xref: /openbmc/linux/mm/khugepaged.c (revision 79a93295)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/tlb.h>
20 #include <asm/pgalloc.h>
21 #include "internal.h"
22 
23 enum scan_result {
24 	SCAN_FAIL,
25 	SCAN_SUCCEED,
26 	SCAN_PMD_NULL,
27 	SCAN_EXCEED_NONE_PTE,
28 	SCAN_PTE_NON_PRESENT,
29 	SCAN_PAGE_RO,
30 	SCAN_LACK_REFERENCED_PAGE,
31 	SCAN_PAGE_NULL,
32 	SCAN_SCAN_ABORT,
33 	SCAN_PAGE_COUNT,
34 	SCAN_PAGE_LRU,
35 	SCAN_PAGE_LOCK,
36 	SCAN_PAGE_ANON,
37 	SCAN_PAGE_COMPOUND,
38 	SCAN_ANY_PROCESS,
39 	SCAN_VMA_NULL,
40 	SCAN_VMA_CHECK,
41 	SCAN_ADDRESS_RANGE,
42 	SCAN_SWAP_CACHE_PAGE,
43 	SCAN_DEL_PAGE_LRU,
44 	SCAN_ALLOC_HUGE_PAGE_FAIL,
45 	SCAN_CGROUP_CHARGE_FAIL,
46 	SCAN_EXCEED_SWAP_PTE,
47 	SCAN_TRUNCATED,
48 };
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
52 
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63 /*
64  * default collapse hugepages if there is at least one pte mapped like
65  * it would have happened if the vma was large enough during page
66  * fault.
67  */
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
70 
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73 
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75 
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83 	struct hlist_node hash;
84 	struct list_head mm_node;
85 	struct mm_struct *mm;
86 };
87 
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97 	struct list_head mm_head;
98 	struct mm_slot *mm_slot;
99 	unsigned long address;
100 };
101 
102 static struct khugepaged_scan khugepaged_scan = {
103 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105 
106 #ifdef CONFIG_SYSFS
107 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108 					 struct kobj_attribute *attr,
109 					 char *buf)
110 {
111 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
112 }
113 
114 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115 					  struct kobj_attribute *attr,
116 					  const char *buf, size_t count)
117 {
118 	unsigned long msecs;
119 	int err;
120 
121 	err = kstrtoul(buf, 10, &msecs);
122 	if (err || msecs > UINT_MAX)
123 		return -EINVAL;
124 
125 	khugepaged_scan_sleep_millisecs = msecs;
126 	khugepaged_sleep_expire = 0;
127 	wake_up_interruptible(&khugepaged_wait);
128 
129 	return count;
130 }
131 static struct kobj_attribute scan_sleep_millisecs_attr =
132 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133 	       scan_sleep_millisecs_store);
134 
135 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136 					  struct kobj_attribute *attr,
137 					  char *buf)
138 {
139 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
140 }
141 
142 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143 					   struct kobj_attribute *attr,
144 					   const char *buf, size_t count)
145 {
146 	unsigned long msecs;
147 	int err;
148 
149 	err = kstrtoul(buf, 10, &msecs);
150 	if (err || msecs > UINT_MAX)
151 		return -EINVAL;
152 
153 	khugepaged_alloc_sleep_millisecs = msecs;
154 	khugepaged_sleep_expire = 0;
155 	wake_up_interruptible(&khugepaged_wait);
156 
157 	return count;
158 }
159 static struct kobj_attribute alloc_sleep_millisecs_attr =
160 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161 	       alloc_sleep_millisecs_store);
162 
163 static ssize_t pages_to_scan_show(struct kobject *kobj,
164 				  struct kobj_attribute *attr,
165 				  char *buf)
166 {
167 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168 }
169 static ssize_t pages_to_scan_store(struct kobject *kobj,
170 				   struct kobj_attribute *attr,
171 				   const char *buf, size_t count)
172 {
173 	int err;
174 	unsigned long pages;
175 
176 	err = kstrtoul(buf, 10, &pages);
177 	if (err || !pages || pages > UINT_MAX)
178 		return -EINVAL;
179 
180 	khugepaged_pages_to_scan = pages;
181 
182 	return count;
183 }
184 static struct kobj_attribute pages_to_scan_attr =
185 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
186 	       pages_to_scan_store);
187 
188 static ssize_t pages_collapsed_show(struct kobject *kobj,
189 				    struct kobj_attribute *attr,
190 				    char *buf)
191 {
192 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193 }
194 static struct kobj_attribute pages_collapsed_attr =
195 	__ATTR_RO(pages_collapsed);
196 
197 static ssize_t full_scans_show(struct kobject *kobj,
198 			       struct kobj_attribute *attr,
199 			       char *buf)
200 {
201 	return sprintf(buf, "%u\n", khugepaged_full_scans);
202 }
203 static struct kobj_attribute full_scans_attr =
204 	__ATTR_RO(full_scans);
205 
206 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207 				      struct kobj_attribute *attr, char *buf)
208 {
209 	return single_hugepage_flag_show(kobj, attr, buf,
210 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211 }
212 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213 				       struct kobj_attribute *attr,
214 				       const char *buf, size_t count)
215 {
216 	return single_hugepage_flag_store(kobj, attr, buf, count,
217 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218 }
219 static struct kobj_attribute khugepaged_defrag_attr =
220 	__ATTR(defrag, 0644, khugepaged_defrag_show,
221 	       khugepaged_defrag_store);
222 
223 /*
224  * max_ptes_none controls if khugepaged should collapse hugepages over
225  * any unmapped ptes in turn potentially increasing the memory
226  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227  * reduce the available free memory in the system as it
228  * runs. Increasing max_ptes_none will instead potentially reduce the
229  * free memory in the system during the khugepaged scan.
230  */
231 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232 					     struct kobj_attribute *attr,
233 					     char *buf)
234 {
235 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236 }
237 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238 					      struct kobj_attribute *attr,
239 					      const char *buf, size_t count)
240 {
241 	int err;
242 	unsigned long max_ptes_none;
243 
244 	err = kstrtoul(buf, 10, &max_ptes_none);
245 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
246 		return -EINVAL;
247 
248 	khugepaged_max_ptes_none = max_ptes_none;
249 
250 	return count;
251 }
252 static struct kobj_attribute khugepaged_max_ptes_none_attr =
253 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254 	       khugepaged_max_ptes_none_store);
255 
256 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257 					     struct kobj_attribute *attr,
258 					     char *buf)
259 {
260 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
261 }
262 
263 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264 					      struct kobj_attribute *attr,
265 					      const char *buf, size_t count)
266 {
267 	int err;
268 	unsigned long max_ptes_swap;
269 
270 	err  = kstrtoul(buf, 10, &max_ptes_swap);
271 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272 		return -EINVAL;
273 
274 	khugepaged_max_ptes_swap = max_ptes_swap;
275 
276 	return count;
277 }
278 
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281 	       khugepaged_max_ptes_swap_store);
282 
283 static struct attribute *khugepaged_attr[] = {
284 	&khugepaged_defrag_attr.attr,
285 	&khugepaged_max_ptes_none_attr.attr,
286 	&pages_to_scan_attr.attr,
287 	&pages_collapsed_attr.attr,
288 	&full_scans_attr.attr,
289 	&scan_sleep_millisecs_attr.attr,
290 	&alloc_sleep_millisecs_attr.attr,
291 	&khugepaged_max_ptes_swap_attr.attr,
292 	NULL,
293 };
294 
295 struct attribute_group khugepaged_attr_group = {
296 	.attrs = khugepaged_attr,
297 	.name = "khugepaged",
298 };
299 #endif /* CONFIG_SYSFS */
300 
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
302 
303 int hugepage_madvise(struct vm_area_struct *vma,
304 		     unsigned long *vm_flags, int advice)
305 {
306 	switch (advice) {
307 	case MADV_HUGEPAGE:
308 #ifdef CONFIG_S390
309 		/*
310 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 		 * can't handle this properly after s390_enable_sie, so we simply
312 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
313 		 */
314 		if (mm_has_pgste(vma->vm_mm))
315 			return 0;
316 #endif
317 		*vm_flags &= ~VM_NOHUGEPAGE;
318 		*vm_flags |= VM_HUGEPAGE;
319 		/*
320 		 * If the vma become good for khugepaged to scan,
321 		 * register it here without waiting a page fault that
322 		 * may not happen any time soon.
