_mostly; 75 static unsigned int khugepaged_max_ptes_swap __read_mostly; 76 static unsigned int khugepaged_max_ptes_shared __read_mostly; 77 78 #define MM_SLOTS_HASH_BITS 10 79 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 80 81 static struct kmem_cache *mm_slot_cache __read_mostly; 82 83 #define MAX_PTE_MAPPED_THP 8 84 85 /** 86 * struct mm_slot - hash lookup from mm to mm_slot 87 * @hash: hash collision list 88 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 89 * @mm: the mm that this information is valid for 90 */ 91 struct mm_slot { 92 struct hlist_node hash; 93 struct list_head mm_node; 94 struct mm_struct *mm; 95 96 /* pte-mapped THP in this mm */ 97 int nr_pte_mapped_thp; 98 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 99 }; 100 101 /** 102 * struct khugepaged_scan - cursor for scanning 103 * @mm_head: the head of the mm list to scan 104 * @mm_slot: the current mm_slot we are scanning 105 * @address: the next address inside that to be scanned 106 * 107 * There is only the one khugepaged_scan instance of this cursor structure. 108 */ 109 struct khugepaged_scan { 110 struct list_head mm_head; 111 struct mm_slot *mm_slot; 112 unsigned long address; 113 }; 114 115 static struct khugepaged_scan khugepaged_scan = { 116 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 117 }; 118 119 #ifdef CONFIG_SYSFS 120 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 121 struct kobj_attribute *attr, 122 char *buf) 123 { 124 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 125 } 126 127 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 128 struct kobj_attribute *attr, 129 const char *buf, size_t count) 130 { 131 unsigned long msecs; 132 int err; 133 134 err = kstrtoul(buf, 10, &msecs); 135 if (err || msecs > UINT_MAX) 136 return -EINVAL; 137 138 khugepaged_scan_sleep_millisecs = msecs; 139 khugepaged_sleep_expire = 0; 140 wake_up_interruptible(&khugepaged_wait); 141 142 return count; 143 } 144 static struct kobj_attribute scan_sleep_millisecs_attr = 145 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 146 scan_sleep_millisecs_store); 147 148 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 149 struct kobj_attribute *attr, 150 char *buf) 151 { 152 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 153 } 154 155 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 156 struct kobj_attribute *attr, 157 const char *buf, size_t count) 158 { 159 unsigned long msecs; 160 int err; 161 162 err = kstrtoul(buf, 10, &msecs); 163 if (err || msecs > UINT_MAX) 164 return -EINVAL; 165 166 khugepaged_alloc_sleep_millisecs = msecs; 167 khugepaged_sleep_expire = 0; 168 wake_up_interruptible(&khugepaged_wait); 169 170 return count; 171 } 172 static struct kobj_attribute alloc_sleep_millisecs_attr = 173 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 174 alloc_sleep_millisecs_store); 175 176 static ssize_t pages_to_scan_show(struct kobject *kobj, 177 struct kobj_attribute *attr, 178 char *buf) 179 { 180 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 181 } 182 static ssize_t pages_to_scan_store(struct kobject *kobj, 183 struct kobj_attribute *attr, 184 const char *buf, size_t count) 185 { 186 int err; 187 unsigned long pages; 188 189 err = kstrtoul(buf, 10, &pages); 190 if (err || !pages || pages > UINT_MAX) 191 return -EINVAL; 192 193 khugepaged_pages_to_scan = pages; 194 195 return count; 196 } 197 static struct kobj_attribute pages_to_scan_attr = 198 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 199 pages_to_scan_store); 200 201 static ssize_t pages_collapsed_show(struct kobject *kobj, 202 struct kobj_attribute *attr, 203 char *buf) 204 { 205 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 206 } 207 static struct kobj_attribute pages_collapsed_attr = 208 __ATTR_RO(pages_collapsed); 209 210 static ssize_t full_scans_show(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 char *buf) 213 { 214 return sprintf(buf, "%u\n", khugepaged_full_scans); 215 } 216 static struct kobj_attribute full_scans_attr = 217 __ATTR_RO(full_scans); 218 219 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf) 221 { 222 return single_hugepage_flag_show(kobj, attr, buf, 223 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 224 } 225 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 226 struct kobj_attribute *attr, 227 const char *buf, size_t count) 228 { 229 return single_hugepage_flag_store(kobj, attr, buf, count, 230 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 231 } 232 static struct kobj_attribute khugepaged_defrag_attr = 233 __ATTR(defrag, 0644, khugepaged_defrag_show, 234 khugepaged_defrag_store); 235 236 /* 237 * max_ptes_none controls if khugepaged should collapse hugepages over 238 * any unmapped ptes in turn potentially increasing the memory 239 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 240 * reduce the available free memory in the system as it 241 * runs. Increasing max_ptes_none will instead potentially reduce the 242 * free memory in the system during the khugepaged scan. 243 */ 244 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 245 struct kobj_attribute *attr, 246 char *buf) 247 { 248 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 249 } 250 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 251 struct kobj_attribute *attr, 252 const char *buf, size_t count) 253 { 254 int err; 255 unsigned long max_ptes_none; 256 257 err = kstrtoul(buf, 10, &max_ptes_none); 258 if (err || max_ptes_none > HPAGE_PMD_NR-1) 259 return -EINVAL; 260 261 khugepaged_max_ptes_none = max_ptes_none; 262 263 return count; 264 } 265 static struct kobj_attribute khugepaged_max_ptes_none_attr = 266 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 267 khugepaged_max_ptes_none_store); 268 269 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 270 struct kobj_attribute *attr, 271 char *buf) 272 { 273 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); 274 } 275 276 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 277 struct kobj_attribute *attr, 278 const char *buf, size_t count) 279 { 280 int err; 281 unsigned long max_ptes_swap; 282 283 err = kstrtoul(buf, 10, &max_ptes_swap); 284 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 285 return -EINVAL; 286 287 khugepaged_max_ptes_swap = max_ptes_swap; 288 289 return count; 290 } 291 292 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 293 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 294 khugepaged_max_ptes_swap_store); 295 296 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 297 struct kobj_attribute *attr, 298 char *buf) 299 { 300 return sprintf(buf, "%u\n", khugepaged_max_ptes_shared); 301 } 302 303 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 const char *buf, size_t count) 306 { 307 int err; 308 unsigned long max_ptes_shared; 309 310 err = kstrtoul(buf, 10, &max_ptes_shared); 311 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 312 return -EINVAL; 313 314 khugepaged_max_ptes_shared = max_ptes_shared; 315 316 return count; 317 } 318 319 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 320 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 321 khugepaged_max_ptes_shared_store); 322 323 static struct attribute *khugepaged_attr[] = { 324 &khugepaged_defrag_attr.attr, 325 &khugepaged_max_ptes_none_attr.attr, 326 &khugepaged_max_ptes_swap_attr.attr, 327 &khugepaged_max_ptes_shared_attr.attr, 328 &pages_to_scan_attr.attr, 329 &pages_collapsed_attr.attr, 330 &full_scans_attr.attr, 331 &scan_sleep_millisecs_attr.attr, 332 &alloc_sleep_millisecs_attr.attr, 333 NULL, 334 }; 335 336 struct attribute_group khugepaged_attr_group = { 337 .attrs = khugepaged_attr, 338 .name = "khugepaged", 339 }; 340 #endif /* CONFIG_SYSFS */ 341 342 int hugepage_madvise(struct vm_area_struct *vma, 343 unsigned long *vm_flags, int advice) 344 { 345 switch (advice) { 346 case MADV_HUGEPAGE: 347 #ifdef CONFIG_S390 348 /* 349 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 350 * can't handle this properly after s390_enable_sie, so we simply 351 * ignore the madvise to prevent qemu from causing a SIGSEGV. 