xref: /openbmc/linux/mm/khugepaged.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27 
28 enum scan_result {
29 	SCAN_FAIL,
30 	SCAN_SUCCEED,
31 	SCAN_PMD_NULL,
32 	SCAN_PMD_NONE,
33 	SCAN_PMD_MAPPED,
34 	SCAN_EXCEED_NONE_PTE,
35 	SCAN_EXCEED_SWAP_PTE,
36 	SCAN_EXCEED_SHARED_PTE,
37 	SCAN_PTE_NON_PRESENT,
38 	SCAN_PTE_UFFD_WP,
39 	SCAN_PTE_MAPPED_HUGEPAGE,
40 	SCAN_PAGE_RO,
41 	SCAN_LACK_REFERENCED_PAGE,
42 	SCAN_PAGE_NULL,
43 	SCAN_SCAN_ABORT,
44 	SCAN_PAGE_COUNT,
45 	SCAN_PAGE_LRU,
46 	SCAN_PAGE_LOCK,
47 	SCAN_PAGE_ANON,
48 	SCAN_PAGE_COMPOUND,
49 	SCAN_ANY_PROCESS,
50 	SCAN_VMA_NULL,
51 	SCAN_VMA_CHECK,
52 	SCAN_ADDRESS_RANGE,
53 	SCAN_DEL_PAGE_LRU,
54 	SCAN_ALLOC_HUGE_PAGE_FAIL,
55 	SCAN_CGROUP_CHARGE_FAIL,
56 	SCAN_TRUNCATED,
57 	SCAN_PAGE_HAS_PRIVATE,
58 };
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62 
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65 
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77  * default collapse hugepages if there is at least one pte mapped like
78  * it would have happened if the vma was large enough during page
79  * fault.
80  *
81  * Note that these are only respected if collapse was initiated by khugepaged.
82  */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86 
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89 
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91 
92 #define MAX_PTE_MAPPED_THP 8
93 
94 struct collapse_control {
95 	bool is_khugepaged;
96 
97 	/* Num pages scanned per node */
98 	u32 node_load[MAX_NUMNODES];
99 
100 	/* nodemask for allocation fallback */
101 	nodemask_t alloc_nmask;
102 };
103 
104 /**
105  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106  * @slot: hash lookup from mm to mm_slot
107  * @nr_pte_mapped_thp: number of pte mapped THP
108  * @pte_mapped_thp: address array corresponding pte mapped THP
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 
113 	/* pte-mapped THP in this mm */
114 	int nr_pte_mapped_thp;
115 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117 
118 /**
119  * struct khugepaged_scan - cursor for scanning
120  * @mm_head: the head of the mm list to scan
121  * @mm_slot: the current mm_slot we are scanning
122  * @address: the next address inside that to be scanned
123  *
124  * There is only the one khugepaged_scan instance of this cursor structure.
125  */
126 struct khugepaged_scan {
127 	struct list_head mm_head;
128 	struct khugepaged_mm_slot *mm_slot;
129 	unsigned long address;
130 };
131 
132 static struct khugepaged_scan khugepaged_scan = {
133 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135 
136 #ifdef CONFIG_SYSFS
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138 					 struct kobj_attribute *attr,
139 					 char *buf)
140 {
141 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143 
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145 					  struct kobj_attribute *attr,
146 					  const char *buf, size_t count)
147 {
148 	unsigned int msecs;
149 	int err;
150 
151 	err = kstrtouint(buf, 10, &msecs);
152 	if (err)
153 		return -EINVAL;
154 
155 	khugepaged_scan_sleep_millisecs = msecs;
156 	khugepaged_sleep_expire = 0;
157 	wake_up_interruptible(&khugepaged_wait);
158 
159 	return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162 	__ATTR_RW(scan_sleep_millisecs);
163 
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165 					  struct kobj_attribute *attr,
166 					  char *buf)
167 {
168 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170 
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172 					   struct kobj_attribute *attr,
173 					   const char *buf, size_t count)
174 {
175 	unsigned int msecs;
176 	int err;
177 
178 	err = kstrtouint(buf, 10, &msecs);
179 	if (err)
180 		return -EINVAL;
181 
182 	khugepaged_alloc_sleep_millisecs = msecs;
183 	khugepaged_sleep_expire = 0;
184 	wake_up_interruptible(&khugepaged_wait);
185 
186 	return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189 	__ATTR_RW(alloc_sleep_millisecs);
190 
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192 				  struct kobj_attribute *attr,
193 				  char *buf)
194 {
195 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198 				   struct kobj_attribute *attr,
199 				   const char *buf, size_t count)
200 {
201 	unsigned int pages;
202 	int err;
203 
204 	err = kstrtouint(buf, 10, &pages);
205 	if (err || !pages)
206 		return -EINVAL;
207 
208 	khugepaged_pages_to_scan = pages;
209 
210 	return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213 	__ATTR_RW(pages_to_scan);
214 
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216 				    struct kobj_attribute *attr,
217 				    char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222 	__ATTR_RO(pages_collapsed);
223 
224 static ssize_t full_scans_show(struct kobject *kobj,
225 			       struct kobj_attribute *attr,
226 			       char *buf)
227 {
228 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231 	__ATTR_RO(full_scans);
232 
233 static ssize_t defrag_show(struct kobject *kobj,
234 			   struct kobj_attribute *attr, char *buf)
235 {
236 	return single_hugepage_flag_show(kobj, attr, buf,
237 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
239 static ssize_t defrag_store(struct kobject *kobj,
240 			    struct kobj_attribute *attr,
241 			    const char *buf, size_t count)
242 {
243 	return single_hugepage_flag_store(kobj, attr, buf, count,
244 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247 	__ATTR_RW(defrag);
248 
249 /*
250  * max_ptes_none controls if khugepaged should collapse hugepages over
251  * any unmapped ptes in turn potentially increasing the memory
252  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253  * reduce the available free memory in the system as it
254  * runs. Increasing max_ptes_none will instead potentially reduce the
255  * free memory in the system during the khugepaged scan.
256  */
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258 				  struct kobj_attribute *attr,
259 				  char *buf)
260 {
261 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264 				   struct kobj_attribute *attr,
265 				   const char *buf, size_t count)
266 {
267 	int err;
268 	unsigned long max_ptes_none;
269 
270 	err = kstrtoul(buf, 10, &max_ptes_none);
271 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272 		return -EINVAL;
273 
274 	khugepaged_max_ptes_none = max_ptes_none;
275 
276 	return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279 	__ATTR_RW(max_ptes_none);
280 
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282 				  struct kobj_attribute *attr,
283 				  char *buf)
284 {
285 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287 
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289 				   struct kobj_attribute *attr,
290 				   const char *buf, size_t count)
291 {
292 	int err;
293 	unsigned long max_ptes_swap;
294 
295 	err  = kstrtoul(buf, 10, &max_ptes_swap);
296 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297 		return -EINVAL;
298 
299 	khugepaged_max_ptes_swap = max_ptes_swap;
300 
301 	return count;
302 }
303 
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305 	__ATTR_RW(max_ptes_swap);
306 
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308 				    struct kobj_attribute *attr,
309 				    char *buf)
310 {
311 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313 
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315 				     struct kobj_attribute *attr,
316 				     const char *buf, size_t count)
317 {
318 	int err;
319 	unsigned long max_ptes_shared;
320 
321 	err  = kstrtoul(buf, 10, &max_ptes_shared);
322 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323 		return -EINVAL;
324 
325 	khugepaged_max_ptes_shared = max_ptes_shared;
326 
327 	return count;
328 }
329 
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331 	__ATTR_RW(max_ptes_shared);
332 
333 static struct attribute *khugepaged_attr[] = {
334 	&khugepaged_defrag_attr.attr,
335 	&khugepaged_max_ptes_none_attr.attr,
336 	&khugepaged_max_ptes_swap_attr.attr,
337 	&khugepaged_max_ptes_shared_attr.attr,
338 	&pages_to_scan_attr.attr,
339 	&pages_collapsed_attr.attr,
340 	&full_scans_attr.attr,
341 	&scan_sleep_millisecs_attr.attr,
342 	&alloc_sleep_millisecs_attr.attr,
343 	NULL,
344 };
345 
346 struct attribute_group khugepaged_attr_group = {
347 	.attrs = khugepaged_attr,
348 	.name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351 
352 int hugepage_madvise(struct vm_area_struct *vma,
353 		     unsigned long *vm_flags, int advice)
354 {
355 	switch (advice) {
356 	case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358 		/*
359 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360 		 * can't handle this properly after s390_enable_sie, so we simply
361 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
362 		 */
363 		if (mm_has_pgste(vma->vm_mm))
364 			return 0;
365 #endif
366 		*vm_flags &= ~VM_NOHUGEPAGE;
367 		*vm_flags |= VM_HUGEPAGE;
368 		/*
369 		 * If the vma become good for khugepaged to scan,
370 		 * register it here without waiting a page fault that
371 		 * may not happen any time soon.
372 		 */
373 		khugepaged_enter_vma(vma, *vm_flags);
374 		break;
375 	case MADV_NOHUGEPAGE:
376 		*vm_flags &= ~VM_HUGEPAGE;
377 		*vm_flags |= VM_NOHUGEPAGE;
378 		/*
379 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380 		 * this vma even if we leave the mm registered in khugepaged if
381 		 * it got registered before VM_NOHUGEPAGE was set.
382 		 */
383 		break;
384 	}
385 
386 	return 0;
387 }
388 
389 int __init khugepaged_init(void)
390 {
391 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392 					  sizeof(struct khugepaged_mm_slot),
393 					  __alignof__(struct khugepaged_mm_slot),
394 					  0, NULL);
395 	if (!mm_slot_cache)
396 		return -ENOMEM;
397 
398 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 
403 	return 0;
404 }
405 
406 void __init khugepaged_destroy(void)
407 {
408 	kmem_cache_destroy(mm_slot_cache);
409 }
410 
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413 	return atomic_read(&mm->mm_users) == 0;
414 }
415 
416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418 	struct khugepaged_mm_slot *mm_slot;
419 	struct mm_slot *slot;
420 	int wakeup;
421 
422 	mm_slot = mm_slot_alloc(mm_slot_cache);
423 	if (!mm_slot)
424 		return;
425 
426 	slot = &mm_slot->slot;
427 
428 	/* __khugepaged_exit() must not run from under us */
429 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431 		mm_slot_free(mm_slot_cache, mm_slot);
432 		return;
433 	}
434 
435 	spin_lock(&khugepaged_mm_lock);
436 	mm_slot_insert(mm_slots_hash, mm, slot);
437 	/*
438 	 * Insert just behind the scanning cursor, to let the area settle
439 	 * down a little.