323 		 */
324 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325 				khugepaged_enter_vma_merge(vma, *vm_flags))
326 			return -ENOMEM;
327 		break;
328 	case MADV_NOHUGEPAGE:
329 		*vm_flags &= ~VM_HUGEPAGE;
330 		*vm_flags |= VM_NOHUGEPAGE;
331 		/*
332 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 		 * this vma even if we leave the mm registered in khugepaged if
334 		 * it got registered before VM_NOHUGEPAGE was set.
335 		 */
336 		break;
337 	}
338 
339 	return 0;
340 }
341 
342 int __init khugepaged_init(void)
343 {
344 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345 					  sizeof(struct mm_slot),
346 					  __alignof__(struct mm_slot), 0, NULL);
347 	if (!mm_slot_cache)
348 		return -ENOMEM;
349 
350 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
353 
354 	return 0;
355 }
356 
357 void __init khugepaged_destroy(void)
358 {
359 	kmem_cache_destroy(mm_slot_cache);
360 }
361 
362 static inline struct mm_slot *alloc_mm_slot(void)
363 {
364 	if (!mm_slot_cache)	/* initialization failed */
365 		return NULL;
366 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367 }
368 
369 static inline void free_mm_slot(struct mm_slot *mm_slot)
370 {
371 	kmem_cache_free(mm_slot_cache, mm_slot);
372 }
373 
374 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
375 {
376 	struct mm_slot *mm_slot;
377 
378 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379 		if (mm == mm_slot->mm)
380 			return mm_slot;
381 
382 	return NULL;
383 }
384 
385 static void insert_to_mm_slots_hash(struct mm_struct *mm,
386 				    struct mm_slot *mm_slot)
387 {
388 	mm_slot->mm = mm;
389 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390 }
391 
392 static inline int khugepaged_test_exit(struct mm_struct *mm)
393 {
394 	return atomic_read(&mm->mm_users) == 0;
395 }
396 
397 int __khugepaged_enter(struct mm_struct *mm)
398 {
399 	struct mm_slot *mm_slot;
400 	int wakeup;
401 
402 	mm_slot = alloc_mm_slot();
403 	if (!mm_slot)
404 		return -ENOMEM;
405 
406 	/* __khugepaged_exit() must not run from under us */
407 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409 		free_mm_slot(mm_slot);
410 		return 0;
411 	}
412 
413 	spin_lock(&khugepaged_mm_lock);
414 	insert_to_mm_slots_hash(mm, mm_slot);
415 	/*
416 	 * Insert just behind the scanning cursor, to let the area settle
417 	 * down a little.
418 	 */
419 	wakeup = list_empty(&khugepaged_scan.mm_head);
420 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421 	spin_unlock(&khugepaged_mm_lock);
422 
423 	atomic_inc(&mm->mm_count);
424 	if (wakeup)
425 		wake_up_interruptible(&khugepaged_wait);
426 
427 	return 0;
428 }
429 
430 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431 			       unsigned long vm_flags)
432 {
433 	unsigned long hstart, hend;
434 	if (!vma->anon_vma)
435 		/*
436 		 * Not yet faulted in so we will register later in the
437 		 * page fault if needed.
438 		 */
439 		return 0;
440 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441 		/* khugepaged not yet working on file or special mappings */
442 		return 0;
443 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444 	hend = vma->vm_end & HPAGE_PMD_MASK;
445 	if (hstart < hend)
446 		return khugepaged_enter(vma, vm_flags);
447 	return 0;
448 }
449 
450 void __khugepaged_exit(struct mm_struct *mm)
451 {
452 	struct mm_slot *mm_slot;
453 	int free = 0;
454 
455 	spin_lock(&khugepaged_mm_lock);
456 	mm_slot = get_mm_slot(mm);
457 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458 		hash_del(&mm_slot->hash);
459 		list_del(&mm_slot->mm_node);
460 		free = 1;
461 	}
462 	spin_unlock(&khugepaged_mm_lock);
463 
464 	if (free) {
465 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466 		free_mm_slot(mm_slot);
467 		mmdrop(mm);
468 	} else if (mm_slot) {
469 		/*
470 		 * This is required to serialize against
471 		 * khugepaged_test_exit() (which is guaranteed to run
472 		 * under mmap sem read mode). Stop here (after we
473 		 * return all pagetables will be destroyed) until
474 		 * khugepaged has finished working on the pagetables
475 		 * under the mmap_sem.
476 		 */
477 		down_write(&mm->mmap_sem);
478 		up_write(&mm->mmap_sem);
479 	}
480 }
481 
482 static void release_pte_page(struct page *page)
483 {
484 	/* 0 stands for page_is_file_cache(page) == false */
485 	dec_node_page_state(page, NR_ISOLATED_ANON + 0);
486 	unlock_page(page);
487 	putback_lru_page(page);
488 }
489 
490 static void release_pte_pages(pte_t *pte, pte_t *_pte)
491 {
492 	while (--_pte >= pte) {
493 		pte_t pteval = *_pte;
494 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495 			release_pte_page(pte_page(pteval));
496 	}
497 }
498 
499 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500 					unsigned long address,
501 					pte_t *pte)
502 {
503 	struct page *page = NULL;
504 	pte_t *_pte;
505 	int none_or_zero = 0, result = 0, referenced = 0;
506 	bool writable = false;
507 
508 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509 	     _pte++, address += PAGE_SIZE) {
510 		pte_t pteval = *_pte;
511 		if (pte_none(pteval) || (pte_present(pteval) &&
512 				is_zero_pfn(pte_pfn(pteval)))) {
513 			if (!userfaultfd_armed(vma) &&
514 			    ++none_or_zero <= khugepaged_max_ptes_none) {
515 				continue;
516 			} else {
517 				result = SCAN_EXCEED_NONE_PTE;
518 				goto out;
519 			}
520 		}
521 		if (!pte_present(pteval)) {
522 			result = SCAN_PTE_NON_PRESENT;
523 			goto out;
524 		}
525 		page = vm_normal_page(vma, address, pteval);
526 		if (unlikely(!page)) {
527 			result = SCAN_PAGE_NULL;
528 			goto out;
529 		}
530 
531 		VM_BUG_ON_PAGE(PageCompound(page), page);
532 		VM_BUG_ON_PAGE(!PageAnon(page), page);
533 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
534 
535 		/*
536 		 * We can do it before isolate_lru_page because the
537 		 * page can't be freed from under us. NOTE: PG_lock
538 		 * is needed to serialize against split_huge_page
539 		 * when invoked from the VM.
540 		 */
541 		if (!trylock_page(page)) {
542 			result = SCAN_PAGE_LOCK;
543 			goto out;
544 		}
545 
546 		/*
547 		 * cannot use mapcount: can't collapse if there's a gup pin.
548 		 * The page must only be referenced by the scanned process
549 		 * and page swap cache.
