1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 SCAN_STORE_FAILED, 59 SCAN_COPY_MC, 60 SCAN_PAGE_FILLED, 61 }; 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/huge_memory.h> 65 66 static struct task_struct *khugepaged_thread __read_mostly; 67 static DEFINE_MUTEX(khugepaged_mutex); 68 69 /* default scan 8*512 pte (or vmas) every 30 second */ 70 static unsigned int khugepaged_pages_to_scan __read_mostly; 71 static unsigned int khugepaged_pages_collapsed; 72 static unsigned int khugepaged_full_scans; 73 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 74 /* during fragmentation poll the hugepage allocator once every minute */ 75 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 76 static unsigned long khugepaged_sleep_expire; 77 static DEFINE_SPINLOCK(khugepaged_mm_lock); 78 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 79 /* 80 * default collapse hugepages if there is at least one pte mapped like 81 * it would have happened if the vma was large enough during page 82 * fault. 83 * 84 * Note that these are only respected if collapse was initiated by khugepaged. 85 */ 86 static unsigned int khugepaged_max_ptes_none __read_mostly; 87 static unsigned int khugepaged_max_ptes_swap __read_mostly; 88 static unsigned int khugepaged_max_ptes_shared __read_mostly; 89 90 #define MM_SLOTS_HASH_BITS 10 91 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 92 93 static struct kmem_cache *mm_slot_cache __read_mostly; 94 95 #define MAX_PTE_MAPPED_THP 8 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 * @nr_pte_mapped_thp: number of pte mapped THP 111 * @pte_mapped_thp: address array corresponding pte mapped THP 112 */ 113 struct khugepaged_mm_slot { 114 struct mm_slot slot; 115 116 /* pte-mapped THP in this mm */ 117 int nr_pte_mapped_thp; 118 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 119 }; 120 121 /** 122 * struct khugepaged_scan - cursor for scanning 123 * @mm_head: the head of the mm list to scan 124 * @mm_slot: the current mm_slot we are scanning 125 * @address: the next address inside that to be scanned 126 * 127 * There is only the one khugepaged_scan instance of this cursor structure. 128 */ 129 struct khugepaged_scan { 130 struct list_head mm_head; 131 struct khugepaged_mm_slot *mm_slot; 132 unsigned long address; 133 }; 134 135 static struct khugepaged_scan khugepaged_scan = { 136 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 137 }; 138 139 #ifdef CONFIG_SYSFS 140 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 char *buf) 143 { 144 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 145 } 146 147 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 148 struct kobj_attribute *attr, 149 const char *buf, size_t count) 150 { 151 unsigned int msecs; 152 int err; 153 154 err = kstrtouint(buf, 10, &msecs); 155 if (err) 156 return -EINVAL; 157 158 khugepaged_scan_sleep_millisecs = msecs; 159 khugepaged_sleep_expire = 0; 160 wake_up_interruptible(&khugepaged_wait); 161 162 return count; 163 } 164 static struct kobj_attribute scan_sleep_millisecs_attr = 165 __ATTR_RW(scan_sleep_millisecs); 166 167 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 char *buf) 170 { 171 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 172 } 173 174 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 unsigned int msecs; 179 int err; 180 181 err = kstrtouint(buf, 10, &msecs); 182 if (err) 183 return -EINVAL; 184 185 khugepaged_alloc_sleep_millisecs = msecs; 186 khugepaged_sleep_expire = 0; 187 wake_up_interruptible(&khugepaged_wait); 188 189 return count; 190 } 191 static struct kobj_attribute alloc_sleep_millisecs_attr = 192 __ATTR_RW(alloc_sleep_millisecs); 193 194 static ssize_t pages_to_scan_show(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 char *buf) 197 { 198 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 199 } 200 static ssize_t pages_to_scan_store(struct kobject *kobj, 201 struct kobj_attribute *attr, 202 const char *buf, size_t count) 203 { 204 unsigned int pages; 205 int err; 206 207 err = kstrtouint(buf, 10, &pages); 208 if (err || !pages) 209 return -EINVAL; 210 211 khugepaged_pages_to_scan = pages; 212 213 return count; 214 } 215 static struct kobj_attribute pages_to_scan_attr = 216 __ATTR_RW(pages_to_scan); 217 218 static ssize_t pages_collapsed_show(struct kobject *kobj, 219 struct kobj_attribute *attr, 220 char *buf) 221 { 222 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 223 } 224 static struct kobj_attribute pages_collapsed_attr = 225 __ATTR_RO(pages_collapsed); 226 227 static ssize_t full_scans_show(struct kobject *kobj, 228 struct kobj_attribute *attr, 229 char *buf) 230 { 231 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 232 } 233 static struct kobj_attribute full_scans_attr = 234 __ATTR_RO(full_scans); 235 236 static ssize_t defrag_show(struct kobject *kobj, 237 struct kobj_attribute *attr, char *buf) 238 { 239 return single_hugepage_flag_show(kobj, attr, buf, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static ssize_t defrag_store(struct kobject *kobj, 243 struct kobj_attribute *attr, 244 const char *buf, size_t count) 245 { 246 return single_hugepage_flag_store(kobj, attr, buf, count, 247 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 248 } 249 static struct kobj_attribute khugepaged_defrag_attr = 250 __ATTR_RW(defrag); 251 252 /* 253 * max_ptes_none controls if khugepaged should collapse hugepages over 254 * any unmapped ptes in turn potentially increasing the memory 255 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 256 * reduce the available free memory in the system as it 257 * runs. Increasing max_ptes_none will instead potentially reduce the 258 * free memory in the system during the khugepaged scan. 259 */ 260 static ssize_t max_ptes_none_show(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 char *buf) 263 { 264 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 265 } 266 static ssize_t max_ptes_none_store(struct kobject *kobj, 267 struct kobj_attribute *attr, 268 const char *buf, size_t count) 269 { 270 int err; 271 unsigned long max_ptes_none; 272 273 err = kstrtoul(buf, 10, &max_ptes_none); 274 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 275 return -EINVAL; 276 277 khugepaged_max_ptes_none = max_ptes_none; 278 279 return count; 280 } 281 static struct kobj_attribute khugepaged_max_ptes_none_attr = 282 __ATTR_RW(max_ptes_none); 283 284 static ssize_t max_ptes_swap_show(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 char *buf) 287 { 288 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 289 } 290 291 static ssize_t max_ptes_swap_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count) 294 { 295 int err; 296 unsigned long max_ptes_swap; 297 298 err = kstrtoul(buf, 10, &max_ptes_swap); 299 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 300 return -EINVAL; 301 302 khugepaged_max_ptes_swap = max_ptes_swap; 303 304 return count; 305 } 306 307 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 308 __ATTR_RW(max_ptes_swap); 309 310 static ssize_t max_ptes_shared_show(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 char *buf) 313 { 314 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 315 } 316 317 static ssize_t max_ptes_shared_store(struct kobject *kobj, 318 struct kobj_attribute *attr, 319 const char *buf, size_t count) 320 { 321 int err; 322 unsigned long max_ptes_shared; 323 324 err = kstrtoul(buf, 10, &max_ptes_shared); 325 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 326 return -EINVAL; 327 328 khugepaged_max_ptes_shared = max_ptes_shared; 329 330 return count; 331 } 332 333 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 334 __ATTR_RW(max_ptes_shared); 335 336 static struct attribute *khugepaged_attr[] = { 337 &khugepaged_defrag_attr.attr, 338 &khugepaged_max_ptes_none_attr.attr, 339 &khugepaged_max_ptes_swap_attr.attr, 340 &khugepaged_max_ptes_shared_attr.attr, 341 &pages_to_scan_attr.attr, 342 &pages_collapsed_attr.attr, 343 &full_scans_attr.attr, 344 &scan_sleep_millisecs_attr.attr, 345 &alloc_sleep_millisecs_attr.attr, 346 NULL, 347 }; 348 349 struct attribute_group khugepaged_attr_group = { 350 .attrs = khugepaged_attr, 351 .name = "khugepaged", 352 }; 353 #endif /* CONFIG_SYSFS */ 354 355 int hugepage_madvise(struct vm_area_struct *vma, 356 unsigned long *vm_flags, int advice) 357 { 358 switch (advice) { 359 case MADV_HUGEPAGE: 360 #ifdef CONFIG_S390 361 /* 362 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 363 * can't handle this properly after s390_enable_sie, so we simply 364 * ignore the madvise to prevent qemu from causing a SIGSEGV. 365 */ 366 if (mm_has_pgste(vma->vm_mm)) 367 return 0; 368 #endif 369 *vm_flags &= ~VM_NOHUGEPAGE; 370 *vm_flags |= VM_HUGEPAGE; 371 /* 372 * If the vma become good for khugepaged to scan, 373 * register it here without waiting a page fault that 374 * may not happen any time soon. 375 */ 376 khugepaged_enter_vma(vma, *vm_flags); 377 break; 378 case MADV_NOHUGEPAGE: 379 *vm_flags &= ~VM_HUGEPAGE; 380 *vm_flags |= VM_NOHUGEPAGE; 381 /* 382 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 383 * this vma even if we leave the mm registered in khugepaged if 384 * it got registered before VM_NOHUGEPAGE was set. 385 */ 386 break; 387 } 388 389 return 0; 390 } 391 392 int __init khugepaged_init(void) 393 { 394 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 395 sizeof(struct khugepaged_mm_slot), 396 __alignof__(struct khugepaged_mm_slot), 397 0, NULL); 398 if (!mm_slot_cache) 399 return -ENOMEM; 400 401 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 402 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 403 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 404 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 405 406 return 0; 407 } 408 409 void __init khugepaged_destroy(void) 410 { 411 kmem_cache_destroy(mm_slot_cache); 412 } 413 414 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 415 { 416 return atomic_read(&mm->mm_users) == 0; 417 } 418 419 void __khugepaged_enter(struct mm_struct *mm) 420 { 421 struct khugepaged_mm_slot *mm_slot; 422 struct mm_slot *slot; 423 int wakeup; 424 425 mm_slot = mm_slot_alloc(mm_slot_cache); 426 if (!mm_slot) 427 return; 428 429 slot = &mm_slot->slot; 430 431 /* __khugepaged_exit() must not run from under us */ 432 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 433 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 434 mm_slot_free(mm_slot_cache, mm_slot); 435 return; 436 } 437 438 spin_lock(&khugepaged_mm_lock); 439 mm_slot_insert(mm_slots_hash, mm, slot); 440 /* 441 * Insert just behind the scanning cursor, to let the area settle 442 * down a little. 