1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_page(struct page *page) 494 { 495 mod_node_page_state(page_pgdat(page), 496 NR_ISOLATED_ANON + page_is_file_lru(page), 497 -compound_nr(page)); 498 unlock_page(page); 499 putback_lru_page(page); 500 } 501 502 static void release_pte_pages(pte_t *pte, pte_t *_pte, 503 struct list_head *compound_pagelist) 504 { 505 struct page *page, *tmp; 506 507 while (--_pte >= pte) { 508 pte_t pteval = *_pte; 509 510 page = pte_page(pteval); 511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 512 !PageCompound(page)) 513 release_pte_page(page); 514 } 515 516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 517 list_del(&page->lru); 518 release_pte_page(page); 519 } 520 } 521 522 static bool is_refcount_suitable(struct page *page) 523 { 524 int expected_refcount; 525 526 expected_refcount = total_mapcount(page); 527 if (PageSwapCache(page)) 528 expected_refcount += compound_nr(page); 529 530 return page_count(page) == expected_refcount; 531 } 532 533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 534 unsigned long address, 535 pte_t *pte, 536 struct collapse_control *cc, 537 struct list_head *compound_pagelist) 538 { 539 struct page *page = NULL; 540 pte_t *_pte; 541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 542 bool writable = false; 543 544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 545 _pte++, address += PAGE_SIZE) { 546 pte_t pteval = *_pte; 547 if (pte_none(pteval) || (pte_present(pteval) && 548 is_zero_pfn(pte_pfn(pteval)))) { 549 ++none_or_zero; 550 if (!userfaultfd_armed(vma) && 551 (!cc->is_khugepaged || 552 none_or_zero <= khugepaged_max_ptes_none)) { 553 continue; 554 } else { 555 result = SCAN_EXCEED_NONE_PTE; 556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 557 goto out; 558 } 559 } 560 if (!pte_present(pteval)) { 561 result = SCAN_PTE_NON_PRESENT; 562 goto out; 563 } 564 page = vm_normal_page(vma, address, pteval); 565 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 566 result = SCAN_PAGE_NULL; 567 goto out; 568 } 569 570 VM_BUG_ON_PAGE(!PageAnon(page), page); 571 572 if (page_mapcount(page) > 1) { 573 ++shared; 574 if (cc->is_khugepaged && 575 shared > khugepaged_max_ptes_shared) { 576 result = SCAN_EXCEED_SHARED_PTE; 577 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 578 goto out; 579 } 580 } 581 582 if (PageCompound(page)) { 583 struct page *p; 584 page = compound_head(page); 585 586 /* 587 * Check if we have dealt with the compound page 588 * already 589 */ 590 list_for_each_entry(p, compound_pagelist, lru) { 591 if (page == p) 592 goto next; 593 } 594 } 595 596 /* 597 * We can do it before isolate_lru_page because the 598 * page can't be freed from under us. NOTE: PG_lock 599 * is needed to serialize against split_huge_page 600 * when invoked from the VM. 601 */ 602 if (!trylock_page(page)) { 603 result = SCAN_PAGE_LOCK; 604 goto out; 605 } 606 607 /* 608 * Check if the page has any GUP (or other external) pins. 609 * 610 * The page table that maps the page has been already unlinked 611 * from the page table tree and this process cannot get 612 * an additional pin on the page. 613 * 614 * New pins can come later if the page is shared across fork, 615 * but not from this process. The other process cannot write to 616 * the page, only trigger CoW. 617 */ 618 if (!is_refcount_suitable(page)) { 619 unlock_page(page); 620 result = SCAN_PAGE_COUNT; 621 goto out; 622 } 623 624 /* 625 * Isolate the page to avoid collapsing an hugepage 626 * currently in use by the VM. 627 */ 628 if (isolate_lru_page(page)) { 629 unlock_page(page); 630 result = SCAN_DEL_PAGE_LRU; 631 goto out; 632 } 633 mod_node_page_state(page_pgdat(page), 634 NR_ISOLATED_ANON + page_is_file_lru(page), 635 compound_nr(page)); 636 VM_BUG_ON_PAGE(!PageLocked(page), page); 637 VM_BUG_ON_PAGE(PageLRU(page), page); 638 639 if (PageCompound(page)) 640 list_add_tail(&page->lru, compound_pagelist); 641 next: 642 /* 643 * If collapse was initiated by khugepaged, check that there is 644 * enough young pte to justify collapsing the page 645 */ 646 if (cc->is_khugepaged && 647 (pte_young(pteval) || page_is_young(page) || 648 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 649 address))) 650 referenced++; 651 652 if (pte_write(pteval)) 653 writable = true; 654 } 655 656 if (unlikely(!writable)) { 657 result = SCAN_PAGE_RO; 658 } else if (unlikely(cc->is_khugepaged && !referenced)) { 659 result = SCAN_LACK_REFERENCED_PAGE; 660 } else { 661 result = SCAN_SUCCEED; 662 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 663 referenced, writable, result); 664 return result; 665 } 666 out: 667 release_pte_pages(pte, _pte, compound_pagelist); 668 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 669 referenced, writable, result); 670 return result; 671 } 672 673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 674 struct vm_area_struct *vma, 675 unsigned long address, 676 spinlock_t *ptl, 677 struct list_head *compound_pagelist) 678 { 679 struct page *src_page, *tmp; 680 pte_t *_pte; 681 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 682 _pte++, page++, address += PAGE_SIZE) { 683 pte_t pteval = *_pte; 684 685 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 686 clear_user_highpage(page, address); 687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 688 if (is_zero_pfn(pte_pfn(pteval))) { 689 /* 690 * ptl mostly unnecessary. 691 */ 692 spin_lock(ptl); 693 ptep_clear(vma->vm_mm, address, _pte); 694 spin_unlock(ptl); 695 } 696 } else { 697 src_page = pte_page(pteval); 698 copy_user_highpage(page, src_page, address, vma); 699 if (!PageCompound(src_page)) 700 release_pte_page(src_page); 701 /* 702 * ptl mostly unnecessary, but preempt has to 703 * be disabled to update the per-cpu stats 704 * inside page_remove_rmap(). 705 */ 706 spin_lock(ptl); 707 ptep_clear(vma->vm_mm, address, _pte); 708 page_remove_rmap(src_page, vma, false); 709 spin_unlock(ptl); 710 free_page_and_swap_cache(src_page); 711 } 712 } 713 714 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 715 list_del(&src_page->lru); 716 mod_node_page_state(page_pgdat(src_page), 717 NR_ISOLATED_ANON + page_is_file_lru(src_page), 718 -compound_nr(src_page)); 719 unlock_page(src_page); 720 free_swap_cache(src_page); 721 putback_lru_page(src_page); 722 } 723 } 724 725 static void khugepaged_alloc_sleep(void) 726 { 727 DEFINE_WAIT(wait); 728 729 add_wait_queue(&khugepaged_wait, &wait); 730 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 731 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 732 remove_wait_queue(&khugepaged_wait, &wait); 733 } 734 735 struct collapse_control khugepaged_collapse_control = { 736 .is_khugepaged = true, 737 }; 738 739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 740 { 741 int i; 742 743 /* 744 * If node_reclaim_mode is disabled, then no extra effort is made to 745 * allocate memory locally. 746 */ 747 if (!node_reclaim_enabled()) 748 return false; 749 750 /* If there is a count for this node already, it must be acceptable */ 751 if (cc->node_load[nid]) 752 return false; 753 754 for (i = 0; i < MAX_NUMNODES; i++) { 755 if (!cc->node_load[i]) 756 continue; 757 if (node_distance(nid, i) > node_reclaim_distance) 758 return true; 759 } 760 return false; 761 } 762 763 #define khugepaged_defrag() \ 764 (transparent_hugepage_flags & \ 765 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 766 767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 769 { 770 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 771 } 772 773 #ifdef CONFIG_NUMA 774 static int hpage_collapse_find_target_node(struct collapse_control *cc) 775 { 776 int nid, target_node = 0, max_value = 0; 777 778 /* find first node with max normal pages hit */ 779 for (nid = 0; nid < MAX_NUMNODES; nid++) 780 if (cc->node_load[nid] > max_value) { 781 max_value = cc->node_load[nid]; 782 target_node = nid; 783 } 784 785 for_each_online_node(nid) { 786 if (max_value == cc->node_load[nid]) 787 node_set(nid, cc->alloc_nmask); 788 } 789 790 return target_node; 791 } 792 #else 793 static int hpage_collapse_find_target_node(struct collapse_control *cc) 794 { 795 return 0; 796 } 797 #endif 798 799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 800 nodemask_t *nmask) 801 { 802 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 803 if (unlikely(!