550 		 */
551 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
552 			unlock_page(page);
553 			result = SCAN_PAGE_COUNT;
554 			goto out;
555 		}
556 		if (pte_write(pteval)) {
557 			writable = true;
558 		} else {
559 			if (PageSwapCache(page) &&
560 			    !reuse_swap_page(page, NULL)) {
561 				unlock_page(page);
562 				result = SCAN_SWAP_CACHE_PAGE;
563 				goto out;
564 			}
565 			/*
566 			 * Page is not in the swap cache. It can be collapsed
567 			 * into a THP.
568 			 */
569 		}
570 
571 		/*
572 		 * Isolate the page to avoid collapsing an hugepage
573 		 * currently in use by the VM.
574 		 */
575 		if (isolate_lru_page(page)) {
576 			unlock_page(page);
577 			result = SCAN_DEL_PAGE_LRU;
578 			goto out;
579 		}
580 		/* 0 stands for page_is_file_cache(page) == false */
581 		inc_node_page_state(page, NR_ISOLATED_ANON + 0);
582 		VM_BUG_ON_PAGE(!PageLocked(page), page);
583 		VM_BUG_ON_PAGE(PageLRU(page), page);
584 
585 		/* There should be enough young pte to collapse the page */
586 		if (pte_young(pteval) ||
587 		    page_is_young(page) || PageReferenced(page) ||
588 		    mmu_notifier_test_young(vma->vm_mm, address))
589 			referenced++;
590 	}
591 	if (likely(writable)) {
592 		if (likely(referenced)) {
593 			result = SCAN_SUCCEED;
594 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
595 							    referenced, writable, result);
596 			return 1;
597 		}
598 	} else {
599 		result = SCAN_PAGE_RO;
600 	}
601 
602 out:
603 	release_pte_pages(pte, _pte);
604 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
605 					    referenced, writable, result);
606 	return 0;
607 }
608 
609 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
610 				      struct vm_area_struct *vma,
611 				      unsigned long address,
612 				      spinlock_t *ptl)
613 {
614 	pte_t *_pte;
615 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
616 		pte_t pteval = *_pte;
617 		struct page *src_page;
618 
619 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
620 			clear_user_highpage(page, address);
621 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
622 			if (is_zero_pfn(pte_pfn(pteval))) {
623 				/*
624 				 * ptl mostly unnecessary.
625 				 */
626 				spin_lock(ptl);
627 				/*
628 				 * paravirt calls inside pte_clear here are
629 				 * superfluous.
630 				 */
631 				pte_clear(vma->vm_mm, address, _pte);
632 				spin_unlock(ptl);
633 			}
634 		} else {
635 			src_page = pte_page(pteval);
636 			copy_user_highpage(page, src_page, address, vma);
637 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
638 			release_pte_page(src_page);
639 			/*
640 			 * ptl mostly unnecessary, but preempt has to
641 			 * be disabled to update the per-cpu stats
642 			 * inside page_remove_rmap().
643 			 */
644 			spin_lock(ptl);
645 			/*
646 			 * paravirt calls inside pte_clear here are
647 			 * superfluous.
648 			 */
649 			pte_clear(vma->vm_mm, address, _pte);
650 			page_remove_rmap(src_page, false);
651 			spin_unlock(ptl);
652 			free_page_and_swap_cache(src_page);
653 		}
654 
655 		address += PAGE_SIZE;
656 		page++;
657 	}
658 }
659 
660 static void khugepaged_alloc_sleep(void)
661 {
662 	DEFINE_WAIT(wait);
663 
664 	add_wait_queue(&khugepaged_wait, &wait);
665 	freezable_schedule_timeout_interruptible(
666 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
667 	remove_wait_queue(&khugepaged_wait, &wait);
668 }
669 
670 static int khugepaged_node_load[MAX_NUMNODES];
671 
672 static bool khugepaged_scan_abort(int nid)
673 {
674 	int i;
675 
676 	/*
677 	 * If node_reclaim_mode is disabled, then no extra effort is made to
678 	 * allocate memory locally.
679 	 */
680 	if (!node_reclaim_mode)
681 		return false;
682 
683 	/* If there is a count for this node already, it must be acceptable */
684 	if (khugepaged_node_load[nid])
685 		return false;
686 
687 	for (i = 0; i < MAX_NUMNODES; i++) {
688 		if (!khugepaged_node_load[i])
689 			continue;
690 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
691 			return true;
692 	}
693 	return false;
694 }
695 
696 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
697 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
698 {
699 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
700 }
701 
702 #ifdef CONFIG_NUMA
703 static int khugepaged_find_target_node(void)
704 {
705 	static int last_khugepaged_target_node = NUMA_NO_NODE;
706 	int nid, target_node = 0, max_value = 0;
707 
708 	/* find first node with max normal pages hit */
709 	for (nid = 0; nid < MAX_NUMNODES; nid++)
710 		if (khugepaged_node_load[nid] > max_value) {
711 			max_value = khugepaged_node_load[nid];
712 			target_node = nid;
713 		}
714 
715 	/* do some balance if several nodes have the same hit record */
716 	if (target_node <= last_khugepaged_target_node)
717 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
718 				nid++)
719 			if (max_value == khugepaged_node_load[nid]) {
720 				target_node = nid;
721 				break;
722 			}
723 
724 	last_khugepaged_target_node = target_node;
725 	return target_node;
726 }
727 
728 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
729 {
730 	if (IS_ERR(*hpage)) {
731 		if (!*wait)
732 			return false;
733 
734 		*wait = false;
735 		*hpage = NULL;
736 		khugepaged_alloc_sleep();
737 	} else if (*hpage) {
738 		put_page(*hpage);
739 		*hpage = NULL;
740 	}
741 
742 	return true;
743 }
744 
745 static struct page *
746 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
747 {
748 	VM_BUG_ON_PAGE(*hpage, *hpage);
749 
750 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
751 	if (unlikely(!*hpage)) {
752 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
753 		*hpage = ERR_PTR(-ENOMEM);
754 		return NULL;
755 	}
756 
757 	prep_transhuge_page(*hpage);
758 	count_vm_event(THP_COLLAPSE_ALLOC);
759 	return *hpage;
760 }
761 #else
762 static int khugepaged_find_target_node(void)
763 {
764 	return 0;
765 }
766 
767 static inline struct page *alloc_khugepaged_hugepage(void)
768 {
769 	struct page *page;
770 
771 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
772 			   HPAGE_PMD_ORDER);
773 	if (page)
774 		prep_transhuge_page(page);
775 	return page;
776 }
777 
778 static struct page *khugepaged_alloc_hugepage(bool *wait)
779 {
780 	struct page *hpage;
781 
782 	do {
783 		hpage = alloc_khugepaged_hugepage();
784 		if (!hpage) {
785 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
786 			if (!*wait)
787 				return NULL;
788 
789 			*wait = false;
790 			khugepaged_alloc_sleep();
791 		} else
792 			count_vm_event(THP_COLLAPSE_ALLOC);
793 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
794 
795 	return hpage;
796 }
797 
798 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
799 {
800 	if (!*hpage)
801 		*hpage = khugepaged_alloc_hugepage(wait);
802 
803 	if (unlikely(!*hpage))
804 		return false;
805 
806 	return true;
807 }
808 
809 static struct page *
810 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
811 {
812 	VM_BUG_ON(!*hpage);
813 
814 	return  *hpage;
815 }
816 #endif
817 
818 static bool hugepage_vma_check(struct vm_area_struct *vma)
819 {
820 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
821 	    (vma->vm_flags & VM_NOHUGEPAGE))
822 		return false;
823 	if (shmem_file(vma->vm_file)) {
824 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
825 			return false;
826 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
827 				HPAGE_PMD_NR);
828 	}
829 	if (!vma->anon_vma || vma->vm_ops)
830 		return false;
831 	if (is_vma_temporary_stack(vma))
832 		return false;
833 	return !(vma->vm_flags & VM_NO_KHUGEPAGED);
834 }
835 
836 /*
837  * If mmap_sem temporarily dropped, revalidate vma
838  * before taking mmap_sem.