443 */ 444 wakeup = list_empty(&khugepaged_scan.mm_head); 445 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 446 spin_unlock(&khugepaged_mm_lock); 447 448 mmgrab(mm); 449 if (wakeup) 450 wake_up_interruptible(&khugepaged_wait); 451 } 452 453 void khugepaged_enter_vma(struct vm_area_struct *vma, 454 unsigned long vm_flags) 455 { 456 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 457 hugepage_flags_enabled()) { 458 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 459 __khugepaged_enter(vma->vm_mm); 460 } 461 } 462 463 void __khugepaged_exit(struct mm_struct *mm) 464 { 465 struct khugepaged_mm_slot *mm_slot; 466 struct mm_slot *slot; 467 int free = 0; 468 469 spin_lock(&khugepaged_mm_lock); 470 slot = mm_slot_lookup(mm_slots_hash, mm); 471 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 472 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 473 hash_del(&slot->hash); 474 list_del(&slot->mm_node); 475 free = 1; 476 } 477 spin_unlock(&khugepaged_mm_lock); 478 479 if (free) { 480 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 481 mm_slot_free(mm_slot_cache, mm_slot); 482 mmdrop(mm); 483 } else if (mm_slot) { 484 /* 485 * This is required to serialize against 486 * hpage_collapse_test_exit() (which is guaranteed to run 487 * under mmap sem read mode). Stop here (after we return all 488 * pagetables will be destroyed) until khugepaged has finished 489 * working on the pagetables under the mmap_lock. 490 */ 491 mmap_write_lock(mm); 492 mmap_write_unlock(mm); 493 } 494 } 495 496 static void release_pte_folio(struct folio *folio) 497 { 498 node_stat_mod_folio(folio, 499 NR_ISOLATED_ANON + folio_is_file_lru(folio), 500 -folio_nr_pages(folio)); 501 folio_unlock(folio); 502 folio_putback_lru(folio); 503 } 504 505 static void release_pte_page(struct page *page) 506 { 507 release_pte_folio(page_folio(page)); 508 } 509 510 static void release_pte_pages(pte_t *pte, pte_t *_pte, 511 struct list_head *compound_pagelist) 512 { 513 struct folio *folio, *tmp; 514 515 while (--_pte >= pte) { 516 pte_t pteval = *_pte; 517 unsigned long pfn; 518 519 if (pte_none(pteval)) 520 continue; 521 pfn = pte_pfn(pteval); 522 if (is_zero_pfn(pfn)) 523 continue; 524 folio = pfn_folio(pfn); 525 if (folio_test_large(folio)) 526 continue; 527 release_pte_folio(folio); 528 } 529 530 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 531 list_del(&folio->lru); 532 release_pte_folio(folio); 533 } 534 } 535 536 static bool is_refcount_suitable(struct page *page) 537 { 538 int expected_refcount; 539 540 expected_refcount = total_mapcount(page); 541 if (PageSwapCache(page)) 542 expected_refcount += compound_nr(page); 543 544 return page_count(page) == expected_refcount; 545 } 546 547 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 548 unsigned long address, 549 pte_t *pte, 550 struct collapse_control *cc, 551 struct list_head *compound_pagelist) 552 { 553 struct page *page = NULL; 554 pte_t *_pte; 555 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 556 bool writable = false; 557 558 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 559 _pte++, address += PAGE_SIZE) { 560 pte_t pteval = *_pte; 561 if (pte_none(pteval) || (pte_present(pteval) && 562 is_zero_pfn(pte_pfn(pteval)))) { 563 ++none_or_zero; 564 if (!userfaultfd_armed(vma) && 565 (!cc->is_khugepaged || 566 none_or_zero <= khugepaged_max_ptes_none)) { 567 continue; 568 } else { 569 result = SCAN_EXCEED_NONE_PTE; 570 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 571 goto out; 572 } 573 } 574 if (!pte_present(pteval)) { 575 result = SCAN_PTE_NON_PRESENT; 576 goto out; 577 } 578 if (pte_uffd_wp(pteval)) { 579 result = SCAN_PTE_UFFD_WP; 580 goto out; 581 } 582 page = vm_normal_page(vma, address, pteval); 583 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 584 result = SCAN_PAGE_NULL; 585 goto out; 586 } 587 588 VM_BUG_ON_PAGE(!PageAnon(page), page); 589 590 if (page_mapcount(page) > 1) { 591 ++shared; 592 if (cc->is_khugepaged && 593 shared > khugepaged_max_ptes_shared) { 594 result = SCAN_EXCEED_SHARED_PTE; 595 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 596 goto out; 597 } 598 } 599 600 if (PageCompound(page)) { 601 struct page *p; 602 page = compound_head(page); 603 604 /* 605 * Check if we have dealt with the compound page 606 * already 607 */ 608 list_for_each_entry(p, compound_pagelist, lru) { 609 if (page == p) 610 goto next; 611 } 612 } 613 614 /* 615 * We can do it before isolate_lru_page because the 616 * page can't be freed from under us. NOTE: PG_lock 617 * is needed to serialize against split_huge_page 618 * when invoked from the VM. 619 */ 620 if (!trylock_page(page)) { 621 result = SCAN_PAGE_LOCK; 622 goto out; 623 } 624 625 /* 626 * Check if the page has any GUP (or other external) pins. 627 * 628 * The page table that maps the page has been already unlinked 629 * from the page table tree and this process cannot get 630 * an additional pin on the page. 631 * 632 * New pins can come later if the page is shared across fork, 633 * but not from this process. The other process cannot write to 634 * the page, only trigger CoW. 635 */ 636 if (!is_refcount_suitable(page)) { 637 unlock_page(page); 638 result = SCAN_PAGE_COUNT; 639 goto out; 640 } 641 642 /* 643 * Isolate the page to avoid collapsing an hugepage 644 * currently in use by the VM. 645 */ 646 if (!isolate_lru_page(page)) { 647 unlock_page(page); 648 result = SCAN_DEL_PAGE_LRU; 649 goto out; 650 } 651 mod_node_page_state(page_pgdat(page), 652 NR_ISOLATED_ANON + page_is_file_lru(page), 653 compound_nr(page)); 654 VM_BUG_ON_PAGE(!PageLocked(page), page); 655 VM_BUG_ON_PAGE(PageLRU(page), page); 656 657 if (PageCompound(page)) 658 list_add_tail(&page->lru, compound_pagelist); 659 next: 660 /* 661 * If collapse was initiated by khugepaged, check that there is 662 * enough young pte to justify collapsing the page 663 */ 664 if (cc->is_khugepaged && 665 (pte_young(pteval) || page_is_young(page) || 666 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 667 address))) 668 referenced++; 669 670 if (pte_write(pteval)) 671 writable = true; 672 } 673 674 if (unlikely(!writable)) { 675 result = SCAN_PAGE_RO; 676 } else if (unlikely(cc->is_khugepaged && !referenced)) { 677 result = SCAN_LACK_REFERENCED_PAGE; 678 } else { 679 result = SCAN_SUCCEED; 680 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 681 referenced, writable, result); 682 return result; 683 } 684 out: 685 release_pte_pages(pte, _pte, compound_pagelist); 686 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 687 referenced, writable, result); 688 return result; 689 } 690 691 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 692 struct vm_area_struct *vma, 693 unsigned long address, 694 spinlock_t *ptl, 695 struct list_head *compound_pagelist) 696 { 697 struct page *src_page; 698 struct page *tmp; 699 pte_t *_pte; 700 pte_t pteval; 701 702 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 703 _pte++, address += PAGE_SIZE) { 704 pteval = *_pte; 705 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 706 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 707 if (is_zero_pfn(pte_pfn(pteval))) { 708 /* 709 * ptl mostly unnecessary. 710 */ 711 spin_lock(ptl); 712 ptep_clear(vma->vm_mm, address, _pte); 713 spin_unlock(ptl); 714 } 715 } else { 716 src_page = pte_page(pteval); 717 if (!PageCompound(src_page)) 718 release_pte_page(src_page); 719 /* 720 * ptl mostly unnecessary, but preempt has to 721 * be disabled to update the per-cpu stats 722 * inside page_remove_rmap(). 723 */ 724 spin_lock(ptl); 725 ptep_clear(vma->vm_mm, address, _pte); 726 page_remove_rmap(src_page, vma, false); 727 spin_unlock(ptl); 728 free_page_and_swap_cache(src_page); 729 } 730 } 731 732 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 733 list_del(&src_page->lru); 734 mod_node_page_state(page_pgdat(src_page), 735 NR_ISOLATED_ANON + page_is_file_lru(src_page), 736 -compound_nr(src_page)); 737 unlock_page(src_page); 738 free_swap_cache(src_page); 739 putback_lru_page(src_page); 740 } 741 } 742 743 static void __collapse_huge_page_copy_failed(pte_t *pte, 744 pmd_t *pmd, 745 pmd_t orig_pmd, 746 struct vm_area_struct *vma, 747 struct list_head *compound_pagelist) 748 { 749 spinlock_t *pmd_ptl; 750 751 /* 752 * Re-establish the PMD to point to the original page table 753 * entry. Restoring PMD needs to be done prior to releasing 754 * pages. Since pages are still isolated and locked here, 755 * acquiring anon_vma_lock_write is unnecessary. 756 */ 757 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 758 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 759 spin_unlock(pmd_ptl); 760 /* 761 * Release both raw and compound pages isolated 762 * in __collapse_huge_page_isolate. 763 */ 764 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 765 } 766 767 /* 768 * __collapse_huge_page_copy - attempts to copy memory contents from raw 769 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 770 * otherwise restores the original page table and releases isolated raw pages. 771 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 772 * 773 * @pte: starting of the PTEs to copy from 774 * @page: the new hugepage to copy contents to 775 * @pmd: pointer to the new hugepage's PMD 776 * @orig_pmd: the original raw pages' PMD 777 * @vma: the original raw pages' virtual memory area 778 * @address: starting address to copy 779 * @ptl: lock on raw pages' PTEs 780 * @compound_pagelist: list that stores compound pages 781 */ 782 static int __collapse_huge_page_copy(pte_t *pte, 783 struct page *page, 784 pmd_t *pmd, 785 pmd_t orig_pmd, 786 struct vm_area_struct *vma, 787 unsigned long address, 788 spinlock_t *ptl, 789 struct list_head *compound_pagelist) 790 { 791 struct page *src_page; 792 pte_t *_pte; 793 pte_t pteval; 794 unsigned long _address; 795 int result = SCAN_SUCCEED; 796 797 /* 798 * Copying pages' contents is subject to memory poison at any iteration. 