*hpage)) { 804 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 805 return false; 806 } 807 808 prep_transhuge_page(*hpage); 809 count_vm_event(THP_COLLAPSE_ALLOC); 810 return true; 811 } 812 813 /* 814 * If mmap_lock temporarily dropped, revalidate vma 815 * before taking mmap_lock. 816 * Returns enum scan_result value. 817 */ 818 819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 820 bool expect_anon, 821 struct vm_area_struct **vmap, 822 struct collapse_control *cc) 823 { 824 struct vm_area_struct *vma; 825 826 if (unlikely(hpage_collapse_test_exit(mm))) 827 return SCAN_ANY_PROCESS; 828 829 *vmap = vma = find_vma(mm, address); 830 if (!vma) 831 return SCAN_VMA_NULL; 832 833 if (!transhuge_vma_suitable(vma, address)) 834 return SCAN_ADDRESS_RANGE; 835 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 836 cc->is_khugepaged)) 837 return SCAN_VMA_CHECK; 838 /* 839 * Anon VMA expected, the address may be unmapped then 840 * remapped to file after khugepaged reaquired the mmap_lock. 841 * 842 * hugepage_vma_check may return true for qualified file 843 * vmas. 844 */ 845 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 846 return SCAN_PAGE_ANON; 847 return SCAN_SUCCEED; 848 } 849 850 /* 851 * See pmd_trans_unstable() for how the result may change out from 852 * underneath us, even if we hold mmap_lock in read. 853 */ 854 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 855 unsigned long address, 856 pmd_t **pmd) 857 { 858 pmd_t pmde; 859 860 *pmd = mm_find_pmd(mm, address); 861 if (!*pmd) 862 return SCAN_PMD_NULL; 863 864 pmde = pmdp_get_lockless(*pmd); 865 866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 867 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 868 barrier(); 869 #endif 870 if (pmd_none(pmde)) 871 return SCAN_PMD_NONE; 872 if (!pmd_present(pmde)) 873 return SCAN_PMD_NULL; 874 if (pmd_trans_huge(pmde)) 875 return SCAN_PMD_MAPPED; 876 if (pmd_devmap(pmde)) 877 return SCAN_PMD_NULL; 878 if (pmd_bad(pmde)) 879 return SCAN_PMD_NULL; 880 return SCAN_SUCCEED; 881 } 882 883 static int check_pmd_still_valid(struct mm_struct *mm, 884 unsigned long address, 885 pmd_t *pmd) 886 { 887 pmd_t *new_pmd; 888 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 889 890 if (result != SCAN_SUCCEED) 891 return result; 892 if (new_pmd != pmd) 893 return SCAN_FAIL; 894 return SCAN_SUCCEED; 895 } 896 897 /* 898 * Bring missing pages in from swap, to complete THP collapse. 899 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 900 * 901 * Called and returns without pte mapped or spinlocks held. 902 * Note that if false is returned, mmap_lock will be released. 903 */ 904 905 static int __collapse_huge_page_swapin(struct mm_struct *mm, 906 struct vm_area_struct *vma, 907 unsigned long haddr, pmd_t *pmd, 908 int referenced) 909 { 910 int swapped_in = 0; 911 vm_fault_t ret = 0; 912 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 913 914 for (address = haddr; address < end; address += PAGE_SIZE) { 915 struct vm_fault vmf = { 916 .vma = vma, 917 .address = address, 918 .pgoff = linear_page_index(vma, haddr), 919 .flags = FAULT_FLAG_ALLOW_RETRY, 920 .pmd = pmd, 921 }; 922 923 vmf.pte = pte_offset_map(pmd, address); 924 vmf.orig_pte = *vmf.pte; 925 if (!is_swap_pte(vmf.orig_pte)) { 926 pte_unmap(vmf.pte); 927 continue; 928 } 929 ret = do_swap_page(&vmf); 930 931 /* 932 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 933 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 934 * we do not retry here and swap entry will remain in pagetable 935 * resulting in later failure. 936 */ 937 if (ret & VM_FAULT_RETRY) { 938 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 939 /* Likely, but not guaranteed, that page lock failed */ 940 return SCAN_PAGE_LOCK; 941 } 942 if (ret & VM_FAULT_ERROR) { 943 mmap_read_unlock(mm); 944 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 945 return SCAN_FAIL; 946 } 947 swapped_in++; 948 } 949 950 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 951 if (swapped_in) 952 lru_add_drain(); 953 954 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 955 return SCAN_SUCCEED; 956 } 957 958 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 959 struct collapse_control *cc) 960 { 961 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 962 GFP_TRANSHUGE); 963 int node = hpage_collapse_find_target_node(cc); 964 965 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 966 return SCAN_ALLOC_HUGE_PAGE_FAIL; 967 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 968 return SCAN_CGROUP_CHARGE_FAIL; 969 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 970 return SCAN_SUCCEED; 971 } 972 973 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 974 int referenced, int unmapped, 975 struct collapse_control *cc) 976 { 977 LIST_HEAD(compound_pagelist); 978 pmd_t *pmd, _pmd; 979 pte_t *pte; 980 pgtable_t pgtable; 981 struct page *hpage; 982 spinlock_t *pmd_ptl, *pte_ptl; 983 int result = SCAN_FAIL; 984 struct vm_area_struct *vma; 985 struct mmu_notifier_range range; 986 987 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 988 989 /* 990 * Before allocating the hugepage, release the mmap_lock read lock. 991 * The allocation can take potentially a long time if it involves 992 * sync compaction, and we do not need to hold the mmap_lock during 993 * that. We will recheck the vma after taking it again in write mode. 994 */ 995 mmap_read_unlock(mm); 996 997 result = alloc_charge_hpage(&hpage, mm, cc); 998 if (result != SCAN_SUCCEED) 999 goto out_nolock; 1000 1001 mmap_read_lock(mm); 1002 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1003 if (result != SCAN_SUCCEED) { 1004 mmap_read_unlock(mm); 1005 goto out_nolock; 1006 } 1007 1008 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1009 if (result != SCAN_SUCCEED) { 1010 mmap_read_unlock(mm); 1011 goto out_nolock; 1012 } 1013 1014 if (unmapped) { 1015 /* 1016 * __collapse_huge_page_swapin will return with mmap_lock 1017 * released when it fails. So we jump out_nolock directly in 1018 * that case. Continuing to collapse causes inconsistency. 1019 */ 1020 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1021 referenced); 1022 if (result != SCAN_SUCCEED) 1023 goto out_nolock; 1024 } 1025 1026 mmap_read_unlock(mm); 1027 /* 1028 * Prevent all access to pagetables with the exception of 1029 * gup_fast later handled by the ptep_clear_flush and the VM 1030 * handled by the anon_vma lock + PG_lock. 1031 */ 1032 mmap_write_lock(mm); 1033 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1034 if (result != SCAN_SUCCEED) 1035 goto out_up_write; 1036 /* check if the pmd is still valid */ 1037 result = check_pmd_still_valid(mm, address, pmd); 1038 if (result != SCAN_SUCCEED) 1039 goto out_up_write; 1040 1041 anon_vma_lock_write(vma->anon_vma); 1042 1043 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1044 address, address + HPAGE_PMD_SIZE); 1045 mmu_notifier_invalidate_range_start(&range); 1046 1047 pte = pte_offset_map(pmd, address); 1048 pte_ptl = pte_lockptr(mm, pmd); 1049 1050 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1051 /* 1052 * This removes any huge TLB entry from the CPU so we won't allow 1053 * huge and small TLB entries for the same virtual address to 1054 * avoid the risk of CPU bugs in that area. 1055 * 1056 * Parallel fast GUP is fine since fast GUP will back off when 1057 * it detects PMD is changed. 