440 	 */
441 	wakeup = list_empty(&khugepaged_scan.mm_head);
442 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443 	spin_unlock(&khugepaged_mm_lock);
444 
445 	mmgrab(mm);
446 	if (wakeup)
447 		wake_up_interruptible(&khugepaged_wait);
448 }
449 
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451 			  unsigned long vm_flags)
452 {
453 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454 	    hugepage_flags_enabled()) {
455 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
456 			__khugepaged_enter(vma->vm_mm);
457 	}
458 }
459 
460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462 	struct khugepaged_mm_slot *mm_slot;
463 	struct mm_slot *slot;
464 	int free = 0;
465 
466 	spin_lock(&khugepaged_mm_lock);
467 	slot = mm_slot_lookup(mm_slots_hash, mm);
468 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470 		hash_del(&slot->hash);
471 		list_del(&slot->mm_node);
472 		free = 1;
473 	}
474 	spin_unlock(&khugepaged_mm_lock);
475 
476 	if (free) {
477 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478 		mm_slot_free(mm_slot_cache, mm_slot);
479 		mmdrop(mm);
480 	} else if (mm_slot) {
481 		/*
482 		 * This is required to serialize against
483 		 * hpage_collapse_test_exit() (which is guaranteed to run
484 		 * under mmap sem read mode). Stop here (after we return all
485 		 * pagetables will be destroyed) until khugepaged has finished
486 		 * working on the pagetables under the mmap_lock.
487 		 */
488 		mmap_write_lock(mm);
489 		mmap_write_unlock(mm);
490 	}
491 }
492 
493 static void release_pte_page(struct page *page)
494 {
495 	mod_node_page_state(page_pgdat(page),
496 			NR_ISOLATED_ANON + page_is_file_lru(page),
497 			-compound_nr(page));
498 	unlock_page(page);
499 	putback_lru_page(page);
500 }
501 
502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503 		struct list_head *compound_pagelist)
504 {
505 	struct page *page, *tmp;
506 
507 	while (--_pte >= pte) {
508 		pte_t pteval = *_pte;
509 
510 		page = pte_page(pteval);
511 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
512 				!PageCompound(page))
513 			release_pte_page(page);
514 	}
515 
516 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517 		list_del(&page->lru);
518 		release_pte_page(page);
519 	}
520 }
521 
522 static bool is_refcount_suitable(struct page *page)
523 {
524 	int expected_refcount;
525 
526 	expected_refcount = total_mapcount(page);
527 	if (PageSwapCache(page))
528 		expected_refcount += compound_nr(page);
529 
530 	return page_count(page) == expected_refcount;
531 }
532 
533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534 					unsigned long address,
535 					pte_t *pte,
536 					struct collapse_control *cc,
537 					struct list_head *compound_pagelist)
538 {
539 	struct page *page = NULL;
540 	pte_t *_pte;
541 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542 	bool writable = false;
543 
544 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545 	     _pte++, address += PAGE_SIZE) {
546 		pte_t pteval = *_pte;
547 		if (pte_none(pteval) || (pte_present(pteval) &&
548 				is_zero_pfn(pte_pfn(pteval)))) {
549 			++none_or_zero;
550 			if (!userfaultfd_armed(vma) &&
551 			    (!cc->is_khugepaged ||
552 			     none_or_zero <= khugepaged_max_ptes_none)) {
553 				continue;
554 			} else {
555 				result = SCAN_EXCEED_NONE_PTE;
556 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
557 				goto out;
558 			}
559 		}
560 		if (!pte_present(pteval)) {
561 			result = SCAN_PTE_NON_PRESENT;
562 			goto out;
563 		}
564 		page = vm_normal_page(vma, address, pteval);
565 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
566 			result = SCAN_PAGE_NULL;
567 			goto out;
568 		}
569 
570 		VM_BUG_ON_PAGE(!PageAnon(page), page);
571 
572 		if (page_mapcount(page) > 1) {
573 			++shared;
574 			if (cc->is_khugepaged &&
575 			    shared > khugepaged_max_ptes_shared) {
576 				result = SCAN_EXCEED_SHARED_PTE;
577 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
578 				goto out;
579 			}
580 		}
581 
582 		if (PageCompound(page)) {
583 			struct page *p;
584 			page = compound_head(page);
585 
586 			/*
587 			 * Check if we have dealt with the compound page
588 			 * already
589 			 */
590 			list_for_each_entry(p, compound_pagelist, lru) {
591 				if (page == p)
592 					goto next;
593 			}
594 		}
595 
596 		/*
597 		 * We can do it before isolate_lru_page because the
598 		 * page can't be freed from under us. NOTE: PG_lock
599 		 * is needed to serialize against split_huge_page
600 		 * when invoked from the VM.
601 		 */
602 		if (!trylock_page(page)) {
603 			result = SCAN_PAGE_LOCK;
604 			goto out;
605 		}
606 
607 		/*
608 		 * Check if the page has any GUP (or other external) pins.
609 		 *
610 		 * The page table that maps the page has been already unlinked
611 		 * from the page table tree and this process cannot get
612 		 * an additional pin on the page.
613 		 *
614 		 * New pins can come later if the page is shared across fork,
615 		 * but not from this process. The other process cannot write to
616 		 * the page, only trigger CoW.
617 		 */
618 		if (!is_refcount_suitable(page)) {
619 			unlock_page(page);
620 			result = SCAN_PAGE_COUNT;
621 			goto out;
622 		}
623 
624 		/*
625 		 * Isolate the page to avoid collapsing an hugepage
626 		 * currently in use by the VM.
627 		 */
628 		if (isolate_lru_page(page)) {
629 			unlock_page(page);
630 			result = SCAN_DEL_PAGE_LRU;
631 			goto out;
632 		}
633 		mod_node_page_state(page_pgdat(page),
634 				NR_ISOLATED_ANON + page_is_file_lru(page),
635 				compound_nr(page));
636 		VM_BUG_ON_PAGE(!PageLocked(page), page);
637 		VM_BUG_ON_PAGE(PageLRU(page), page);
638 
639 		if (PageCompound(page))
640 			list_add_tail(&page->lru, compound_pagelist);
641 next:
642 		/*
643 		 * If collapse was initiated by khugepaged, check that there is
644 		 * enough young pte to justify collapsing the page
645 		 */
646 		if (cc->is_khugepaged &&
647 		    (pte_young(pteval) || page_is_young(page) ||
648 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
649 								     address)))
650 			referenced++;
651 
652 		if (pte_write(pteval))
653 			writable = true;
654 	}
655 
656 	if (unlikely(!writable)) {
657 		result = SCAN_PAGE_RO;
658 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
659 		result = SCAN_LACK_REFERENCED_PAGE;
660 	} else {
661 		result = SCAN_SUCCEED;
662 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
663 						    referenced, writable, result);
664 		return result;
665 	}
666 out:
667 	release_pte_pages(pte, _pte, compound_pagelist);
668 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
669 					    referenced, writable, result);
670 	return result;
671 }
672 
673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
674 				      struct vm_area_struct *vma,
675 				      unsigned long address,
676 				      spinlock_t *ptl,
677 				      struct list_head *compound_pagelist)
678 {
679 	struct page *src_page, *tmp;
680 	pte_t *_pte;
681 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
682 				_pte++, page++, address += PAGE_SIZE) {
683 		pte_t pteval = *_pte;
684 
685 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
686 			clear_user_highpage(page, address);
687 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688 			if (is_zero_pfn(pte_pfn(pteval))) {
689 				/*
690 				 * ptl mostly unnecessary.
691 				 */
692 				spin_lock(ptl);
693 				ptep_clear(vma->vm_mm, address, _pte);
694 				spin_unlock(ptl);
695 			}
696 		} else {
697 			src_page = pte_page(pteval);
698 			copy_user_highpage(page, src_page, address, vma);
699 			if (!PageCompound(src_page))
700 				release_pte_page(src_page);
701 			/*
702 			 * ptl mostly unnecessary, but preempt has to
703 			 * be disabled to update the per-cpu stats
704 			 * inside page_remove_rmap().
705 			 */
706 			spin_lock(ptl);
707 			ptep_clear(vma->vm_mm, address, _pte);
708 			page_remove_rmap(src_page, vma, false);
709 			spin_unlock(ptl);
710 			free_page_and_swap_cache(src_page);
711 		}
712 	}
713 
714 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
715 		list_del(&src_page->lru);
716 		mod_node_page_state(page_pgdat(src_page),
717 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
718 				    -compound_nr(src_page));
719 		unlock_page(src_page);
720 		free_swap_cache(src_page);
721 		putback_lru_page(src_page);
722 	}
723 }
724 
725 static void khugepaged_alloc_sleep(void)
726 {
727 	DEFINE_WAIT(wait);
728 
729 	add_wait_queue(&khugepaged_wait, &wait);
730 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
731 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
732 	remove_wait_queue(&khugepaged_wait, &wait);
733 }
734 
735 struct collapse_control khugepaged_collapse_control = {
736 	.is_khugepaged = true,
737 };
738 
739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
740 {
741 	int i;
742 
743 	/*
744 	 * If node_reclaim_mode is disabled, then no extra effort is made to
745 	 * allocate memory locally.
746 	 */
747 	if (!node_reclaim_enabled())
748 		return false;
749 
750 	/* If there is a count for this node already, it must be acceptable */
751 	if (cc->node_load[nid])
752 		return false;
753 
754 	for (i = 0; i < MAX_NUMNODES; i++) {
755 		if (!cc->node_load[i])
756 			continue;
757 		if (node_distance(nid, i) > node_reclaim_distance)
758 			return true;
759 	}
760 	return false;
761 }
762 
763 #define khugepaged_defrag()					\
764 	(transparent_hugepage_flags &				\
765 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
766 
767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
769 {
770 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
771 }
772 
773 #ifdef CONFIG_NUMA
774 static int hpage_collapse_find_target_node(struct collapse_control *cc)
775 {
776 	int nid, target_node = 0, max_value = 0;
777 
778 	/* find first node with max normal pages hit */
779 	for (nid = 0; nid < MAX_NUMNODES; nid++)
780 		if (cc->node_load[nid] > max_value) {
781 			max_value = cc->node_load[nid];
782 			target_node = nid;
783 		}
784 
785 	for_each_online_node(nid) {
786 		if (max_value == cc->node_load[nid])
787 			node_set(nid, cc->alloc_nmask);
788 	}
789 
790 	return target_node;
791 }
792 #else
793 static int hpage_collapse_find_target_node(struct collapse_control *cc)
794 {
795 	return 0;
796 }
797 #endif
798 
799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
800 				      nodemask_t *nmask)
801 {
802 	*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
803 	if (unlikely(!*hpage)) {
804 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
805 		return false;
806 	}
807 
808 	prep_transhuge_page(*hpage);
809 	count_vm_event(THP_COLLAPSE_ALLOC);
810 	return true;
811 }
812 
813 /*
814  * If mmap_lock temporarily dropped, revalidate vma
815  * before taking mmap_lock.