839  * Return 0 if succeeds, otherwise return none-zero
840  * value (scan code).
841  */
842 
843 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
844 		struct vm_area_struct **vmap)
845 {
846 	struct vm_area_struct *vma;
847 	unsigned long hstart, hend;
848 
849 	if (unlikely(khugepaged_test_exit(mm)))
850 		return SCAN_ANY_PROCESS;
851 
852 	*vmap = vma = find_vma(mm, address);
853 	if (!vma)
854 		return SCAN_VMA_NULL;
855 
856 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
857 	hend = vma->vm_end & HPAGE_PMD_MASK;
858 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
859 		return SCAN_ADDRESS_RANGE;
860 	if (!hugepage_vma_check(vma))
861 		return SCAN_VMA_CHECK;
862 	return 0;
863 }
864 
865 /*
866  * Bring missing pages in from swap, to complete THP collapse.
867  * Only done if khugepaged_scan_pmd believes it is worthwhile.
868  *
869  * Called and returns without pte mapped or spinlocks held,
870  * but with mmap_sem held to protect against vma changes.
871  */
872 
873 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
874 					struct vm_area_struct *vma,
875 					unsigned long address, pmd_t *pmd,
876 					int referenced)
877 {
878 	int swapped_in = 0, ret = 0;
879 	struct vm_fault vmf = {
880 		.vma = vma,
881 		.address = address,
882 		.flags = FAULT_FLAG_ALLOW_RETRY,
883 		.pmd = pmd,
884 		.pgoff = linear_page_index(vma, address),
885 	};
886 
887 	/* we only decide to swapin, if there is enough young ptes */
888 	if (referenced < HPAGE_PMD_NR/2) {
889 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
890 		return false;
891 	}
892 	vmf.pte = pte_offset_map(pmd, address);
893 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
894 			vmf.pte++, vmf.address += PAGE_SIZE) {
895 		vmf.orig_pte = *vmf.pte;
896 		if (!is_swap_pte(vmf.orig_pte))
897 			continue;
898 		swapped_in++;
899 		ret = do_swap_page(&vmf);
900 
901 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
902 		if (ret & VM_FAULT_RETRY) {
903 			down_read(&mm->mmap_sem);
904 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
905 				/* vma is no longer available, don't continue to swapin */
906 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
907 				return false;
908 			}
909 			/* check if the pmd is still valid */
910 			if (mm_find_pmd(mm, address) != pmd)
911 				return false;
912 		}
913 		if (ret & VM_FAULT_ERROR) {
914 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
915 			return false;
916 		}
917 		/* pte is unmapped now, we need to map it */
918 		vmf.pte = pte_offset_map(pmd, vmf.address);
919 	}
920 	vmf.pte--;
921 	pte_unmap(vmf.pte);
922 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
923 	return true;
924 }
925 
926 static void collapse_huge_page(struct mm_struct *mm,
927 				   unsigned long address,
928 				   struct page **hpage,
929 				   int node, int referenced)
930 {
931 	pmd_t *pmd, _pmd;
932 	pte_t *pte;
933 	pgtable_t pgtable;
934 	struct page *new_page;
935 	spinlock_t *pmd_ptl, *pte_ptl;
936 	int isolated = 0, result = 0;
937 	struct mem_cgroup *memcg;
938 	struct vm_area_struct *vma;
939 	unsigned long mmun_start;	/* For mmu_notifiers */
940 	unsigned long mmun_end;		/* For mmu_notifiers */
941 	gfp_t gfp;
942 
943 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
944 
945 	/* Only allocate from the target node */
946 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
947 
948 	/*
949 	 * Before allocating the hugepage, release the mmap_sem read lock.
950 	 * The allocation can take potentially a long time if it involves
951 	 * sync compaction, and we do not need to hold the mmap_sem during
952 	 * that. We will recheck the vma after taking it again in write mode.
953 	 */
954 	up_read(&mm->mmap_sem);
955 	new_page = khugepaged_alloc_page(hpage, gfp, node);
956 	if (!new_page) {
957 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
958 		goto out_nolock;
959 	}
960 
961 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
962 		result = SCAN_CGROUP_CHARGE_FAIL;
963 		goto out_nolock;
964 	}
965 
966 	down_read(&mm->mmap_sem);
967 	result = hugepage_vma_revalidate(mm, address, &vma);
968 	if (result) {
969 		mem_cgroup_cancel_charge(new_page, memcg, true);
970 		up_read(&mm->mmap_sem);
971 		goto out_nolock;
972 	}
973 
974 	pmd = mm_find_pmd(mm, address);
975 	if (!pmd) {
976 		result = SCAN_PMD_NULL;
977 		mem_cgroup_cancel_charge(new_page, memcg, true);
978 		up_read(&mm->mmap_sem);
979 		goto out_nolock;
980 	}
981 
982 	/*
983 	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
984 	 * If it fails, we release mmap_sem and jump out_nolock.
985 	 * Continuing to collapse causes inconsistency.
986 	 */
987 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
988 		mem_cgroup_cancel_charge(new_page, memcg, true);
989 		up_read(&mm->mmap_sem);
990 		goto out_nolock;
991 	}
992 
993 	up_read(&mm->mmap_sem);
994 	/*
995 	 * Prevent all access to pagetables with the exception of
996 	 * gup_fast later handled by the ptep_clear_flush and the VM
997 	 * handled by the anon_vma lock + PG_lock.
998 	 */
999 	down_write(&mm->mmap_sem);
1000 	result = hugepage_vma_revalidate(mm, address, &vma);
1001 	if (result)
1002 		goto out;
1003 	/* check if the pmd is still valid */
1004 	if (mm_find_pmd(mm, address) != pmd)
1005 		goto out;
1006 
1007 	anon_vma_lock_write(vma->anon_vma);
1008 
1009 	pte = pte_offset_map(pmd, address);
1010 	pte_ptl = pte_lockptr(mm, pmd);
1011 
1012 	mmun_start = address;
1013 	mmun_end   = address + HPAGE_PMD_SIZE;
1014 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1015 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1016 	/*
1017 	 * After this gup_fast can't run anymore. This also removes
1018 	 * any huge TLB entry from the CPU so we won't allow
1019 	 * huge and small TLB entries for the same virtual address
1020 	 * to avoid the risk of CPU bugs in that area.
1021 	 */
1022 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1023 	spin_unlock(pmd_ptl);
1024 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1025 
1026 	spin_lock(pte_ptl);
1027 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1028 	spin_unlock(pte_ptl);
1029 
1030 	if (unlikely(!isolated)) {
1031 		pte_unmap(pte);
1032 		spin_lock(pmd_ptl);
1033 		BUG_ON(!pmd_none(*pmd));
1034 		/*
1035 		 * We can only use set_pmd_at when establishing
1036 		 * hugepmds and never for establishing regular pmds that
1037 		 * points to regular pagetables. Use pmd_populate for that
1038 		 */
1039 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1040 		spin_unlock(pmd_ptl);
1041 		anon_vma_unlock_write(vma->anon_vma);
1042 		result = SCAN_FAIL;
1043 		goto out;
1044 	}
1045 
1046 	/*
1047 	 * All pages are isolated and locked so anon_vma rmap
1048 	 * can't run anymore.
1049 	 */
1050 	anon_vma_unlock_write(vma->anon_vma);
1051 
1052 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1053 	pte_unmap(pte);
1054 	__SetPageUptodate(new_page);
1055 	pgtable = pmd_pgtable(_pmd);
1056 
1057 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1058 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1059 
1060 	/*
1061 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1062 	 * this is needed to avoid the copy_huge_page writes to become
1063 	 * visible after the set_pmd_at() write.