1058 */ 1059 _pmd = pmdp_collapse_flush(vma, address, pmd); 1060 spin_unlock(pmd_ptl); 1061 mmu_notifier_invalidate_range_end(&range); 1062 tlb_remove_table_sync_one(); 1063 1064 spin_lock(pte_ptl); 1065 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1066 &compound_pagelist); 1067 spin_unlock(pte_ptl); 1068 1069 if (unlikely(result != SCAN_SUCCEED)) { 1070 pte_unmap(pte); 1071 spin_lock(pmd_ptl); 1072 BUG_ON(!pmd_none(*pmd)); 1073 /* 1074 * We can only use set_pmd_at when establishing 1075 * hugepmds and never for establishing regular pmds that 1076 * points to regular pagetables. Use pmd_populate for that 1077 */ 1078 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1079 spin_unlock(pmd_ptl); 1080 anon_vma_unlock_write(vma->anon_vma); 1081 goto out_up_write; 1082 } 1083 1084 /* 1085 * All pages are isolated and locked so anon_vma rmap 1086 * can't run anymore. 1087 */ 1088 anon_vma_unlock_write(vma->anon_vma); 1089 1090 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1091 &compound_pagelist); 1092 pte_unmap(pte); 1093 /* 1094 * spin_lock() below is not the equivalent of smp_wmb(), but 1095 * the smp_wmb() inside __SetPageUptodate() can be reused to 1096 * avoid the copy_huge_page writes to become visible after 1097 * the set_pmd_at() write. 1098 */ 1099 __SetPageUptodate(hpage); 1100 pgtable = pmd_pgtable(_pmd); 1101 1102 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1103 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1104 1105 spin_lock(pmd_ptl); 1106 BUG_ON(!pmd_none(*pmd)); 1107 page_add_new_anon_rmap(hpage, vma, address); 1108 lru_cache_add_inactive_or_unevictable(hpage, vma); 1109 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1110 set_pmd_at(mm, address, pmd, _pmd); 1111 update_mmu_cache_pmd(vma, address, pmd); 1112 spin_unlock(pmd_ptl); 1113 1114 hpage = NULL; 1115 1116 result = SCAN_SUCCEED; 1117 out_up_write: 1118 mmap_write_unlock(mm); 1119 out_nolock: 1120 if (hpage) { 1121 mem_cgroup_uncharge(page_folio(hpage)); 1122 put_page(hpage); 1123 } 1124 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1125 return result; 1126 } 1127 1128 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1129 struct vm_area_struct *vma, 1130 unsigned long address, bool *mmap_locked, 1131 struct collapse_control *cc) 1132 { 1133 pmd_t *pmd; 1134 pte_t *pte, *_pte; 1135 int result = SCAN_FAIL, referenced = 0; 1136 int none_or_zero = 0, shared = 0; 1137 struct page *page = NULL; 1138 unsigned long _address; 1139 spinlock_t *ptl; 1140 int node = NUMA_NO_NODE, unmapped = 0; 1141 bool writable = false; 1142 1143 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1144 1145 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1146 if (result != SCAN_SUCCEED) 1147 goto out; 1148 1149 memset(cc->node_load, 0, sizeof(cc->node_load)); 1150 nodes_clear(cc->alloc_nmask); 1151 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1152 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1153 _pte++, _address += PAGE_SIZE) { 1154 pte_t pteval = *_pte; 1155 if (is_swap_pte(pteval)) { 1156 ++unmapped; 1157 if (!cc->is_khugepaged || 1158 unmapped <= khugepaged_max_ptes_swap) { 1159 /* 1160 * Always be strict with uffd-wp 1161 * enabled swap entries. Please see 1162 * comment below for pte_uffd_wp(). 1163 */ 1164 if (pte_swp_uffd_wp(pteval)) { 1165 result = SCAN_PTE_UFFD_WP; 1166 goto out_unmap; 1167 } 1168 continue; 1169 } else { 1170 result = SCAN_EXCEED_SWAP_PTE; 1171 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1172 goto out_unmap; 1173 } 1174 } 1175 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1176 ++none_or_zero; 1177 if (!userfaultfd_armed(vma) && 1178 (!cc->is_khugepaged || 1179 none_or_zero <= khugepaged_max_ptes_none)) { 1180 continue; 1181 } else { 1182 result = SCAN_EXCEED_NONE_PTE; 1183 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1184 goto out_unmap; 1185 } 1186 } 1187 if (pte_uffd_wp(pteval)) { 1188 /* 1189 * Don't collapse the page if any of the small 1190 * PTEs are armed with uffd write protection. 1191 * Here we can also mark the new huge pmd as 1192 * write protected if any of the small ones is 1193 * marked but that could bring unknown 1194 * userfault messages that falls outside of 1195 * the registered range. So, just be simple. 1196 */ 1197 result = SCAN_PTE_UFFD_WP; 1198 goto out_unmap; 1199 } 1200 if (pte_write(pteval)) 1201 writable = true; 1202 1203 page = vm_normal_page(vma, _address, pteval); 1204 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1205 result = SCAN_PAGE_NULL; 1206 goto out_unmap; 1207 } 1208 1209 if (page_mapcount(page) > 1) { 1210 ++shared; 1211 if (cc->is_khugepaged && 1212 shared > khugepaged_max_ptes_shared) { 1213 result = SCAN_EXCEED_SHARED_PTE; 1214 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1215 goto out_unmap; 1216 } 1217 } 1218 1219 page = compound_head(page); 1220 1221 /* 1222 * Record which node the original page is from and save this 1223 * information to cc->node_load[]. 1224 * Khugepaged will allocate hugepage from the node has the max 1225 * hit record. 1226 */ 1227 node = page_to_nid(page); 1228 if (hpage_collapse_scan_abort(node, cc)) { 1229 result = SCAN_SCAN_ABORT; 1230 goto out_unmap; 1231 } 1232 cc->node_load[node]++; 1233 if (!PageLRU(page)) { 1234 result = SCAN_PAGE_LRU; 1235 goto out_unmap; 1236 } 1237 if (PageLocked(page)) { 1238 result = SCAN_PAGE_LOCK; 1239 goto out_unmap; 1240 } 1241 if (!PageAnon(page)) { 1242 result = SCAN_PAGE_ANON; 1243 goto out_unmap; 1244 } 1245 1246 /* 1247 * Check if the page has any GUP (or other external) pins. 1248 * 1249 * Here the check may be racy: 1250 * it may see total_mapcount > refcount in some cases? 1251 * But such case is ephemeral we could always retry collapse 1252 * later. However it may report false positive if the page 1253 * has excessive GUP pins (i.e. 512). Anyway the same check 1254 * will be done again later the risk seems low. 1255 */ 1256 if (!is_refcount_suitable(page)) { 1257 result = SCAN_PAGE_COUNT; 1258 goto out_unmap; 1259 } 1260 1261 /* 1262 * If collapse was initiated by khugepaged, check that there is 1263 * enough young pte to justify collapsing the page 1264 */ 1265 if (cc->is_khugepaged && 1266 (pte_young(pteval) || page_is_young(page) || 1267 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1268 address))) 1269 referenced++; 1270 } 1271 if (!writable) { 1272 result = SCAN_PAGE_RO; 1273 } else if (cc->is_khugepaged && 1274 (!referenced || 1275 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1276 result = SCAN_LACK_REFERENCED_PAGE; 1277 } else { 1278 result = SCAN_SUCCEED; 1279 } 1280 out_unmap: 1281 pte_unmap_unlock(pte, ptl); 1282 if (result == SCAN_SUCCEED) { 1283 result = collapse_huge_page(mm, address, referenced, 1284 unmapped, cc); 1285 /* collapse_huge_page will return with the mmap_lock released */ 1286 *mmap_locked = false; 1287 } 1288 out: 1289 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1290 none_or_zero, result, unmapped); 1291 return result; 1292 } 1293 1294 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1295 { 1296 struct mm_slot *slot = &mm_slot->slot; 1297 struct mm_struct *mm = slot->mm; 1298 1299 lockdep_assert_held(&khugepaged_mm_lock); 1300 1301 if (hpage_collapse_test_exit(mm)) { 1302 /* free mm_slot */ 1303 hash_del(&slot->hash); 1304 list_del(&slot->mm_node); 1305 1306 /* 1307 * Not strictly needed because the mm exited already. 1308 * 1309 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1310 */ 1311 1312 /* khugepaged_mm_lock actually not necessary for the below */ 1313 mm_slot_free(mm_slot_cache, mm_slot); 1314 mmdrop(mm); 1315 } 1316 } 1317 1318 #ifdef CONFIG_SHMEM 1319 /* 1320 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1321 * khugepaged should try to collapse the page table. 1322 * 1323 * Note that following race exists: 1324 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1325 * emptying the A's ->pte_mapped_thp[] array. 1326 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1327 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1328 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1329 * ->pte-mapped_thp[] array. 