816  * Returns enum scan_result value.
817  */
818 
819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
820 				   bool expect_anon,
821 				   struct vm_area_struct **vmap,
822 				   struct collapse_control *cc)
823 {
824 	struct vm_area_struct *vma;
825 
826 	if (unlikely(hpage_collapse_test_exit(mm)))
827 		return SCAN_ANY_PROCESS;
828 
829 	*vmap = vma = find_vma(mm, address);
830 	if (!vma)
831 		return SCAN_VMA_NULL;
832 
833 	if (!transhuge_vma_suitable(vma, address))
834 		return SCAN_ADDRESS_RANGE;
835 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
836 				cc->is_khugepaged))
837 		return SCAN_VMA_CHECK;
838 	/*
839 	 * Anon VMA expected, the address may be unmapped then
840 	 * remapped to file after khugepaged reaquired the mmap_lock.
841 	 *
842 	 * hugepage_vma_check may return true for qualified file
843 	 * vmas.
844 	 */
845 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
846 		return SCAN_PAGE_ANON;
847 	return SCAN_SUCCEED;
848 }
849 
850 /*
851  * See pmd_trans_unstable() for how the result may change out from
852  * underneath us, even if we hold mmap_lock in read.
853  */
854 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
855 				   unsigned long address,
856 				   pmd_t **pmd)
857 {
858 	pmd_t pmde;
859 
860 	*pmd = mm_find_pmd(mm, address);
861 	if (!*pmd)
862 		return SCAN_PMD_NULL;
863 
864 	pmde = pmdp_get_lockless(*pmd);
865 
866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
867 	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
868 	barrier();
869 #endif
870 	if (pmd_none(pmde))
871 		return SCAN_PMD_NONE;
872 	if (!pmd_present(pmde))
873 		return SCAN_PMD_NULL;
874 	if (pmd_trans_huge(pmde))
875 		return SCAN_PMD_MAPPED;
876 	if (pmd_devmap(pmde))
877 		return SCAN_PMD_NULL;
878 	if (pmd_bad(pmde))
879 		return SCAN_PMD_NULL;
880 	return SCAN_SUCCEED;
881 }
882 
883 static int check_pmd_still_valid(struct mm_struct *mm,
884 				 unsigned long address,
885 				 pmd_t *pmd)
886 {
887 	pmd_t *new_pmd;
888 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
889 
890 	if (result != SCAN_SUCCEED)
891 		return result;
892 	if (new_pmd != pmd)
893 		return SCAN_FAIL;
894 	return SCAN_SUCCEED;
895 }
896 
897 /*
898  * Bring missing pages in from swap, to complete THP collapse.
899  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
900  *
901  * Called and returns without pte mapped or spinlocks held.
902  * Note that if false is returned, mmap_lock will be released.
903  */
904 
905 static int __collapse_huge_page_swapin(struct mm_struct *mm,
906 				       struct vm_area_struct *vma,
907 				       unsigned long haddr, pmd_t *pmd,
908 				       int referenced)
909 {
910 	int swapped_in = 0;
911 	vm_fault_t ret = 0;
912 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
913 
914 	for (address = haddr; address < end; address += PAGE_SIZE) {
915 		struct vm_fault vmf = {
916 			.vma = vma,
917 			.address = address,
918 			.pgoff = linear_page_index(vma, haddr),
919 			.flags = FAULT_FLAG_ALLOW_RETRY,
920 			.pmd = pmd,
921 		};
922 
923 		vmf.pte = pte_offset_map(pmd, address);
924 		vmf.orig_pte = *vmf.pte;
925 		if (!is_swap_pte(vmf.orig_pte)) {
926 			pte_unmap(vmf.pte);
927 			continue;
928 		}
929 		ret = do_swap_page(&vmf);
930 
931 		/*
932 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
933 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
934 		 * we do not retry here and swap entry will remain in pagetable
935 		 * resulting in later failure.
936 		 */
937 		if (ret & VM_FAULT_RETRY) {
938 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
939 			/* Likely, but not guaranteed, that page lock failed */
940 			return SCAN_PAGE_LOCK;
941 		}
942 		if (ret & VM_FAULT_ERROR) {
943 			mmap_read_unlock(mm);
944 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
945 			return SCAN_FAIL;
946 		}
947 		swapped_in++;
948 	}
949 
950 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
951 	if (swapped_in)
952 		lru_add_drain();
953 
954 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
955 	return SCAN_SUCCEED;
956 }
957 
958 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
959 			      struct collapse_control *cc)
960 {
961 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
962 		     GFP_TRANSHUGE);
963 	int node = hpage_collapse_find_target_node(cc);
964 
965 	if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
966 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
967 	if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
968 		return SCAN_CGROUP_CHARGE_FAIL;
969 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
970 	return SCAN_SUCCEED;
971 }
972 
973 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
974 			      int referenced, int unmapped,
975 			      struct collapse_control *cc)
976 {
977 	LIST_HEAD(compound_pagelist);
978 	pmd_t *pmd, _pmd;
979 	pte_t *pte;
980 	pgtable_t pgtable;
981 	struct page *hpage;
982 	spinlock_t *pmd_ptl, *pte_ptl;
983 	int result = SCAN_FAIL;
984 	struct vm_area_struct *vma;
985 	struct mmu_notifier_range range;
986 
987 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
988 
989 	/*
990 	 * Before allocating the hugepage, release the mmap_lock read lock.
991 	 * The allocation can take potentially a long time if it involves
992 	 * sync compaction, and we do not need to hold the mmap_lock during
993 	 * that. We will recheck the vma after taking it again in write mode.
994 	 */
995 	mmap_read_unlock(mm);
996 
997 	result = alloc_charge_hpage(&hpage, mm, cc);
998 	if (result != SCAN_SUCCEED)
999 		goto out_nolock;
1000 
1001 	mmap_read_lock(mm);
1002 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1003 	if (result != SCAN_SUCCEED) {
1004 		mmap_read_unlock(mm);
1005 		goto out_nolock;
1006 	}
1007 
1008 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1009 	if (result != SCAN_SUCCEED) {
1010 		mmap_read_unlock(mm);
1011 		goto out_nolock;
1012 	}
1013 
1014 	if (unmapped) {
1015 		/*
1016 		 * __collapse_huge_page_swapin will return with mmap_lock
1017 		 * released when it fails. So we jump out_nolock directly in
1018 		 * that case.  Continuing to collapse causes inconsistency.
1019 		 */
1020 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1021 						     referenced);
1022 		if (result != SCAN_SUCCEED)
1023 			goto out_nolock;
1024 	}
1025 
1026 	mmap_read_unlock(mm);
1027 	/*
1028 	 * Prevent all access to pagetables with the exception of
1029 	 * gup_fast later handled by the ptep_clear_flush and the VM
1030 	 * handled by the anon_vma lock + PG_lock.
1031 	 */
1032 	mmap_write_lock(mm);
1033 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1034 	if (result != SCAN_SUCCEED)
1035 		goto out_up_write;
1036 	/* check if the pmd is still valid */
1037 	result = check_pmd_still_valid(mm, address, pmd);
1038 	if (result != SCAN_SUCCEED)
1039 		goto out_up_write;
1040 
1041 	anon_vma_lock_write(vma->anon_vma);
1042 
1043 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1044 				address, address + HPAGE_PMD_SIZE);
1045 	mmu_notifier_invalidate_range_start(&range);
1046 
1047 	pte = pte_offset_map(pmd, address);
1048 	pte_ptl = pte_lockptr(mm, pmd);
1049 
1050 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1051 	/*
1052 	 * This removes any huge TLB entry from the CPU so we won't allow
1053 	 * huge and small TLB entries for the same virtual address to
1054 	 * avoid the risk of CPU bugs in that area.
1055 	 *
1056 	 * Parallel fast GUP is fine since fast GUP will back off when
1057 	 * it detects PMD is changed.
1058 	 */
1059 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1060 	spin_unlock(pmd_ptl);
1061 	mmu_notifier_invalidate_range_end(&range);
1062 	tlb_remove_table_sync_one();
1063 
1064 	spin_lock(pte_ptl);
1065 	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1066 					       &compound_pagelist);
1067 	spin_unlock(pte_ptl);
1068 
1069 	if (unlikely(result != SCAN_SUCCEED)) {
1070 		pte_unmap(pte);
1071 		spin_lock(pmd_ptl);
1072 		BUG_ON(!pmd_none(*pmd));
1073 		/*
1074 		 * We can only use set_pmd_at when establishing
1075 		 * hugepmds and never for establishing regular pmds that
1076 		 * points to regular pagetables. Use pmd_populate for that
1077 		 */
1078 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1079 		spin_unlock(pmd_ptl);
1080 		anon_vma_unlock_write(vma->anon_vma);
1081 		goto out_up_write;
1082 	}
1083 
1084 	/*
1085 	 * All pages are isolated and locked so anon_vma rmap
1086 	 * can't run anymore.
1087 	 */
1088 	anon_vma_unlock_write(vma->anon_vma);
1089 
1090 	__collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1091 				  &compound_pagelist);
1092 	pte_unmap(pte);
1093 	/*
1094 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1095 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1096 	 * avoid the copy_huge_page writes to become visible after
1097 	 * the set_pmd_at() write.
1098 	 */
1099 	__SetPageUptodate(hpage);
1100 	pgtable = pmd_pgtable(_pmd);
1101 
1102 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1103 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1104 
1105 	spin_lock(pmd_ptl);
1106 	BUG_ON(!pmd_none(*pmd));
1107 	page_add_new_anon_rmap(hpage, vma, address);
1108 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1109 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1110 	set_pmd_at(mm, address, pmd, _pmd);
1111 	update_mmu_cache_pmd(vma, address, pmd);
1112 	spin_unlock(pmd_ptl);
1113 
1114 	hpage = NULL;
1115 
1116 	result = SCAN_SUCCEED;
1117 out_up_write:
1118 	mmap_write_unlock(mm);
1119 out_nolock:
1120 	if (hpage) {
1121 		mem_cgroup_uncharge(page_folio(hpage));
1122 		put_page(hpage);
1123 	}
1124 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1125 	return result;
1126 }
1127 
1128 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1129 				   struct vm_area_struct *vma,
1130 				   unsigned long address, bool *mmap_locked,
1131 				   struct collapse_control *cc)
1132 {
1133 	pmd_t *pmd;
1134 	pte_t *pte, *_pte;
1135 	int result = SCAN_FAIL, referenced = 0;
1136 	int none_or_zero = 0, shared = 0;
1137 	struct page *page = NULL;
1138 	unsigned long _address;
1139 	spinlock_t *ptl;
1140 	int node = NUMA_NO_NODE, unmapped = 0;
1141 	bool writable = false;
1142 
1143 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1144 
1145 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1146 	if (result != SCAN_SUCCEED)
1147 		goto out;
1148 
1149 	memset(cc->node_load, 0, sizeof(cc->node_load));
1150 	nodes_clear(cc->alloc_nmask);
1151 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1152 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1153 	     _pte++, _address += PAGE_SIZE) {
1154 		pte_t pteval = *_pte;
1155 		if (is_swap_pte(pteval)) {
1156 			++unmapped;
1157 			if (!cc->is_khugepaged ||
1158 			    unmapped <= khugepaged_max_ptes_swap) {
1159 				/*
1160 				 * Always be strict with uffd-wp
1161 				 * enabled swap entries.  Please see
1162 				 * comment below for pte_uffd_wp().