799 */ 800 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 801 _pte++, page++, _address += PAGE_SIZE) { 802 pteval = *_pte; 803 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 804 clear_user_highpage(page, _address); 805 continue; 806 } 807 src_page = pte_page(pteval); 808 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 809 result = SCAN_COPY_MC; 810 break; 811 } 812 } 813 814 if (likely(result == SCAN_SUCCEED)) 815 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 816 compound_pagelist); 817 else 818 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 819 compound_pagelist); 820 821 return result; 822 } 823 824 static void khugepaged_alloc_sleep(void) 825 { 826 DEFINE_WAIT(wait); 827 828 add_wait_queue(&khugepaged_wait, &wait); 829 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 830 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 831 remove_wait_queue(&khugepaged_wait, &wait); 832 } 833 834 struct collapse_control khugepaged_collapse_control = { 835 .is_khugepaged = true, 836 }; 837 838 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 839 { 840 int i; 841 842 /* 843 * If node_reclaim_mode is disabled, then no extra effort is made to 844 * allocate memory locally. 845 */ 846 if (!node_reclaim_enabled()) 847 return false; 848 849 /* If there is a count for this node already, it must be acceptable */ 850 if (cc->node_load[nid]) 851 return false; 852 853 for (i = 0; i < MAX_NUMNODES; i++) { 854 if (!cc->node_load[i]) 855 continue; 856 if (node_distance(nid, i) > node_reclaim_distance) 857 return true; 858 } 859 return false; 860 } 861 862 #define khugepaged_defrag() \ 863 (transparent_hugepage_flags & \ 864 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 865 866 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 867 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 868 { 869 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 870 } 871 872 #ifdef CONFIG_NUMA 873 static int hpage_collapse_find_target_node(struct collapse_control *cc) 874 { 875 int nid, target_node = 0, max_value = 0; 876 877 /* find first node with max normal pages hit */ 878 for (nid = 0; nid < MAX_NUMNODES; nid++) 879 if (cc->node_load[nid] > max_value) { 880 max_value = cc->node_load[nid]; 881 target_node = nid; 882 } 883 884 for_each_online_node(nid) { 885 if (max_value == cc->node_load[nid]) 886 node_set(nid, cc->alloc_nmask); 887 } 888 889 return target_node; 890 } 891 #else 892 static int hpage_collapse_find_target_node(struct collapse_control *cc) 893 { 894 return 0; 895 } 896 #endif 897 898 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 899 nodemask_t *nmask) 900 { 901 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 902 if (unlikely(!*hpage)) { 903 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 904 return false; 905 } 906 907 prep_transhuge_page(*hpage); 908 count_vm_event(THP_COLLAPSE_ALLOC); 909 return true; 910 } 911 912 /* 913 * If mmap_lock temporarily dropped, revalidate vma 914 * before taking mmap_lock. 915 * Returns enum scan_result value. 916 */ 917 918 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 919 bool expect_anon, 920 struct vm_area_struct **vmap, 921 struct collapse_control *cc) 922 { 923 struct vm_area_struct *vma; 924 925 if (unlikely(hpage_collapse_test_exit(mm))) 926 return SCAN_ANY_PROCESS; 927 928 *vmap = vma = find_vma(mm, address); 929 if (!vma) 930 return SCAN_VMA_NULL; 931 932 if (!transhuge_vma_suitable(vma, address)) 933 return SCAN_ADDRESS_RANGE; 934 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 935 cc->is_khugepaged)) 936 return SCAN_VMA_CHECK; 937 /* 938 * Anon VMA expected, the address may be unmapped then 939 * remapped to file after khugepaged reaquired the mmap_lock. 940 * 941 * hugepage_vma_check may return true for qualified file 942 * vmas. 943 */ 944 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 945 return SCAN_PAGE_ANON; 946 return SCAN_SUCCEED; 947 } 948 949 /* 950 * See pmd_trans_unstable() for how the result may change out from 951 * underneath us, even if we hold mmap_lock in read. 952 */ 953 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 954 unsigned long address, 955 pmd_t **pmd) 956 { 957 pmd_t pmde; 958 959 *pmd = mm_find_pmd(mm, address); 960 if (!*pmd) 961 return SCAN_PMD_NULL; 962 963 pmde = pmdp_get_lockless(*pmd); 964 965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 966 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 967 barrier(); 968 #endif 969 if (pmd_none(pmde)) 970 return SCAN_PMD_NONE; 971 if (!pmd_present(pmde)) 972 return SCAN_PMD_NULL; 973 if (pmd_trans_huge(pmde)) 974 return SCAN_PMD_MAPPED; 975 if (pmd_devmap(pmde)) 976 return SCAN_PMD_NULL; 977 if (pmd_bad(pmde)) 978 return SCAN_PMD_NULL; 979 return SCAN_SUCCEED; 980 } 981 982 static int check_pmd_still_valid(struct mm_struct *mm, 983 unsigned long address, 984 pmd_t *pmd) 985 { 986 pmd_t *new_pmd; 987 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 988 989 if (result != SCAN_SUCCEED) 990 return result; 991 if (new_pmd != pmd) 992 return SCAN_FAIL; 993 return SCAN_SUCCEED; 994 } 995 996 /* 997 * Bring missing pages in from swap, to complete THP collapse. 998 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 999 * 1000 * Called and returns without pte mapped or spinlocks held. 1001 * Note that if false is returned, mmap_lock will be released. 1002 */ 1003 1004 static int __collapse_huge_page_swapin(struct mm_struct *mm, 1005 struct vm_area_struct *vma, 1006 unsigned long haddr, pmd_t *pmd, 1007 int referenced) 1008 { 1009 int swapped_in = 0; 1010 vm_fault_t ret = 0; 1011 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1012 1013 for (address = haddr; address < end; address += PAGE_SIZE) { 1014 struct vm_fault vmf = { 1015 .vma = vma, 1016 .address = address, 1017 .pgoff = linear_page_index(vma, haddr), 1018 .flags = FAULT_FLAG_ALLOW_RETRY, 1019 .pmd = pmd, 1020 }; 1021 1022 vmf.pte = pte_offset_map(pmd, address); 1023 vmf.orig_pte = *vmf.pte; 1024 if (!is_swap_pte(vmf.orig_pte)) { 1025 pte_unmap(vmf.pte); 1026 continue; 1027 } 1028 ret = do_swap_page(&vmf); 1029 1030 /* 1031 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1032 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1033 * we do not retry here and swap entry will remain in pagetable 1034 * resulting in later failure. 1035 */ 1036 if (ret & VM_FAULT_RETRY) { 1037 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1038 /* Likely, but not guaranteed, that page lock failed */ 1039 return SCAN_PAGE_LOCK; 1040 } 1041 if (ret & VM_FAULT_ERROR) { 1042 mmap_read_unlock(mm); 1043 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1044 return SCAN_FAIL; 1045 } 1046 swapped_in++; 1047 } 1048 1049 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1050 if (swapped_in) 1051 lru_add_drain(); 1052 1053 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1054 return SCAN_SUCCEED; 1055 } 1056 1057 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1058 struct collapse_control *cc) 1059 { 1060 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1061 GFP_TRANSHUGE); 1062 int node = hpage_collapse_find_target_node(cc); 1063 struct folio *folio; 1064 1065 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 1066 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1067 1068 folio = page_folio(*hpage); 1069 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1070 folio_put(folio); 1071 *hpage = NULL; 1072 return SCAN_CGROUP_CHARGE_FAIL; 1073 } 1074 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 1075 1076 return SCAN_SUCCEED; 1077 } 1078 1079 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1080 int referenced, int unmapped, 1081 struct collapse_control *cc) 1082 { 1083 LIST_HEAD(compound_pagelist); 1084 pmd_t *pmd, _pmd; 1085 pte_t *pte; 1086 pgtable_t pgtable; 1087 struct page *hpage; 1088 spinlock_t *pmd_ptl, *pte_ptl; 1089 int result = SCAN_FAIL; 1090 struct vm_area_struct *vma; 1091 struct mmu_notifier_range range; 1092 1093 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1094 1095 /* 1096 * Before allocating the hugepage, release the mmap_lock read lock. 1097 * The allocation can take potentially a long time if it involves 1098 * sync compaction, and we do not need to hold the mmap_lock during 1099 * that. We will recheck the vma after taking it again in write mode. 1100 */ 1101 mmap_read_unlock(mm); 1102 1103 result = alloc_charge_hpage(&hpage, mm, cc); 1104 if (result != SCAN_SUCCEED) 1105 goto out_nolock; 1106 1107 mmap_read_lock(mm); 1108 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1109 if (result != SCAN_SUCCEED) { 1110 mmap_read_unlock(mm); 1111 goto out_nolock; 1112 } 1113 1114 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1115 if (result != SCAN_SUCCEED) { 1116 mmap_read_unlock(mm); 1117 goto out_nolock; 1118 } 1119 1120 if (unmapped) { 1121 /* 1122 * __collapse_huge_page_swapin will return with mmap_lock 1123 * released when it fails. So we jump out_nolock directly in 1124 * that case. Continuing to collapse causes inconsistency. 1125 */ 1126 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1127 referenced); 1128 if (result != SCAN_SUCCEED) 1129 goto out_nolock; 1130 } 1131 1132 mmap_read_unlock(mm); 1133 /* 1134 * Prevent all access to pagetables with the exception of 1135 * gup_fast later handled by the ptep_clear_flush and the VM 1136 * handled by the anon_vma lock + PG_lock. 1137 */ 1138 mmap_write_lock(mm); 1139 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1140 if (result != SCAN_SUCCEED) 1141 goto out_up_write; 1142 /* check if the pmd is still valid */ 1143 result = check_pmd_still_valid(mm, address, pmd); 1144 if (result != SCAN_SUCCEED) 1145 goto out_up_write; 1146 1147 vma_start_write(vma); 1148 anon_vma_lock_write(vma->anon_vma); 1149 1150 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1151 address + HPAGE_PMD_SIZE); 1152 mmu_notifier_invalidate_range_start(&range); 1153 1154 pte = pte_offset_map(pmd, address); 1155 pte_ptl = pte_lockptr(mm, pmd); 1156 1157 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1158 /* 1159 * This removes any huge TLB entry from the CPU so we won't allow 1160 * huge and small TLB entries for the same virtual address to 1161 * avoid the risk of CPU bugs in that area. 1162 * 1163 * Parallel fast GUP is fine since fast GUP will back off when 1164 * it detects PMD is changed. 