1330 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1331 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1332 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1333 * Thus, it's possible the same address is added multiple times for the same 1334 * mm_struct. Should this happen, we'll simply attempt 1335 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1336 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1337 * attempts will return quickly (without grabbing any additional locks) when 1338 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1339 * check, and since this is a rare occurrence, the cost of preventing this 1340 * "multiple-add" is thought to be more expensive than just handling it, should 1341 * it occur. 1342 */ 1343 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1344 unsigned long addr) 1345 { 1346 struct khugepaged_mm_slot *mm_slot; 1347 struct mm_slot *slot; 1348 bool ret = false; 1349 1350 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1351 1352 spin_lock(&khugepaged_mm_lock); 1353 slot = mm_slot_lookup(mm_slots_hash, mm); 1354 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1355 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1356 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1357 ret = true; 1358 } 1359 spin_unlock(&khugepaged_mm_lock); 1360 return ret; 1361 } 1362 1363 /* hpage must be locked, and mmap_lock must be held in write */ 1364 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1365 pmd_t *pmdp, struct page *hpage) 1366 { 1367 struct vm_fault vmf = { 1368 .vma = vma, 1369 .address = addr, 1370 .flags = 0, 1371 .pmd = pmdp, 1372 }; 1373 1374 VM_BUG_ON(!PageTransHuge(hpage)); 1375 mmap_assert_write_locked(vma->vm_mm); 1376 1377 if (do_set_pmd(&vmf, hpage)) 1378 return SCAN_FAIL; 1379 1380 get_page(hpage); 1381 return SCAN_SUCCEED; 1382 } 1383 1384 /* 1385 * A note about locking: 1386 * Trying to take the page table spinlocks would be useless here because those 1387 * are only used to synchronize: 1388 * 1389 * - modifying terminal entries (ones that point to a data page, not to another 1390 * page table) 1391 * - installing *new* non-terminal entries 1392 * 1393 * Instead, we need roughly the same kind of protection as free_pgtables() or 1394 * mm_take_all_locks() (but only for a single VMA): 1395 * The mmap lock together with this VMA's rmap locks covers all paths towards 1396 * the page table entries we're messing with here, except for hardware page 1397 * table walks and lockless_pages_from_mm(). 1398 */ 1399 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1400 unsigned long addr, pmd_t *pmdp) 1401 { 1402 pmd_t pmd; 1403 struct mmu_notifier_range range; 1404 1405 mmap_assert_write_locked(mm); 1406 if (vma->vm_file) 1407 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1408 /* 1409 * All anon_vmas attached to the VMA have the same root and are 1410 * therefore locked by the same lock. 1411 */ 1412 if (vma->anon_vma) 1413 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1414 1415 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr, 1416 addr + HPAGE_PMD_SIZE); 1417 mmu_notifier_invalidate_range_start(&range); 1418 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1419 tlb_remove_table_sync_one(); 1420 mmu_notifier_invalidate_range_end(&range); 1421 mm_dec_nr_ptes(mm); 1422 page_table_check_pte_clear_range(mm, addr, pmd); 1423 pte_free(mm, pmd_pgtable(pmd)); 1424 } 1425 1426 /** 1427 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1428 * address haddr. 1429 * 1430 * @mm: process address space where collapse happens 1431 * @addr: THP collapse address 1432 * @install_pmd: If a huge PMD should be installed 1433 * 1434 * This function checks whether all the PTEs in the PMD are pointing to the 1435 * right THP. If so, retract the page table so the THP can refault in with 1436 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1437 */ 1438 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1439 bool install_pmd) 1440 { 1441 unsigned long haddr = addr & HPAGE_PMD_MASK; 1442 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1443 struct page *hpage; 1444 pte_t *start_pte, *pte; 1445 pmd_t *pmd; 1446 spinlock_t *ptl; 1447 int count = 0, result = SCAN_FAIL; 1448 int i; 1449 1450 mmap_assert_write_locked(mm); 1451 1452 /* Fast check before locking page if already PMD-mapped */ 1453 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1454 if (result == SCAN_PMD_MAPPED) 1455 return result; 1456 1457 if (!vma || !vma->vm_file || 1458 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1459 return SCAN_VMA_CHECK; 1460 1461 /* 1462 * If we are here, we've succeeded in replacing all the native pages 1463 * in the page cache with a single hugepage. If a mm were to fault-in 1464 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1465 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1466 * analogously elide sysfs THP settings here. 1467 */ 1468 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1469 return SCAN_VMA_CHECK; 1470 1471 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1472 if (userfaultfd_wp(vma)) 1473 return SCAN_PTE_UFFD_WP; 1474 1475 hpage = find_lock_page(vma->vm_file->f_mapping, 1476 linear_page_index(vma, haddr)); 1477 if (!hpage) 1478 return SCAN_PAGE_NULL; 1479 1480 if (!PageHead(hpage)) { 1481 result = SCAN_FAIL; 1482 goto drop_hpage; 1483 } 1484 1485 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1486 result = SCAN_PAGE_COMPOUND; 1487 goto drop_hpage; 1488 } 1489 1490 switch (result) { 1491 case SCAN_SUCCEED: 1492 break; 1493 case SCAN_PMD_NONE: 1494 /* 1495 * In MADV_COLLAPSE path, possible race with khugepaged where 1496 * all pte entries have been removed and pmd cleared. If so, 1497 * skip all the pte checks and just update the pmd mapping. 1498 */ 1499 goto maybe_install_pmd; 1500 default: 1501 goto drop_hpage; 1502 } 1503 1504 /* 1505 * We need to lock the mapping so that from here on, only GUP-fast and 1506 * hardware page walks can access the parts of the page tables that 1507 * we're operating on. 1508 * See collapse_and_free_pmd(). 1509 */ 1510 i_mmap_lock_write(vma->vm_file->f_mapping); 1511 1512 /* 1513 * This spinlock should be unnecessary: Nobody else should be accessing 1514 * the page tables under spinlock protection here, only 1515 * lockless_pages_from_mm() and the hardware page walker can access page 1516 * tables while all the high-level locks are held in write mode. 1517 */ 1518 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1519 result = SCAN_FAIL; 1520 1521 /* step 1: check all mapped PTEs are to the right huge page */ 1522 for (i = 0, addr = haddr, pte = start_pte; 1523 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1524 struct page *page; 1525 1526 /* empty pte, skip */ 1527 if (pte_none(*pte)) 1528 continue; 1529 1530 /* page swapped out, abort */ 1531 if (!pte_present(*pte)) { 1532 result = SCAN_PTE_NON_PRESENT; 1533 goto abort; 1534 } 1535 1536 page = vm_normal_page(vma, addr, *pte); 1537 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1538 page = NULL; 1539 /* 1540 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1541 * page table, but the new page will not be a subpage of hpage. 