352 */ 353 if (mm_has_pgste(vma->vm_mm)) 354 return 0; 355 #endif 356 *vm_flags &= ~VM_NOHUGEPAGE; 357 *vm_flags |= VM_HUGEPAGE; 358 /* 359 * If the vma become good for khugepaged to scan, 360 * register it here without waiting a page fault that 361 * may not happen any time soon. 362 */ 363 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 364 khugepaged_enter_vma_merge(vma, *vm_flags)) 365 return -ENOMEM; 366 break; 367 case MADV_NOHUGEPAGE: 368 *vm_flags &= ~VM_HUGEPAGE; 369 *vm_flags |= VM_NOHUGEPAGE; 370 /* 371 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 372 * this vma even if we leave the mm registered in khugepaged if 373 * it got registered before VM_NOHUGEPAGE was set. 374 */ 375 break; 376 } 377 378 return 0; 379 } 380 381 int __init khugepaged_init(void) 382 { 383 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 384 sizeof(struct mm_slot), 385 __alignof__(struct mm_slot), 0, NULL); 386 if (!mm_slot_cache) 387 return -ENOMEM; 388 389 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 390 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 391 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 392 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 393 394 return 0; 395 } 396 397 void __init khugepaged_destroy(void) 398 { 399 kmem_cache_destroy(mm_slot_cache); 400 } 401 402 static inline struct mm_slot *alloc_mm_slot(void) 403 { 404 if (!mm_slot_cache) /* initialization failed */ 405 return NULL; 406 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 407 } 408 409 static inline void free_mm_slot(struct mm_slot *mm_slot) 410 { 411 kmem_cache_free(mm_slot_cache, mm_slot); 412 } 413 414 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 415 { 416 struct mm_slot *mm_slot; 417 418 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 419 if (mm == mm_slot->mm) 420 return mm_slot; 421 422 return NULL; 423 } 424 425 static void insert_to_mm_slots_hash(struct mm_struct *mm, 426 struct mm_slot *mm_slot) 427 { 428 mm_slot->mm = mm; 429 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 430 } 431 432 static inline int khugepaged_test_exit(struct mm_struct *mm) 433 { 434 return atomic_read(&mm->mm_users) == 0; 435 } 436 437 static bool hugepage_vma_check(struct vm_area_struct *vma, 438 unsigned long vm_flags) 439 { 440 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 441 (vm_flags & VM_NOHUGEPAGE) || 442 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 443 return false; 444 445 if (shmem_file(vma->vm_file) || 446 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 447 vma->vm_file && 448 (vm_flags & VM_DENYWRITE))) { 449 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 450 HPAGE_PMD_NR); 451 } 452 if (!vma->anon_vma || vma->vm_ops) 453 return false; 454 if (vma_is_temporary_stack(vma)) 455 return false; 456 return !(vm_flags & VM_NO_KHUGEPAGED); 457 } 458 459 int __khugepaged_enter(struct mm_struct *mm) 460 { 461 struct mm_slot *mm_slot; 462 int wakeup; 463 464 mm_slot = alloc_mm_slot(); 465 if (!mm_slot) 466 return -ENOMEM; 467 468 /* __khugepaged_exit() must not run from under us */ 469 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 470 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 471 free_mm_slot(mm_slot); 472 return 0; 473 } 474 475 spin_lock(&khugepaged_mm_lock); 476 insert_to_mm_slots_hash(mm, mm_slot); 477 /* 478 * Insert just behind the scanning cursor, to let the area settle 479 * down a little. 480 */ 481 wakeup = list_empty(&khugepaged_scan.mm_head); 482 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 483 spin_unlock(&khugepaged_mm_lock); 484 485 mmgrab(mm); 486 if (wakeup) 487 wake_up_interruptible(&khugepaged_wait); 488 489 return 0; 490 } 491 492 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 493 unsigned long vm_flags) 494 { 495 unsigned long hstart, hend; 496 497 /* 498 * khugepaged only supports read-only files for non-shmem files. 499 * khugepaged does not yet work on special mappings. And 500 * file-private shmem THP is not supported. 501 */ 502 if (!hugepage_vma_check(vma, vm_flags)) 503 return 0; 504 505 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 506 hend = vma->vm_end & HPAGE_PMD_MASK; 507 if (hstart < hend) 508 return khugepaged_enter(vma, vm_flags); 509 return 0; 510 } 511 512 void __khugepaged_exit(struct mm_struct *mm) 513 { 514 struct mm_slot *mm_slot; 515 int free = 0; 516 517 spin_lock(&khugepaged_mm_lock); 518 mm_slot = get_mm_slot(mm); 519 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 520 hash_del(&mm_slot->hash); 521 list_del(&mm_slot->mm_node); 522 free = 1; 523 } 524 spin_unlock(&khugepaged_mm_lock); 525 526 if (free) { 527 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 528 free_mm_slot(mm_slot); 529 mmdrop(mm); 530 } else if (mm_slot) { 531 /* 532 * This is required to serialize against 533 * khugepaged_test_exit() (which is guaranteed to run 534 * under mmap sem read mode). Stop here (after we 535 * return all pagetables will be destroyed) until 536 * khugepaged has finished working on the pagetables 537 * under the mmap_lock. 538 */ 539 mmap_write_lock(mm); 540 mmap_write_unlock(mm); 541 } 542 } 543 544 static void release_pte_page(struct page *page) 545 { 546 mod_node_page_state(page_pgdat(page), 547 NR_ISOLATED_ANON + page_is_file_lru(page), 548 -compound_nr(page)); 549 unlock_page(page); 550 putback_lru_page(page); 551 } 552 553 static void release_pte_pages(pte_t *pte, pte_t *_pte, 554 struct list_head *compound_pagelist) 555 { 556 struct page *page, *tmp; 557 558 while (--_pte >= pte) { 559 pte_t pteval = *_pte; 560 561 page = pte_page(pteval); 562 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 563 !PageCompound(page)) 564 release_pte_page(page); 565 } 566 567 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 568 list_del(&page->lru); 569 release_pte_page(page); 570 } 571 } 572 573 static bool is_refcount_suitable(struct page *page) 574 { 575 int expected_refcount; 576 577 expected_refcount = total_mapcount(page); 578 if (PageSwapCache(page)) 579 expected_refcount += compound_nr(page); 580 581 return page_count(page) == expected_refcount; 582 } 583 584 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 585 unsigned long address, 586 pte_t *pte, 587 struct list_head *compound_pagelist) 588 { 589 struct page *page = NULL; 590 pte_t *_pte; 591 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 592 bool writable = false; 593 594 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 595 _pte++, address += PAGE_SIZE) { 596 pte_t pteval = *_pte; 597 if (pte_none(pteval) || (pte_present(pteval) && 598 is_zero_pfn(pte_pfn(pteval)))) { 599 if (!userfaultfd_armed(vma) && 600 ++none_or_zero <= khugepaged_max_ptes_none) { 601 continue; 602 } else { 603 result = SCAN_EXCEED_NONE_PTE; 604 goto out; 605 } 606 } 607 if (!pte_present(pteval)) { 608 result = SCAN_PTE_NON_PRESENT; 609 goto out; 610 } 611 page = vm_normal_page(vma, address, pteval); 612 if (unlikely(!page)) { 613 result = SCAN_PAGE_NULL; 614 goto out; 615 } 616 617 VM_BUG_ON_PAGE(!PageAnon(page), page); 618 619 if (page_mapcount(page) > 1 && 620 ++shared > khugepaged_max_ptes_shared) { 621 result = SCAN_EXCEED_SHARED_PTE; 622 goto out; 623 } 624 625 if (PageCompound(page)) { 626 struct page *p; 627 page = compound_head(page); 628 629 /* 630 * Check if we have dealt with the compound page 631 * already 632 */ 633 list_for_each_entry(p, compound_pagelist, lru) { 634 if (page == p) 635 goto next; 636 } 637 } 638 639 /* 640 * We