1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 27 enum scan_result { 28 SCAN_FAIL, 29 SCAN_SUCCEED, 30 SCAN_PMD_NULL, 31 SCAN_EXCEED_NONE_PTE, 32 SCAN_EXCEED_SWAP_PTE, 33 SCAN_EXCEED_SHARED_PTE, 34 SCAN_PTE_NON_PRESENT, 35 SCAN_PTE_UFFD_WP, 36 SCAN_PAGE_RO, 37 SCAN_LACK_REFERENCED_PAGE, 38 SCAN_PAGE_NULL, 39 SCAN_SCAN_ABORT, 40 SCAN_PAGE_COUNT, 41 SCAN_PAGE_LRU, 42 SCAN_PAGE_LOCK, 43 SCAN_PAGE_ANON, 44 SCAN_PAGE_COMPOUND, 45 SCAN_ANY_PROCESS, 46 SCAN_VMA_NULL, 47 SCAN_VMA_CHECK, 48 SCAN_ADDRESS_RANGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR_RW(scan_sleep_millisecs); 151 152 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 153 struct kobj_attribute *attr, 154 char *buf) 155 { 156 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 157 } 158 159 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 160 struct kobj_attribute *attr, 161 const char *buf, size_t count) 162 { 163 unsigned int msecs; 164 int err; 165 166 err = kstrtouint(buf, 10, &msecs); 167 if (err) 168 return -EINVAL; 169 170 khugepaged_alloc_sleep_millisecs = msecs; 171 khugepaged_sleep_expire = 0; 172 wake_up_interruptible(&khugepaged_wait); 173 174 return count; 175 } 176 static struct kobj_attribute alloc_sleep_millisecs_attr = 177 __ATTR_RW(alloc_sleep_millisecs); 178 179 static ssize_t pages_to_scan_show(struct kobject *kobj, 180 struct kobj_attribute *attr, 181 char *buf) 182 { 183 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 184 } 185 static ssize_t pages_to_scan_store(struct kobject *kobj, 186 struct kobj_attribute *attr, 187 const char *buf, size_t count) 188 { 189 unsigned int pages; 190 int err; 191 192 err = kstrtouint(buf, 10, &pages); 193 if (err || !pages) 194 return -EINVAL; 195 196 khugepaged_pages_to_scan = pages; 197 198 return count; 199 } 200 static struct kobj_attribute pages_to_scan_attr = 201 __ATTR_RW(pages_to_scan); 202 203 static ssize_t pages_collapsed_show(struct kobject *kobj, 204 struct kobj_attribute *attr, 205 char *buf) 206 { 207 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 208 } 209 static struct kobj_attribute pages_collapsed_attr = 210 __ATTR_RO(pages_collapsed); 211 212 static ssize_t full_scans_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 217 } 218 static struct kobj_attribute full_scans_attr = 219 __ATTR_RO(full_scans); 220 221 static ssize_t defrag_show(struct kobject *kobj, 222 struct kobj_attribute *attr, char *buf) 223 { 224 return single_hugepage_flag_show(kobj, attr, buf, 225 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 226 } 227 static ssize_t defrag_store(struct kobject *kobj, 228 struct kobj_attribute *attr, 229 const char *buf, size_t count) 230 { 231 return single_hugepage_flag_store(kobj, attr, buf, count, 232 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 233 } 234 static struct kobj_attribute khugepaged_defrag_attr = 235 __ATTR_RW(defrag); 236 237 /* 238 * max_ptes_none controls if khugepaged should collapse hugepages over 239 * any unmapped ptes in turn potentially increasing the memory 240 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 241 * reduce the available free memory in the system as it 242 * runs. Increasing max_ptes_none will instead potentially reduce the 243 * free memory in the system during the khugepaged scan. 244 */ 245 static ssize_t max_ptes_none_show(struct kobject *kobj, 246 struct kobj_attribute *attr, 247 char *buf) 248 { 249 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 250 } 251 static ssize_t max_ptes_none_store(struct kobject *kobj, 252 struct kobj_attribute *attr, 253 const char *buf, size_t count) 254 { 255 int err; 256 unsigned long max_ptes_none; 257 258 err = kstrtoul(buf, 10, &max_ptes_none); 259 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 260 return -EINVAL; 261 262 khugepaged_max_ptes_none = max_ptes_none; 263 264 return count; 265 } 266 static struct kobj_attribute khugepaged_max_ptes_none_attr = 267 __ATTR_RW(max_ptes_none); 268 269 static ssize_t max_ptes_swap_show(struct kobject *kobj, 270 struct kobj_attribute *attr, 271 char *buf) 272 { 273 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 274 } 275 276 static ssize_t