1064 	 */
1065 	smp_wmb();
1066 
1067 	spin_lock(pmd_ptl);
1068 	BUG_ON(!pmd_none(*pmd));
1069 	page_add_new_anon_rmap(new_page, vma, address, true);
1070 	mem_cgroup_commit_charge(new_page, memcg, false, true);
1071 	lru_cache_add_active_or_unevictable(new_page, vma);
1072 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1073 	set_pmd_at(mm, address, pmd, _pmd);
1074 	update_mmu_cache_pmd(vma, address, pmd);
1075 	spin_unlock(pmd_ptl);
1076 
1077 	*hpage = NULL;
1078 
1079 	khugepaged_pages_collapsed++;
1080 	result = SCAN_SUCCEED;
1081 out_up_write:
1082 	up_write(&mm->mmap_sem);
1083 out_nolock:
1084 	trace_mm_collapse_huge_page(mm, isolated, result);
1085 	return;
1086 out:
1087 	mem_cgroup_cancel_charge(new_page, memcg, true);
1088 	goto out_up_write;
1089 }
1090 
1091 static int khugepaged_scan_pmd(struct mm_struct *mm,
1092 			       struct vm_area_struct *vma,
1093 			       unsigned long address,
1094 			       struct page **hpage)
1095 {
1096 	pmd_t *pmd;
1097 	pte_t *pte, *_pte;
1098 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1099 	struct page *page = NULL;
1100 	unsigned long _address;
1101 	spinlock_t *ptl;
1102 	int node = NUMA_NO_NODE, unmapped = 0;
1103 	bool writable = false;
1104 
1105 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1106 
1107 	pmd = mm_find_pmd(mm, address);
1108 	if (!pmd) {
1109 		result = SCAN_PMD_NULL;
1110 		goto out;
1111 	}
1112 
1113 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1114 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1115 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1116 	     _pte++, _address += PAGE_SIZE) {
1117 		pte_t pteval = *_pte;
1118 		if (is_swap_pte(pteval)) {
1119 			if (++unmapped <= khugepaged_max_ptes_swap) {
1120 				continue;
1121 			} else {
1122 				result = SCAN_EXCEED_SWAP_PTE;
1123 				goto out_unmap;
1124 			}
1125 		}
1126 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1127 			if (!userfaultfd_armed(vma) &&
1128 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1129 				continue;
1130 			} else {
1131 				result = SCAN_EXCEED_NONE_PTE;
1132 				goto out_unmap;
1133 			}
1134 		}
1135 		if (!pte_present(pteval)) {
1136 			result = SCAN_PTE_NON_PRESENT;
1137 			goto out_unmap;
1138 		}
1139 		if (pte_write(pteval))
1140 			writable = true;
1141 
1142 		page = vm_normal_page(vma, _address, pteval);
1143 		if (unlikely(!page)) {
1144 			result = SCAN_PAGE_NULL;
1145 			goto out_unmap;
1146 		}
1147 
1148 		/* TODO: teach khugepaged to collapse THP mapped with pte */
1149 		if (PageCompound(page)) {
1150 			result = SCAN_PAGE_COMPOUND;
1151 			goto out_unmap;
1152 		}
1153 
1154 		/*
1155 		 * Record which node the original page is from and save this
1156 		 * information to khugepaged_node_load[].
1157 		 * Khupaged will allocate hugepage from the node has the max
1158 		 * hit record.
1159 		 */
1160 		node = page_to_nid(page);
1161 		if (khugepaged_scan_abort(node)) {
1162 			result = SCAN_SCAN_ABORT;
1163 			goto out_unmap;
1164 		}
1165 		khugepaged_node_load[node]++;
1166 		if (!PageLRU(page)) {
1167 			result = SCAN_PAGE_LRU;
1168 			goto out_unmap;
1169 		}
1170 		if (PageLocked(page)) {
1171 			result = SCAN_PAGE_LOCK;
1172 			goto out_unmap;
1173 		}
1174 		if (!PageAnon(page)) {
1175 			result = SCAN_PAGE_ANON;
1176 			goto out_unmap;
1177 		}
1178 
1179 		/*
1180 		 * cannot use mapcount: can't collapse if there's a gup pin.
1181 		 * The page must only be referenced by the scanned process
1182 		 * and page swap cache.
1183 		 */
1184 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
1185 			result = SCAN_PAGE_COUNT;
1186 			goto out_unmap;
1187 		}
1188 		if (pte_young(pteval) ||
1189 		    page_is_young(page) || PageReferenced(page) ||
1190 		    mmu_notifier_test_young(vma->vm_mm, address))
1191 			referenced++;
1192 	}
1193 	if (writable) {
1194 		if (referenced) {
1195 			result = SCAN_SUCCEED;
1196 			ret = 1;
1197 		} else {
1198 			result = SCAN_LACK_REFERENCED_PAGE;
1199 		}
1200 	} else {
1201 		result = SCAN_PAGE_RO;
1202 	}
1203 out_unmap:
1204 	pte_unmap_unlock(pte, ptl);
1205 	if (ret) {
1206 		node = khugepaged_find_target_node();
1207 		/* collapse_huge_page will return with the mmap_sem released */
1208 		collapse_huge_page(mm, address, hpage, node, referenced);
1209 	}
1210 out:
1211 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1212 				     none_or_zero, result, unmapped);
1213 	return ret;
1214 }
1215 
1216 static void collect_mm_slot(struct mm_slot *mm_slot)
1217 {
1218 	struct mm_struct *mm = mm_slot->mm;
1219 
1220 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1221 
1222 	if (khugepaged_test_exit(mm)) {
1223 		/* free mm_slot */
1224 		hash_del(&mm_slot->hash);
1225 		list_del(&mm_slot->mm_node);
1226 
1227 		/*
1228 		 * Not strictly needed because the mm exited already.
1229 		 *
1230 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1231 		 */
1232 
1233 		/* khugepaged_mm_lock actually not necessary for the below */
1234 		free_mm_slot(mm_slot);
1235 		mmdrop(mm);
1236 	}
1237 }
1238 
1239 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1240 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1241 {
1242 	struct vm_area_struct *vma;
1243 	unsigned long addr;
1244 	pmd_t *pmd, _pmd;
1245 	bool deposited = false;
1246 
1247 	i_mmap_lock_write(mapping);
1248 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1249 		/* probably overkill */
1250 		if (vma->anon_vma)
1251 			continue;
1252 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1253 		if (addr & ~HPAGE_PMD_MASK)
1254 			continue;
1255 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1256 			continue;
1257 		pmd = mm_find_pmd(vma->vm_mm, addr);
1258 		if (!pmd)
1259 			continue;
1260 		/*
1261 		 * We need exclusive mmap_sem to retract page table.
1262 		 * If trylock fails we would end up with pte-mapped THP after
1263 		 * re-fault. Not ideal, but it's more important to not disturb
1264 		 * the system too much.
1265 		 */
1266 		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1267 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1268 			/* assume page table is clear */
1269 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
1270 			/*
1271 			 * now deposit the pgtable for arch that need it
1272 			 * otherwise free it.
1273 			 */
1274 			if (arch_needs_pgtable_deposit()) {
1275 				/*
1276 				 * The deposit should be visibile only after
1277 				 * collapse is seen by others.