can do it before isolate_lru_page because the 641 * page can't be freed from under us. NOTE: PG_lock 642 * is needed to serialize against split_huge_page 643 * when invoked from the VM. 644 */ 645 if (!trylock_page(page)) { 646 result = SCAN_PAGE_LOCK; 647 goto out; 648 } 649 650 /* 651 * Check if the page has any GUP (or other external) pins. 652 * 653 * The page table that maps the page has been already unlinked 654 * from the page table tree and this process cannot get 655 * an additinal pin on the page. 656 * 657 * New pins can come later if the page is shared across fork, 658 * but not from this process. The other process cannot write to 659 * the page, only trigger CoW. 660 */ 661 if (!is_refcount_suitable(page)) { 662 unlock_page(page); 663 result = SCAN_PAGE_COUNT; 664 goto out; 665 } 666 if (!pte_write(pteval) && PageSwapCache(page) && 667 !reuse_swap_page(page, NULL)) { 668 /* 669 * Page is in the swap cache and cannot be re-used. 670 * It cannot be collapsed into a THP. 671 */ 672 unlock_page(page); 673 result = SCAN_SWAP_CACHE_PAGE; 674 goto out; 675 } 676 677 /* 678 * Isolate the page to avoid collapsing an hugepage 679 * currently in use by the VM. 680 */ 681 if (isolate_lru_page(page)) { 682 unlock_page(page); 683 result = SCAN_DEL_PAGE_LRU; 684 goto out; 685 } 686 mod_node_page_state(page_pgdat(page), 687 NR_ISOLATED_ANON + page_is_file_lru(page), 688 compound_nr(page)); 689 VM_BUG_ON_PAGE(!PageLocked(page), page); 690 VM_BUG_ON_PAGE(PageLRU(page), page); 691 692 if (PageCompound(page)) 693 list_add_tail(&page->lru, compound_pagelist); 694 next: 695 /* There should be enough young pte to collapse the page */ 696 if (pte_young(pteval) || 697 page_is_young(page) || PageReferenced(page) || 698 mmu_notifier_test_young(vma->vm_mm, address)) 699 referenced++; 700 701 if (pte_write(pteval)) 702 writable = true; 703 } 704 if (likely(writable)) { 705 if (likely(referenced)) { 706 result = SCAN_SUCCEED; 707 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 708 referenced, writable, result); 709 return 1; 710 } 711 } else { 712 result = SCAN_PAGE_RO; 713 } 714 715 out: 716 release_pte_pages(pte, _pte, compound_pagelist); 717 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 718 referenced, writable, result); 719 return 0; 720 } 721 722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 723 struct vm_area_struct *vma, 724 unsigned long address, 725 spinlock_t *ptl, 726 struct list_head *compound_pagelist) 727 { 728 struct page *src_page, *tmp; 729 pte_t *_pte; 730 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 731 _pte++, page++, address += PAGE_SIZE) { 732 pte_t pteval = *_pte; 733 734 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 735 clear_user_highpage(page, address); 736 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 737 if (is_zero_pfn(pte_pfn(pteval))) { 738 /* 739 * ptl mostly unnecessary. 740 */ 741 spin_lock(ptl); 742 /* 743 * paravirt calls inside pte_clear here are 744 * superfluous. 745 */ 746 pte_clear(vma->vm_mm, address, _pte); 747 spin_unlock(ptl); 748 } 749 } else { 750 src_page = pte_page(pteval); 751 copy_user_highpage(page, src_page, address, vma); 752 if (!PageCompound(src_page)) 753 release_pte_page(src_page); 754 /* 755 * ptl mostly unnecessary, but preempt has to 756 * be disabled to update the per-cpu stats 757 * inside page_remove_rmap(). 758 */ 759 spin_lock(ptl); 760 /* 761 * paravirt calls inside pte_clear here are 762 * superfluous. 763 */ 764 pte_clear(vma->vm_mm, address, _pte); 765 page_remove_rmap(src_page, false); 766 spin_unlock(ptl); 767 free_page_and_swap_cache(src_page); 768 } 769 } 770 771 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 772 list_del(&src_page->lru); 773 release_pte_page(src_page); 774 } 775 } 776 777 static void khugepaged_alloc_sleep(void) 778 { 779 DEFINE_WAIT(wait); 780 781 add_wait_queue(&khugepaged_wait, &wait); 782 freezable_schedule_timeout_interruptible( 783 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 784 remove_wait_queue(&khugepaged_wait, &wait); 785 } 786 787 static int khugepaged_node_load[MAX_NUMNODES]; 788 789 static bool khugepaged_scan_abort(int nid) 790 { 791 int i; 792 793 /* 794 * If node_reclaim_mode is disabled, then no extra effort is made to 795 * allocate memory locally. 796 */ 797 if (!node_reclaim_mode) 798 return false; 799 800 /* If there is a count for this node already, it must be acceptable */ 801 if (khugepaged_node_load[nid]) 802 return false; 803 804 for (i = 0; i < MAX_NUMNODES; i++) { 805 if (!khugepaged_node_load[i]) 806 continue; 807 if (node_distance(nid, i) > node_reclaim_distance) 808 return true; 809 } 810 return false; 811 } 812 813 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 814 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 815 { 816 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 817 } 818 819 #ifdef CONFIG_NUMA 820 static int khugepaged_find_target_node(void) 821 { 822 static int last_khugepaged_target_node = NUMA_NO_NODE; 823 int nid, target_node = 0, max_value = 0; 824 825 /* find first node with max normal pages hit */ 826 for (nid = 0; nid < MAX_NUMNODES; nid++) 827 if (khugepaged_node_load[nid] > max_value) { 828 max_value = khugepaged_node_load[nid]; 829 target_node = nid; 830 } 831 832 /* do some balance if several nodes have the same hit record */ 833 if (target_node <= last_khugepaged_target_node) 834 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 835 nid++) 836 if (max_value == khugepaged_node_load[nid]) { 837 target_node = nid; 838 break; 839 } 840 841 last_khugepaged_target_node = target_node; 842 return target_node; 843 } 844 845 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 846 { 847 if (IS_ERR(*hpage)) { 848 if (!*wait) 849 return false; 850 851 *wait = false; 852 *hpage = NULL; 853 khugepaged_alloc_sleep(); 854 } else if (*hpage) { 855 put_page(*hpage); 856 *hpage = NULL; 857 } 858 859 return true; 860 } 861 862 static struct page * 863 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 864 { 865 VM_BUG_ON_PAGE(*hpage, *hpage); 866 867 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 868 if (unlikely(!*hpage)) { 869 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 870 *hpage = ERR_PTR(-ENOMEM); 871 return NULL; 872 } 873 874 prep_transhuge_page(*hpage); 875 count_vm_event(THP_COLLAPSE_ALLOC); 876 return *hpage; 877 } 878 #else 879 static int khugepaged_find_target_node(void) 880 { 881 return 0; 882 } 883 884 static inline struct page *alloc_khugepaged_hugepage(void) 885 { 886 struct page *page; 887 888 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 889 HPAGE_PMD_ORDER); 890 if (page) 891 prep_transhuge_page(page); 892 return page; 893 } 894 895 static struct page *khugepaged_alloc_hugepage(bool *wait) 896 { 897 struct page *hpage; 898 899 do { 900 hpage = alloc_khugepaged_hugepage(); 901 if (!hpage) { 902 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 903 if (!*wait) 904 return NULL; 905 906 *wait = false; 907 khugepaged_alloc_sleep(); 908 } else 909 count_vm_event(THP_COLLAPSE_ALLOC); 910 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 911 912 return hpage; 913 } 914 915 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 916 { 917 if (!*hpage) 918 *hpage = khugepaged_alloc_hugepage(wait); 919 920 if (unlikely(!*hpage)) 921 return false; 922 923 return true; 924 } 925 926 static struct page * 927 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 928 { 929 VM_BUG_ON(!*hpage); 930 931 return *hpage; 932 } 933 #endif 934 935 /* 936 * If mmap_lock temporarily dropped, revalidate vma 937 * before taking mmap_lock. 938 * Return 0 if succeeds, otherwise return none-zero 939 * value (scan code). 