1165 */ 1166 _pmd = pmdp_collapse_flush(vma, address, pmd); 1167 spin_unlock(pmd_ptl); 1168 mmu_notifier_invalidate_range_end(&range); 1169 tlb_remove_table_sync_one(); 1170 1171 spin_lock(pte_ptl); 1172 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1173 &compound_pagelist); 1174 spin_unlock(pte_ptl); 1175 1176 if (unlikely(result != SCAN_SUCCEED)) { 1177 pte_unmap(pte); 1178 spin_lock(pmd_ptl); 1179 BUG_ON(!pmd_none(*pmd)); 1180 /* 1181 * We can only use set_pmd_at when establishing 1182 * hugepmds and never for establishing regular pmds that 1183 * points to regular pagetables. Use pmd_populate for that 1184 */ 1185 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1186 spin_unlock(pmd_ptl); 1187 anon_vma_unlock_write(vma->anon_vma); 1188 goto out_up_write; 1189 } 1190 1191 /* 1192 * All pages are isolated and locked so anon_vma rmap 1193 * can't run anymore. 1194 */ 1195 anon_vma_unlock_write(vma->anon_vma); 1196 1197 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1198 vma, address, pte_ptl, 1199 &compound_pagelist); 1200 pte_unmap(pte); 1201 if (unlikely(result != SCAN_SUCCEED)) 1202 goto out_up_write; 1203 1204 /* 1205 * spin_lock() below is not the equivalent of smp_wmb(), but 1206 * the smp_wmb() inside __SetPageUptodate() can be reused to 1207 * avoid the copy_huge_page writes to become visible after 1208 * the set_pmd_at() write. 1209 */ 1210 __SetPageUptodate(hpage); 1211 pgtable = pmd_pgtable(_pmd); 1212 1213 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1214 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1215 1216 spin_lock(pmd_ptl); 1217 BUG_ON(!pmd_none(*pmd)); 1218 page_add_new_anon_rmap(hpage, vma, address); 1219 lru_cache_add_inactive_or_unevictable(hpage, vma); 1220 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1221 set_pmd_at(mm, address, pmd, _pmd); 1222 update_mmu_cache_pmd(vma, address, pmd); 1223 spin_unlock(pmd_ptl); 1224 1225 hpage = NULL; 1226 1227 result = SCAN_SUCCEED; 1228 out_up_write: 1229 mmap_write_unlock(mm); 1230 out_nolock: 1231 if (hpage) 1232 put_page(hpage); 1233 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1234 return result; 1235 } 1236 1237 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1238 struct vm_area_struct *vma, 1239 unsigned long address, bool *mmap_locked, 1240 struct collapse_control *cc) 1241 { 1242 pmd_t *pmd; 1243 pte_t *pte, *_pte; 1244 int result = SCAN_FAIL, referenced = 0; 1245 int none_or_zero = 0, shared = 0; 1246 struct page *page = NULL; 1247 unsigned long _address; 1248 spinlock_t *ptl; 1249 int node = NUMA_NO_NODE, unmapped = 0; 1250 bool writable = false; 1251 1252 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1253 1254 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1255 if (result != SCAN_SUCCEED) 1256 goto out; 1257 1258 memset(cc->node_load, 0, sizeof(cc->node_load)); 1259 nodes_clear(cc->alloc_nmask); 1260 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1261 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1262 _pte++, _address += PAGE_SIZE) { 1263 pte_t pteval = *_pte; 1264 if (is_swap_pte(pteval)) { 1265 ++unmapped; 1266 if (!cc->is_khugepaged || 1267 unmapped <= khugepaged_max_ptes_swap) { 1268 /* 1269 * Always be strict with uffd-wp 1270 * enabled swap entries. Please see 1271 * comment below for pte_uffd_wp(). 1272 */ 1273 if (pte_swp_uffd_wp_any(pteval)) { 1274 result = SCAN_PTE_UFFD_WP; 1275 goto out_unmap; 1276 } 1277 continue; 1278 } else { 1279 result = SCAN_EXCEED_SWAP_PTE; 1280 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1281 goto out_unmap; 1282 } 1283 } 1284 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1285 ++none_or_zero; 1286 if (!userfaultfd_armed(vma) && 1287 (!cc->is_khugepaged || 1288 none_or_zero <= khugepaged_max_ptes_none)) { 1289 continue; 1290 } else { 1291 result = SCAN_EXCEED_NONE_PTE; 1292 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1293 goto out_unmap; 1294 } 1295 } 1296 if (pte_uffd_wp(pteval)) { 1297 /* 1298 * Don't collapse the page if any of the small 1299 * PTEs are armed with uffd write protection. 1300 * Here we can also mark the new huge pmd as 1301 * write protected if any of the small ones is 1302 * marked but that could bring unknown 1303 * userfault messages that falls outside of 1304 * the registered range. So, just be simple. 1305 */ 1306 result = SCAN_PTE_UFFD_WP; 1307 goto out_unmap; 1308 } 1309 if (pte_write(pteval)) 1310 writable = true; 1311 1312 page = vm_normal_page(vma, _address, pteval); 1313 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1314 result = SCAN_PAGE_NULL; 1315 goto out_unmap; 1316 } 1317 1318 if (page_mapcount(page) > 1) { 1319 ++shared; 1320 if (cc->is_khugepaged && 1321 shared > khugepaged_max_ptes_shared) { 1322 result = SCAN_EXCEED_SHARED_PTE; 1323 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1324 goto out_unmap; 1325 } 1326 } 1327 1328 page = compound_head(page); 1329 1330 /* 1331 * Record which node the original page is from and save this 1332 * information to cc->node_load[]. 1333 * Khugepaged will allocate hugepage from the node has the max 1334 * hit record. 1335 */ 1336 node = page_to_nid(page); 1337 if (hpage_collapse_scan_abort(node, cc)) { 1338 result = SCAN_SCAN_ABORT; 1339 goto out_unmap; 1340 } 1341 cc->node_load[node]++; 1342 if (!PageLRU(page)) { 1343 result = SCAN_PAGE_LRU; 1344 goto out_unmap; 1345 } 1346 if (PageLocked(page)) { 1347 result = SCAN_PAGE_LOCK; 1348 goto out_unmap; 1349 } 1350 if (!PageAnon(page)) { 1351 result = SCAN_PAGE_ANON; 1352 goto out_unmap; 1353 } 1354 1355 /* 1356 * Check if the page has any GUP (or other external) pins. 1357 * 1358 * Here the check may be racy: 1359 * it may see total_mapcount > refcount in some cases? 1360 * But such case is ephemeral we could always retry collapse 1361 * later. However it may report false positive if the page 1362 * has excessive GUP pins (i.e. 512). Anyway the same check 1363 * will be done again later the risk seems low. 1364 */ 1365 if (!is_refcount_suitable(page)) { 1366 result = SCAN_PAGE_COUNT; 1367 goto out_unmap; 1368 } 1369 1370 /* 1371 * If collapse was initiated by khugepaged, check that there is 1372 * enough young pte to justify collapsing the page 1373 */ 1374 if (cc->is_khugepaged && 1375 (pte_young(pteval) || page_is_young(page) || 1376 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1377 address))) 1378 referenced++; 1379 } 1380 if (!writable) { 1381 result = SCAN_PAGE_RO; 1382 } else if (cc->is_khugepaged && 1383 (!referenced || 1384 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1385 result = SCAN_LACK_REFERENCED_PAGE; 1386 } else { 1387 result = SCAN_SUCCEED; 1388 } 1389 out_unmap: 1390 pte_unmap_unlock(pte, ptl); 1391 if (result == SCAN_SUCCEED) { 1392 result = collapse_huge_page(mm, address, referenced, 1393 unmapped, cc); 1394 /* collapse_huge_page will return with the mmap_lock released */ 1395 *mmap_locked = false; 1396 } 1397 out: 1398 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1399 none_or_zero, result, unmapped); 1400 return result; 1401 } 1402 1403 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1404 { 1405 struct mm_slot *slot = &mm_slot->slot; 1406 struct mm_struct *mm = slot->mm; 1407 1408 lockdep_assert_held(&khugepaged_mm_lock); 1409 1410 if (hpage_collapse_test_exit(mm)) { 1411 /* free mm_slot */ 1412 hash_del(&slot->hash); 1413 list_del(&slot->mm_node); 1414 1415 /* 1416 * Not strictly needed because the mm exited already. 1417 * 1418 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1419 */ 1420 1421 /* khugepaged_mm_lock actually not necessary for the below */ 1422 mm_slot_free(mm_slot_cache, mm_slot); 1423 mmdrop(mm); 1424 } 1425 } 1426 1427 #ifdef CONFIG_SHMEM 1428 /* 1429 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1430 * khugepaged should try to collapse the page table. 1431 * 1432 * Note that following race exists: 1433 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1434 * emptying the A's ->pte_mapped_thp[] array. 1435 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1436 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1437 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1438 * ->pte-mapped_thp[] array. 1439 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1440 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1441 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1442 * Thus, it's possible the same address is added multiple times for the same 1443 * mm_struct. Should this happen, we'll simply attempt 1444 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1445 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1446 * attempts will return quickly (without grabbing any additional locks) when 1447 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1448 * check, and since this is a rare occurrence, the cost of preventing this 1449 * "multiple-add" is thought to be more expensive than just handling it, should 1450 * it occur. 