1163 				 */
1164 				if (pte_swp_uffd_wp(pteval)) {
1165 					result = SCAN_PTE_UFFD_WP;
1166 					goto out_unmap;
1167 				}
1168 				continue;
1169 			} else {
1170 				result = SCAN_EXCEED_SWAP_PTE;
1171 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1172 				goto out_unmap;
1173 			}
1174 		}
1175 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1176 			++none_or_zero;
1177 			if (!userfaultfd_armed(vma) &&
1178 			    (!cc->is_khugepaged ||
1179 			     none_or_zero <= khugepaged_max_ptes_none)) {
1180 				continue;
1181 			} else {
1182 				result = SCAN_EXCEED_NONE_PTE;
1183 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1184 				goto out_unmap;
1185 			}
1186 		}
1187 		if (pte_uffd_wp(pteval)) {
1188 			/*
1189 			 * Don't collapse the page if any of the small
1190 			 * PTEs are armed with uffd write protection.
1191 			 * Here we can also mark the new huge pmd as
1192 			 * write protected if any of the small ones is
1193 			 * marked but that could bring unknown
1194 			 * userfault messages that falls outside of
1195 			 * the registered range.  So, just be simple.
1196 			 */
1197 			result = SCAN_PTE_UFFD_WP;
1198 			goto out_unmap;
1199 		}
1200 		if (pte_write(pteval))
1201 			writable = true;
1202 
1203 		page = vm_normal_page(vma, _address, pteval);
1204 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1205 			result = SCAN_PAGE_NULL;
1206 			goto out_unmap;
1207 		}
1208 
1209 		if (page_mapcount(page) > 1) {
1210 			++shared;
1211 			if (cc->is_khugepaged &&
1212 			    shared > khugepaged_max_ptes_shared) {
1213 				result = SCAN_EXCEED_SHARED_PTE;
1214 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1215 				goto out_unmap;
1216 			}
1217 		}
1218 
1219 		page = compound_head(page);
1220 
1221 		/*
1222 		 * Record which node the original page is from and save this
1223 		 * information to cc->node_load[].
1224 		 * Khugepaged will allocate hugepage from the node has the max
1225 		 * hit record.
1226 		 */
1227 		node = page_to_nid(page);
1228 		if (hpage_collapse_scan_abort(node, cc)) {
1229 			result = SCAN_SCAN_ABORT;
1230 			goto out_unmap;
1231 		}
1232 		cc->node_load[node]++;
1233 		if (!PageLRU(page)) {
1234 			result = SCAN_PAGE_LRU;
1235 			goto out_unmap;
1236 		}
1237 		if (PageLocked(page)) {
1238 			result = SCAN_PAGE_LOCK;
1239 			goto out_unmap;
1240 		}
1241 		if (!PageAnon(page)) {
1242 			result = SCAN_PAGE_ANON;
1243 			goto out_unmap;
1244 		}
1245 
1246 		/*
1247 		 * Check if the page has any GUP (or other external) pins.
1248 		 *
1249 		 * Here the check may be racy:
1250 		 * it may see total_mapcount > refcount in some cases?
1251 		 * But such case is ephemeral we could always retry collapse
1252 		 * later.  However it may report false positive if the page
1253 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1254 		 * will be done again later the risk seems low.
1255 		 */
1256 		if (!is_refcount_suitable(page)) {
1257 			result = SCAN_PAGE_COUNT;
1258 			goto out_unmap;
1259 		}
1260 
1261 		/*
1262 		 * If collapse was initiated by khugepaged, check that there is
1263 		 * enough young pte to justify collapsing the page
1264 		 */
1265 		if (cc->is_khugepaged &&
1266 		    (pte_young(pteval) || page_is_young(page) ||
1267 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1268 								     address)))
1269 			referenced++;
1270 	}
1271 	if (!writable) {
1272 		result = SCAN_PAGE_RO;
1273 	} else if (cc->is_khugepaged &&
1274 		   (!referenced ||
1275 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1276 		result = SCAN_LACK_REFERENCED_PAGE;
1277 	} else {
1278 		result = SCAN_SUCCEED;
1279 	}
1280 out_unmap:
1281 	pte_unmap_unlock(pte, ptl);
1282 	if (result == SCAN_SUCCEED) {
1283 		result = collapse_huge_page(mm, address, referenced,
1284 					    unmapped, cc);
1285 		/* collapse_huge_page will return with the mmap_lock released */
1286 		*mmap_locked = false;
1287 	}
1288 out:
1289 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1290 				     none_or_zero, result, unmapped);
1291 	return result;
1292 }
1293 
1294 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1295 {
1296 	struct mm_slot *slot = &mm_slot->slot;
1297 	struct mm_struct *mm = slot->mm;
1298 
1299 	lockdep_assert_held(&khugepaged_mm_lock);
1300 
1301 	if (hpage_collapse_test_exit(mm)) {
1302 		/* free mm_slot */
1303 		hash_del(&slot->hash);
1304 		list_del(&slot->mm_node);
1305 
1306 		/*
1307 		 * Not strictly needed because the mm exited already.
1308 		 *
1309 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1310 		 */
1311 
1312 		/* khugepaged_mm_lock actually not necessary for the below */
1313 		mm_slot_free(mm_slot_cache, mm_slot);
1314 		mmdrop(mm);
1315 	}
1316 }
1317 
1318 #ifdef CONFIG_SHMEM
1319 /*
1320  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1321  * khugepaged should try to collapse the page table.
1322  *
1323  * Note that following race exists:
1324  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1325  *     emptying the A's ->pte_mapped_thp[] array.
1326  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1327  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1328  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1329  *     ->pte-mapped_thp[] array.
1330  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1331  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1332  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1333  * Thus, it's possible the same address is added multiple times for the same
1334  * mm_struct.  Should this happen, we'll simply attempt
1335  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1336  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1337  * attempts will return quickly (without grabbing any additional locks) when
1338  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1339  * check, and since this is a rare occurrence, the cost of preventing this
1340  * "multiple-add" is thought to be more expensive than just handling it, should
1341  * it occur.
1342  */
1343 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1344 					  unsigned long addr)
1345 {
1346 	struct khugepaged_mm_slot *mm_slot;
1347 	struct mm_slot *slot;
1348 	bool ret = false;
1349 
1350 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1351 
1352 	spin_lock(&khugepaged_mm_lock);
1353 	slot = mm_slot_lookup(mm_slots_hash, mm);
1354 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1355 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1356 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1357 		ret = true;
1358 	}
1359 	spin_unlock(&khugepaged_mm_lock);
1360 	return ret;
1361 }
1362 
1363 /* hpage must be locked, and mmap_lock must be held in write */
1364 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1365 			pmd_t *pmdp, struct page *hpage)
1366 {
1367 	struct vm_fault vmf = {
1368 		.vma = vma,
1369 		.address = addr,
1370 		.flags = 0,
1371 		.pmd = pmdp,
1372 	};
1373 
1374 	VM_BUG_ON(!PageTransHuge(hpage));
1375 	mmap_assert_write_locked(vma->vm_mm);
1376 
1377 	if (do_set_pmd(&vmf, hpage))
1378 		return SCAN_FAIL;
1379 
1380 	get_page(hpage);
1381 	return SCAN_SUCCEED;
1382 }
1383 
1384 /*
1385  * A note about locking:
1386  * Trying to take the page table spinlocks would be useless here because those
1387  * are only used to synchronize:
1388  *
1389  *  - modifying terminal entries (ones that point to a data page, not to another
1390  *    page table)
1391  *  - installing *new* non-terminal entries
1392  *
1393  * Instead, we need roughly the same kind of protection as free_pgtables() or
1394  * mm_take_all_locks() (but only for a single VMA):
1395  * The mmap lock together with this VMA's rmap locks covers all paths towards
1396  * the page table entries we're messing with here, except for hardware page
1397  * table walks and lockless_pages_from_mm().
1398  */
1399 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1400 				  unsigned long addr, pmd_t *pmdp)
1401 {
1402 	pmd_t pmd;
1403 	struct mmu_notifier_range range;
1404 
1405 	mmap_assert_write_locked(mm);
1406 	if (vma->vm_file)
1407 		lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1408 	/*
1409 	 * All anon_vmas attached to the VMA have the same root and are
1410 	 * therefore locked by the same lock.
1411 	 */
1412 	if (vma->anon_vma)
1413 		lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1414 
1415 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr,
1416 				addr + HPAGE_PMD_SIZE);
1417 	mmu_notifier_invalidate_range_start(&range);
1418 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1419 	tlb_remove_table_sync_one();
1420 	mmu_notifier_invalidate_range_end(&range);
1421 	mm_dec_nr_ptes(mm);
1422 	page_table_check_pte_clear_range(mm, addr, pmd);
1423 	pte_free(mm, pmd_pgtable(pmd));
1424 }
1425 
1426 /**
1427  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1428  * address haddr.
1429  *
1430  * @mm: process address space where collapse happens
1431  * @addr: THP collapse address
1432  * @install_pmd: If a huge PMD should be installed
1433  *
1434  * This function checks whether all the PTEs in the PMD are pointing to the
1435  * right THP. If so, retract the page table so the THP can refault in with
1436  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1437  */
1438 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1439 			    bool install_pmd)
1440 {
1441 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1442 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1443 	struct page *hpage;
1444 	pte_t *start_pte, *pte;
1445 	pmd_t *pmd;
1446 	spinlock_t *ptl;
1447 	int count = 0, result = SCAN_FAIL;
1448 	int i;
1449 
1450 	mmap_assert_write_locked(mm);
1451 
1452 	/* Fast check before locking page if already PMD-mapped */
1453 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1454 	if (result == SCAN_PMD_MAPPED)
1455 		return result;
1456 
1457 	if (!vma || !vma->vm_file ||
1458 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1459 		return SCAN_VMA_CHECK;
1460 
1461 	/*
1462 	 * If we are here, we've succeeded in replacing all the native pages
1463 	 * in the page cache with a single hugepage. If a mm were to fault-in
1464 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1465 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1466 	 * analogously elide sysfs THP settings here.