1542 */ 1543 if (hpage + i != page) 1544 goto abort; 1545 count++; 1546 } 1547 1548 /* step 2: adjust rmap */ 1549 for (i = 0, addr = haddr, pte = start_pte; 1550 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1551 struct page *page; 1552 1553 if (pte_none(*pte)) 1554 continue; 1555 page = vm_normal_page(vma, addr, *pte); 1556 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1557 goto abort; 1558 page_remove_rmap(page, vma, false); 1559 } 1560 1561 pte_unmap_unlock(start_pte, ptl); 1562 1563 /* step 3: set proper refcount and mm_counters. */ 1564 if (count) { 1565 page_ref_sub(hpage, count); 1566 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1567 } 1568 1569 /* step 4: remove pte entries */ 1570 /* we make no change to anon, but protect concurrent anon page lookup */ 1571 if (vma->anon_vma) 1572 anon_vma_lock_write(vma->anon_vma); 1573 1574 collapse_and_free_pmd(mm, vma, haddr, pmd); 1575 1576 if (vma->anon_vma) 1577 anon_vma_unlock_write(vma->anon_vma); 1578 i_mmap_unlock_write(vma->vm_file->f_mapping); 1579 1580 maybe_install_pmd: 1581 /* step 5: install pmd entry */ 1582 result = install_pmd 1583 ? set_huge_pmd(vma, haddr, pmd, hpage) 1584 : SCAN_SUCCEED; 1585 1586 drop_hpage: 1587 unlock_page(hpage); 1588 put_page(hpage); 1589 return result; 1590 1591 abort: 1592 pte_unmap_unlock(start_pte, ptl); 1593 i_mmap_unlock_write(vma->vm_file->f_mapping); 1594 goto drop_hpage; 1595 } 1596 1597 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1598 { 1599 struct mm_slot *slot = &mm_slot->slot; 1600 struct mm_struct *mm = slot->mm; 1601 int i; 1602 1603 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1604 return; 1605 1606 if (!mmap_write_trylock(mm)) 1607 return; 1608 1609 if (unlikely(hpage_collapse_test_exit(mm))) 1610 goto out; 1611 1612 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1613 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1614 1615 out: 1616 mm_slot->nr_pte_mapped_thp = 0; 1617 mmap_write_unlock(mm); 1618 } 1619 1620 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1621 struct mm_struct *target_mm, 1622 unsigned long target_addr, struct page *hpage, 1623 struct collapse_control *cc) 1624 { 1625 struct vm_area_struct *vma; 1626 int target_result = SCAN_FAIL; 1627 1628 i_mmap_lock_write(mapping); 1629 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1630 int result = SCAN_FAIL; 1631 struct mm_struct *mm = NULL; 1632 unsigned long addr = 0; 1633 pmd_t *pmd; 1634 bool is_target = false; 1635 1636 /* 1637 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1638 * got written to. These VMAs are likely not worth investing 1639 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1640 * later. 1641 * 1642 * Note that vma->anon_vma check is racy: it can be set up after 1643 * the check but before we took mmap_lock by the fault path. 1644 * But page lock would prevent establishing any new ptes of the 1645 * page, so we are safe. 1646 * 1647 * An alternative would be drop the check, but check that page 1648 * table is clear before calling pmdp_collapse_flush() under 1649 * ptl. It has higher chance to recover THP for the VMA, but 1650 * has higher cost too. It would also probably require locking 1651 * the anon_vma. 1652 */ 1653 if (READ_ONCE(vma->anon_vma)) { 1654 result = SCAN_PAGE_ANON; 1655 goto next; 1656 } 1657 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1658 if (addr & ~HPAGE_PMD_MASK || 1659 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1660 result = SCAN_VMA_CHECK; 1661 goto next; 1662 } 1663 mm = vma->vm_mm; 1664 is_target = mm == target_mm && addr == target_addr; 1665 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1666 if (result != SCAN_SUCCEED) 1667 goto next; 1668 /* 1669 * We need exclusive mmap_lock to retract page table. 1670 * 1671 * We use trylock due to lock inversion: we need to acquire 1672 * mmap_lock while holding page lock. Fault path does it in 1673 * reverse order. Trylock is a way to avoid deadlock. 1674 * 1675 * Also, it's not MADV_COLLAPSE's job to collapse other 1676 * mappings - let khugepaged take care of them later. 1677 */ 1678 result = SCAN_PTE_MAPPED_HUGEPAGE; 1679 if ((cc->is_khugepaged || is_target) && 1680 mmap_write_trylock(mm)) { 1681 /* 1682 * Re-check whether we have an ->anon_vma, because 1683 * collapse_and_free_pmd() requires that either no 1684 * ->anon_vma exists or the anon_vma is locked. 1685 * We already checked ->anon_vma above, but that check 1686 * is racy because ->anon_vma can be populated under the 1687 * mmap lock in read mode. 1688 */ 1689 if (vma->anon_vma) { 1690 result = SCAN_PAGE_ANON; 1691 goto unlock_next; 1692 } 1693 /* 1694 * When a vma is registered with uffd-wp, we can't 1695 * recycle the pmd pgtable because there can be pte 1696 * markers installed. Skip it only, so the rest mm/vma 1697 * can still have the same file mapped hugely, however 1698 * it'll always mapped in small page size for uffd-wp 1699 * registered ranges. 1700 */ 1701 if (hpage_collapse_test_exit(mm)) { 1702 result = SCAN_ANY_PROCESS; 1703 goto unlock_next; 1704 } 1705 if (userfaultfd_wp(vma)) { 1706 result = SCAN_PTE_UFFD_WP; 1707 goto unlock_next; 1708 } 1709 collapse_and_free_pmd(mm, vma, addr, pmd); 1710 if (!cc->is_khugepaged && is_target) 1711 result = set_huge_pmd(vma, addr, pmd, hpage); 1712 else 1713 result = SCAN_SUCCEED; 1714 1715 unlock_next: 1716 mmap_write_unlock(mm); 1717 goto next; 1718 } 1719 /* 1720 * Calling context will handle target mm/addr. Otherwise, let 1721 * khugepaged try again later. 1722 */ 1723 if (!is_target) { 1724 khugepaged_add_pte_mapped_thp(mm, addr); 1725 continue; 1726 } 1727 next: 1728 if (is_target) 1729 target_result = result; 1730 } 1731 i_mmap_unlock_write(mapping); 1732 return target_result; 1733 } 1734 1735 /** 1736 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1737 * 1738 * @mm: process address space where collapse happens 1739 * @addr: virtual collapse start address 1740 * @file: file that collapse on 1741 * @start: collapse start address 1742 * @cc: collapse context and scratchpad 1743 * 1744 * Basic scheme is simple, details are more complex: 1745 * - allocate and lock a new huge page; 1746 * - scan page cache replacing old pages with the new one 1747 * + swap/gup in pages if necessary; 1748 * + fill in gaps; 1749 * + keep old pages around in case rollback is required; 1750 * - if replacing succeeds: 1751 * + copy data over; 1752 * + free old pages; 1753 * + unlock huge page; 1754 * - if replacing failed; 1755 * + put all pages back and unfreeze them; 1756 * + restore gaps in the page cache; 1757 * + unlock and free huge page; 1758 */ 1759 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1760 struct file *file, pgoff_t start, 1761 struct collapse_control *cc) 1762 { 1763 struct address_space *mapping = file->f_mapping; 1764 struct page *hpage; 1765 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1766 LIST_HEAD(pagelist); 1767 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1768 int nr_none = 0, result = SCAN_SUCCEED; 1769 bool is_shmem = shmem_file(file); 1770 int nr = 0; 1771 1772 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1773 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1774 1775 result = alloc_charge_hpage(&hpage, mm, cc); 1776 if (result != SCAN_SUCCEED) 1777 goto out; 1778 1779 /* 1780 * Ensure we have slots for all the pages in the range. This is 1781 * almost certainly a no-op because most of the pages must be present 1782 */ 1783 do { 1784 xas_lock_irq(&xas); 1785 xas_create_range(&xas); 1786 if (!xas_error(&xas)) 1787 break; 1788 xas_unlock_irq(&xas); 1789 if (!xas_nomem(&xas, GFP_KERNEL)) { 1790 result = SCAN_FAIL; 1791 goto out; 1792 } 1793 } while (1); 1794 1795 __SetPageLocked(hpage); 1796 if (is_shmem) 1797 __SetPageSwapBacked(hpage); 1798 hpage->index = start; 1799 hpage->mapping = mapping; 1800 1801 /* 1802 * At this point the hpage is locked and not up-to-date. 1803 * It's safe to insert it into the page cache, because nobody would 1804 * be able to map it or use it in another way until we unlock it. 1805 */ 1806 1807 xas_set(&xas, start); 1808 for (index = start; index < end; index++) { 1809 struct page *page = xas_next(&xas); 1810 struct folio *folio; 1811 1812 VM_BUG_ON(index != xas.xa_index); 1813 if (is_shmem) { 1814 if (!page) { 1815 /* 1816 * Stop if extent has been truncated or 1817 * hole-punched, and is now completely 1818 * empty. 1819 */ 1820 if (index == start) { 1821 if (!xas_next_entry(&xas, end - 1)) { 1822 result = SCAN_TRUNCATED; 1823 goto xa_locked; 1824 } 1825 xas_set(&xas, index); 1826 } 1827 if (!shmem_charge(mapping->host, 1)) { 1828 result = SCAN_FAIL; 1829 goto xa_locked; 1830 } 1831 xas_store(&xas, hpage); 1832 nr_none++; 1833 continue; 1834 } 1835 1836 if (xa_is_value(page) || !PageUptodate(page)) { 1837 xas_unlock_irq(&xas); 1838 /* swap in or instantiate fallocated page */ 1839 if (shmem_get_folio(mapping->host, index, 1840 &folio, SGP_NOALLOC)) { 1841 result = SCAN_FAIL; 1842 goto xa_unlocked; 1843 } 1844 page = folio_file_page(folio, index); 1845 } else if (trylock_page(page)) { 1846 get_page(page); 1847 xas_unlock_irq(&xas); 1848 } else { 1849 result = SCAN_PAGE_LOCK; 1850 goto xa_locked; 1851 } 1852 } else { /* !is_shmem */ 1853 if (!page || xa_is_value(page)) { 1854 xas_unlock_irq(&xas); 1855 page_cache_sync_readahead(mapping, &file->f_ra, 1856 file, index, 1857 end - index); 1858 /* drain pagevecs to help isolate_lru_page() */ 1859 lru_add_drain(); 1860 page = find_lock_page(mapping, index); 1861 if (unlikely(page == NULL)) { 1862 result = SCAN_FAIL; 1863 goto xa_unlocked; 1864 } 1865 } else if (PageDirty(page)) { 1866 /* 1867 * khugepaged only works on read-only fd, 1868 * so this page is dirty because it hasn't 1869 * been flushed since first write. There 1870 * won't be new dirty pages. 