940 */ 941 942 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 943 struct vm_area_struct **vmap) 944 { 945 struct vm_area_struct *vma; 946 unsigned long hstart, hend; 947 948 if (unlikely(khugepaged_test_exit(mm))) 949 return SCAN_ANY_PROCESS; 950 951 *vmap = vma = find_vma(mm, address); 952 if (!vma) 953 return SCAN_VMA_NULL; 954 955 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 956 hend = vma->vm_end & HPAGE_PMD_MASK; 957 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 958 return SCAN_ADDRESS_RANGE; 959 if (!hugepage_vma_check(vma, vma->vm_flags)) 960 return SCAN_VMA_CHECK; 961 return 0; 962 } 963 964 /* 965 * Bring missing pages in from swap, to complete THP collapse. 966 * Only done if khugepaged_scan_pmd believes it is worthwhile. 967 * 968 * Called and returns without pte mapped or spinlocks held, 969 * but with mmap_lock held to protect against vma changes. 970 */ 971 972 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 973 struct vm_area_struct *vma, 974 unsigned long address, pmd_t *pmd, 975 int referenced) 976 { 977 int swapped_in = 0; 978 vm_fault_t ret = 0; 979 struct vm_fault vmf = { 980 .vma = vma, 981 .address = address, 982 .flags = FAULT_FLAG_ALLOW_RETRY, 983 .pmd = pmd, 984 .pgoff = linear_page_index(vma, address), 985 }; 986 987 vmf.pte = pte_offset_map(pmd, address); 988 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE; 989 vmf.pte++, vmf.address += PAGE_SIZE) { 990 vmf.orig_pte = *vmf.pte; 991 if (!is_swap_pte(vmf.orig_pte)) 992 continue; 993 swapped_in++; 994 ret = do_swap_page(&vmf); 995 996 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 997 if (ret & VM_FAULT_RETRY) { 998 mmap_read_lock(mm); 999 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) { 1000 /* vma is no longer available, don't continue to swapin */ 1001 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1002 return false; 1003 } 1004 /* check if the pmd is still valid */ 1005 if (mm_find_pmd(mm, address) != pmd) { 1006 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1007 return false; 1008 } 1009 } 1010 if (ret & VM_FAULT_ERROR) { 1011 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1012 return false; 1013 } 1014 /* pte is unmapped now, we need to map it */ 1015 vmf.pte = pte_offset_map(pmd, vmf.address); 1016 } 1017 vmf.pte--; 1018 pte_unmap(vmf.pte); 1019 1020 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1021 if (swapped_in) 1022 lru_add_drain(); 1023 1024 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1025 return true; 1026 } 1027 1028 static void collapse_huge_page(struct mm_struct *mm, 1029 unsigned long address, 1030 struct page **hpage, 1031 int node, int referenced, int unmapped) 1032 { 1033 LIST_HEAD(compound_pagelist); 1034 pmd_t *pmd, _pmd; 1035 pte_t *pte; 1036 pgtable_t pgtable; 1037 struct page *new_page; 1038 spinlock_t *pmd_ptl, *pte_ptl; 1039 int isolated = 0, result = 0; 1040 struct vm_area_struct *vma; 1041 struct mmu_notifier_range range; 1042 gfp_t gfp; 1043 1044 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1045 1046 /* Only allocate from the target node */ 1047 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1048 1049 /* 1050 * Before allocating the hugepage, release the mmap_lock read lock. 1051 * The allocation can take potentially a long time if it involves 1052 * sync compaction, and we do not need to hold the mmap_lock during 1053 * that. We will recheck the vma after taking it again in write mode. 1054 */ 1055 mmap_read_unlock(mm); 1056 new_page = khugepaged_alloc_page(hpage, gfp, node); 1057 if (!new_page) { 1058 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1059 goto out_nolock; 1060 } 1061 1062 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1063 result = SCAN_CGROUP_CHARGE_FAIL; 1064 goto out_nolock; 1065 } 1066 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1067 1068 mmap_read_lock(mm); 1069 result = hugepage_vma_revalidate(mm, address, &vma); 1070 if (result) { 1071 mmap_read_unlock(mm); 1072 goto out_nolock; 1073 } 1074 1075 pmd = mm_find_pmd(mm, address); 1076 if (!pmd) { 1077 result = SCAN_PMD_NULL; 1078 mmap_read_unlock(mm); 1079 goto out_nolock; 1080 } 1081 1082 /* 1083 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1084 * If it fails, we release mmap_lock and jump out_nolock. 1085 * Continuing to collapse causes inconsistency. 1086 */ 1087 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1088 pmd, referenced)) { 1089 mmap_read_unlock(mm); 1090 goto out_nolock; 1091 } 1092 1093 mmap_read_unlock(mm); 1094 /* 1095 * Prevent all access to pagetables with the exception of 1096 * gup_fast later handled by the ptep_clear_flush and the VM 1097 * handled by the anon_vma lock + PG_lock. 1098 */ 1099 mmap_write_lock(mm); 1100 result = SCAN_ANY_PROCESS; 1101 if (!mmget_still_valid(mm)) 1102 goto out; 1103 result = hugepage_vma_revalidate(mm, address, &vma); 1104 if (result) 1105 goto out; 1106 /* check if the pmd is still valid */ 1107 if (mm_find_pmd(mm, address) != pmd) 1108 goto out; 1109 1110 anon_vma_lock_write(vma->anon_vma); 1111 1112 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1113 address, address + HPAGE_PMD_SIZE); 1114 mmu_notifier_invalidate_range_start(&range); 1115 1116 pte = pte_offset_map(pmd, address); 1117 pte_ptl = pte_lockptr(mm, pmd); 1118 1119 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1120 /* 1121 * After this gup_fast can't run anymore. This also removes 1122 * any huge TLB entry from the CPU so we won't allow 1123 * huge and small TLB entries for the same virtual address 1124 * to avoid the risk of CPU bugs in that area. 1125 */ 1126 _pmd = pmdp_collapse_flush(vma, address, pmd); 1127 spin_unlock(pmd_ptl); 1128 mmu_notifier_invalidate_range_end(&range); 1129 1130 spin_lock(pte_ptl); 1131 isolated = __collapse_huge_page_isolate(vma, address, pte, 1132 &compound_pagelist); 1133 spin_unlock(pte_ptl); 1134 1135 if (unlikely(!isolated)) { 1136 pte_unmap(pte); 1137 spin_lock(pmd_ptl); 1138 BUG_ON(!pmd_none(*pmd)); 1139 /* 1140 * We can only use set_pmd_at when establishing 1141 * hugepmds and never for establishing regular pmds that 1142 * points to regular pagetables. Use pmd_populate for that 1143 */ 1144 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1145 spin_unlock(pmd_ptl); 1146 anon_vma_unlock_write(vma->anon_vma); 1147 result = SCAN_FAIL; 1148 goto out; 1149 } 1150 1151 /* 1152 * All pages are isolated and locked so anon_vma rmap 1153 * can't run anymore. 1154 */ 1155 anon_vma_unlock_write(vma->anon_vma); 1156 1157 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1158 &compound_pagelist); 1159 pte_unmap(pte); 1160 __SetPageUptodate(new_page); 1161 pgtable = pmd_pgtable(_pmd); 1162 1163 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1164 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1165 1166 /* 1167 * spin_lock() below is not the equivalent of smp_wmb(), so 1168 * this is needed to avoid the copy_huge_page writes to become 1169 * visible after the set_pmd_at() write. 1170 */ 1171 smp_wmb(); 1172 1173 spin_lock(pmd_ptl); 1174 BUG_ON(!pmd_none(*pmd)); 1175 page_add_new_anon_rmap(new_page, vma, address, true); 1176 lru_cache_add_active_or_unevictable(new_page, vma); 1177 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1178 set_pmd_at(mm, address, pmd, _pmd); 1179 update_mmu_cache_pmd(vma, address, pmd); 1180 spin_unlock(pmd_ptl); 1181 1182 *hpage = NULL; 1183 1184 khugepaged_pages_collapsed++; 1185 result = SCAN_SUCCEED; 1186 out_up_write: 1187 mmap_write_unlock(mm); 1188 out_nolock: 1189 if (!IS_ERR_OR_NULL(*hpage)) 1190 mem_cgroup_uncharge(*hpage); 1191 trace_mm_collapse_huge_page(mm, isolated, result); 1192 return; 1193 out: 1194 goto out_up_write; 1195 } 1196 1197 static int khugepaged_scan_pmd(struct mm_struct *mm, 1198 struct vm_area_struct *vma, 1199 unsigned long address, 1200 struct page **hpage) 1201 { 1202 pmd_t *pmd; 1203 pte_t *pte, *_pte; 1204 int ret = 0, result = 0, referenced = 0; 1205 int none_or_zero = 0, shared = 0; 1206 struct page *page = NULL; 1207 unsigned long _address; 1208 spinlock_t *ptl; 1209 int node = NUMA_NO_NODE, unmapped = 0; 1210 bool writable = false; 1211 1212 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1213 1214 pmd = mm_find_pmd(mm, address); 1215 if (!pmd) { 1216 result = SCAN_PMD_NULL; 1217 goto out; 1218 } 1219 1220 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1221 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1222 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1223 _pte++, _address += PAGE_SIZE) { 1224 pte_t pteval = *_pte; 1225 if (is_swap_pte(pteval)) { 1226 if (++unmapped <= khugepaged_max_ptes_swap) { 1227 /* 1228 * Always be strict with uffd-wp 1229 * enabled swap entries. Please see 1230 * comment below for pte_uffd_wp(). 