1451 */ 1452 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1453 unsigned long addr) 1454 { 1455 struct khugepaged_mm_slot *mm_slot; 1456 struct mm_slot *slot; 1457 bool ret = false; 1458 1459 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1460 1461 spin_lock(&khugepaged_mm_lock); 1462 slot = mm_slot_lookup(mm_slots_hash, mm); 1463 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1464 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1465 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1466 ret = true; 1467 } 1468 spin_unlock(&khugepaged_mm_lock); 1469 return ret; 1470 } 1471 1472 /* hpage must be locked, and mmap_lock must be held in write */ 1473 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1474 pmd_t *pmdp, struct page *hpage) 1475 { 1476 struct vm_fault vmf = { 1477 .vma = vma, 1478 .address = addr, 1479 .flags = 0, 1480 .pmd = pmdp, 1481 }; 1482 1483 VM_BUG_ON(!PageTransHuge(hpage)); 1484 mmap_assert_write_locked(vma->vm_mm); 1485 1486 if (do_set_pmd(&vmf, hpage)) 1487 return SCAN_FAIL; 1488 1489 get_page(hpage); 1490 return SCAN_SUCCEED; 1491 } 1492 1493 /* 1494 * A note about locking: 1495 * Trying to take the page table spinlocks would be useless here because those 1496 * are only used to synchronize: 1497 * 1498 * - modifying terminal entries (ones that point to a data page, not to another 1499 * page table) 1500 * - installing *new* non-terminal entries 1501 * 1502 * Instead, we need roughly the same kind of protection as free_pgtables() or 1503 * mm_take_all_locks() (but only for a single VMA): 1504 * The mmap lock together with this VMA's rmap locks covers all paths towards 1505 * the page table entries we're messing with here, except for hardware page 1506 * table walks and lockless_pages_from_mm(). 1507 */ 1508 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1509 unsigned long addr, pmd_t *pmdp) 1510 { 1511 pmd_t pmd; 1512 struct mmu_notifier_range range; 1513 1514 mmap_assert_write_locked(mm); 1515 if (vma->vm_file) 1516 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1517 /* 1518 * All anon_vmas attached to the VMA have the same root and are 1519 * therefore locked by the same lock. 1520 */ 1521 if (vma->anon_vma) 1522 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1523 1524 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1525 addr + HPAGE_PMD_SIZE); 1526 mmu_notifier_invalidate_range_start(&range); 1527 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1528 tlb_remove_table_sync_one(); 1529 mmu_notifier_invalidate_range_end(&range); 1530 mm_dec_nr_ptes(mm); 1531 page_table_check_pte_clear_range(mm, addr, pmd); 1532 pte_free(mm, pmd_pgtable(pmd)); 1533 } 1534 1535 /** 1536 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1537 * address haddr. 1538 * 1539 * @mm: process address space where collapse happens 1540 * @addr: THP collapse address 1541 * @install_pmd: If a huge PMD should be installed 1542 * 1543 * This function checks whether all the PTEs in the PMD are pointing to the 1544 * right THP. If so, retract the page table so the THP can refault in with 1545 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1546 */ 1547 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1548 bool install_pmd) 1549 { 1550 unsigned long haddr = addr & HPAGE_PMD_MASK; 1551 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1552 struct page *hpage; 1553 pte_t *start_pte, *pte; 1554 pmd_t *pmd; 1555 spinlock_t *ptl; 1556 int count = 0, result = SCAN_FAIL; 1557 int i; 1558 1559 mmap_assert_write_locked(mm); 1560 1561 /* Fast check before locking page if already PMD-mapped */ 1562 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1563 if (result == SCAN_PMD_MAPPED) 1564 return result; 1565 1566 if (!vma || !vma->vm_file || 1567 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1568 return SCAN_VMA_CHECK; 1569 1570 /* 1571 * If we are here, we've succeeded in replacing all the native pages 1572 * in the page cache with a single hugepage. If a mm were to fault-in 1573 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1574 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1575 * analogously elide sysfs THP settings here. 1576 */ 1577 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1578 return SCAN_VMA_CHECK; 1579 1580 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1581 if (userfaultfd_wp(vma)) 1582 return SCAN_PTE_UFFD_WP; 1583 1584 hpage = find_lock_page(vma->vm_file->f_mapping, 1585 linear_page_index(vma, haddr)); 1586 if (!hpage) 1587 return SCAN_PAGE_NULL; 1588 1589 if (!PageHead(hpage)) { 1590 result = SCAN_FAIL; 1591 goto drop_hpage; 1592 } 1593 1594 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1595 result = SCAN_PAGE_COMPOUND; 1596 goto drop_hpage; 1597 } 1598 1599 switch (result) { 1600 case SCAN_SUCCEED: 1601 break; 1602 case SCAN_PMD_NONE: 1603 /* 1604 * In MADV_COLLAPSE path, possible race with khugepaged where 1605 * all pte entries have been removed and pmd cleared. If so, 1606 * skip all the pte checks and just update the pmd mapping. 1607 */ 1608 goto maybe_install_pmd; 1609 default: 1610 goto drop_hpage; 1611 } 1612 1613 /* Lock the vma before taking i_mmap and page table locks */ 1614 vma_start_write(vma); 1615 1616 /* 1617 * We need to lock the mapping so that from here on, only GUP-fast and 1618 * hardware page walks can access the parts of the page tables that 1619 * we're operating on. 1620 * See collapse_and_free_pmd(). 1621 */ 1622 i_mmap_lock_write(vma->vm_file->f_mapping); 1623 1624 /* 1625 * This spinlock should be unnecessary: Nobody else should be accessing 1626 * the page tables under spinlock protection here, only 1627 * lockless_pages_from_mm() and the hardware page walker can access page 1628 * tables while all the high-level locks are held in write mode. 1629 */ 1630 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1631 result = SCAN_FAIL; 1632 1633 /* step 1: check all mapped PTEs are to the right huge page */ 1634 for (i = 0, addr = haddr, pte = start_pte; 1635 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1636 struct page *page; 1637 1638 /* empty pte, skip */ 1639 if (pte_none(*pte)) 1640 continue; 1641 1642 /* page swapped out, abort */ 1643 if (!pte_present(*pte)) { 1644 result = SCAN_PTE_NON_PRESENT; 1645 goto abort; 1646 } 1647 1648 page = vm_normal_page(vma, addr, *pte); 1649 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1650 page = NULL; 1651 /* 1652 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1653 * page table, but the new page will not be a subpage of hpage. 1654 */ 1655 if (hpage + i != page) 1656 goto abort; 1657 count++; 1658 } 1659 1660 /* step 2: adjust rmap */ 1661 for (i = 0, addr = haddr, pte = start_pte; 1662 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1663 struct page *page; 1664 1665 if (pte_none(*pte)) 1666 continue; 1667 page = vm_normal_page(vma, addr, *pte); 1668 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1669 goto abort; 1670 page_remove_rmap(page, vma, false); 1671 } 1672 1673 pte_unmap_unlock(start_pte, ptl); 1674 1675 /* step 3: set proper refcount and mm_counters. */ 1676 if (count) { 1677 page_ref_sub(hpage, count); 1678 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1679 } 1680 1681 /* step 4: remove pte entries */ 1682 /* we make no change to anon, but protect concurrent anon page lookup */ 1683 if (vma->anon_vma) 1684 anon_vma_lock_write(vma->anon_vma); 1685 1686 collapse_and_free_pmd(mm, vma, haddr, pmd); 1687 1688 if (vma->anon_vma) 1689 anon_vma_unlock_write(vma->anon_vma); 1690 i_mmap_unlock_write(vma->vm_file->f_mapping); 1691 1692 maybe_install_pmd: 1693 /* step 5: install pmd entry */ 1694 result = install_pmd 1695 ? set_huge_pmd(vma, haddr, pmd, hpage) 1696 : SCAN_SUCCEED; 1697 1698 drop_hpage: 1699 unlock_page(hpage); 1700 put_page(hpage); 1701 return result; 1702 1703 abort: 1704 pte_unmap_unlock(start_pte, ptl); 1705 i_mmap_unlock_write(vma->vm_file->f_mapping); 1706 goto drop_hpage; 1707 } 1708 1709 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1710 { 1711 struct mm_slot *slot = &mm_slot->slot; 1712 struct mm_struct *mm = slot->mm; 1713 int i; 1714 1715 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1716 return; 1717 1718 if (!mmap_write_trylock(mm)) 1719 return; 1720 1721 if (unlikely(hpage_collapse_test_exit(mm))) 1722 goto out; 1723 1724 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1725 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1726 1727 out: 1728 mm_slot->nr_pte_mapped_thp = 0; 1729 mmap_write_unlock(mm); 1730 } 1731 1732 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1733 struct mm_struct *target_mm, 1734 unsigned long target_addr, struct page *hpage, 1735 struct collapse_control *cc) 1736 { 1737 struct vm_area_struct *vma; 1738 int target_result = SCAN_FAIL; 1739 1740 i_mmap_lock_write(mapping); 1741 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1742 int result = SCAN_FAIL; 1743 struct mm_struct *mm = NULL; 1744 unsigned long addr = 0; 1745 pmd_t *pmd; 1746 bool is_target = false; 1747 1748 /* 1749 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1750 * got written to. These VMAs are likely not worth investing 1751 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1752 * later. 1753 * 1754 * Note that vma->anon_vma check is racy: it can be set up after 1755 * the check but before we took mmap_lock by the fault path. 1756 * But page lock would prevent establishing any new ptes of the 1757 * page, so we are safe. 1758 * 1759 * An alternative would be drop the check, but check that page 1760 * table is clear before calling pmdp_collapse_flush() under 1761 * ptl. It has higher chance to recover THP for the VMA, but 1762 * has higher cost too. It would also probably require locking 1763 * the anon_vma. 1764 */ 1765 if (READ_ONCE(vma->anon_vma)) { 1766 result = SCAN_PAGE_ANON; 1767 goto next; 1768 } 1769 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1770 if (addr & ~HPAGE_PMD_MASK || 1771 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1772 result = SCAN_VMA_CHECK; 1773 goto next; 1774 } 1775 mm = vma->vm_mm; 1776 is_target = mm == target_mm && addr == target_addr; 1777 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1778 if (result != SCAN_SUCCEED) 1779 goto next; 1780 /* 1781 * We need exclusive mmap_lock to retract page table. 1782 * 1783 * We use trylock due to lock inversion: we need to acquire 1784 * mmap_lock while holding page lock. Fault path does it in 1785 * reverse order. Trylock is a way to avoid deadlock. 1786 * 1787 * Also, it's not MADV_COLLAPSE's job to collapse other 1788 * mappings - let khugepaged take care of them later. 1789 */ 1790 result = SCAN_PTE_MAPPED_HUGEPAGE; 1791 if ((cc->is_khugepaged || is_target) && 1792 mmap_write_trylock(mm)) { 1793 /* trylock for the same lock inversion as above */ 1794 if (!vma_try_start_write(vma)) 1795 goto unlock_next; 1796 1797 /* 1798 * Re-check whether we have an ->anon_vma, because 1799 * collapse_and_free_pmd() requires that either no 1800 * ->anon_vma exists or the anon_vma is locked. 