1871 * 1872 * Trigger async flush here and hope the 1873 * writeback is done when khugepaged 1874 * revisits this page. 1875 * 1876 * This is a one-off situation. We are not 1877 * forcing writeback in loop. 1878 */ 1879 xas_unlock_irq(&xas); 1880 filemap_flush(mapping); 1881 result = SCAN_FAIL; 1882 goto xa_unlocked; 1883 } else if (PageWriteback(page)) { 1884 xas_unlock_irq(&xas); 1885 result = SCAN_FAIL; 1886 goto xa_unlocked; 1887 } else if (trylock_page(page)) { 1888 get_page(page); 1889 xas_unlock_irq(&xas); 1890 } else { 1891 result = SCAN_PAGE_LOCK; 1892 goto xa_locked; 1893 } 1894 } 1895 1896 /* 1897 * The page must be locked, so we can drop the i_pages lock 1898 * without racing with truncate. 1899 */ 1900 VM_BUG_ON_PAGE(!PageLocked(page), page); 1901 1902 /* make sure the page is up to date */ 1903 if (unlikely(!PageUptodate(page))) { 1904 result = SCAN_FAIL; 1905 goto out_unlock; 1906 } 1907 1908 /* 1909 * If file was truncated then extended, or hole-punched, before 1910 * we locked the first page, then a THP might be there already. 1911 * This will be discovered on the first iteration. 1912 */ 1913 if (PageTransCompound(page)) { 1914 struct page *head = compound_head(page); 1915 1916 result = compound_order(head) == HPAGE_PMD_ORDER && 1917 head->index == start 1918 /* Maybe PMD-mapped */ 1919 ? SCAN_PTE_MAPPED_HUGEPAGE 1920 : SCAN_PAGE_COMPOUND; 1921 goto out_unlock; 1922 } 1923 1924 folio = page_folio(page); 1925 1926 if (folio_mapping(folio) != mapping) { 1927 result = SCAN_TRUNCATED; 1928 goto out_unlock; 1929 } 1930 1931 if (!is_shmem && (folio_test_dirty(folio) || 1932 folio_test_writeback(folio))) { 1933 /* 1934 * khugepaged only works on read-only fd, so this 1935 * page is dirty because it hasn't been flushed 1936 * since first write. 1937 */ 1938 result = SCAN_FAIL; 1939 goto out_unlock; 1940 } 1941 1942 if (folio_isolate_lru(folio)) { 1943 result = SCAN_DEL_PAGE_LRU; 1944 goto out_unlock; 1945 } 1946 1947 if (folio_has_private(folio) && 1948 !filemap_release_folio(folio, GFP_KERNEL)) { 1949 result = SCAN_PAGE_HAS_PRIVATE; 1950 folio_putback_lru(folio); 1951 goto out_unlock; 1952 } 1953 1954 if (folio_mapped(folio)) 1955 try_to_unmap(folio, 1956 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1957 1958 xas_lock_irq(&xas); 1959 xas_set(&xas, index); 1960 1961 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1962 1963 /* 1964 * The page is expected to have page_count() == 3: 1965 * - we hold a pin on it; 1966 * - one reference from page cache; 1967 * - one from isolate_lru_page; 1968 */ 1969 if (!page_ref_freeze(page, 3)) { 1970 result = SCAN_PAGE_COUNT; 1971 xas_unlock_irq(&xas); 1972 putback_lru_page(page); 1973 goto out_unlock; 1974 } 1975 1976 /* 1977 * Add the page to the list to be able to undo the collapse if 1978 * something go wrong. 1979 */ 1980 list_add_tail(&page->lru, &pagelist); 1981 1982 /* Finally, replace with the new page. */ 1983 xas_store(&xas, hpage); 1984 continue; 1985 out_unlock: 1986 unlock_page(page); 1987 put_page(page); 1988 goto xa_unlocked; 1989 } 1990 nr = thp_nr_pages(hpage); 1991 1992 if (is_shmem) 1993 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 1994 else { 1995 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 1996 filemap_nr_thps_inc(mapping); 1997 /* 1998 * Paired with smp_mb() in do_dentry_open() to ensure 1999 * i_writecount is up to date and the update to nr_thps is 2000 * visible. Ensures the page cache will be truncated if the 2001 * file is opened writable. 2002 */ 2003 smp_mb(); 2004 if (inode_is_open_for_write(mapping->host)) { 2005 result = SCAN_FAIL; 2006 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 2007 filemap_nr_thps_dec(mapping); 2008 goto xa_locked; 2009 } 2010 } 2011 2012 if (nr_none) { 2013 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2014 /* nr_none is always 0 for non-shmem. */ 2015 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2016 } 2017 2018 /* Join all the small entries into a single multi-index entry */ 2019 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2020 xas_store(&xas, hpage); 2021 xa_locked: 2022 xas_unlock_irq(&xas); 2023 xa_unlocked: 2024 2025 /* 2026 * If collapse is successful, flush must be done now before copying. 2027 * If collapse is unsuccessful, does flush actually need to be done? 2028 * Do it anyway, to clear the state. 2029 */ 2030 try_to_unmap_flush(); 2031 2032 if (result == SCAN_SUCCEED) { 2033 struct page *page, *tmp; 2034 struct folio *folio; 2035 2036 /* 2037 * Replacing old pages with new one has succeeded, now we 2038 * need to copy the content and free the old pages. 2039 */ 2040 index = start; 2041 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2042 while (index < page->index) { 2043 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2044 index++; 2045 } 2046 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2047 page); 2048 list_del(&page->lru); 2049 page->mapping = NULL; 2050 page_ref_unfreeze(page, 1); 2051 ClearPageActive(page); 2052 ClearPageUnevictable(page); 2053 unlock_page(page); 2054 put_page(page); 2055 index++; 2056 } 2057 while (index < end) { 2058 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2059 index++; 2060 } 2061 2062 folio = page_folio(hpage); 2063 folio_mark_uptodate(folio); 2064 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2065 2066 if (is_shmem) 2067 folio_mark_dirty(folio); 2068 folio_add_lru(folio); 2069 2070 /* 2071 * Remove pte page tables, so we can re-fault the page as huge. 2072 */ 2073 result = retract_page_tables(mapping, start, mm, addr, hpage, 2074 cc); 2075 unlock_page(hpage); 2076 hpage = NULL; 2077 } else { 2078 struct page *page; 2079 2080 /* Something went wrong: roll back page cache changes */ 2081 xas_lock_irq(&xas); 2082 if (nr_none) { 2083 mapping->nrpages -= nr_none; 2084 shmem_uncharge(mapping->host, nr_none); 2085 } 2086 2087 xas_set(&xas, start); 2088 xas_for_each(&xas, page, end - 1) { 2089 page = list_first_entry_or_null(&pagelist, 2090 struct page, lru); 2091 if (!page || xas.xa_index < page->index) { 2092 if (!nr_none) 2093 break; 2094 nr_none--; 2095 /* Put holes back where they were */ 2096 xas_store(&xas, NULL); 2097 continue; 2098 } 2099 2100 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2101 2102 /* Unfreeze the page. */ 2103 list_del(&page->lru); 2104 page_ref_unfreeze(page, 2); 2105 xas_store(&xas, page); 2106 xas_pause(&xas); 2107 xas_unlock_irq(&xas); 2108 unlock_page(page); 2109 putback_lru_page(page); 2110 xas_lock_irq(&xas); 2111 } 2112 VM_BUG_ON(nr_none); 2113 xas_unlock_irq(&xas); 2114 2115 hpage->mapping = NULL; 2116 } 2117 2118 if (hpage) 2119 unlock_page(hpage); 2120 out: 2121 VM_BUG_ON(!list_empty(&pagelist)); 2122 if (hpage) { 2123 mem_cgroup_uncharge(page_folio(hpage)); 2124 put_page(hpage); 2125 } 2126 2127 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2128 return result; 2129 } 2130 2131 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2132 struct file *file, pgoff_t start, 2133 struct collapse_control *cc) 2134 { 2135 struct page *page = NULL; 2136 struct address_space *mapping = file->f_mapping; 2137 XA_STATE(xas, &mapping->i_pages, start); 2138 int present, swap; 2139 int node = NUMA_NO_NODE; 2140 int result = SCAN_SUCCEED; 2141 2142 present = 0; 2143 swap = 0; 2144 memset(cc->node_load, 0, sizeof(cc->node_load)); 2145 nodes_clear(cc->alloc_nmask); 2146 rcu_read_lock(); 2147 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2148 if (xas_retry(&xas, page)) 2149 continue; 2150 2151 if (xa_is_value(page)) { 2152 ++swap; 2153 if (cc->is_khugepaged && 2154 swap > khugepaged_max_ptes_swap) { 2155 result = SCAN_EXCEED_SWAP_PTE; 2156 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2157 break; 2158 } 2159 continue; 2160 } 2161 2162 /* 2163 * TODO: khugepaged should compact smaller compound pages 2164 * into a PMD sized page 2165 */ 2166 if (PageTransCompound(page)) { 2167 struct page *head = compound_head(page); 2168 2169 result = compound_order(head) == HPAGE_PMD_ORDER && 2170 head->index == start 2171 /* Maybe PMD-mapped */ 2172 ? SCAN_PTE_MAPPED_HUGEPAGE 2173 : SCAN_PAGE_COMPOUND; 2174 /* 2175 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2176 * by the caller won't touch the page cache, and so 2177 * it's safe to skip LRU and refcount checks before 2178 * returning. 