1231 */ 1232 if (pte_swp_uffd_wp(pteval)) { 1233 result = SCAN_PTE_UFFD_WP; 1234 goto out_unmap; 1235 } 1236 continue; 1237 } else { 1238 result = SCAN_EXCEED_SWAP_PTE; 1239 goto out_unmap; 1240 } 1241 } 1242 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1243 if (!userfaultfd_armed(vma) && 1244 ++none_or_zero <= khugepaged_max_ptes_none) { 1245 continue; 1246 } else { 1247 result = SCAN_EXCEED_NONE_PTE; 1248 goto out_unmap; 1249 } 1250 } 1251 if (!pte_present(pteval)) { 1252 result = SCAN_PTE_NON_PRESENT; 1253 goto out_unmap; 1254 } 1255 if (pte_uffd_wp(pteval)) { 1256 /* 1257 * Don't collapse the page if any of the small 1258 * PTEs are armed with uffd write protection. 1259 * Here we can also mark the new huge pmd as 1260 * write protected if any of the small ones is 1261 * marked but that could bring uknown 1262 * userfault messages that falls outside of 1263 * the registered range. So, just be simple. 1264 */ 1265 result = SCAN_PTE_UFFD_WP; 1266 goto out_unmap; 1267 } 1268 if (pte_write(pteval)) 1269 writable = true; 1270 1271 page = vm_normal_page(vma, _address, pteval); 1272 if (unlikely(!page)) { 1273 result = SCAN_PAGE_NULL; 1274 goto out_unmap; 1275 } 1276 1277 if (page_mapcount(page) > 1 && 1278 ++shared > khugepaged_max_ptes_shared) { 1279 result = SCAN_EXCEED_SHARED_PTE; 1280 goto out_unmap; 1281 } 1282 1283 page = compound_head(page); 1284 1285 /* 1286 * Record which node the original page is from and save this 1287 * information to khugepaged_node_load[]. 1288 * Khupaged will allocate hugepage from the node has the max 1289 * hit record. 1290 */ 1291 node = page_to_nid(page); 1292 if (khugepaged_scan_abort(node)) { 1293 result = SCAN_SCAN_ABORT; 1294 goto out_unmap; 1295 } 1296 khugepaged_node_load[node]++; 1297 if (!PageLRU(page)) { 1298 result = SCAN_PAGE_LRU; 1299 goto out_unmap; 1300 } 1301 if (PageLocked(page)) { 1302 result = SCAN_PAGE_LOCK; 1303 goto out_unmap; 1304 } 1305 if (!PageAnon(page)) { 1306 result = SCAN_PAGE_ANON; 1307 goto out_unmap; 1308 } 1309 1310 /* 1311 * Check if the page has any GUP (or other external) pins. 1312 * 1313 * Here the check is racy it may see totmal_mapcount > refcount 1314 * in some cases. 1315 * For example, one process with one forked child process. 1316 * The parent has the PMD split due to MADV_DONTNEED, then 1317 * the child is trying unmap the whole PMD, but khugepaged 1318 * may be scanning the parent between the child has 1319 * PageDoubleMap flag cleared and dec the mapcount. So 1320 * khugepaged may see total_mapcount > refcount. 1321 * 1322 * But such case is ephemeral we could always retry collapse 1323 * later. However it may report false positive if the page 1324 * has excessive GUP pins (i.e. 512). Anyway the same check 1325 * will be done again later the risk seems low. 1326 */ 1327 if (!is_refcount_suitable(page)) { 1328 result = SCAN_PAGE_COUNT; 1329 goto out_unmap; 1330 } 1331 if (pte_young(pteval) || 1332 page_is_young(page) || PageReferenced(page) || 1333 mmu_notifier_test_young(vma->vm_mm, address)) 1334 referenced++; 1335 } 1336 if (!writable) { 1337 result = SCAN_PAGE_RO; 1338 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1339 result = SCAN_LACK_REFERENCED_PAGE; 1340 } else { 1341 result = SCAN_SUCCEED; 1342 ret = 1; 1343 } 1344 out_unmap: 1345 pte_unmap_unlock(pte, ptl); 1346 if (ret) { 1347 node = khugepaged_find_target_node(); 1348 /* collapse_huge_page will return with the mmap_lock released */ 1349 collapse_huge_page(mm, address, hpage, node, 1350 referenced, unmapped); 1351 } 1352 out: 1353 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1354 none_or_zero, result, unmapped); 1355 return ret; 1356 } 1357 1358 static void collect_mm_slot(struct mm_slot *mm_slot) 1359 { 1360 struct mm_struct *mm = mm_slot->mm; 1361 1362 lockdep_assert_held(&khugepaged_mm_lock); 1363 1364 if (khugepaged_test_exit(mm)) { 1365 /* free mm_slot */ 1366 hash_del(&mm_slot->hash); 1367 list_del(&mm_slot->mm_node); 1368 1369 /* 1370 * Not strictly needed because the mm exited already. 1371 * 1372 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1373 */ 1374 1375 /* khugepaged_mm_lock actually not necessary for the below */ 1376 free_mm_slot(mm_slot); 1377 mmdrop(mm); 1378 } 1379 } 1380 1381 #ifdef CONFIG_SHMEM 1382 /* 1383 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1384 * khugepaged should try to collapse the page table. 1385 */ 1386 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1387 unsigned long addr) 1388 { 1389 struct mm_slot *mm_slot; 1390 1391 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1392 1393 spin_lock(&khugepaged_mm_lock); 1394 mm_slot = get_mm_slot(mm); 1395 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1396 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1397 spin_unlock(&khugepaged_mm_lock); 1398 return 0; 1399 } 1400 1401 /** 1402 * Try to collapse a pte-mapped THP for mm at address haddr. 1403 * 1404 * This function checks whether all the PTEs in the PMD are pointing to the 1405 * right THP. If so, retract the page table so the THP can refault in with 1406 * as pmd-mapped. 1407 */ 1408 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1409 { 1410 unsigned long haddr = addr & HPAGE_PMD_MASK; 1411 struct vm_area_struct *vma = find_vma(mm, haddr); 1412 struct page *hpage = NULL; 1413 pte_t *start_pte, *pte; 1414 pmd_t *pmd, _pmd; 1415 spinlock_t *ptl; 1416 int count = 0; 1417 int i; 1418 1419 if (!vma || !vma->vm_file || 1420 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE) 1421 return; 1422 1423 /* 1424 * This vm_flags may not have VM_HUGEPAGE if the page was not 1425 * collapsed by this mm. But we can still collapse if the page is 1426 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1427 * will not fail the vma for missing VM_HUGEPAGE 1428 */ 1429 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1430 return; 1431 1432 pmd = mm_find_pmd(mm, haddr); 1433 if (!pmd) 1434 return; 1435 1436 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1437 1438 /* step 1: check all mapped PTEs are to the right huge page */ 1439 for (i = 0, addr = haddr, pte = start_pte; 1440 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1441 struct page *page; 1442 1443 /* empty pte, skip */ 1444 if (pte_none(*pte)) 1445 continue; 1446 1447 /* page swapped out, abort */ 1448 if (!pte_present(*pte)) 1449 goto abort; 1450 1451 page = vm_normal_page(vma, addr, *pte); 1452 1453 if (!page || !PageCompound(page)) 1454 goto abort; 1455 1456 if (!hpage) { 1457 hpage = compound_head(page); 1458 /* 1459 * The mapping of the THP should not change. 1460 * 1461 * Note that uprobe, debugger, or MAP_PRIVATE may 1462 * change the page table, but the new page will 1463 * not pass PageCompound() check. 1464 */ 1465 if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping)) 1466 goto abort; 1467 } 1468 1469 /* 1470 * Confirm the page maps to the correct subpage. 