1467 	 */
1468 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1469 		return SCAN_VMA_CHECK;
1470 
1471 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1472 	if (userfaultfd_wp(vma))
1473 		return SCAN_PTE_UFFD_WP;
1474 
1475 	hpage = find_lock_page(vma->vm_file->f_mapping,
1476 			       linear_page_index(vma, haddr));
1477 	if (!hpage)
1478 		return SCAN_PAGE_NULL;
1479 
1480 	if (!PageHead(hpage)) {
1481 		result = SCAN_FAIL;
1482 		goto drop_hpage;
1483 	}
1484 
1485 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1486 		result = SCAN_PAGE_COMPOUND;
1487 		goto drop_hpage;
1488 	}
1489 
1490 	switch (result) {
1491 	case SCAN_SUCCEED:
1492 		break;
1493 	case SCAN_PMD_NONE:
1494 		/*
1495 		 * In MADV_COLLAPSE path, possible race with khugepaged where
1496 		 * all pte entries have been removed and pmd cleared.  If so,
1497 		 * skip all the pte checks and just update the pmd mapping.
1498 		 */
1499 		goto maybe_install_pmd;
1500 	default:
1501 		goto drop_hpage;
1502 	}
1503 
1504 	/*
1505 	 * We need to lock the mapping so that from here on, only GUP-fast and
1506 	 * hardware page walks can access the parts of the page tables that
1507 	 * we're operating on.
1508 	 * See collapse_and_free_pmd().
1509 	 */
1510 	i_mmap_lock_write(vma->vm_file->f_mapping);
1511 
1512 	/*
1513 	 * This spinlock should be unnecessary: Nobody else should be accessing
1514 	 * the page tables under spinlock protection here, only
1515 	 * lockless_pages_from_mm() and the hardware page walker can access page
1516 	 * tables while all the high-level locks are held in write mode.
1517 	 */
1518 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1519 	result = SCAN_FAIL;
1520 
1521 	/* step 1: check all mapped PTEs are to the right huge page */
1522 	for (i = 0, addr = haddr, pte = start_pte;
1523 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1524 		struct page *page;
1525 
1526 		/* empty pte, skip */
1527 		if (pte_none(*pte))
1528 			continue;
1529 
1530 		/* page swapped out, abort */
1531 		if (!pte_present(*pte)) {
1532 			result = SCAN_PTE_NON_PRESENT;
1533 			goto abort;
1534 		}
1535 
1536 		page = vm_normal_page(vma, addr, *pte);
1537 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1538 			page = NULL;
1539 		/*
1540 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1541 		 * page table, but the new page will not be a subpage of hpage.
1542 		 */
1543 		if (hpage + i != page)
1544 			goto abort;
1545 		count++;
1546 	}
1547 
1548 	/* step 2: adjust rmap */
1549 	for (i = 0, addr = haddr, pte = start_pte;
1550 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1551 		struct page *page;
1552 
1553 		if (pte_none(*pte))
1554 			continue;
1555 		page = vm_normal_page(vma, addr, *pte);
1556 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1557 			goto abort;
1558 		page_remove_rmap(page, vma, false);
1559 	}
1560 
1561 	pte_unmap_unlock(start_pte, ptl);
1562 
1563 	/* step 3: set proper refcount and mm_counters. */
1564 	if (count) {
1565 		page_ref_sub(hpage, count);
1566 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1567 	}
1568 
1569 	/* step 4: remove pte entries */
1570 	/* we make no change to anon, but protect concurrent anon page lookup */
1571 	if (vma->anon_vma)
1572 		anon_vma_lock_write(vma->anon_vma);
1573 
1574 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1575 
1576 	if (vma->anon_vma)
1577 		anon_vma_unlock_write(vma->anon_vma);
1578 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1579 
1580 maybe_install_pmd:
1581 	/* step 5: install pmd entry */
1582 	result = install_pmd
1583 			? set_huge_pmd(vma, haddr, pmd, hpage)
1584 			: SCAN_SUCCEED;
1585 
1586 drop_hpage:
1587 	unlock_page(hpage);
1588 	put_page(hpage);
1589 	return result;
1590 
1591 abort:
1592 	pte_unmap_unlock(start_pte, ptl);
1593 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1594 	goto drop_hpage;
1595 }
1596 
1597 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1598 {
1599 	struct mm_slot *slot = &mm_slot->slot;
1600 	struct mm_struct *mm = slot->mm;
1601 	int i;
1602 
1603 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1604 		return;
1605 
1606 	if (!mmap_write_trylock(mm))
1607 		return;
1608 
1609 	if (unlikely(hpage_collapse_test_exit(mm)))
1610 		goto out;
1611 
1612 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1613 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1614 
1615 out:
1616 	mm_slot->nr_pte_mapped_thp = 0;
1617 	mmap_write_unlock(mm);
1618 }
1619 
1620 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1621 			       struct mm_struct *target_mm,
1622 			       unsigned long target_addr, struct page *hpage,
1623 			       struct collapse_control *cc)
1624 {
1625 	struct vm_area_struct *vma;
1626 	int target_result = SCAN_FAIL;
1627 
1628 	i_mmap_lock_write(mapping);
1629 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1630 		int result = SCAN_FAIL;
1631 		struct mm_struct *mm = NULL;
1632 		unsigned long addr = 0;
1633 		pmd_t *pmd;
1634 		bool is_target = false;
1635 
1636 		/*
1637 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1638 		 * got written to. These VMAs are likely not worth investing
1639 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1640 		 * later.
1641 		 *
1642 		 * Note that vma->anon_vma check is racy: it can be set up after
1643 		 * the check but before we took mmap_lock by the fault path.
1644 		 * But page lock would prevent establishing any new ptes of the
1645 		 * page, so we are safe.
1646 		 *
1647 		 * An alternative would be drop the check, but check that page
1648 		 * table is clear before calling pmdp_collapse_flush() under
1649 		 * ptl. It has higher chance to recover THP for the VMA, but
1650 		 * has higher cost too. It would also probably require locking
1651 		 * the anon_vma.
1652 		 */
1653 		if (READ_ONCE(vma->anon_vma)) {
1654 			result = SCAN_PAGE_ANON;
1655 			goto next;
1656 		}
1657 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1658 		if (addr & ~HPAGE_PMD_MASK ||
1659 		    vma->vm_end < addr + HPAGE_PMD_SIZE) {
1660 			result = SCAN_VMA_CHECK;
1661 			goto next;
1662 		}
1663 		mm = vma->vm_mm;
1664 		is_target = mm == target_mm && addr == target_addr;
1665 		result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1666 		if (result != SCAN_SUCCEED)
1667 			goto next;
1668 		/*
1669 		 * We need exclusive mmap_lock to retract page table.
1670 		 *
1671 		 * We use trylock due to lock inversion: we need to acquire
1672 		 * mmap_lock while holding page lock. Fault path does it in
1673 		 * reverse order. Trylock is a way to avoid deadlock.
1674 		 *
1675 		 * Also, it's not MADV_COLLAPSE's job to collapse other
1676 		 * mappings - let khugepaged take care of them later.
1677 		 */
1678 		result = SCAN_PTE_MAPPED_HUGEPAGE;
1679 		if ((cc->is_khugepaged || is_target) &&
1680 		    mmap_write_trylock(mm)) {
1681 			/*
1682 			 * Re-check whether we have an ->anon_vma, because
1683 			 * collapse_and_free_pmd() requires that either no
1684 			 * ->anon_vma exists or the anon_vma is locked.
1685 			 * We already checked ->anon_vma above, but that check
1686 			 * is racy because ->anon_vma can be populated under the
1687 			 * mmap lock in read mode.
1688 			 */
1689 			if (vma->anon_vma) {
1690 				result = SCAN_PAGE_ANON;
1691 				goto unlock_next;
1692 			}
1693 			/*
1694 			 * When a vma is registered with uffd-wp, we can't
1695 			 * recycle the pmd pgtable because there can be pte
1696 			 * markers installed.  Skip it only, so the rest mm/vma
1697 			 * can still have the same file mapped hugely, however
1698 			 * it'll always mapped in small page size for uffd-wp
1699 			 * registered ranges.
1700 			 */
1701 			if (hpage_collapse_test_exit(mm)) {
1702 				result = SCAN_ANY_PROCESS;
1703 				goto unlock_next;
1704 			}
1705 			if (userfaultfd_wp(vma)) {
1706 				result = SCAN_PTE_UFFD_WP;
1707 				goto unlock_next;
1708 			}
1709 			collapse_and_free_pmd(mm, vma, addr, pmd);
1710 			if (!cc->is_khugepaged && is_target)
1711 				result = set_huge_pmd(vma, addr, pmd, hpage);
1712 			else
1713 				result = SCAN_SUCCEED;
1714 
1715 unlock_next:
1716 			mmap_write_unlock(mm);
1717 			goto next;
1718 		}
1719 		/*
1720 		 * Calling context will handle target mm/addr. Otherwise, let
1721 		 * khugepaged try again later.