1801 * We already checked ->anon_vma above, but that check 1802 * is racy because ->anon_vma can be populated under the 1803 * mmap lock in read mode. 1804 */ 1805 if (vma->anon_vma) { 1806 result = SCAN_PAGE_ANON; 1807 goto unlock_next; 1808 } 1809 /* 1810 * When a vma is registered with uffd-wp, we can't 1811 * recycle the pmd pgtable because there can be pte 1812 * markers installed. Skip it only, so the rest mm/vma 1813 * can still have the same file mapped hugely, however 1814 * it'll always mapped in small page size for uffd-wp 1815 * registered ranges. 1816 */ 1817 if (hpage_collapse_test_exit(mm)) { 1818 result = SCAN_ANY_PROCESS; 1819 goto unlock_next; 1820 } 1821 if (userfaultfd_wp(vma)) { 1822 result = SCAN_PTE_UFFD_WP; 1823 goto unlock_next; 1824 } 1825 collapse_and_free_pmd(mm, vma, addr, pmd); 1826 if (!cc->is_khugepaged && is_target) 1827 result = set_huge_pmd(vma, addr, pmd, hpage); 1828 else 1829 result = SCAN_SUCCEED; 1830 1831 unlock_next: 1832 mmap_write_unlock(mm); 1833 goto next; 1834 } 1835 /* 1836 * Calling context will handle target mm/addr. Otherwise, let 1837 * khugepaged try again later. 1838 */ 1839 if (!is_target) { 1840 khugepaged_add_pte_mapped_thp(mm, addr); 1841 continue; 1842 } 1843 next: 1844 if (is_target) 1845 target_result = result; 1846 } 1847 i_mmap_unlock_write(mapping); 1848 return target_result; 1849 } 1850 1851 /** 1852 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1853 * 1854 * @mm: process address space where collapse happens 1855 * @addr: virtual collapse start address 1856 * @file: file that collapse on 1857 * @start: collapse start address 1858 * @cc: collapse context and scratchpad 1859 * 1860 * Basic scheme is simple, details are more complex: 1861 * - allocate and lock a new huge page; 1862 * - scan page cache, locking old pages 1863 * + swap/gup in pages if necessary; 1864 * - copy data to new page 1865 * - handle shmem holes 1866 * + re-validate that holes weren't filled by someone else 1867 * + check for userfaultfd 1868 * - finalize updates to the page cache; 1869 * - if replacing succeeds: 1870 * + unlock huge page; 1871 * + free old pages; 1872 * - if replacing failed; 1873 * + unlock old pages 1874 * + unlock and free huge page; 1875 */ 1876 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1877 struct file *file, pgoff_t start, 1878 struct collapse_control *cc) 1879 { 1880 struct address_space *mapping = file->f_mapping; 1881 struct page *hpage; 1882 struct page *page; 1883 struct page *tmp; 1884 struct folio *folio; 1885 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1886 LIST_HEAD(pagelist); 1887 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1888 int nr_none = 0, result = SCAN_SUCCEED; 1889 bool is_shmem = shmem_file(file); 1890 int nr = 0; 1891 1892 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1893 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1894 1895 result = alloc_charge_hpage(&hpage, mm, cc); 1896 if (result != SCAN_SUCCEED) 1897 goto out; 1898 1899 __SetPageLocked(hpage); 1900 if (is_shmem) 1901 __SetPageSwapBacked(hpage); 1902 hpage->index = start; 1903 hpage->mapping = mapping; 1904 1905 /* 1906 * Ensure we have slots for all the pages in the range. This is 1907 * almost certainly a no-op because most of the pages must be present 1908 */ 1909 do { 1910 xas_lock_irq(&xas); 1911 xas_create_range(&xas); 1912 if (!xas_error(&xas)) 1913 break; 1914 xas_unlock_irq(&xas); 1915 if (!xas_nomem(&xas, GFP_KERNEL)) { 1916 result = SCAN_FAIL; 1917 goto rollback; 1918 } 1919 } while (1); 1920 1921 xas_set(&xas, start); 1922 for (index = start; index < end; index++) { 1923 page = xas_next(&xas); 1924 1925 VM_BUG_ON(index != xas.xa_index); 1926 if (is_shmem) { 1927 if (!page) { 1928 /* 1929 * Stop if extent has been truncated or 1930 * hole-punched, and is now completely 1931 * empty. 1932 */ 1933 if (index == start) { 1934 if (!xas_next_entry(&xas, end - 1)) { 1935 result = SCAN_TRUNCATED; 1936 goto xa_locked; 1937 } 1938 xas_set(&xas, index + 1); 1939 } 1940 if (!shmem_charge(mapping->host, 1)) { 1941 result = SCAN_FAIL; 1942 goto xa_locked; 1943 } 1944 nr_none++; 1945 continue; 1946 } 1947 1948 if (xa_is_value(page) || !PageUptodate(page)) { 1949 xas_unlock_irq(&xas); 1950 /* swap in or instantiate fallocated page */ 1951 if (shmem_get_folio(mapping->host, index, 1952 &folio, SGP_NOALLOC)) { 1953 result = SCAN_FAIL; 1954 goto xa_unlocked; 1955 } 1956 /* drain pagevecs to help isolate_lru_page() */ 1957 lru_add_drain(); 1958 page = folio_file_page(folio, index); 1959 } else if (trylock_page(page)) { 1960 get_page(page); 1961 xas_unlock_irq(&xas); 1962 } else { 1963 result = SCAN_PAGE_LOCK; 1964 goto xa_locked; 1965 } 1966 } else { /* !is_shmem */ 1967 if (!page || xa_is_value(page)) { 1968 xas_unlock_irq(&xas); 1969 page_cache_sync_readahead(mapping, &file->f_ra, 1970 file, index, 1971 end - index); 1972 /* drain pagevecs to help isolate_lru_page() */ 1973 lru_add_drain(); 1974 page = find_lock_page(mapping, index); 1975 if (unlikely(page == NULL)) { 1976 result = SCAN_FAIL; 1977 goto xa_unlocked; 1978 } 1979 } else if (PageDirty(page)) { 1980 /* 1981 * khugepaged only works on read-only fd, 1982 * so this page is dirty because it hasn't 1983 * been flushed since first write. There 1984 * won't be new dirty pages. 1985 * 1986 * Trigger async flush here and hope the 1987 * writeback is done when khugepaged 1988 * revisits this page. 1989 * 1990 * This is a one-off situation. We are not 1991 * forcing writeback in loop. 1992 */ 1993 xas_unlock_irq(&xas); 1994 filemap_flush(mapping); 1995 result = SCAN_FAIL; 1996 goto xa_unlocked; 1997 } else if (PageWriteback(page)) { 1998 xas_unlock_irq(&xas); 1999 result = SCAN_FAIL; 2000 goto xa_unlocked; 2001 } else if (trylock_page(page)) { 2002 get_page(page); 2003 xas_unlock_irq(&xas); 2004 } else { 2005 result = SCAN_PAGE_LOCK; 2006 goto xa_locked; 2007 } 2008 } 2009 2010 /* 2011 * The page must be locked, so we can drop the i_pages lock 2012 * without racing with truncate. 2013 */ 2014 VM_BUG_ON_PAGE(!PageLocked(page), page); 2015 2016 /* make sure the page is up to date */ 2017 if (unlikely(!PageUptodate(page))) { 2018 result = SCAN_FAIL; 2019 goto out_unlock; 2020 } 2021 2022 /* 2023 * If file was truncated then extended, or hole-punched, before 2024 * we locked the first page, then a THP might be there already. 2025 * This will be discovered on the first iteration. 2026 */ 2027 if (PageTransCompound(page)) { 2028 struct page *head = compound_head(page); 2029 2030 result = compound_order(head) == HPAGE_PMD_ORDER && 2031 head->index == start 2032 /* Maybe PMD-mapped */ 2033 ? SCAN_PTE_MAPPED_HUGEPAGE 2034 : SCAN_PAGE_COMPOUND; 2035 goto out_unlock; 2036 } 2037 2038 folio = page_folio(page); 2039 2040 if (folio_mapping(folio) != mapping) { 2041 result = SCAN_TRUNCATED; 2042 goto out_unlock; 2043 } 2044 2045 if (!is_shmem && (folio_test_dirty(folio) || 2046 folio_test_writeback(folio))) { 2047 /* 2048 * khugepaged only works on read-only fd, so this 2049 * page is dirty because it hasn't been flushed 2050 * since first write. 2051 */ 2052 result = SCAN_FAIL; 2053 goto out_unlock; 2054 } 2055 2056 if (!folio_isolate_lru(folio)) { 2057 result = SCAN_DEL_PAGE_LRU; 2058 goto out_unlock; 2059 } 2060 2061 if (folio_has_private(folio) && 2062 !filemap_release_folio(folio, GFP_KERNEL)) { 2063 result = SCAN_PAGE_HAS_PRIVATE; 2064 folio_putback_lru(folio); 2065 goto out_unlock; 2066 } 2067 2068 if (folio_mapped(folio)) 2069 try_to_unmap(folio, 2070 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2071 2072 xas_lock_irq(&xas); 2073 2074 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 2075 2076 /* 2077 * We control three references to the page: 2078 * - we hold a pin on it; 2079 * - one reference from page cache; 2080 * - one from isolate_lru_page; 2081 * If those are the only references, then any new usage of the 2082 * page will have to fetch it from the page cache. That requires 2083 * locking the page to handle truncate, so any new usage will be 2084 * blocked until we unlock page after collapse/during rollback. 2085 */ 2086 if (page_count(page) != 3) { 2087 result = SCAN_PAGE_COUNT; 2088 xas_unlock_irq(&xas); 2089 putback_lru_page(page); 2090 goto out_unlock; 2091 } 2092 2093 /* 2094 * Accumulate the pages that are being collapsed. 2095 */ 2096 list_add_tail(&page->lru, &pagelist); 2097 continue; 2098 out_unlock: 2099 unlock_page(page); 2100 put_page(page); 2101 goto xa_unlocked; 2102 } 2103 2104 if (!is_shmem) { 2105 filemap_nr_thps_inc(mapping); 2106 /* 2107 * Paired with smp_mb() in do_dentry_open() to ensure 2108 * i_writecount is up to date and the update to nr_thps is 2109 * visible. Ensures the page cache will be truncated if the 2110 * file is opened writable. 2111 */ 2112 smp_mb(); 2113 if (inode_is_open_for_write(mapping->host)) { 2114 result = SCAN_FAIL; 2115 filemap_nr_thps_dec(mapping); 2116 } 2117 } 2118 2119 xa_locked: 2120 xas_unlock_irq(&xas); 2121 xa_unlocked: 2122 2123 /* 2124 * If collapse is successful, flush must be done now before copying. 2125 * If collapse is unsuccessful, does flush actually need to be done? 2126 * Do it anyway, to clear the state. 2127 */ 2128 try_to_unmap_flush(); 2129 2130 if (result != SCAN_SUCCEED) 2131 goto rollback; 2132 2133 /* 2134 * The old pages are locked, so they won't change anymore. 2135 */ 2136 index = start; 2137 list_for_each_entry(page, &pagelist, lru) { 2138 while (index < page->index) { 2139 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2140 index++; 2141 } 2142 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2143 result = SCAN_COPY_MC; 2144 goto rollback; 2145 } 2146 index++; 2147 } 2148 while (index < end) { 2149 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2150 index++; 2151 } 2152 2153 if (nr_none) { 2154 struct vm_area_struct *vma; 2155 int nr_none_check = 0; 2156 2157 i_mmap_lock_read(mapping); 2158 xas_lock_irq(&xas); 2159 2160 xas_set(&xas, start); 2161 for (index = start; index < end; index++) { 2162 if (!xas_next(&xas)) { 2163 xas_store(&xas, XA_RETRY_ENTRY); 2164 if (xas_error(&xas)) { 2165 result = SCAN_STORE_FAILED; 2166 goto immap_locked; 2167 } 2168 nr_none_check++; 2169 } 2170 } 2171 2172 if (nr_none != nr_none_check) { 2173 result = SCAN_PAGE_FILLED; 2174 goto immap_locked; 2175 } 2176 2177 /* 2178 * If userspace observed a missing page in a VMA with a MODE_MISSING 2179 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2180 * page. If so, we need to roll back to avoid suppressing such an 2181 * event. Since wp/minor userfaultfds don't give userspace any 2182 * guarantees that the kernel doesn't fill a missing page with a zero 2183 * page, so they don't matter here. 2184 * 2185 * Any userfaultfds registered after this point will not be able to 2186 * observe any missing pages due to the previously inserted retry 2187 * entries. 