1471 * 1472 * Note that uprobe, debugger, or MAP_PRIVATE may change 1473 * the page table, but the new page will not pass 1474 * PageCompound() check. 1475 */ 1476 if (WARN_ON(hpage + i != page)) 1477 goto abort; 1478 count++; 1479 } 1480 1481 /* step 2: adjust rmap */ 1482 for (i = 0, addr = haddr, pte = start_pte; 1483 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1484 struct page *page; 1485 1486 if (pte_none(*pte)) 1487 continue; 1488 page = vm_normal_page(vma, addr, *pte); 1489 page_remove_rmap(page, false); 1490 } 1491 1492 pte_unmap_unlock(start_pte, ptl); 1493 1494 /* step 3: set proper refcount and mm_counters. */ 1495 if (hpage) { 1496 page_ref_sub(hpage, count); 1497 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1498 } 1499 1500 /* step 4: collapse pmd */ 1501 ptl = pmd_lock(vma->vm_mm, pmd); 1502 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1503 spin_unlock(ptl); 1504 mm_dec_nr_ptes(mm); 1505 pte_free(mm, pmd_pgtable(_pmd)); 1506 return; 1507 1508 abort: 1509 pte_unmap_unlock(start_pte, ptl); 1510 } 1511 1512 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1513 { 1514 struct mm_struct *mm = mm_slot->mm; 1515 int i; 1516 1517 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1518 return 0; 1519 1520 if (!mmap_write_trylock(mm)) 1521 return -EBUSY; 1522 1523 if (unlikely(khugepaged_test_exit(mm))) 1524 goto out; 1525 1526 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1527 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1528 1529 out: 1530 mm_slot->nr_pte_mapped_thp = 0; 1531 mmap_write_unlock(mm); 1532 return 0; 1533 } 1534 1535 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1536 { 1537 struct vm_area_struct *vma; 1538 unsigned long addr; 1539 pmd_t *pmd, _pmd; 1540 1541 i_mmap_lock_write(mapping); 1542 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1543 /* 1544 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1545 * got written to. These VMAs are likely not worth investing 1546 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1547 * later. 1548 * 1549 * Not that vma->anon_vma check is racy: it can be set up after 1550 * the check but before we took mmap_lock by the fault path. 1551 * But page lock would prevent establishing any new ptes of the 1552 * page, so we are safe. 1553 * 1554 * An alternative would be drop the check, but check that page 1555 * table is clear before calling pmdp_collapse_flush() under 1556 * ptl. It has higher chance to recover THP for the VMA, but 1557 * has higher cost too. 1558 */ 1559 if (vma->anon_vma) 1560 continue; 1561 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1562 if (addr & ~HPAGE_PMD_MASK) 1563 continue; 1564 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1565 continue; 1566 pmd = mm_find_pmd(vma->vm_mm, addr); 1567 if (!pmd) 1568 continue; 1569 /* 1570 * We need exclusive mmap_lock to retract page table. 1571 * 1572 * We use trylock due to lock inversion: we need to acquire 1573 * mmap_lock while holding page lock. Fault path does it in 1574 * reverse order. Trylock is a way to avoid deadlock. 1575 */ 1576 if (mmap_write_trylock(vma->vm_mm)) { 1577 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd); 1578 /* assume page table is clear */ 1579 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1580 spin_unlock(ptl); 1581 mmap_write_unlock(vma->vm_mm); 1582 mm_dec_nr_ptes(vma->vm_mm); 1583 pte_free(vma->vm_mm, pmd_pgtable(_pmd)); 1584 } else { 1585 /* Try again later */ 1586 khugepaged_add_pte_mapped_thp(vma->vm_mm, addr); 1587 } 1588 } 1589 i_mmap_unlock_write(mapping); 1590 } 1591 1592 /** 1593 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1594 * 1595 * Basic scheme is simple, details are more complex: 1596 * - allocate and lock a new huge page; 1597 * - scan page cache replacing old pages with the new one 1598 * + swap/gup in pages if necessary; 1599 * + fill in gaps; 1600 * + keep old pages around in case rollback is required; 1601 * - if replacing succeeds: 1602 * + copy data over; 1603 * + free old pages; 1604 * + unlock huge page; 1605 * - if replacing failed; 1606 * + put all pages back and unfreeze them; 1607 * + restore gaps in the page cache; 1608 * + unlock and free huge page; 1609 */ 1610 static void collapse_file(struct mm_struct *mm, 1611 struct file *file, pgoff_t start, 1612 struct page **hpage, int node) 1613 { 1614 struct address_space *mapping = file->f_mapping; 1615 gfp_t gfp; 1616 struct page *new_page; 1617 pgoff_t index, end = start + HPAGE_PMD_NR; 1618 LIST_HEAD(pagelist); 1619 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1620 int nr_none = 0, result = SCAN_SUCCEED; 1621 bool is_shmem = shmem_file(file); 1622 1623 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1624 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1625 1626 /* Only allocate from the target node */ 1627 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1628 1629 new_page = khugepaged_alloc_page(hpage, gfp, node); 1630 if (!new_page) { 1631 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1632 goto out; 1633 } 1634 1635 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1636 result = SCAN_CGROUP_CHARGE_FAIL; 1637 goto out; 1638 } 1639 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1640 1641 /* This will be less messy when we use multi-index entries */ 1642 do { 1643 xas_lock_irq(&xas); 1644 xas_create_range(&xas); 1645 if (!xas_error(&xas)) 1646 break; 1647 xas_unlock_irq(&xas); 1648 if (!xas_nomem(&xas, GFP_KERNEL)) { 1649 result = SCAN_FAIL; 1650 goto out; 1651 } 1652 } while (1); 1653 1654 __SetPageLocked(new_page); 1655 if (is_shmem) 1656 __SetPageSwapBacked(new_page); 1657 new_page->index = start; 1658 new_page->mapping = mapping; 1659 1660 /* 1661 * At this point the new_page is locked and not up-to-date. 1662 * It's safe to insert it into the page cache, because nobody would 1663 * be able to map it or use it in another way until we unlock it. 1664 */ 1665 1666 xas_set(&xas, start); 1667 for (index = start; index < end; index++) { 1668 struct page *page = xas_next(&xas); 1669 1670 VM_BUG_ON(index != xas.xa_index); 1671 if (is_shmem) { 1672 if (!page) { 1673 /* 1674 * Stop if extent has been truncated or 1675 * hole-punched, and is now completely 1676 * empty. 1677 */ 1678 if (index == start) { 1679 if (!xas_next_entry(&xas, end - 1)) { 1680 result = SCAN_TRUNCATED; 1681 goto xa_locked; 1682 } 1683 xas_set(&xas, index); 1684 } 1685 if (!shmem_charge(mapping->host, 1)) { 1686 result = SCAN_FAIL; 1687 goto xa_locked; 1688 } 1689 xas_store(&xas, new_page); 1690 nr_none++; 1691 continue; 1692 } 1693 1694 if (xa_is_value(page) || !PageUptodate(page)) { 1695 xas_unlock_irq(&xas); 1696 /* swap in or instantiate fallocated page */ 1697 if (shmem_getpage(mapping->host, index, &page, 1698 SGP_NOHUGE)) { 1699 result = SCAN_FAIL; 1700 goto xa_unlocked; 1701 } 1702 } else if (trylock_page(page)) { 1703 get_page(page); 1704 xas_unlock_irq(&xas); 1705 } else { 1706 result = SCAN_PAGE_LOCK; 1707 goto xa_locked; 1708 } 1709 } else { /* !is_shmem */ 1710 if (!page || xa_is_value(page)) { 1711 xas_unlock_irq(&xas); 1712 page_cache_sync_readahead(mapping, &file->f_ra, 1713 file, index, 1714 PAGE_SIZE); 1715 /* drain pagevecs to help isolate_lru_page() */ 1716 lru_add_drain(); 1717 page = find_lock_page(mapping, index); 1718 if (unlikely(page == NULL)) { 1719 result = SCAN_FAIL; 1720 goto xa_unlocked; 1721 } 1722 } else if (PageDirty(page)) { 1723 /* 1724 * khugepaged only works on read-only fd, 1725 * so this page is dirty because it hasn't 1726 * been flushed since first write. There 1727 * won't be new dirty pages. 