1722 		 */
1723 		if (!is_target) {
1724 			khugepaged_add_pte_mapped_thp(mm, addr);
1725 			continue;
1726 		}
1727 next:
1728 		if (is_target)
1729 			target_result = result;
1730 	}
1731 	i_mmap_unlock_write(mapping);
1732 	return target_result;
1733 }
1734 
1735 /**
1736  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1737  *
1738  * @mm: process address space where collapse happens
1739  * @addr: virtual collapse start address
1740  * @file: file that collapse on
1741  * @start: collapse start address
1742  * @cc: collapse context and scratchpad
1743  *
1744  * Basic scheme is simple, details are more complex:
1745  *  - allocate and lock a new huge page;
1746  *  - scan page cache replacing old pages with the new one
1747  *    + swap/gup in pages if necessary;
1748  *    + fill in gaps;
1749  *    + keep old pages around in case rollback is required;
1750  *  - if replacing succeeds:
1751  *    + copy data over;
1752  *    + free old pages;
1753  *    + unlock huge page;
1754  *  - if replacing failed;
1755  *    + put all pages back and unfreeze them;
1756  *    + restore gaps in the page cache;
1757  *    + unlock and free huge page;
1758  */
1759 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1760 			 struct file *file, pgoff_t start,
1761 			 struct collapse_control *cc)
1762 {
1763 	struct address_space *mapping = file->f_mapping;
1764 	struct page *hpage;
1765 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1766 	LIST_HEAD(pagelist);
1767 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1768 	int nr_none = 0, result = SCAN_SUCCEED;
1769 	bool is_shmem = shmem_file(file);
1770 	int nr = 0;
1771 
1772 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1773 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1774 
1775 	result = alloc_charge_hpage(&hpage, mm, cc);
1776 	if (result != SCAN_SUCCEED)
1777 		goto out;
1778 
1779 	/*
1780 	 * Ensure we have slots for all the pages in the range.  This is
1781 	 * almost certainly a no-op because most of the pages must be present
1782 	 */
1783 	do {
1784 		xas_lock_irq(&xas);
1785 		xas_create_range(&xas);
1786 		if (!xas_error(&xas))
1787 			break;
1788 		xas_unlock_irq(&xas);
1789 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1790 			result = SCAN_FAIL;
1791 			goto out;
1792 		}
1793 	} while (1);
1794 
1795 	__SetPageLocked(hpage);
1796 	if (is_shmem)
1797 		__SetPageSwapBacked(hpage);
1798 	hpage->index = start;
1799 	hpage->mapping = mapping;
1800 
1801 	/*
1802 	 * At this point the hpage is locked and not up-to-date.
1803 	 * It's safe to insert it into the page cache, because nobody would
1804 	 * be able to map it or use it in another way until we unlock it.
1805 	 */
1806 
1807 	xas_set(&xas, start);
1808 	for (index = start; index < end; index++) {
1809 		struct page *page = xas_next(&xas);
1810 		struct folio *folio;
1811 
1812 		VM_BUG_ON(index != xas.xa_index);
1813 		if (is_shmem) {
1814 			if (!page) {
1815 				/*
1816 				 * Stop if extent has been truncated or
1817 				 * hole-punched, and is now completely
1818 				 * empty.
1819 				 */
1820 				if (index == start) {
1821 					if (!xas_next_entry(&xas, end - 1)) {
1822 						result = SCAN_TRUNCATED;
1823 						goto xa_locked;
1824 					}
1825 					xas_set(&xas, index);
1826 				}
1827 				if (!shmem_charge(mapping->host, 1)) {
1828 					result = SCAN_FAIL;
1829 					goto xa_locked;
1830 				}
1831 				xas_store(&xas, hpage);
1832 				nr_none++;
1833 				continue;
1834 			}
1835 
1836 			if (xa_is_value(page) || !PageUptodate(page)) {
1837 				xas_unlock_irq(&xas);
1838 				/* swap in or instantiate fallocated page */
1839 				if (shmem_get_folio(mapping->host, index,
1840 						&folio, SGP_NOALLOC)) {
1841 					result = SCAN_FAIL;
1842 					goto xa_unlocked;
1843 				}
1844 				page = folio_file_page(folio, index);
1845 			} else if (trylock_page(page)) {
1846 				get_page(page);
1847 				xas_unlock_irq(&xas);
1848 			} else {
1849 				result = SCAN_PAGE_LOCK;
1850 				goto xa_locked;
1851 			}
1852 		} else {	/* !is_shmem */
1853 			if (!page || xa_is_value(page)) {
1854 				xas_unlock_irq(&xas);
1855 				page_cache_sync_readahead(mapping, &file->f_ra,
1856 							  file, index,
1857 							  end - index);
1858 				/* drain pagevecs to help isolate_lru_page() */
1859 				lru_add_drain();
1860 				page = find_lock_page(mapping, index);
1861 				if (unlikely(page == NULL)) {
1862 					result = SCAN_FAIL;
1863 					goto xa_unlocked;
1864 				}
1865 			} else if (PageDirty(page)) {
1866 				/*
1867 				 * khugepaged only works on read-only fd,
1868 				 * so this page is dirty because it hasn't
1869 				 * been flushed since first write. There
1870 				 * won't be new dirty pages.
1871 				 *
1872 				 * Trigger async flush here and hope the
1873 				 * writeback is done when khugepaged
1874 				 * revisits this page.
1875 				 *
1876 				 * This is a one-off situation. We are not
1877 				 * forcing writeback in loop.
1878 				 */
1879 				xas_unlock_irq(&xas);
1880 				filemap_flush(mapping);
1881 				result = SCAN_FAIL;
1882 				goto xa_unlocked;
1883 			} else if (PageWriteback(page)) {
1884 				xas_unlock_irq(&xas);
1885 				result = SCAN_FAIL;
1886 				goto xa_unlocked;
1887 			} else if (trylock_page(page)) {
1888 				get_page(page);
1889 				xas_unlock_irq(&xas);
1890 			} else {
1891 				result = SCAN_PAGE_LOCK;
1892 				goto xa_locked;
1893 			}
1894 		}
1895 
1896 		/*
1897 		 * The page must be locked, so we can drop the i_pages lock
1898 		 * without racing with truncate.
1899 		 */
1900 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1901 
1902 		/* make sure the page is up to date */
1903 		if (unlikely(!PageUptodate(page))) {
1904 			result = SCAN_FAIL;
1905 			goto out_unlock;
1906 		}
1907 
1908 		/*
1909 		 * If file was truncated then extended, or hole-punched, before
1910 		 * we locked the first page, then a THP might be there already.
1911 		 * This will be discovered on the first iteration.
1912 		 */
1913 		if (PageTransCompound(page)) {
1914 			struct page *head = compound_head(page);
1915 
1916 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1917 					head->index == start
1918 					/* Maybe PMD-mapped */
1919 					? SCAN_PTE_MAPPED_HUGEPAGE
1920 					: SCAN_PAGE_COMPOUND;
1921 			goto out_unlock;
1922 		}
1923 
1924 		folio = page_folio(page);
1925 
1926 		if (folio_mapping(folio) != mapping) {
1927 			result = SCAN_TRUNCATED;
1928 			goto out_unlock;
1929 		}
1930 
1931 		if (!is_shmem && (folio_test_dirty(folio) ||
1932 				  folio_test_writeback(folio))) {
1933 			/*
1934 			 * khugepaged only works on read-only fd, so this
1935 			 * page is dirty because it hasn't been flushed
1936 			 * since first write.
1937 			 */
1938 			result = SCAN_FAIL;
1939 			goto out_unlock;
1940 		}
1941 
1942 		if (folio_isolate_lru(folio)) {
1943 			result = SCAN_DEL_PAGE_LRU;
1944 			goto out_unlock;
1945 		}
1946 
1947 		if (folio_has_private(folio) &&
1948 		    !filemap_release_folio(folio, GFP_KERNEL)) {
1949 			result = SCAN_PAGE_HAS_PRIVATE;
1950 			folio_putback_lru(folio);
1951 			goto out_unlock;
1952 		}
1953 
1954 		if (folio_mapped(folio))
1955 			try_to_unmap(folio,
1956 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1957 
1958 		xas_lock_irq(&xas);
1959 		xas_set(&xas, index);
1960 
1961 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1962 
1963 		/*
1964 		 * The page is expected to have page_count() == 3:
1965 		 *  - we hold a pin on it;
1966 		 *  - one reference from page cache;
1967 		 *  - one from isolate_lru_page;
1968 		 */
1969 		if (!page_ref_freeze(page, 3)) {
1970 			result = SCAN_PAGE_COUNT;
1971 			xas_unlock_irq(&xas);
1972 			putback_lru_page(page);
1973 			goto out_unlock;
1974 		}
1975 
1976 		/*
1977 		 * Add the page to the list to be able to undo the collapse if
1978 		 * something go wrong.
1979 		 */
1980 		list_add_tail(&page->lru, &pagelist);
1981 
1982 		/* Finally, replace with the new page. */
1983 		xas_store(&xas, hpage);
1984 		continue;
1985 out_unlock:
1986 		unlock_page(page);
1987 		put_page(page);
1988 		goto xa_unlocked;
1989 	}
1990 	nr = thp_nr_pages(hpage);
1991 
1992 	if (is_shmem)
1993 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1994 	else {
1995 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1996 		filemap_nr_thps_inc(mapping);
1997 		/*
1998 		 * Paired with smp_mb() in do_dentry_open() to ensure
1999 		 * i_writecount is up to date and the update to nr_thps is
2000 		 * visible. Ensures the page cache will be truncated if the
2001 		 * file is opened writable.
2002 		 */
2003 		smp_mb();
2004 		if (inode_is_open_for_write(mapping->host)) {
2005 			result = SCAN_FAIL;
2006 			__mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
2007 			filemap_nr_thps_dec(mapping);
2008 			goto xa_locked;
2009 		}
2010 	}
2011 
2012 	if (nr_none) {
2013 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2014 		/* nr_none is always 0 for non-shmem. */
2015 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2016 	}
2017 
2018 	/* Join all the small entries into a single multi-index entry */
2019 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2020 	xas_store(&xas, hpage);
2021 xa_locked:
2022 	xas_unlock_irq(&xas);
2023 xa_unlocked:
2024 
2025 	/*
2026 	 * If collapse is successful, flush must be done now before copying.
2027 	 * If collapse is unsuccessful, does flush actually need to be done?
2028 	 * Do it anyway, to clear the state.
2029 	 */
2030 	try_to_unmap_flush();
2031 
2032 	if (result == SCAN_SUCCEED) {
2033 		struct page *page, *tmp;
2034 		struct folio *folio;
2035 
2036 		/*
2037 		 * Replacing old pages with new one has succeeded, now we
2038 		 * need to copy the content and free the old pages.
2039 		 */
2040 		index = start;
2041 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2042 			while (index < page->index) {
2043 				clear_highpage(hpage + (index % HPAGE_PMD_NR));
2044 				index++;
2045 			}
2046 			copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2047 				      page);
2048 			list_del(&page->lru);
2049 			page->mapping = NULL;
2050 			page_ref_unfreeze(page, 1);
2051 			ClearPageActive(page);
2052 			ClearPageUnevictable(page);
2053 			unlock_page(page);
2054 			put_page(page);
2055 			index++;
2056 		}
2057 		while (index < end) {
2058 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2059 			index++;
2060 		}
2061 
2062 		folio = page_folio(hpage);
2063 		folio_mark_uptodate(folio);
2064 		folio_ref_add(folio, HPAGE_PMD_NR - 1);
2065 
2066 		if (is_shmem)
2067 			folio_mark_dirty(folio);
2068 		folio_add_lru(folio);
2069 
2070 		/*
2071 		 * Remove pte page tables, so we can re-fault the page as huge.