2179 */ 2180 break; 2181 } 2182 2183 node = page_to_nid(page); 2184 if (hpage_collapse_scan_abort(node, cc)) { 2185 result = SCAN_SCAN_ABORT; 2186 break; 2187 } 2188 cc->node_load[node]++; 2189 2190 if (!PageLRU(page)) { 2191 result = SCAN_PAGE_LRU; 2192 break; 2193 } 2194 2195 if (page_count(page) != 2196 1 + page_mapcount(page) + page_has_private(page)) { 2197 result = SCAN_PAGE_COUNT; 2198 break; 2199 } 2200 2201 /* 2202 * We probably should check if the page is referenced here, but 2203 * nobody would transfer pte_young() to PageReferenced() for us. 2204 * And rmap walk here is just too costly... 2205 */ 2206 2207 present++; 2208 2209 if (need_resched()) { 2210 xas_pause(&xas); 2211 cond_resched_rcu(); 2212 } 2213 } 2214 rcu_read_unlock(); 2215 2216 if (result == SCAN_SUCCEED) { 2217 if (cc->is_khugepaged && 2218 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2219 result = SCAN_EXCEED_NONE_PTE; 2220 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2221 } else { 2222 result = collapse_file(mm, addr, file, start, cc); 2223 } 2224 } 2225 2226 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2227 return result; 2228 } 2229 #else 2230 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2231 struct file *file, pgoff_t start, 2232 struct collapse_control *cc) 2233 { 2234 BUILD_BUG(); 2235 } 2236 2237 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2238 { 2239 } 2240 2241 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2242 unsigned long addr) 2243 { 2244 return false; 2245 } 2246 #endif 2247 2248 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2249 struct collapse_control *cc) 2250 __releases(&khugepaged_mm_lock) 2251 __acquires(&khugepaged_mm_lock) 2252 { 2253 struct vma_iterator vmi; 2254 struct khugepaged_mm_slot *mm_slot; 2255 struct mm_slot *slot; 2256 struct mm_struct *mm; 2257 struct vm_area_struct *vma; 2258 int progress = 0; 2259 2260 VM_BUG_ON(!pages); 2261 lockdep_assert_held(&khugepaged_mm_lock); 2262 *result = SCAN_FAIL; 2263 2264 if (khugepaged_scan.mm_slot) { 2265 mm_slot = khugepaged_scan.mm_slot; 2266 slot = &mm_slot->slot; 2267 } else { 2268 slot = list_entry(khugepaged_scan.mm_head.next, 2269 struct mm_slot, mm_node); 2270 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2271 khugepaged_scan.address = 0; 2272 khugepaged_scan.mm_slot = mm_slot; 2273 } 2274 spin_unlock(&khugepaged_mm_lock); 2275 khugepaged_collapse_pte_mapped_thps(mm_slot); 2276 2277 mm = slot->mm; 2278 /* 2279 * Don't wait for semaphore (to avoid long wait times). Just move to 2280 * the next mm on the list. 2281 */ 2282 vma = NULL; 2283 if (unlikely(!mmap_read_trylock(mm))) 2284 goto breakouterloop_mmap_lock; 2285 2286 progress++; 2287 if (unlikely(hpage_collapse_test_exit(mm))) 2288 goto breakouterloop; 2289 2290 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2291 for_each_vma(vmi, vma) { 2292 unsigned long hstart, hend; 2293 2294 cond_resched(); 2295 if (unlikely(hpage_collapse_test_exit(mm))) { 2296 progress++; 2297 break; 2298 } 2299 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2300 skip: 2301 progress++; 2302 continue; 2303 } 2304 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2305 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2306 if (khugepaged_scan.address > hend) 2307 goto skip; 2308 if (khugepaged_scan.address < hstart) 2309 khugepaged_scan.address = hstart; 2310 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2311 2312 while (khugepaged_scan.address < hend) { 2313 bool mmap_locked = true; 2314 2315 cond_resched(); 2316 if (unlikely(hpage_collapse_test_exit(mm))) 2317 goto breakouterloop; 2318 2319 VM_BUG_ON(khugepaged_scan.address < hstart || 2320 khugepaged_scan.address + HPAGE_PMD_SIZE > 2321 hend); 2322 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2323 struct file *file = get_file(vma->vm_file); 2324 pgoff_t pgoff = linear_page_index(vma, 2325 khugepaged_scan.address); 2326 2327 mmap_read_unlock(mm); 2328 *result = hpage_collapse_scan_file(mm, 2329 khugepaged_scan.address, 2330 file, pgoff, cc); 2331 mmap_locked = false; 2332 fput(file); 2333 } else { 2334 *result = hpage_collapse_scan_pmd(mm, vma, 2335 khugepaged_scan.address, 2336 &mmap_locked, 2337 cc); 2338 } 2339 switch (*result) { 2340 case SCAN_PTE_MAPPED_HUGEPAGE: { 2341 pmd_t *pmd; 2342 2343 *result = find_pmd_or_thp_or_none(mm, 2344 khugepaged_scan.address, 2345 &pmd); 2346 if (*result != SCAN_SUCCEED) 2347 break; 2348 if (!khugepaged_add_pte_mapped_thp(mm, 2349 khugepaged_scan.address)) 2350 break; 2351 } fallthrough; 2352 case SCAN_SUCCEED: 2353 ++khugepaged_pages_collapsed; 2354 break; 2355 default: 2356 break; 2357 } 2358 2359 /* move to next address */ 2360 khugepaged_scan.address += HPAGE_PMD_SIZE; 2361 progress += HPAGE_PMD_NR; 2362 if (!mmap_locked) 2363 /* 2364 * We released mmap_lock so break loop. Note 2365 * that we drop mmap_lock before all hugepage 2366 * allocations, so if allocation fails, we are 2367 * guaranteed to break here and report the 2368 * correct result back to caller. 2369 */ 2370 goto breakouterloop_mmap_lock; 2371 if (progress >= pages) 2372 goto breakouterloop; 2373 } 2374 } 2375 breakouterloop: 2376 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2377 breakouterloop_mmap_lock: 2378 2379 spin_lock(&khugepaged_mm_lock); 2380 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2381 /* 2382 * Release the current mm_slot if this mm is about to die, or 2383 * if we scanned all vmas of this mm. 2384 */ 2385 if (hpage_collapse_test_exit(mm) || !vma) { 2386 /* 2387 * Make sure that if mm_users is reaching zero while 2388 * khugepaged runs here, khugepaged_exit will find 2389 * mm_slot not pointing to the exiting mm. 2390 */ 2391 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2392 slot = list_entry(slot->mm_node.next, 2393 struct mm_slot, mm_node); 2394 khugepaged_scan.mm_slot = 2395 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2396 khugepaged_scan.address = 0; 2397 } else { 2398 khugepaged_scan.mm_slot = NULL; 2399 khugepaged_full_scans++; 2400 } 2401 2402 collect_mm_slot(mm_slot); 2403 } 2404 2405 return progress; 2406 } 2407 2408 static int khugepaged_has_work(void) 2409 { 2410 return !list_empty(&khugepaged_scan.mm_head) && 2411 hugepage_flags_enabled(); 2412 } 2413 2414 static int khugepaged_wait_event(void) 2415 { 2416 return !list_empty(&khugepaged_scan.mm_head) || 2417 kthread_should_stop(); 2418 } 2419 2420 static void khugepaged_do_scan(struct collapse_control *cc) 2421 { 2422 unsigned int progress = 0, pass_through_head = 0; 2423 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2424 bool wait = true; 2425 int result = SCAN_SUCCEED; 2426 2427 lru_add_drain_all(); 2428 2429 while (true) { 2430 cond_resched(); 2431 2432 if (unlikely(kthread_should_stop() || try_to_freeze())) 2433 break; 2434 2435 spin_lock(&khugepaged_mm_lock); 2436 if (!khugepaged_scan.mm_slot) 2437 pass_through_head++; 2438 if (khugepaged_has_work() && 2439 pass_through_head < 2) 2440 progress += khugepaged_scan_mm_slot(pages - progress, 2441 &result, cc); 2442 else 