1728 * 1729 * Trigger async flush here and hope the 1730 * writeback is done when khugepaged 1731 * revisits this page. 1732 * 1733 * This is a one-off situation. We are not 1734 * forcing writeback in loop. 1735 */ 1736 xas_unlock_irq(&xas); 1737 filemap_flush(mapping); 1738 result = SCAN_FAIL; 1739 goto xa_unlocked; 1740 } else if (trylock_page(page)) { 1741 get_page(page); 1742 xas_unlock_irq(&xas); 1743 } else { 1744 result = SCAN_PAGE_LOCK; 1745 goto xa_locked; 1746 } 1747 } 1748 1749 /* 1750 * The page must be locked, so we can drop the i_pages lock 1751 * without racing with truncate. 1752 */ 1753 VM_BUG_ON_PAGE(!PageLocked(page), page); 1754 1755 /* make sure the page is up to date */ 1756 if (unlikely(!PageUptodate(page))) { 1757 result = SCAN_FAIL; 1758 goto out_unlock; 1759 } 1760 1761 /* 1762 * If file was truncated then extended, or hole-punched, before 1763 * we locked the first page, then a THP might be there already. 1764 */ 1765 if (PageTransCompound(page)) { 1766 result = SCAN_PAGE_COMPOUND; 1767 goto out_unlock; 1768 } 1769 1770 if (page_mapping(page) != mapping) { 1771 result = SCAN_TRUNCATED; 1772 goto out_unlock; 1773 } 1774 1775 if (!is_shmem && PageDirty(page)) { 1776 /* 1777 * khugepaged only works on read-only fd, so this 1778 * page is dirty because it hasn't been flushed 1779 * since first write. 1780 */ 1781 result = SCAN_FAIL; 1782 goto out_unlock; 1783 } 1784 1785 if (isolate_lru_page(page)) { 1786 result = SCAN_DEL_PAGE_LRU; 1787 goto out_unlock; 1788 } 1789 1790 if (page_has_private(page) && 1791 !try_to_release_page(page, GFP_KERNEL)) { 1792 result = SCAN_PAGE_HAS_PRIVATE; 1793 putback_lru_page(page); 1794 goto out_unlock; 1795 } 1796 1797 if (page_mapped(page)) 1798 unmap_mapping_pages(mapping, index, 1, false); 1799 1800 xas_lock_irq(&xas); 1801 xas_set(&xas, index); 1802 1803 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1804 VM_BUG_ON_PAGE(page_mapped(page), page); 1805 1806 /* 1807 * The page is expected to have page_count() == 3: 1808 * - we hold a pin on it; 1809 * - one reference from page cache; 1810 * - one from isolate_lru_page; 1811 */ 1812 if (!page_ref_freeze(page, 3)) { 1813 result = SCAN_PAGE_COUNT; 1814 xas_unlock_irq(&xas); 1815 putback_lru_page(page); 1816 goto out_unlock; 1817 } 1818 1819 /* 1820 * Add the page to the list to be able to undo the collapse if 1821 * something go wrong. 1822 */ 1823 list_add_tail(&page->lru, &pagelist); 1824 1825 /* Finally, replace with the new page. */ 1826 xas_store(&xas, new_page); 1827 continue; 1828 out_unlock: 1829 unlock_page(page); 1830 put_page(page); 1831 goto xa_unlocked; 1832 } 1833 1834 if (is_shmem) 1835 __inc_node_page_state(new_page, NR_SHMEM_THPS); 1836 else { 1837 __inc_node_page_state(new_page, NR_FILE_THPS); 1838 filemap_nr_thps_inc(mapping); 1839 } 1840 1841 if (nr_none) { 1842 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1843 if (is_shmem) 1844 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1845 } 1846 1847 xa_locked: 1848 xas_unlock_irq(&xas); 1849 xa_unlocked: 1850 1851 if (result == SCAN_SUCCEED) { 1852 struct page *page, *tmp; 1853 1854 /* 1855 * Replacing old pages with new one has succeeded, now we 1856 * need to copy the content and free the old pages. 1857 */ 1858 index = start; 1859 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1860 while (index < page->index) { 1861 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1862 index++; 1863 } 1864 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1865 page); 1866 list_del(&page->lru); 1867 page->mapping = NULL; 1868 page_ref_unfreeze(page, 1); 1869 ClearPageActive(page); 1870 ClearPageUnevictable(page); 1871 unlock_page(page); 1872 put_page(page); 1873 index++; 1874 } 1875 while (index < end) { 1876 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1877 index++; 1878 } 1879 1880 SetPageUptodate(new_page); 1881 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1882 if (is_shmem) 1883 set_page_dirty(new_page); 1884 lru_cache_add(new_page); 1885 1886 /* 1887 * Remove pte page tables, so we can re-fault the page as huge. 1888 */ 1889 retract_page_tables(mapping, start); 1890 *hpage = NULL; 1891 1892 khugepaged_pages_collapsed++; 1893 } else { 1894 struct page *page; 1895 1896 /* Something went wrong: roll back page cache changes */ 1897 xas_lock_irq(&xas); 1898 mapping->nrpages -= nr_none; 1899 1900 if (is_shmem) 1901 shmem_uncharge(mapping->host, nr_none); 1902 1903 xas_set(&xas, start); 1904 xas_for_each(&xas, page, end - 1) { 1905 page = list_first_entry_or_null(&pagelist, 1906 struct page, lru); 1907 if (!page || xas.xa_index < page->index) { 1908 if (!nr_none) 1909 break; 1910 nr_none--; 1911 /* Put holes back where they were */ 1912 xas_store(&xas, NULL); 1913 continue; 1914 } 1915 1916 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1917 1918 /* Unfreeze the page. */ 1919 list_del(&page->lru); 1920 page_ref_unfreeze(page, 2); 1921 xas_store(&xas, page); 1922 xas_pause(&xas); 1923 xas_unlock_irq(&xas); 1924 unlock_page(page); 1925 putback_lru_page(page); 1926 xas_lock_irq(&xas); 1927 } 1928 VM_BUG_ON(nr_none); 1929 xas_unlock_irq(&xas); 1930 1931 new_page->mapping = NULL; 1932 } 1933 1934 unlock_page(new_page); 1935 out: 1936 VM_BUG_ON(!list_empty(&pagelist)); 1937 if (!IS_ERR_OR_NULL(*hpage)) 1938 mem_cgroup_uncharge(*hpage); 1939 /* TODO: tracepoints */ 1940 } 1941 1942 static void khugepaged_scan_file(struct mm_struct *mm, 1943 struct file *file, pgoff_t start, struct page **hpage) 1944 { 1945 struct page *page = NULL; 1946 struct address_space *mapping = file->f_mapping; 1947 XA_STATE(xas, &mapping->i_pages, start); 1948 int present, swap; 1949 int node = NUMA_NO_NODE; 1950 int result = SCAN_SUCCEED; 1951 1952 present = 0; 1953 swap = 0; 1954 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1955 rcu_read_lock(); 1956 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 1957 if (xas_retry(&xas, page)) 1958 continue; 1959 1960 if (xa_is_value(page)) { 1961 if (++swap > khugepaged_max_ptes_swap) { 1962 result = SCAN_EXCEED_SWAP_PTE; 1963 break; 1964 } 1965 continue; 1966 } 1967 1968 if (PageTransCompound(page)) { 1969 result = SCAN_PAGE_COMPOUND; 1970 break; 1971 } 1972 1973 node = page_to_nid(page); 1974 if (khugepaged_scan_abort(node)) { 1975 result = SCAN_SCAN_ABORT; 1976 break; 1977 } 1978 khugepaged_node_load[node]++; 1979 1980 if (!PageLRU(page)) { 1981 result = SCAN_PAGE_LRU; 1982 break; 1983 } 1984 1985 if (page_count(page) != 1986 1 + page_mapcount(page) + page_has_private(page)) { 1987 result = SCAN_PAGE_COUNT; 1988 break; 1989 } 1990 1991 /* 1992 * We probably should check if the page is referenced here, but 1993 * nobody would transfer pte_young() to PageReferenced() for us. 1994 * And rmap walk here is just too costly... 1995 */ 1996 1997 present++; 1998 1999 if (need_resched()) { 2000 xas_pause(&xas); 2001 cond_resched_rcu(); 2002 } 2003 } 2004 rcu_read_unlock(); 2005 2006 if (result == SCAN_SUCCEED) { 2007 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2008 result = SCAN_EXCEED_NONE_PTE; 2009 } else { 2010 node = khugepaged_find_target_node(); 2011 collapse_file(mm, file, start, hpage, node); 2012 } 2013 } 2014 2015 /* TODO: tracepoints */ 2016 } 2017 #else 2018 static void khugepaged_scan_file(struct mm_struct *mm, 2019 struct file *file, pgoff_t start, struct page **hpage) 2020 { 2021 BUILD_BUG(); 2022 } 2023 2024 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2025 { 2026 return 0; 2027 } 2028 #endif 2029 2030 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2031 struct page **hpage) 2032 __releases(&khugepaged_mm_lock) 2033 __acquires(&khugepaged_mm_lock) 2034 { 2035 struct mm_slot *mm_slot; 2036 struct mm_struct *mm; 2037 struct vm_area_struct *vma; 2038 int progress = 0; 2039 2040 VM_BUG_ON(!pages); 2041 lockdep_assert_held(&khugepaged_mm_lock); 2042 2043 if (khugepaged_scan.mm_slot) 2044 mm_slot = khugepaged_scan.mm_slot; 2045 else { 2046 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2047 