2072 		 */
2073 		result = retract_page_tables(mapping, start, mm, addr, hpage,
2074 					     cc);
2075 		unlock_page(hpage);
2076 		hpage = NULL;
2077 	} else {
2078 		struct page *page;
2079 
2080 		/* Something went wrong: roll back page cache changes */
2081 		xas_lock_irq(&xas);
2082 		if (nr_none) {
2083 			mapping->nrpages -= nr_none;
2084 			shmem_uncharge(mapping->host, nr_none);
2085 		}
2086 
2087 		xas_set(&xas, start);
2088 		xas_for_each(&xas, page, end - 1) {
2089 			page = list_first_entry_or_null(&pagelist,
2090 					struct page, lru);
2091 			if (!page || xas.xa_index < page->index) {
2092 				if (!nr_none)
2093 					break;
2094 				nr_none--;
2095 				/* Put holes back where they were */
2096 				xas_store(&xas, NULL);
2097 				continue;
2098 			}
2099 
2100 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2101 
2102 			/* Unfreeze the page. */
2103 			list_del(&page->lru);
2104 			page_ref_unfreeze(page, 2);
2105 			xas_store(&xas, page);
2106 			xas_pause(&xas);
2107 			xas_unlock_irq(&xas);
2108 			unlock_page(page);
2109 			putback_lru_page(page);
2110 			xas_lock_irq(&xas);
2111 		}
2112 		VM_BUG_ON(nr_none);
2113 		xas_unlock_irq(&xas);
2114 
2115 		hpage->mapping = NULL;
2116 	}
2117 
2118 	if (hpage)
2119 		unlock_page(hpage);
2120 out:
2121 	VM_BUG_ON(!list_empty(&pagelist));
2122 	if (hpage) {
2123 		mem_cgroup_uncharge(page_folio(hpage));
2124 		put_page(hpage);
2125 	}
2126 
2127 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2128 	return result;
2129 }
2130 
2131 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2132 				    struct file *file, pgoff_t start,
2133 				    struct collapse_control *cc)
2134 {
2135 	struct page *page = NULL;
2136 	struct address_space *mapping = file->f_mapping;
2137 	XA_STATE(xas, &mapping->i_pages, start);
2138 	int present, swap;
2139 	int node = NUMA_NO_NODE;
2140 	int result = SCAN_SUCCEED;
2141 
2142 	present = 0;
2143 	swap = 0;
2144 	memset(cc->node_load, 0, sizeof(cc->node_load));
2145 	nodes_clear(cc->alloc_nmask);
2146 	rcu_read_lock();
2147 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2148 		if (xas_retry(&xas, page))
2149 			continue;
2150 
2151 		if (xa_is_value(page)) {
2152 			++swap;
2153 			if (cc->is_khugepaged &&
2154 			    swap > khugepaged_max_ptes_swap) {
2155 				result = SCAN_EXCEED_SWAP_PTE;
2156 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2157 				break;
2158 			}
2159 			continue;
2160 		}
2161 
2162 		/*
2163 		 * TODO: khugepaged should compact smaller compound pages
2164 		 * into a PMD sized page
2165 		 */
2166 		if (PageTransCompound(page)) {
2167 			struct page *head = compound_head(page);
2168 
2169 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2170 					head->index == start
2171 					/* Maybe PMD-mapped */
2172 					? SCAN_PTE_MAPPED_HUGEPAGE
2173 					: SCAN_PAGE_COMPOUND;
2174 			/*
2175 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2176 			 * by the caller won't touch the page cache, and so
2177 			 * it's safe to skip LRU and refcount checks before
2178 			 * returning.
2179 			 */
2180 			break;
2181 		}
2182 
2183 		node = page_to_nid(page);
2184 		if (hpage_collapse_scan_abort(node, cc)) {
2185 			result = SCAN_SCAN_ABORT;
2186 			break;
2187 		}
2188 		cc->node_load[node]++;
2189 
2190 		if (!PageLRU(page)) {
2191 			result = SCAN_PAGE_LRU;
2192 			break;
2193 		}
2194 
2195 		if (page_count(page) !=
2196 		    1 + page_mapcount(page) + page_has_private(page)) {
2197 			result = SCAN_PAGE_COUNT;
2198 			break;
2199 		}
2200 
2201 		/*
2202 		 * We probably should check if the page is referenced here, but
2203 		 * nobody would transfer pte_young() to PageReferenced() for us.
2204 		 * And rmap walk here is just too costly...
2205 		 */
2206 
2207 		present++;
2208 
2209 		if (need_resched()) {
2210 			xas_pause(&xas);
2211 			cond_resched_rcu();
2212 		}
2213 	}
2214 	rcu_read_unlock();
2215 
2216 	if (result == SCAN_SUCCEED) {
2217 		if (cc->is_khugepaged &&
2218 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2219 			result = SCAN_EXCEED_NONE_PTE;
2220 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2221 		} else {
2222 			result = collapse_file(mm, addr, file, start, cc);
2223 		}
2224 	}
2225 
2226 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2227 	return result;
2228 }
2229 #else
2230 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2231 				    struct file *file, pgoff_t start,
2232 				    struct collapse_control *cc)
2233 {
2234 	BUILD_BUG();
2235 }
2236 
2237 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2238 {
2239 }
2240 
2241 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2242 					  unsigned long addr)
2243 {
2244 	return false;
2245 }
2246 #endif
2247 
2248 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2249 					    struct collapse_control *cc)
2250 	__releases(&khugepaged_mm_lock)
2251 	__acquires(&khugepaged_mm_lock)
2252 {
2253 	struct vma_iterator vmi;
2254 	struct khugepaged_mm_slot *mm_slot;
2255 	struct mm_slot *slot;
2256 	struct mm_struct *mm;
2257 	struct vm_area_struct *vma;
2258 	int progress = 0;
2259 
2260 	VM_BUG_ON(!pages);
2261 	lockdep_assert_held(&khugepaged_mm_lock);
2262 	*result = SCAN_FAIL;
2263 
2264 	if (khugepaged_scan.mm_slot) {
2265 		mm_slot = khugepaged_scan.mm_slot;
2266 		slot = &mm_slot->slot;
2267 	} else {
2268 		slot = list_entry(khugepaged_scan.mm_head.next,
2269 				     struct mm_slot, mm_node);
2270 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2271 		khugepaged_scan.address = 0;
2272 		khugepaged_scan.mm_slot = mm_slot;
2273 	}
2274 	spin_unlock(&khugepaged_mm_lock);
2275 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2276 
2277 	mm = slot->mm;
2278 	/*
2279 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2280 	 * the next mm on the list.
2281 	 */
2282 	vma = NULL;
2283 	if (unlikely(!mmap_read_trylock(mm)))
2284 		goto breakouterloop_mmap_lock;
2285 
2286 	progress++;
2287 	if (unlikely(hpage_collapse_test_exit(mm)))
2288 		goto breakouterloop;
2289 
2290 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2291 	for_each_vma(vmi, vma) {
2292 		unsigned long hstart, hend;
2293 
2294 		cond_resched();
2295 		if (unlikely(hpage_collapse_test_exit(mm))) {
2296 			progress++;
2297 			break;
2298 		}
2299 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2300 skip:
2301 			progress++;
2302 			continue;
2303 		}
2304 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2305 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2306 		if (khugepaged_scan.address > hend)
2307 			goto skip;
2308 		if (khugepaged_scan.address < hstart)
2309 			khugepaged_scan.address = hstart;
2310 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2311 
2312 		while (khugepaged_scan.address < hend) {
2313 			bool mmap_locked = true;
2314 
2315 			cond_resched();
2316 			if (unlikely(hpage_collapse_test_exit(mm)))
2317 				goto breakouterloop;
2318 
2319 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2320 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2321 				  hend);
2322 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2323 				struct file *file = get_file(vma->vm_file);
2324 				pgoff_t pgoff = linear_page_index(vma,
2325 						khugepaged_scan.address);
2326 
2327 				mmap_read_unlock(mm);
2328 				*result = hpage_collapse_scan_file(mm,
2329 								   khugepaged_scan.address,
2330 								   file, pgoff, cc);
2331 				mmap_locked = false;
2332 				fput(file);
2333 			} else {
2334 				*result = hpage_collapse_scan_pmd(mm, vma,
2335 								  khugepaged_scan.address,
2336 								  &mmap_locked,
2337 								  cc);
2338 			}
2339 			switch (*result) {
2340 			case SCAN_PTE_MAPPED_HUGEPAGE: {
2341 				pmd_t *pmd;
2342 
2343 				*result = find_pmd_or_thp_or_none(mm,
2344 								  khugepaged_scan.address,
2345 								  &pmd);
2346 				if (*result != SCAN_SUCCEED)
2347 					break;
2348 				if (!khugepaged_add_pte_mapped_thp(mm,
2349 								   khugepaged_scan.address))
2350 					break;
2351 			} fallthrough;
2352 			case SCAN_SUCCEED:
2353 				++khugepaged_pages_collapsed;
2354 				break;
2355 			default:
2356 				break;
2357 			}
2358 
2359 			/* move to next address */
2360 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2361 			progress += HPAGE_PMD_NR;
2362 			if (!mmap_locked)
2363 				/*
2364 				 * We released mmap_lock so break loop.  Note
2365 				 * that we drop mmap_lock before all hugepage
2366 				 * allocations, so if allocation fails, we are
2367 				 * guaranteed to break here and report the
2368 				 * correct result back to caller.
2369 				 */
2370 				goto breakouterloop_mmap_lock;
2371 			if (progress >= pages)
2372 				goto breakouterloop;
2373 		}
2374 	}
2375 breakouterloop:
2376 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2377 breakouterloop_mmap_lock:
2378 
2379 	spin_lock(&khugepaged_mm_lock);
2380 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2381 	/*
2382 	 * Release the current mm_slot if this mm is about to die, or
2383 	 * if we scanned all vmas of this mm.
2384 	 */
2385 	if (hpage_collapse_test_exit(mm) || !vma) {
2386 		/*
2387 		 * Make sure that if mm_users is reaching zero while
2388 		 * khugepaged runs here, khugepaged_exit will find
2389 		 * mm_slot not pointing to the exiting mm.