1278 				 */
1279 				smp_wmb();
1280 				pgtable_trans_huge_deposit(vma->vm_mm, pmd,
1281 							   pmd_pgtable(_pmd));
1282 				deposited = true;
1283 			}
1284 			spin_unlock(ptl);
1285 			up_write(&vma->vm_mm->mmap_sem);
1286 			if (!deposited) {
1287 				atomic_long_dec(&vma->vm_mm->nr_ptes);
1288 				pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1289 			}
1290 		}
1291 	}
1292 	i_mmap_unlock_write(mapping);
1293 }
1294 
1295 /**
1296  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1297  *
1298  * Basic scheme is simple, details are more complex:
1299  *  - allocate and freeze a new huge page;
1300  *  - scan over radix tree replacing old pages the new one
1301  *    + swap in pages if necessary;
1302  *    + fill in gaps;
1303  *    + keep old pages around in case if rollback is required;
1304  *  - if replacing succeed:
1305  *    + copy data over;
1306  *    + free old pages;
1307  *    + unfreeze huge page;
1308  *  - if replacing failed;
1309  *    + put all pages back and unfreeze them;
1310  *    + restore gaps in the radix-tree;
1311  *    + free huge page;
1312  */
1313 static void collapse_shmem(struct mm_struct *mm,
1314 		struct address_space *mapping, pgoff_t start,
1315 		struct page **hpage, int node)
1316 {
1317 	gfp_t gfp;
1318 	struct page *page, *new_page, *tmp;
1319 	struct mem_cgroup *memcg;
1320 	pgoff_t index, end = start + HPAGE_PMD_NR;
1321 	LIST_HEAD(pagelist);
1322 	struct radix_tree_iter iter;
1323 	void **slot;
1324 	int nr_none = 0, result = SCAN_SUCCEED;
1325 
1326 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1327 
1328 	/* Only allocate from the target node */
1329 	gfp = alloc_hugepage_khugepaged_gfpmask() |
1330 		__GFP_OTHER_NODE | __GFP_THISNODE;
1331 
1332 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1333 	if (!new_page) {
1334 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1335 		goto out;
1336 	}
1337 
1338 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1339 		result = SCAN_CGROUP_CHARGE_FAIL;
1340 		goto out;
1341 	}
1342 
1343 	new_page->index = start;
1344 	new_page->mapping = mapping;
1345 	__SetPageSwapBacked(new_page);
1346 	__SetPageLocked(new_page);
1347 	BUG_ON(!page_ref_freeze(new_page, 1));
1348 
1349 
1350 	/*
1351 	 * At this point the new_page is 'frozen' (page_count() is zero), locked
1352 	 * and not up-to-date. It's safe to insert it into radix tree, because
1353 	 * nobody would be able to map it or use it in other way until we
1354 	 * unfreeze it.
1355 	 */
1356 
1357 	index = start;
1358 	spin_lock_irq(&mapping->tree_lock);
1359 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1360 		int n = min(iter.index, end) - index;
1361 
1362 		/*
1363 		 * Handle holes in the radix tree: charge it from shmem and
1364 		 * insert relevant subpage of new_page into the radix-tree.
1365 		 */
1366 		if (n && !shmem_charge(mapping->host, n)) {
1367 			result = SCAN_FAIL;
1368 			break;
1369 		}
1370 		nr_none += n;
1371 		for (; index < min(iter.index, end); index++) {
1372 			radix_tree_insert(&mapping->page_tree, index,
1373 					new_page + (index % HPAGE_PMD_NR));
1374 		}
1375 
1376 		/* We are done. */
1377 		if (index >= end)
1378 			break;
1379 
1380 		page = radix_tree_deref_slot_protected(slot,
1381 				&mapping->tree_lock);
1382 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1383 			spin_unlock_irq(&mapping->tree_lock);
1384 			/* swap in or instantiate fallocated page */
1385 			if (shmem_getpage(mapping->host, index, &page,
1386 						SGP_NOHUGE)) {
1387 				result = SCAN_FAIL;
1388 				goto tree_unlocked;
1389 			}
1390 			spin_lock_irq(&mapping->tree_lock);
1391 		} else if (trylock_page(page)) {
1392 			get_page(page);
1393 		} else {
1394 			result = SCAN_PAGE_LOCK;
1395 			break;
1396 		}
1397 
1398 		/*
1399 		 * The page must be locked, so we can drop the tree_lock
1400 		 * without racing with truncate.
1401 		 */
1402 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1403 		VM_BUG_ON_PAGE(!PageUptodate(page), page);
1404 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1405 
1406 		if (page_mapping(page) != mapping) {
1407 			result = SCAN_TRUNCATED;
1408 			goto out_unlock;
1409 		}
1410 		spin_unlock_irq(&mapping->tree_lock);
1411 
1412 		if (isolate_lru_page(page)) {
1413 			result = SCAN_DEL_PAGE_LRU;
1414 			goto out_isolate_failed;
1415 		}
1416 
1417 		if (page_mapped(page))
1418 			unmap_mapping_range(mapping, index << PAGE_SHIFT,
1419 					PAGE_SIZE, 0);
1420 
1421 		spin_lock_irq(&mapping->tree_lock);
1422 
1423 		slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1424 		VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1425 					&mapping->tree_lock), page);
1426 		VM_BUG_ON_PAGE(page_mapped(page), page);
1427 
1428 		/*
1429 		 * The page is expected to have page_count() == 3:
1430 		 *  - we hold a pin on it;
1431 		 *  - one reference from radix tree;
1432 		 *  - one from isolate_lru_page;
1433 		 */
1434 		if (!page_ref_freeze(page, 3)) {
1435 			result = SCAN_PAGE_COUNT;
1436 			goto out_lru;
1437 		}
1438 
1439 		/*
1440 		 * Add the page to the list to be able to undo the collapse if
1441 		 * something go wrong.
1442 		 */
1443 		list_add_tail(&page->lru, &pagelist);
1444 
1445 		/* Finally, replace with the new page. */
1446 		radix_tree_replace_slot(&mapping->page_tree, slot,
1447 				new_page + (index % HPAGE_PMD_NR));
1448 
1449 		slot = radix_tree_iter_resume(slot, &iter);
1450 		index++;
1451 		continue;
1452 out_lru:
1453 		spin_unlock_irq(&mapping->tree_lock);
1454 		putback_lru_page(page);
1455 out_isolate_failed:
1456 		unlock_page(page);
1457 		put_page(page);
1458 		goto tree_unlocked;
1459 out_unlock:
1460 		unlock_page(page);
1461 		put_page(page);
1462 		break;
1463 	}
1464 
1465 	/*
1466 	 * Handle hole in radix tree at the end of the range.
1467 	 * This code only triggers if there's nothing in radix tree
1468 	 * beyond 'end'.
1469 	 */
1470 	if (result == SCAN_SUCCEED && index < end) {
1471 		int n = end - index;
1472 
1473 		if (!shmem_charge(mapping->host, n)) {
1474 			result = SCAN_FAIL;
1475 			goto tree_locked;
1476 		}
1477 
1478 		for (; index < end; index++) {
1479 			radix_tree_insert(&mapping->page_tree, index,
1480 					new_page + (index % HPAGE_PMD_NR));
1481 		}
1482 		nr_none += n;
1483 	}
1484 
1485 tree_locked:
1486 	spin_unlock_irq(&mapping->tree_lock);
1487 tree_unlocked:
1488 
1489 	if (result == SCAN_SUCCEED) {
1490 		unsigned long flags;
1491 		struct zone *zone = page_zone(new_page);
1492 
1493 		/*
1494 		 * Replacing old pages with new one has succeed, now we need to
1495 		 * copy the content and free old pages.