struct mm_slot, mm_node); 2048 khugepaged_scan.address = 0; 2049 khugepaged_scan.mm_slot = mm_slot; 2050 } 2051 spin_unlock(&khugepaged_mm_lock); 2052 khugepaged_collapse_pte_mapped_thps(mm_slot); 2053 2054 mm = mm_slot->mm; 2055 /* 2056 * Don't wait for semaphore (to avoid long wait times). Just move to 2057 * the next mm on the list. 2058 */ 2059 vma = NULL; 2060 if (unlikely(!mmap_read_trylock(mm))) 2061 goto breakouterloop_mmap_lock; 2062 if (likely(!khugepaged_test_exit(mm))) 2063 vma = find_vma(mm, khugepaged_scan.address); 2064 2065 progress++; 2066 for (; vma; vma = vma->vm_next) { 2067 unsigned long hstart, hend; 2068 2069 cond_resched(); 2070 if (unlikely(khugepaged_test_exit(mm))) { 2071 progress++; 2072 break; 2073 } 2074 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2075 skip: 2076 progress++; 2077 continue; 2078 } 2079 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2080 hend = vma->vm_end & HPAGE_PMD_MASK; 2081 if (hstart >= hend) 2082 goto skip; 2083 if (khugepaged_scan.address > hend) 2084 goto skip; 2085 if (khugepaged_scan.address < hstart) 2086 khugepaged_scan.address = hstart; 2087 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2088 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2089 goto skip; 2090 2091 while (khugepaged_scan.address < hend) { 2092 int ret; 2093 cond_resched(); 2094 if (unlikely(khugepaged_test_exit(mm))) 2095 goto breakouterloop; 2096 2097 VM_BUG_ON(khugepaged_scan.address < hstart || 2098 khugepaged_scan.address + HPAGE_PMD_SIZE > 2099 hend); 2100 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2101 struct file *file = get_file(vma->vm_file); 2102 pgoff_t pgoff = linear_page_index(vma, 2103 khugepaged_scan.address); 2104 2105 mmap_read_unlock(mm); 2106 ret = 1; 2107 khugepaged_scan_file(mm, file, pgoff, hpage); 2108 fput(file); 2109 } else { 2110 ret = khugepaged_scan_pmd(mm, vma, 2111 khugepaged_scan.address, 2112 hpage); 2113 } 2114 /* move to next address */ 2115 khugepaged_scan.address += HPAGE_PMD_SIZE; 2116 progress += HPAGE_PMD_NR; 2117 if (ret) 2118 /* we released mmap_lock so break loop */ 2119 goto breakouterloop_mmap_lock; 2120 if (progress >= pages) 2121 goto breakouterloop; 2122 } 2123 } 2124 breakouterloop: 2125 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2126 breakouterloop_mmap_lock: 2127 2128 spin_lock(&khugepaged_mm_lock); 2129 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2130 /* 2131 * Release the current mm_slot if this mm is about to die, or 2132 * if we scanned all vmas of this mm. 2133 */ 2134 if (khugepaged_test_exit(mm) || !vma) { 2135 /* 2136 * Make sure that if mm_users is reaching zero while 2137 * khugepaged runs here, khugepaged_exit will find 2138 * mm_slot not pointing to the exiting mm. 2139 */ 2140 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2141 khugepaged_scan.mm_slot = list_entry( 2142 mm_slot->mm_node.next, 2143 struct mm_slot, mm_node); 2144 khugepaged_scan.address = 0; 2145 } else { 2146 khugepaged_scan.mm_slot = NULL; 2147 khugepaged_full_scans++; 2148 } 2149 2150 collect_mm_slot(mm_slot); 2151 } 2152 2153 return progress; 2154 } 2155 2156 static int khugepaged_has_work(void) 2157 { 2158 return !list_empty(&khugepaged_scan.mm_head) && 2159 khugepaged_enabled(); 2160 } 2161 2162 static int khugepaged_wait_event(void) 2163 { 2164 return !list_empty(&khugepaged_scan.mm_head) || 2165 kthread_should_stop(); 2166 } 2167 2168 static void khugepaged_do_scan(void) 2169 { 2170 struct page *hpage = NULL; 2171 unsigned int progress = 0, pass_through_head = 0; 2172 unsigned int pages = khugepaged_pages_to_scan; 2173 bool wait = true; 2174 2175 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2176 2177 lru_add_drain_all(); 2178 2179 while (progress < pages) { 2180 if (!khugepaged_prealloc_page(&hpage, &wait)) 2181 break; 2182 2183 cond_resched(); 2184 2185 if (unlikely(kthread_should_stop() || try_to_freeze())) 2186 break; 2187 2188 spin_lock(&khugepaged_mm_lock); 2189 if (!khugepaged_scan.mm_slot) 2190 pass_through_head++; 2191 if (khugepaged_has_work() && 2192 pass_through_head < 2) 2193 progress += khugepaged_scan_mm_slot(pages - progress, 2194 &hpage); 2195 else 2196 progress = pages; 2197 spin_unlock(&khugepaged_mm_lock); 2198 } 2199 2200 if (!IS_ERR_OR_NULL(hpage)) 2201 put_page(hpage); 2202 } 2203 2204 static bool khugepaged_should_wakeup(void) 2205 { 2206 return kthread_should_stop() || 2207 time_after_eq(jiffies, khugepaged_sleep_expire); 2208 } 2209 2210 static void khugepaged_wait_work(void) 2211 { 2212 if (khugepaged_has_work()) { 2213 const unsigned long scan_sleep_jiffies = 2214 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2215 2216 if (!scan_sleep_jiffies) 2217 return; 2218 2219 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2220 wait_event_freezable_timeout(khugepaged_wait, 2221 khugepaged_should_wakeup(), 2222 scan_sleep_jiffies); 2223 return; 2224 } 2225 2226 if (khugepaged_enabled()) 2227 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2228 } 2229 2230 static int khugepaged(void *none) 2231 { 2232 struct mm_slot *mm_slot; 2233 2234 set_freezable(); 2235 set_user_nice(current, MAX_NICE); 2236 2237 while (!kthread_should_stop()) { 2238 khugepaged_do_scan(); 2239 khugepaged_wait_work(); 2240 } 2241 2242 spin_lock(&khugepaged_mm_lock); 2243 mm_slot = khugepaged_scan.mm_slot; 2244 khugepaged_scan.mm_slot = NULL; 2245 if (mm_slot) 2246 collect_mm_slot(mm_slot); 2247 spin_unlock(&khugepaged_mm_lock); 2248 return 0; 2249 } 2250 2251 static void set_recommended_min_free_kbytes(void) 2252 { 2253 struct zone *zone; 2254 int nr_zones = 0; 2255 unsigned long recommended_min; 2256 2257 for_each_populated_zone(zone) { 2258 /* 2259 * We don't need to worry about fragmentation of 2260 * ZONE_MOVABLE since it only has movable pages. 2261 */ 2262 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2263 continue; 2264 2265 nr_zones++; 2266 } 2267 2268 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2269 recommended_min = pageblock_nr_pages * nr_zones * 2; 2270 2271 /* 2272 * Make sure that on average at least two pageblocks are almost free 2273 * of another type, one for a migratetype to fall back to and a 2274 * second to avoid subsequent fallbacks of other types There are 3 2275 * MIGRATE_TYPES we care about. 2276 */ 2277 recommended_min += pageblock_nr_pages * nr_zones * 2278 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2279 2280 /* don't ever allow to reserve more than 5% of the lowmem */ 2281 recommended_min = min(recommended_min, 2282 (unsigned long) nr_free_buffer_pages() / 20); 2283 recommended_min <<= (PAGE_SHIFT-10); 2284 2285 if (recommended_min > min_free_kbytes) { 2286 if (user_min_free_kbytes >= 0) 2287 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2288 min_free_kbytes, recommended_min); 2289 2290 min_free_kbytes = recommended_min; 2291 } 2292 setup_per_zone_wmarks(); 2293 } 2294 2295 int start_stop_khugepaged(void) 2296 { 2297 static struct task_struct *khugepaged_thread __read_mostly; 2298 static DEFINE_MUTEX(khugepaged_mutex); 2299 int err = 0; 2300 2301 mutex_lock(&khugepaged_mutex); 2302 if (khugepaged_enabled()) { 2303 if (!khugepaged_thread) 2304 khugepaged_thread = kthread_run(khugepaged, NULL, 2305 "khugepaged"); 2306 if (IS_ERR(khugepaged_thread)) { 2307 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2308 err = PTR_ERR(khugepaged_thread); 2309 khugepaged_thread = NULL; 2310 goto fail; 2311 } 2312 2313 if (!list_empty(&khugepaged_scan.mm_head)) 2314 wake_up_interruptible(&khugepaged_wait); 2315 2316 set_recommended_min_free_kbytes(); 2317 } else if (khugepaged_thread) { 2318 kthread_stop(khugepaged_thread); 2319 khugepaged_thread = NULL; 2320 } 2321 fail: 2322 mutex_unlock(&khugepaged_mutex); 2323 return err; 2324 } 2325