2188 */ 2189 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2190 if (userfaultfd_missing(vma)) { 2191 result = SCAN_EXCEED_NONE_PTE; 2192 goto immap_locked; 2193 } 2194 } 2195 2196 immap_locked: 2197 i_mmap_unlock_read(mapping); 2198 if (result != SCAN_SUCCEED) { 2199 xas_set(&xas, start); 2200 for (index = start; index < end; index++) { 2201 if (xas_next(&xas) == XA_RETRY_ENTRY) 2202 xas_store(&xas, NULL); 2203 } 2204 2205 xas_unlock_irq(&xas); 2206 goto rollback; 2207 } 2208 } else { 2209 xas_lock_irq(&xas); 2210 } 2211 2212 nr = thp_nr_pages(hpage); 2213 if (is_shmem) 2214 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2215 else 2216 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2217 2218 if (nr_none) { 2219 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2220 /* nr_none is always 0 for non-shmem. */ 2221 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2222 } 2223 2224 /* 2225 * Mark hpage as uptodate before inserting it into the page cache so 2226 * that it isn't mistaken for an fallocated but unwritten page. 2227 */ 2228 folio = page_folio(hpage); 2229 folio_mark_uptodate(folio); 2230 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2231 2232 if (is_shmem) 2233 folio_mark_dirty(folio); 2234 folio_add_lru(folio); 2235 2236 /* Join all the small entries into a single multi-index entry. */ 2237 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2238 xas_store(&xas, hpage); 2239 WARN_ON_ONCE(xas_error(&xas)); 2240 xas_unlock_irq(&xas); 2241 2242 /* 2243 * Remove pte page tables, so we can re-fault the page as huge. 2244 */ 2245 result = retract_page_tables(mapping, start, mm, addr, hpage, 2246 cc); 2247 unlock_page(hpage); 2248 2249 /* 2250 * The collapse has succeeded, so free the old pages. 2251 */ 2252 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2253 list_del(&page->lru); 2254 page->mapping = NULL; 2255 ClearPageActive(page); 2256 ClearPageUnevictable(page); 2257 unlock_page(page); 2258 folio_put_refs(page_folio(page), 3); 2259 } 2260 2261 goto out; 2262 2263 rollback: 2264 /* Something went wrong: roll back page cache changes */ 2265 if (nr_none) { 2266 xas_lock_irq(&xas); 2267 mapping->nrpages -= nr_none; 2268 shmem_uncharge(mapping->host, nr_none); 2269 xas_unlock_irq(&xas); 2270 } 2271 2272 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2273 list_del(&page->lru); 2274 unlock_page(page); 2275 putback_lru_page(page); 2276 put_page(page); 2277 } 2278 /* 2279 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2280 * file only. This undo is not needed unless failure is 2281 * due to SCAN_COPY_MC. 2282 */ 2283 if (!is_shmem && result == SCAN_COPY_MC) { 2284 filemap_nr_thps_dec(mapping); 2285 /* 2286 * Paired with smp_mb() in do_dentry_open() to 2287 * ensure the update to nr_thps is visible. 2288 */ 2289 smp_mb(); 2290 } 2291 2292 hpage->mapping = NULL; 2293 2294 unlock_page(hpage); 2295 put_page(hpage); 2296 out: 2297 VM_BUG_ON(!list_empty(&pagelist)); 2298 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2299 return result; 2300 } 2301 2302 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2303 struct file *file, pgoff_t start, 2304 struct collapse_control *cc) 2305 { 2306 struct page *page = NULL; 2307 struct address_space *mapping = file->f_mapping; 2308 XA_STATE(xas, &mapping->i_pages, start); 2309 int present, swap; 2310 int node = NUMA_NO_NODE; 2311 int result = SCAN_SUCCEED; 2312 2313 present = 0; 2314 swap = 0; 2315 memset(cc->node_load, 0, sizeof(cc->node_load)); 2316 nodes_clear(cc->alloc_nmask); 2317 rcu_read_lock(); 2318 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2319 if (xas_retry(&xas, page)) 2320 continue; 2321 2322 if (xa_is_value(page)) { 2323 ++swap; 2324 if (cc->is_khugepaged && 2325 swap > khugepaged_max_ptes_swap) { 2326 result = SCAN_EXCEED_SWAP_PTE; 2327 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2328 break; 2329 } 2330 continue; 2331 } 2332 2333 /* 2334 * TODO: khugepaged should compact smaller compound pages 2335 * into a PMD sized page 2336 */ 2337 if (PageTransCompound(page)) { 2338 struct page *head = compound_head(page); 2339 2340 result = compound_order(head) == HPAGE_PMD_ORDER && 2341 head->index == start 2342 /* Maybe PMD-mapped */ 2343 ? SCAN_PTE_MAPPED_HUGEPAGE 2344 : SCAN_PAGE_COMPOUND; 2345 /* 2346 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2347 * by the caller won't touch the page cache, and so 2348 * it's safe to skip LRU and refcount checks before 2349 * returning. 2350 */ 2351 break; 2352 } 2353 2354 node = page_to_nid(page); 2355 if (hpage_collapse_scan_abort(node, cc)) { 2356 result = SCAN_SCAN_ABORT; 2357 break; 2358 } 2359 cc->node_load[node]++; 2360 2361 if (!PageLRU(page)) { 2362 result = SCAN_PAGE_LRU; 2363 break; 2364 } 2365 2366 if (page_count(page) != 2367 1 + page_mapcount(page) + page_has_private(page)) { 2368 result = SCAN_PAGE_COUNT; 2369 break; 2370 } 2371 2372 /* 2373 * We probably should check if the page is referenced here, but 2374 * nobody would transfer pte_young() to PageReferenced() for us. 2375 * And rmap walk here is just too costly... 2376 */ 2377 2378 present++; 2379 2380 if (need_resched()) { 2381 xas_pause(&xas); 2382 cond_resched_rcu(); 2383 } 2384 } 2385 rcu_read_unlock(); 2386 2387 if (result == SCAN_SUCCEED) { 2388 if (cc->is_khugepaged && 2389 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2390 result = SCAN_EXCEED_NONE_PTE; 2391 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2392 } else { 2393 result = collapse_file(mm, addr, file, start, cc); 2394 } 2395 } 2396 2397 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2398 return result; 2399 } 2400 #else 2401 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2402 struct file *file, pgoff_t start, 2403 struct collapse_control *cc) 2404 { 2405 BUILD_BUG(); 2406 } 2407 2408 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2409 { 2410 } 2411 2412 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2413 unsigned long addr) 2414 { 2415 return false; 2416 } 2417 #endif 2418 2419 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2420 struct collapse_control *cc) 2421 __releases(&khugepaged_mm_lock) 2422 __acquires(&khugepaged_mm_lock) 2423 { 2424 struct vma_iterator vmi; 2425 struct khugepaged_mm_slot *mm_slot; 2426 struct mm_slot *slot; 2427 struct mm_struct *mm; 2428 struct vm_area_struct *vma; 2429 int progress = 0; 2430 2431 VM_BUG_ON(!pages); 2432 lockdep_assert_held(&khugepaged_mm_lock); 2433 *result = SCAN_FAIL; 2434 2435 if (khugepaged_scan.mm_slot) { 2436 mm_slot = khugepaged_scan.mm_slot; 2437 slot = &mm_slot->slot; 2438 } else { 2439 slot = list_entry(khugepaged_scan.mm_head.next, 2440 struct mm_slot, mm_node); 2441 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2442 khugepaged_scan.address = 0; 2443 khugepaged_scan.mm_slot = mm_slot; 2444 } 2445 spin_unlock(&khugepaged_mm_lock); 2446 khugepaged_collapse_pte_mapped_thps(mm_slot); 2447 2448 mm = slot->mm; 2449 /* 2450 * Don't wait for semaphore (to avoid long wait times). Just move to 2451 * the next mm on the list. 2452 */ 2453 vma = NULL; 2454 if (unlikely(!mmap_read_trylock(mm))) 2455 goto breakouterloop_mmap_lock; 2456 2457 progress++; 2458 if (unlikely(hpage_collapse_test_exit(mm))) 2459 goto breakouterloop; 2460 2461 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2462 for_each_vma(vmi, vma) { 2463 unsigned long hstart, hend; 2464 2465 cond_resched(); 2466 if (unlikely(hpage_collapse_test_exit(mm))) { 2467 progress++; 2468 break; 2469 } 2470 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2471 skip: 2472 progress++; 2473 continue; 2474 } 2475 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2476 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2477 if (khugepaged_scan.address > hend) 2478 goto skip; 2479 if (khugepaged_scan.address < hstart) 2480 khugepaged_scan.address = hstart; 2481 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2482 2483 while (khugepaged_scan.address < hend) { 2484 bool mmap_locked = true; 2485 2486 cond_resched(); 2487 if (unlikely(hpage_collapse_test_exit(mm))) 2488 goto breakouterloop; 2489 2490 VM_BUG_ON(khugepaged_scan.address < hstart || 2491 khugepaged_scan.address + HPAGE_PMD_SIZE > 2492 hend); 2493 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2494 struct file *file = get_file(vma->vm_file); 2495 pgoff_t pgoff = linear_page_index(vma, 2496 khugepaged_scan.address); 2497 2498 mmap_read_unlock(mm); 2499 *result = hpage_collapse_scan_file(mm, 2500 khugepaged_scan.address, 2501 file, pgoff, cc); 2502 mmap_locked = false; 2503 fput(file); 2504 } else { 2505 *result = hpage_collapse_scan_pmd(mm, vma, 2506 khugepaged_scan.address, 2507 &mmap_locked, 2508 cc); 2509 } 2510 switch (*result) { 2511 case SCAN_PTE_MAPPED_HUGEPAGE: { 2512 pmd_t *pmd; 2513 2514 *result = find_pmd_or_thp_or_none(mm, 2515 khugepaged_scan.address, 2516 &pmd); 2517 if (*result != SCAN_SUCCEED) 2518 break; 2519 if (!khugepaged_add_pte_mapped_thp(mm, 2520 khugepaged_scan.address)) 2521 break; 2522 } fallthrough; 2523 case SCAN_SUCCEED: 2524 ++khugepaged_pages_collapsed; 2525 break; 2526 default: 2527 break; 2528 } 2529 2530 /* move to next address */ 2531 khugepaged_scan.address += HPAGE_PMD_SIZE; 2532 progress += HPAGE_PMD_NR; 2533 if (!mmap_locked) 2534 /* 2535 * We released mmap_lock so break loop. Note 2536 * that we drop mmap_lock before all hugepage 2537 * allocations, so if allocation fails, we are 2538 * guaranteed to break here and report the 2539 * correct result back to caller. 