1496 		 */
1497 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1498 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1499 					page);
1500 			list_del(&page->lru);
1501 			unlock_page(page);
1502 			page_ref_unfreeze(page, 1);
1503 			page->mapping = NULL;
1504 			ClearPageActive(page);
1505 			ClearPageUnevictable(page);
1506 			put_page(page);
1507 		}
1508 
1509 		local_irq_save(flags);
1510 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1511 		if (nr_none) {
1512 			__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1513 			__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1514 		}
1515 		local_irq_restore(flags);
1516 
1517 		/*
1518 		 * Remove pte page tables, so we can re-faulti
1519 		 * the page as huge.
1520 		 */
1521 		retract_page_tables(mapping, start);
1522 
1523 		/* Everything is ready, let's unfreeze the new_page */
1524 		set_page_dirty(new_page);
1525 		SetPageUptodate(new_page);
1526 		page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1527 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1528 		lru_cache_add_anon(new_page);
1529 		unlock_page(new_page);
1530 
1531 		*hpage = NULL;
1532 	} else {
1533 		/* Something went wrong: rollback changes to the radix-tree */
1534 		shmem_uncharge(mapping->host, nr_none);
1535 		spin_lock_irq(&mapping->tree_lock);
1536 		radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1537 				start) {
1538 			if (iter.index >= end)
1539 				break;
1540 			page = list_first_entry_or_null(&pagelist,
1541 					struct page, lru);
1542 			if (!page || iter.index < page->index) {
1543 				if (!nr_none)
1544 					break;
1545 				nr_none--;
1546 				/* Put holes back where they were */
1547 				radix_tree_delete(&mapping->page_tree,
1548 						  iter.index);
1549 				continue;
1550 			}
1551 
1552 			VM_BUG_ON_PAGE(page->index != iter.index, page);
1553 
1554 			/* Unfreeze the page. */
1555 			list_del(&page->lru);
1556 			page_ref_unfreeze(page, 2);
1557 			radix_tree_replace_slot(&mapping->page_tree,
1558 						slot, page);
1559 			slot = radix_tree_iter_resume(slot, &iter);
1560 			spin_unlock_irq(&mapping->tree_lock);
1561 			putback_lru_page(page);
1562 			unlock_page(page);
1563 			spin_lock_irq(&mapping->tree_lock);
1564 		}
1565 		VM_BUG_ON(nr_none);
1566 		spin_unlock_irq(&mapping->tree_lock);
1567 
1568 		/* Unfreeze new_page, caller would take care about freeing it */
1569 		page_ref_unfreeze(new_page, 1);
1570 		mem_cgroup_cancel_charge(new_page, memcg, true);
1571 		unlock_page(new_page);
1572 		new_page->mapping = NULL;
1573 	}
1574 out:
1575 	VM_BUG_ON(!list_empty(&pagelist));
1576 	/* TODO: tracepoints */
1577 }
1578 
1579 static void khugepaged_scan_shmem(struct mm_struct *mm,
1580 		struct address_space *mapping,
1581 		pgoff_t start, struct page **hpage)
1582 {
1583 	struct page *page = NULL;
1584 	struct radix_tree_iter iter;
1585 	void **slot;
1586 	int present, swap;
1587 	int node = NUMA_NO_NODE;
1588 	int result = SCAN_SUCCEED;
1589 
1590 	present = 0;
1591 	swap = 0;
1592 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1593 	rcu_read_lock();
1594 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1595 		if (iter.index >= start + HPAGE_PMD_NR)
1596 			break;
1597 
1598 		page = radix_tree_deref_slot(slot);
1599 		if (radix_tree_deref_retry(page)) {
1600 			slot = radix_tree_iter_retry(&iter);
1601 			continue;
1602 		}
1603 
1604 		if (radix_tree_exception(page)) {
1605 			if (++swap > khugepaged_max_ptes_swap) {
1606 				result = SCAN_EXCEED_SWAP_PTE;
1607 				break;
1608 			}
1609 			continue;
1610 		}
1611 
1612 		if (PageTransCompound(page)) {
1613 			result = SCAN_PAGE_COMPOUND;
1614 			break;
1615 		}
1616 
1617 		node = page_to_nid(page);
1618 		if (khugepaged_scan_abort(node)) {
1619 			result = SCAN_SCAN_ABORT;
1620 			break;
1621 		}
1622 		khugepaged_node_load[node]++;
1623 
1624 		if (!PageLRU(page)) {
1625 			result = SCAN_PAGE_LRU;
1626 			break;
1627 		}
1628 
1629 		if (page_count(page) != 1 + page_mapcount(page)) {
1630 			result = SCAN_PAGE_COUNT;
1631 			break;
1632 		}
1633 
1634 		/*
1635 		 * We probably should check if the page is referenced here, but
1636 		 * nobody would transfer pte_young() to PageReferenced() for us.
1637 		 * And rmap walk here is just too costly...
1638 		 */
1639 
1640 		present++;
1641 
1642 		if (need_resched()) {
1643 			slot = radix_tree_iter_resume(slot, &iter);
1644 			cond_resched_rcu();
1645 		}
1646 	}
1647 	rcu_read_unlock();
1648 
1649 	if (result == SCAN_SUCCEED) {
1650 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1651 			result = SCAN_EXCEED_NONE_PTE;
1652 		} else {
1653 			node = khugepaged_find_target_node();
1654 			collapse_shmem(mm, mapping, start, hpage, node);
1655 		}
1656 	}
1657 
1658 	/* TODO: tracepoints */
1659 }
1660 #else
1661 static void khugepaged_scan_shmem(struct mm_struct *mm,
1662 		struct address_space *mapping,
1663 		pgoff_t start, struct page **hpage)
1664 {
1665 	BUILD_BUG();
1666 }
1667 #endif
1668 
1669 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1670 					    struct page **hpage)
1671 	__releases(&khugepaged_mm_lock)
1672 	__acquires(&khugepaged_mm_lock)
1673 {
1674 	struct mm_slot *mm_slot;
1675 	struct mm_struct *mm;
1676 	struct vm_area_struct *vma;
1677 	int progress = 0;
1678 
1679 	VM_BUG_ON(!pages);
1680 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1681 
1682 	if (khugepaged_scan.mm_slot)
1683 		mm_slot = khugepaged_scan.mm_slot;
1684 	else {
1685 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
1686 				     struct mm_slot, mm_node);
1687 		khugepaged_scan.address = 0;
1688 		khugepaged_scan.mm_slot = mm_slot;
1689 	}
1690 	spin_unlock(&khugepaged_mm_lock);
1691 
1692 	mm = mm_slot->mm;
1693 	down_read(&mm->mmap_sem);
1694 	if (unlikely(khugepaged_test_exit(mm)))
1695 		vma = NULL;
1696 	else
1697 		vma = find_vma(mm, khugepaged_scan.address);
1698 
1699 	progress++;
1700 	for (; vma; vma = vma->vm_next) {
1701 		unsigned long hstart, hend;
1702 
1703 		cond_resched();
1704 		if (unlikely(khugepaged_test_exit(mm))) {
1705 			progress++;
1706 			break;
1707 		}
1708 		if (!hugepage_vma_check(vma)) {
1709 skip:
1710 			progress++;
1711 			continue;
1712 		}
1713 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1714 		hend = vma->vm_end & HPAGE_PMD_MASK;
1715 		if (hstart >= hend)
1716 			goto skip;
1717 		if (khugepaged_scan.address > hend)
1718 			goto skip;
1719 		if (khugepaged_scan.address < hstart)
1720 			khugepaged_scan.address = hstart;
1721 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1722 
1723 		while (khugepaged_scan.address < hend) {
1724 			int ret;
1725 			cond_resched();
1726 			if (unlikely(khugepaged_test_exit(mm)))
1727 				goto breakouterloop;
1728 
1729 			VM_BUG_ON(khugepaged_scan.address < hstart ||
1730 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
1731 				  hend);
1732 			if (shmem_file(vma->vm_file)) {
1733 				struct file *file;
1734 				pgoff_t pgoff = linear_page_index(vma,
1735 						khugepaged_scan.address);
1736 				if (!shmem_huge_enabled(vma))
1737 					goto skip;
1738 				file = get_file(vma->vm_file);
1739 				up_read(&mm->mmap_sem);
1740 				ret = 1;
1741 				khugepaged_scan_shmem(mm, file->f_mapping,
1742 						pgoff, hpage);
1743 				fput(file);
1744 			} else {
1745 				ret = khugepaged_scan_pmd(mm, vma,
1746 						khugepaged_scan.address,
1747 						hpage);
1748 			}
1749 			/* move to next address */
1750 			khugepaged_scan.address += HPAGE_PMD_SIZE;
1751 			progress += HPAGE_PMD_NR;
1752 			if (ret)
1753 				/* we released mmap_sem so break loop */
1754 				goto breakouterloop_mmap_sem;
1755 			if (progress >= pages)
1756 				goto breakouterloop;
1757 		}
1758 	}
1759 breakouterloop:
1760 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1761 breakouterloop_mmap_sem:
1762 
1763 	spin_lock(&khugepaged_mm_lock);
1764 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1765 	/*
1766 	 * Release the current mm_slot if this mm is about to die, or
1767 	 * if we scanned all vmas of this mm.