2443 progress = pages; 2444 spin_unlock(&khugepaged_mm_lock); 2445 2446 if (progress >= pages) 2447 break; 2448 2449 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2450 /* 2451 * If fail to allocate the first time, try to sleep for 2452 * a while. When hit again, cancel the scan. 2453 */ 2454 if (!wait) 2455 break; 2456 wait = false; 2457 khugepaged_alloc_sleep(); 2458 } 2459 } 2460 } 2461 2462 static bool khugepaged_should_wakeup(void) 2463 { 2464 return kthread_should_stop() || 2465 time_after_eq(jiffies, khugepaged_sleep_expire); 2466 } 2467 2468 static void khugepaged_wait_work(void) 2469 { 2470 if (khugepaged_has_work()) { 2471 const unsigned long scan_sleep_jiffies = 2472 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2473 2474 if (!scan_sleep_jiffies) 2475 return; 2476 2477 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2478 wait_event_freezable_timeout(khugepaged_wait, 2479 khugepaged_should_wakeup(), 2480 scan_sleep_jiffies); 2481 return; 2482 } 2483 2484 if (hugepage_flags_enabled()) 2485 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2486 } 2487 2488 static int khugepaged(void *none) 2489 { 2490 struct khugepaged_mm_slot *mm_slot; 2491 2492 set_freezable(); 2493 set_user_nice(current, MAX_NICE); 2494 2495 while (!kthread_should_stop()) { 2496 khugepaged_do_scan(&khugepaged_collapse_control); 2497 khugepaged_wait_work(); 2498 } 2499 2500 spin_lock(&khugepaged_mm_lock); 2501 mm_slot = khugepaged_scan.mm_slot; 2502 khugepaged_scan.mm_slot = NULL; 2503 if (mm_slot) 2504 collect_mm_slot(mm_slot); 2505 spin_unlock(&khugepaged_mm_lock); 2506 return 0; 2507 } 2508 2509 static void set_recommended_min_free_kbytes(void) 2510 { 2511 struct zone *zone; 2512 int nr_zones = 0; 2513 unsigned long recommended_min; 2514 2515 if (!hugepage_flags_enabled()) { 2516 calculate_min_free_kbytes(); 2517 goto update_wmarks; 2518 } 2519 2520 for_each_populated_zone(zone) { 2521 /* 2522 * We don't need to worry about fragmentation of 2523 * ZONE_MOVABLE since it only has movable pages. 2524 */ 2525 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2526 continue; 2527 2528 nr_zones++; 2529 } 2530 2531 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2532 recommended_min = pageblock_nr_pages * nr_zones * 2; 2533 2534 /* 2535 * Make sure that on average at least two pageblocks are almost free 2536 * of another type, one for a migratetype to fall back to and a 2537 * second to avoid subsequent fallbacks of other types There are 3 2538 * MIGRATE_TYPES we care about. 2539 */ 2540 recommended_min += pageblock_nr_pages * nr_zones * 2541 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2542 2543 /* don't ever allow to reserve more than 5% of the lowmem */ 2544 recommended_min = min(recommended_min, 2545 (unsigned long) nr_free_buffer_pages() / 20); 2546 recommended_min <<= (PAGE_SHIFT-10); 2547 2548 if (recommended_min > min_free_kbytes) { 2549 if (user_min_free_kbytes >= 0) 2550 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2551 min_free_kbytes, recommended_min); 2552 2553 min_free_kbytes = recommended_min; 2554 } 2555 2556 update_wmarks: 2557 setup_per_zone_wmarks(); 2558 } 2559 2560 int start_stop_khugepaged(void) 2561 { 2562 int err = 0; 2563 2564 mutex_lock(&khugepaged_mutex); 2565 if (hugepage_flags_enabled()) { 2566 if (!khugepaged_thread) 2567 khugepaged_thread = kthread_run(khugepaged, NULL, 2568 "khugepaged"); 2569 if (IS_ERR(khugepaged_thread)) { 2570 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2571 err = PTR_ERR(khugepaged_thread); 2572 khugepaged_thread = NULL; 2573 goto fail; 2574 } 2575 2576 if (!list_empty(&khugepaged_scan.mm_head)) 2577 wake_up_interruptible(&khugepaged_wait); 2578 } else if (khugepaged_thread) { 2579 kthread_stop(khugepaged_thread); 2580 khugepaged_thread = NULL; 2581 } 2582 set_recommended_min_free_kbytes(); 2583 fail: 2584 mutex_unlock(&khugepaged_mutex); 2585 return err; 2586 } 2587 2588 void khugepaged_min_free_kbytes_update(void) 2589 { 2590 mutex_lock(&khugepaged_mutex); 2591 if (hugepage_flags_enabled() && khugepaged_thread) 2592 set_recommended_min_free_kbytes(); 2593 mutex_unlock(&khugepaged_mutex); 2594 } 2595 2596 bool current_is_khugepaged(void) 2597 { 2598 return kthread_func(current) == khugepaged; 2599 } 2600 2601 static int madvise_collapse_errno(enum scan_result r) 2602 { 2603 /* 2604 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2605 * actionable feedback to caller, so they may take an appropriate 2606 * fallback measure depending on the nature of the failure. 2607 */ 2608 switch (r) { 2609 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2610 return -ENOMEM; 2611 case SCAN_CGROUP_CHARGE_FAIL: 2612 return -EBUSY; 2613 /* Resource temporary unavailable - trying again might succeed */ 2614 case SCAN_PAGE_LOCK: 2615 case SCAN_PAGE_LRU: 2616 case SCAN_DEL_PAGE_LRU: 2617 return -EAGAIN; 2618 /* 2619 * Other: Trying again likely not to succeed / error intrinsic to 2620 * specified memory range. khugepaged likely won't be able to collapse 2621 * either. 2622 */ 2623 default: 2624 return -EINVAL; 2625 } 2626 } 2627 2628 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2629 unsigned long start, unsigned long end) 2630 { 2631 struct collapse_control *cc; 2632 struct mm_struct *mm = vma->vm_mm; 2633 unsigned long hstart, hend, addr; 2634 int thps = 0, last_fail = SCAN_FAIL; 2635 bool mmap_locked = true; 2636 2637 BUG_ON(vma->vm_start > start); 2638 BUG_ON(vma->vm_end < end); 2639 2640 *prev = vma; 2641 2642 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2643 return -EINVAL; 2644 2645 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2646 if (!cc) 2647 return -ENOMEM; 2648 cc->is_khugepaged = false; 2649 2650 mmgrab(mm); 2651 lru_add_drain_all(); 2652 2653 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2654 hend = end & HPAGE_PMD_MASK; 2655 2656 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2657 int result = SCAN_FAIL; 2658 2659 if (!mmap_locked) { 2660 cond_resched(); 2661 mmap_read_lock(mm); 2662 mmap_locked = true; 2663 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2664 cc); 2665 if (result != SCAN_SUCCEED) { 2666 last_fail = result; 2667 goto out_nolock; 2668 } 2669 2670 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2671 } 2672 mmap_assert_locked(mm); 2673 memset(cc->node_load, 0, sizeof(cc->node_load)); 2674 nodes_clear(cc->alloc_nmask); 2675 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2676 struct file *file = get_file(vma->vm_file); 2677 pgoff_t pgoff = linear_page_index(vma, addr); 2678 2679 mmap_read_unlock(mm); 2680 mmap_locked = false; 2681 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2682 cc); 2683 fput(file); 2684 } else { 2685 result = hpage_collapse_scan_pmd(mm, vma, addr, 2686 &mmap_locked, cc); 2687 } 2688 if (!mmap_locked) 2689 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2690 2691 handle_result: 2692 switch (result) { 2693 case SCAN_SUCCEED: 2694 case SCAN_PMD_MAPPED: 2695 ++thps; 2696 break; 2697 case SCAN_PTE_MAPPED_HUGEPAGE: 2698 BUG_ON(mmap_locked); 2699 BUG_ON(*prev); 2700 mmap_write_lock(mm); 2701 result = collapse_pte_mapped_thp(mm, addr, true); 2702 mmap_write_unlock(mm); 2703 goto handle_result; 2704 /* Whitelisted set of results where continuing OK */ 2705 case SCAN_PMD_NULL: 2706 case SCAN_PTE_NON_PRESENT: 2707 case SCAN_PTE_UFFD_WP: 2708 case SCAN_PAGE_RO: 2709 case SCAN_LACK_REFERENCED_PAGE: 2710 case SCAN_PAGE_NULL: 2711 case SCAN_PAGE_COUNT: 2712 case SCAN_PAGE_LOCK: 2713 case SCAN_PAGE_COMPOUND: 2714 case SCAN_PAGE_LRU: 2715 case SCAN_DEL_PAGE_LRU: 2716 last_fail = result; 2717 break; 2718 default: 2719 last_fail = result; 2720 /* Other error, exit */ 2721 goto out_maybelock; 2722 } 2723 } 2724 2725 out_maybelock: 2726 /* Caller expects us to hold mmap_lock on return */ 2727 if (!mmap_locked) 2728 mmap_read_lock(mm); 2729 out_nolock: 2730 mmap_assert_locked(mm); 2731 mmdrop(mm); 2732 kfree(cc); 2733 2734 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2735 : madvise_collapse_errno(last_fail); 2736 } 2737