2540 */ 2541 goto breakouterloop_mmap_lock; 2542 if (progress >= pages) 2543 goto breakouterloop; 2544 } 2545 } 2546 breakouterloop: 2547 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2548 breakouterloop_mmap_lock: 2549 2550 spin_lock(&khugepaged_mm_lock); 2551 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2552 /* 2553 * Release the current mm_slot if this mm is about to die, or 2554 * if we scanned all vmas of this mm. 2555 */ 2556 if (hpage_collapse_test_exit(mm) || !vma) { 2557 /* 2558 * Make sure that if mm_users is reaching zero while 2559 * khugepaged runs here, khugepaged_exit will find 2560 * mm_slot not pointing to the exiting mm. 2561 */ 2562 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2563 slot = list_entry(slot->mm_node.next, 2564 struct mm_slot, mm_node); 2565 khugepaged_scan.mm_slot = 2566 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2567 khugepaged_scan.address = 0; 2568 } else { 2569 khugepaged_scan.mm_slot = NULL; 2570 khugepaged_full_scans++; 2571 } 2572 2573 collect_mm_slot(mm_slot); 2574 } 2575 2576 return progress; 2577 } 2578 2579 static int khugepaged_has_work(void) 2580 { 2581 return !list_empty(&khugepaged_scan.mm_head) && 2582 hugepage_flags_enabled(); 2583 } 2584 2585 static int khugepaged_wait_event(void) 2586 { 2587 return !list_empty(&khugepaged_scan.mm_head) || 2588 kthread_should_stop(); 2589 } 2590 2591 static void khugepaged_do_scan(struct collapse_control *cc) 2592 { 2593 unsigned int progress = 0, pass_through_head = 0; 2594 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2595 bool wait = true; 2596 int result = SCAN_SUCCEED; 2597 2598 lru_add_drain_all(); 2599 2600 while (true) { 2601 cond_resched(); 2602 2603 if (unlikely(kthread_should_stop() || try_to_freeze())) 2604 break; 2605 2606 spin_lock(&khugepaged_mm_lock); 2607 if (!khugepaged_scan.mm_slot) 2608 pass_through_head++; 2609 if (khugepaged_has_work() && 2610 pass_through_head < 2) 2611 progress += khugepaged_scan_mm_slot(pages - progress, 2612 &result, cc); 2613 else 2614 progress = pages; 2615 spin_unlock(&khugepaged_mm_lock); 2616 2617 if (progress >= pages) 2618 break; 2619 2620 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2621 /* 2622 * If fail to allocate the first time, try to sleep for 2623 * a while. When hit again, cancel the scan. 2624 */ 2625 if (!wait) 2626 break; 2627 wait = false; 2628 khugepaged_alloc_sleep(); 2629 } 2630 } 2631 } 2632 2633 static bool khugepaged_should_wakeup(void) 2634 { 2635 return kthread_should_stop() || 2636 time_after_eq(jiffies, khugepaged_sleep_expire); 2637 } 2638 2639 static void khugepaged_wait_work(void) 2640 { 2641 if (khugepaged_has_work()) { 2642 const unsigned long scan_sleep_jiffies = 2643 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2644 2645 if (!scan_sleep_jiffies) 2646 return; 2647 2648 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2649 wait_event_freezable_timeout(khugepaged_wait, 2650 khugepaged_should_wakeup(), 2651 scan_sleep_jiffies); 2652 return; 2653 } 2654 2655 if (hugepage_flags_enabled()) 2656 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2657 } 2658 2659 static int khugepaged(void *none) 2660 { 2661 struct khugepaged_mm_slot *mm_slot; 2662 2663 set_freezable(); 2664 set_user_nice(current, MAX_NICE); 2665 2666 while (!kthread_should_stop()) { 2667 khugepaged_do_scan(&khugepaged_collapse_control); 2668 khugepaged_wait_work(); 2669 } 2670 2671 spin_lock(&khugepaged_mm_lock); 2672 mm_slot = khugepaged_scan.mm_slot; 2673 khugepaged_scan.mm_slot = NULL; 2674 if (mm_slot) 2675 collect_mm_slot(mm_slot); 2676 spin_unlock(&khugepaged_mm_lock); 2677 return 0; 2678 } 2679 2680 static void set_recommended_min_free_kbytes(void) 2681 { 2682 struct zone *zone; 2683 int nr_zones = 0; 2684 unsigned long recommended_min; 2685 2686 if (!hugepage_flags_enabled()) { 2687 calculate_min_free_kbytes(); 2688 goto update_wmarks; 2689 } 2690 2691 for_each_populated_zone(zone) { 2692 /* 2693 * We don't need to worry about fragmentation of 2694 * ZONE_MOVABLE since it only has movable pages. 2695 */ 2696 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2697 continue; 2698 2699 nr_zones++; 2700 } 2701 2702 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2703 recommended_min = pageblock_nr_pages * nr_zones * 2; 2704 2705 /* 2706 * Make sure that on average at least two pageblocks are almost free 2707 * of another type, one for a migratetype to fall back to and a 2708 * second to avoid subsequent fallbacks of other types There are 3 2709 * MIGRATE_TYPES we care about. 2710 */ 2711 recommended_min += pageblock_nr_pages * nr_zones * 2712 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2713 2714 /* don't ever allow to reserve more than 5% of the lowmem */ 2715 recommended_min = min(recommended_min, 2716 (unsigned long) nr_free_buffer_pages() / 20); 2717 recommended_min <<= (PAGE_SHIFT-10); 2718 2719 if (recommended_min > min_free_kbytes) { 2720 if (user_min_free_kbytes >= 0) 2721 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2722 min_free_kbytes, recommended_min); 2723 2724 min_free_kbytes = recommended_min; 2725 } 2726 2727 update_wmarks: 2728 setup_per_zone_wmarks(); 2729 } 2730 2731 int start_stop_khugepaged(void) 2732 { 2733 int err = 0; 2734 2735 mutex_lock(&khugepaged_mutex); 2736 if (hugepage_flags_enabled()) { 2737 if (!khugepaged_thread) 2738 khugepaged_thread = kthread_run(khugepaged, NULL, 2739 "khugepaged"); 2740 if (IS_ERR(khugepaged_thread)) { 2741 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2742 err = PTR_ERR(khugepaged_thread); 2743 khugepaged_thread = NULL; 2744 goto fail; 2745 } 2746 2747 if (!list_empty(&khugepaged_scan.mm_head)) 2748 wake_up_interruptible(&khugepaged_wait); 2749 } else if (khugepaged_thread) { 2750 kthread_stop(khugepaged_thread); 2751 khugepaged_thread = NULL; 2752 } 2753 set_recommended_min_free_kbytes(); 2754 fail: 2755 mutex_unlock(&khugepaged_mutex); 2756 return err; 2757 } 2758 2759 void khugepaged_min_free_kbytes_update(void) 2760 { 2761 mutex_lock(&khugepaged_mutex); 2762 if (hugepage_flags_enabled() && khugepaged_thread) 2763 set_recommended_min_free_kbytes(); 2764 mutex_unlock(&khugepaged_mutex); 2765 } 2766 2767 bool current_is_khugepaged(void) 2768 { 2769 return kthread_func(current) == khugepaged; 2770 } 2771 2772 static int madvise_collapse_errno(enum scan_result r) 2773 { 2774 /* 2775 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2776 * actionable feedback to caller, so they may take an appropriate 2777 * fallback measure depending on the nature of the failure. 2778 */ 2779 switch (r) { 2780 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2781 return -ENOMEM; 2782 case SCAN_CGROUP_CHARGE_FAIL: 2783 case SCAN_EXCEED_NONE_PTE: 2784 return -EBUSY; 2785 /* Resource temporary unavailable - trying again might succeed */ 2786 case SCAN_PAGE_COUNT: 2787 case SCAN_PAGE_LOCK: 2788 case SCAN_PAGE_LRU: 2789 case SCAN_DEL_PAGE_LRU: 2790 case SCAN_PAGE_FILLED: 2791 return -EAGAIN; 2792 /* 2793 * Other: Trying again likely not to succeed / error intrinsic to 2794 * specified memory range. khugepaged likely won't be able to collapse 2795 * either. 2796 */ 2797 default: 2798 return -EINVAL; 2799 } 2800 } 2801 2802 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2803 unsigned long start, unsigned long end) 2804 { 2805 struct collapse_control *cc; 2806 struct mm_struct *mm = vma->vm_mm; 2807 unsigned long hstart, hend, addr; 2808 int thps = 0, last_fail = SCAN_FAIL; 2809 bool mmap_locked = true; 2810 2811 BUG_ON(vma->vm_start > start); 2812 BUG_ON(vma->vm_end < end); 2813 2814 *prev = vma; 2815 2816 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2817 return -EINVAL; 2818 2819 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2820 if (!cc) 2821 return -ENOMEM; 2822 cc->is_khugepaged = false; 2823 2824 mmgrab(mm); 2825 lru_add_drain_all(); 2826 2827 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2828 hend = end & HPAGE_PMD_MASK; 2829 2830 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2831 int result = SCAN_FAIL; 2832 2833 if (!mmap_locked) { 2834 cond_resched(); 2835 mmap_read_lock(mm); 2836 mmap_locked = true; 2837 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2838 cc); 2839 if (result != SCAN_SUCCEED) { 2840 last_fail = result; 2841 goto out_nolock; 2842 } 2843 2844 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2845 } 2846 mmap_assert_locked(mm); 2847 memset(cc->node_load, 0, sizeof(cc->node_load)); 2848 nodes_clear(cc->alloc_nmask); 2849 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2850 struct file *file = get_file(vma->vm_file); 2851 pgoff_t pgoff = linear_page_index(vma, addr); 2852 2853 mmap_read_unlock(mm); 2854 mmap_locked = false; 2855 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2856 cc); 2857 fput(file); 2858 } else { 2859 result = hpage_collapse_scan_pmd(mm, vma, addr, 2860 &mmap_locked, cc); 2861 } 2862 if (!mmap_locked) 2863 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2864 2865 handle_result: 2866 switch (result) { 2867 case SCAN_SUCCEED: 2868 case SCAN_PMD_MAPPED: 2869 ++thps; 2870 break; 2871 case SCAN_PTE_MAPPED_HUGEPAGE: 2872 BUG_ON(mmap_locked); 2873 BUG_ON(*prev); 2874 mmap_write_lock(mm); 2875 result = collapse_pte_mapped_thp(mm, addr, true); 2876 mmap_write_unlock(mm); 2877 goto handle_result; 2878 /* Whitelisted set of results where continuing OK */ 2879 case SCAN_PMD_NULL: 2880 case SCAN_PTE_NON_PRESENT: 2881 case SCAN_PTE_UFFD_WP: 2882 case SCAN_PAGE_RO: 2883 case SCAN_LACK_REFERENCED_PAGE: 2884 case SCAN_PAGE_NULL: 2885 case SCAN_PAGE_COUNT: 2886 case SCAN_PAGE_LOCK: 2887 case SCAN_PAGE_COMPOUND: 2888 case SCAN_PAGE_LRU: 2889 case SCAN_DEL_PAGE_LRU: 2890 last_fail = result; 2891 break; 2892 default: 2893 last_fail = result; 2894 /* Other error, exit */ 2895 goto out_maybelock; 2896 } 2897 } 2898 2899 out_maybelock: 2900 /* Caller expects us to hold mmap_lock on return */ 2901 if (!mmap_locked) 2902 mmap_read_lock(mm); 2903 out_nolock: 2904 mmap_assert_locked(mm); 2905 mmdrop(mm); 2906 kfree(cc); 2907 2908 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2909 : madvise_collapse_errno(last_fail); 2910 } 2911