1768 	 */
1769 	if (khugepaged_test_exit(mm) || !vma) {
1770 		/*
1771 		 * Make sure that if mm_users is reaching zero while
1772 		 * khugepaged runs here, khugepaged_exit will find
1773 		 * mm_slot not pointing to the exiting mm.
1774 		 */
1775 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1776 			khugepaged_scan.mm_slot = list_entry(
1777 				mm_slot->mm_node.next,
1778 				struct mm_slot, mm_node);
1779 			khugepaged_scan.address = 0;
1780 		} else {
1781 			khugepaged_scan.mm_slot = NULL;
1782 			khugepaged_full_scans++;
1783 		}
1784 
1785 		collect_mm_slot(mm_slot);
1786 	}
1787 
1788 	return progress;
1789 }
1790 
1791 static int khugepaged_has_work(void)
1792 {
1793 	return !list_empty(&khugepaged_scan.mm_head) &&
1794 		khugepaged_enabled();
1795 }
1796 
1797 static int khugepaged_wait_event(void)
1798 {
1799 	return !list_empty(&khugepaged_scan.mm_head) ||
1800 		kthread_should_stop();
1801 }
1802 
1803 static void khugepaged_do_scan(void)
1804 {
1805 	struct page *hpage = NULL;
1806 	unsigned int progress = 0, pass_through_head = 0;
1807 	unsigned int pages = khugepaged_pages_to_scan;
1808 	bool wait = true;
1809 
1810 	barrier(); /* write khugepaged_pages_to_scan to local stack */
1811 
1812 	while (progress < pages) {
1813 		if (!khugepaged_prealloc_page(&hpage, &wait))
1814 			break;
1815 
1816 		cond_resched();
1817 
1818 		if (unlikely(kthread_should_stop() || try_to_freeze()))
1819 			break;
1820 
1821 		spin_lock(&khugepaged_mm_lock);
1822 		if (!khugepaged_scan.mm_slot)
1823 			pass_through_head++;
1824 		if (khugepaged_has_work() &&
1825 		    pass_through_head < 2)
1826 			progress += khugepaged_scan_mm_slot(pages - progress,
1827 							    &hpage);
1828 		else
1829 			progress = pages;
1830 		spin_unlock(&khugepaged_mm_lock);
1831 	}
1832 
1833 	if (!IS_ERR_OR_NULL(hpage))
1834 		put_page(hpage);
1835 }
1836 
1837 static bool khugepaged_should_wakeup(void)
1838 {
1839 	return kthread_should_stop() ||
1840 	       time_after_eq(jiffies, khugepaged_sleep_expire);
1841 }
1842 
1843 static void khugepaged_wait_work(void)
1844 {
1845 	if (khugepaged_has_work()) {
1846 		const unsigned long scan_sleep_jiffies =
1847 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1848 
1849 		if (!scan_sleep_jiffies)
1850 			return;
1851 
1852 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1853 		wait_event_freezable_timeout(khugepaged_wait,
1854 					     khugepaged_should_wakeup(),
1855 					     scan_sleep_jiffies);
1856 		return;
1857 	}
1858 
1859 	if (khugepaged_enabled())
1860 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1861 }
1862 
1863 static int khugepaged(void *none)
1864 {
1865 	struct mm_slot *mm_slot;
1866 
1867 	set_freezable();
1868 	set_user_nice(current, MAX_NICE);
1869 
1870 	while (!kthread_should_stop()) {
1871 		khugepaged_do_scan();
1872 		khugepaged_wait_work();
1873 	}
1874 
1875 	spin_lock(&khugepaged_mm_lock);
1876 	mm_slot = khugepaged_scan.mm_slot;
1877 	khugepaged_scan.mm_slot = NULL;
1878 	if (mm_slot)
1879 		collect_mm_slot(mm_slot);
1880 	spin_unlock(&khugepaged_mm_lock);
1881 	return 0;
1882 }
1883 
1884 static void set_recommended_min_free_kbytes(void)
1885 {
1886 	struct zone *zone;
1887 	int nr_zones = 0;
1888 	unsigned long recommended_min;
1889 
1890 	for_each_populated_zone(zone)
1891 		nr_zones++;
1892 
1893 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1894 	recommended_min = pageblock_nr_pages * nr_zones * 2;
1895 
1896 	/*
1897 	 * Make sure that on average at least two pageblocks are almost free
1898 	 * of another type, one for a migratetype to fall back to and a
1899 	 * second to avoid subsequent fallbacks of other types There are 3
1900 	 * MIGRATE_TYPES we care about.
1901 	 */
1902 	recommended_min += pageblock_nr_pages * nr_zones *
1903 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1904 
1905 	/* don't ever allow to reserve more than 5% of the lowmem */
1906 	recommended_min = min(recommended_min,
1907 			      (unsigned long) nr_free_buffer_pages() / 20);
1908 	recommended_min <<= (PAGE_SHIFT-10);
1909 
1910 	if (recommended_min > min_free_kbytes) {
1911 		if (user_min_free_kbytes >= 0)
1912 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1913 				min_free_kbytes, recommended_min);
1914 
1915 		min_free_kbytes = recommended_min;
1916 	}
1917 	setup_per_zone_wmarks();
1918 }
1919 
1920 int start_stop_khugepaged(void)
1921 {
1922 	static struct task_struct *khugepaged_thread __read_mostly;
1923 	static DEFINE_MUTEX(khugepaged_mutex);
1924 	int err = 0;
1925 
1926 	mutex_lock(&khugepaged_mutex);
1927 	if (khugepaged_enabled()) {
1928 		if (!khugepaged_thread)
1929 			khugepaged_thread = kthread_run(khugepaged, NULL,
1930 							"khugepaged");
1931 		if (IS_ERR(khugepaged_thread)) {
1932 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1933 			err = PTR_ERR(khugepaged_thread);
1934 			khugepaged_thread = NULL;
1935 			goto fail;
1936 		}
1937 
1938 		if (!list_empty(&khugepaged_scan.mm_head))
1939 			wake_up_interruptible(&khugepaged_wait);
1940 
1941 		set_recommended_min_free_kbytes();
1942 	} else if (khugepaged_thread) {
1943 		kthread_stop(khugepaged_thread);
1944 		khugepaged_thread = NULL;
1945 	}
1946 fail:
1947 	mutex_unlock(&khugepaged_mutex);
1948 	return err;
1949 }
1950