2390 		 */
2391 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2392 			slot = list_entry(slot->mm_node.next,
2393 					  struct mm_slot, mm_node);
2394 			khugepaged_scan.mm_slot =
2395 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2396 			khugepaged_scan.address = 0;
2397 		} else {
2398 			khugepaged_scan.mm_slot = NULL;
2399 			khugepaged_full_scans++;
2400 		}
2401 
2402 		collect_mm_slot(mm_slot);
2403 	}
2404 
2405 	return progress;
2406 }
2407 
2408 static int khugepaged_has_work(void)
2409 {
2410 	return !list_empty(&khugepaged_scan.mm_head) &&
2411 		hugepage_flags_enabled();
2412 }
2413 
2414 static int khugepaged_wait_event(void)
2415 {
2416 	return !list_empty(&khugepaged_scan.mm_head) ||
2417 		kthread_should_stop();
2418 }
2419 
2420 static void khugepaged_do_scan(struct collapse_control *cc)
2421 {
2422 	unsigned int progress = 0, pass_through_head = 0;
2423 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2424 	bool wait = true;
2425 	int result = SCAN_SUCCEED;
2426 
2427 	lru_add_drain_all();
2428 
2429 	while (true) {
2430 		cond_resched();
2431 
2432 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2433 			break;
2434 
2435 		spin_lock(&khugepaged_mm_lock);
2436 		if (!khugepaged_scan.mm_slot)
2437 			pass_through_head++;
2438 		if (khugepaged_has_work() &&
2439 		    pass_through_head < 2)
2440 			progress += khugepaged_scan_mm_slot(pages - progress,
2441 							    &result, cc);
2442 		else
2443 			progress = pages;
2444 		spin_unlock(&khugepaged_mm_lock);
2445 
2446 		if (progress >= pages)
2447 			break;
2448 
2449 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2450 			/*
2451 			 * If fail to allocate the first time, try to sleep for
2452 			 * a while.  When hit again, cancel the scan.
2453 			 */
2454 			if (!wait)
2455 				break;
2456 			wait = false;
2457 			khugepaged_alloc_sleep();
2458 		}
2459 	}
2460 }
2461 
2462 static bool khugepaged_should_wakeup(void)
2463 {
2464 	return kthread_should_stop() ||
2465 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2466 }
2467 
2468 static void khugepaged_wait_work(void)
2469 {
2470 	if (khugepaged_has_work()) {
2471 		const unsigned long scan_sleep_jiffies =
2472 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2473 
2474 		if (!scan_sleep_jiffies)
2475 			return;
2476 
2477 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2478 		wait_event_freezable_timeout(khugepaged_wait,
2479 					     khugepaged_should_wakeup(),
2480 					     scan_sleep_jiffies);
2481 		return;
2482 	}
2483 
2484 	if (hugepage_flags_enabled())
2485 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2486 }
2487 
2488 static int khugepaged(void *none)
2489 {
2490 	struct khugepaged_mm_slot *mm_slot;
2491 
2492 	set_freezable();
2493 	set_user_nice(current, MAX_NICE);
2494 
2495 	while (!kthread_should_stop()) {
2496 		khugepaged_do_scan(&khugepaged_collapse_control);
2497 		khugepaged_wait_work();
2498 	}
2499 
2500 	spin_lock(&khugepaged_mm_lock);
2501 	mm_slot = khugepaged_scan.mm_slot;
2502 	khugepaged_scan.mm_slot = NULL;
2503 	if (mm_slot)
2504 		collect_mm_slot(mm_slot);
2505 	spin_unlock(&khugepaged_mm_lock);
2506 	return 0;
2507 }
2508 
2509 static void set_recommended_min_free_kbytes(void)
2510 {
2511 	struct zone *zone;
2512 	int nr_zones = 0;
2513 	unsigned long recommended_min;
2514 
2515 	if (!hugepage_flags_enabled()) {
2516 		calculate_min_free_kbytes();
2517 		goto update_wmarks;
2518 	}
2519 
2520 	for_each_populated_zone(zone) {
2521 		/*
2522 		 * We don't need to worry about fragmentation of
2523 		 * ZONE_MOVABLE since it only has movable pages.
2524 		 */
2525 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2526 			continue;
2527 
2528 		nr_zones++;
2529 	}
2530 
2531 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2532 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2533 
2534 	/*
2535 	 * Make sure that on average at least two pageblocks are almost free
2536 	 * of another type, one for a migratetype to fall back to and a
2537 	 * second to avoid subsequent fallbacks of other types There are 3
2538 	 * MIGRATE_TYPES we care about.
2539 	 */
2540 	recommended_min += pageblock_nr_pages * nr_zones *
2541 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2542 
2543 	/* don't ever allow to reserve more than 5% of the lowmem */
2544 	recommended_min = min(recommended_min,
2545 			      (unsigned long) nr_free_buffer_pages() / 20);
2546 	recommended_min <<= (PAGE_SHIFT-10);
2547 
2548 	if (recommended_min > min_free_kbytes) {
2549 		if (user_min_free_kbytes >= 0)
2550 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2551 				min_free_kbytes, recommended_min);
2552 
2553 		min_free_kbytes = recommended_min;
2554 	}
2555 
2556 update_wmarks:
2557 	setup_per_zone_wmarks();
2558 }
2559 
2560 int start_stop_khugepaged(void)
2561 {
2562 	int err = 0;
2563 
2564 	mutex_lock(&khugepaged_mutex);
2565 	if (hugepage_flags_enabled()) {
2566 		if (!khugepaged_thread)
2567 			khugepaged_thread = kthread_run(khugepaged, NULL,
2568 							"khugepaged");
2569 		if (IS_ERR(khugepaged_thread)) {
2570 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2571 			err = PTR_ERR(khugepaged_thread);
2572 			khugepaged_thread = NULL;
2573 			goto fail;
2574 		}
2575 
2576 		if (!list_empty(&khugepaged_scan.mm_head))
2577 			wake_up_interruptible(&khugepaged_wait);
2578 	} else if (khugepaged_thread) {
2579 		kthread_stop(khugepaged_thread);
2580 		khugepaged_thread = NULL;
2581 	}
2582 	set_recommended_min_free_kbytes();
2583 fail:
2584 	mutex_unlock(&khugepaged_mutex);
2585 	return err;
2586 }
2587 
2588 void khugepaged_min_free_kbytes_update(void)
2589 {
2590 	mutex_lock(&khugepaged_mutex);
2591 	if (hugepage_flags_enabled() && khugepaged_thread)
2592 		set_recommended_min_free_kbytes();
2593 	mutex_unlock(&khugepaged_mutex);
2594 }
2595 
2596 bool current_is_khugepaged(void)
2597 {
2598 	return kthread_func(current) == khugepaged;
2599 }
2600 
2601 static int madvise_collapse_errno(enum scan_result r)
2602 {
2603 	/*
2604 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2605 	 * actionable feedback to caller, so they may take an appropriate
2606 	 * fallback measure depending on the nature of the failure.
2607 	 */
2608 	switch (r) {
2609 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2610 		return -ENOMEM;
2611 	case SCAN_CGROUP_CHARGE_FAIL:
2612 		return -EBUSY;
2613 	/* Resource temporary unavailable - trying again might succeed */
2614 	case SCAN_PAGE_LOCK:
2615 	case SCAN_PAGE_LRU:
2616 	case SCAN_DEL_PAGE_LRU:
2617 		return -EAGAIN;
2618 	/*
2619 	 * Other: Trying again likely not to succeed / error intrinsic to
2620 	 * specified memory range. khugepaged likely won't be able to collapse
2621 	 * either.
2622 	 */
2623 	default:
2624 		return -EINVAL;
2625 	}
2626 }
2627 
2628 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2629 		     unsigned long start, unsigned long end)
2630 {
2631 	struct collapse_control *cc;
2632 	struct mm_struct *mm = vma->vm_mm;
2633 	unsigned long hstart, hend, addr;
2634 	int thps = 0, last_fail = SCAN_FAIL;
2635 	bool mmap_locked = true;
2636 
2637 	BUG_ON(vma->vm_start > start);
2638 	BUG_ON(vma->vm_end < end);
2639 
2640 	*prev = vma;
2641 
2642 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2643 		return -EINVAL;
2644 
2645 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2646 	if (!cc)
2647 		return -ENOMEM;
2648 	cc->is_khugepaged = false;
2649 
2650 	mmgrab(mm);
2651 	lru_add_drain_all();
2652 
2653 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2654 	hend = end & HPAGE_PMD_MASK;
2655 
2656 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2657 		int result = SCAN_FAIL;
2658 
2659 		if (!mmap_locked) {
2660 			cond_resched();
2661 			mmap_read_lock(mm);
2662 			mmap_locked = true;
2663 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2664 							 cc);
2665 			if (result  != SCAN_SUCCEED) {
2666 				last_fail = result;
2667 				goto out_nolock;
2668 			}
2669 
2670 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2671 		}
2672 		mmap_assert_locked(mm);
2673 		memset(cc->node_load, 0, sizeof(cc->node_load));
2674 		nodes_clear(cc->alloc_nmask);
2675 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2676 			struct file *file = get_file(vma->vm_file);
2677 			pgoff_t pgoff = linear_page_index(vma, addr);
2678 
2679 			mmap_read_unlock(mm);
2680 			mmap_locked = false;
2681 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2682 							  cc);
2683 			fput(file);
2684 		} else {
2685 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2686 							 &mmap_locked, cc);
2687 		}
2688 		if (!mmap_locked)
2689 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2690 
2691 handle_result:
2692 		switch (result) {
2693 		case SCAN_SUCCEED:
2694 		case SCAN_PMD_MAPPED:
2695 			++thps;
2696 			break;
2697 		case SCAN_PTE_MAPPED_HUGEPAGE:
2698 			BUG_ON(mmap_locked);
2699 			BUG_ON(*prev);
2700 			mmap_write_lock(mm);
2701 			result = collapse_pte_mapped_thp(mm, addr, true);
2702 			mmap_write_unlock(mm);
2703 			goto handle_result;
2704 		/* Whitelisted set of results where continuing OK */
2705 		case SCAN_PMD_NULL:
2706 		case SCAN_PTE_NON_PRESENT:
2707 		case SCAN_PTE_UFFD_WP:
2708 		case SCAN_PAGE_RO:
2709 		case SCAN_LACK_REFERENCED_PAGE:
2710 		case SCAN_PAGE_NULL:
2711 		case SCAN_PAGE_COUNT:
2712 		case SCAN_PAGE_LOCK:
2713 		case SCAN_PAGE_COMPOUND:
2714 		case SCAN_PAGE_LRU:
2715 		case SCAN_DEL_PAGE_LRU:
2716 			last_fail = result;
2717 			break;
2718 		default:
2719 			last_fail = result;
2720 			/* Other error, exit */
2721 			goto out_maybelock;
2722 		}
2723 	}
2724 
2725 out_maybelock:
2726 	/* Caller expects us to hold mmap_lock on return */
2727 	if (!mmap_locked)
2728 		mmap_read_lock(mm);
2729 out_nolock:
2730 	mmap_assert_locked(mm);
2731 	mmdrop(mm);
2732 	kfree(cc);
2733 
2734 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2735 			: madvise_collapse_errno(last_fail);
2736 }
2737