max_ptes_swap_store(struct kobject *kobj, 277 struct kobj_attribute *attr, 278 const char *buf, size_t count) 279 { 280 int err; 281 unsigned long max_ptes_swap; 282 283 err = kstrtoul(buf, 10, &max_ptes_swap); 284 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 285 return -EINVAL; 286 287 khugepaged_max_ptes_swap = max_ptes_swap; 288 289 return count; 290 } 291 292 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 293 __ATTR_RW(max_ptes_swap); 294 295 static ssize_t max_ptes_shared_show(struct kobject *kobj, 296 struct kobj_attribute *attr, 297 char *buf) 298 { 299 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 300 } 301 302 static ssize_t max_ptes_shared_store(struct kobject *kobj, 303 struct kobj_attribute *attr, 304 const char *buf, size_t count) 305 { 306 int err; 307 unsigned long max_ptes_shared; 308 309 err = kstrtoul(buf, 10, &max_ptes_shared); 310 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 311 return -EINVAL; 312 313 khugepaged_max_ptes_shared = max_ptes_shared; 314 315 return count; 316 } 317 318 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 319 __ATTR_RW(max_ptes_shared); 320 321 static struct attribute *khugepaged_attr[] = { 322 &khugepaged_defrag_attr.attr, 323 &khugepaged_max_ptes_none_attr.attr, 324 &khugepaged_max_ptes_swap_attr.attr, 325 &khugepaged_max_ptes_shared_attr.attr, 326 &pages_to_scan_attr.attr, 327 &pages_collapsed_attr.attr, 328 &full_scans_attr.attr, 329 &scan_sleep_millisecs_attr.attr, 330 &alloc_sleep_millisecs_attr.attr, 331 NULL, 332 }; 333 334 struct attribute_group khugepaged_attr_group = { 335 .attrs = khugepaged_attr, 336 .name = "khugepaged", 337 }; 338 #endif /* CONFIG_SYSFS */ 339 340 int hugepage_madvise(struct vm_area_struct *vma, 341 unsigned long *vm_flags, int advice) 342 { 343 switch (advice) { 344 case MADV_HUGEPAGE: 345 #ifdef CONFIG_S390 346 /* 347 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 348 * can't handle this properly after s390_enable_sie, so we simply 349 * ignore the madvise to prevent qemu from causing a SIGSEGV. 350 */ 351 if (mm_has_pgste(vma->vm_mm)) 352 return 0; 353 #endif 354 *vm_flags &= ~VM_NOHUGEPAGE; 355 *vm_flags |= VM_HUGEPAGE; 356 /* 357 * If the vma become good for khugepaged to scan, 358 * register it here without waiting a page fault that 359 * may not happen any time soon. 360 */ 361 khugepaged_enter_vma(vma, *vm_flags); 362 break; 363 case MADV_NOHUGEPAGE: 364 *vm_flags &= ~VM_HUGEPAGE; 365 *vm_flags |= VM_NOHUGEPAGE; 366 /* 367 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 368 * this vma even if we leave the mm registered in khugepaged if 369 * it got registered before VM_NOHUGEPAGE was set. 370 */ 371 break; 372 } 373 374 return 0; 375 } 376 377 int __init khugepaged_init(void) 378 { 379 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 380 sizeof(struct mm_slot), 381 __alignof__(struct mm_slot), 0, NULL); 382 if (!mm_slot_cache) 383 return -ENOMEM; 384 385 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 386 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 387 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 388 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 389 390 return 0; 391 } 392 393 void __init khugepaged_destroy(void) 394 { 395 kmem_cache_destroy(mm_slot_cache); 396 } 397 398 static inline struct mm_slot *alloc_mm_slot(void) 399 { 400 if (!mm_slot_cache) /* initialization failed */ 401 return NULL; 402 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 403 } 404 405 static inline void free_mm_slot(struct mm_slot *mm_slot) 406 { 407 kmem_cache_free(mm_slot_cache, mm_slot); 408 } 409 410 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 411 { 412 struct mm_slot *mm_slot; 413 414 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 415 if (mm == mm_slot->mm) 416 return mm_slot; 417 418 return NULL; 419 } 420 421 static void insert_to_mm_slots_hash(struct mm_struct *mm, 422 struct mm_slot *mm_slot) 423 { 424 mm_slot->mm = mm; 425 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 426 } 427 428 static inline int khugepaged_test_exit(struct mm_struct *mm) 429 { 430 return atomic_read(&mm->mm_users) == 0; 431 } 432 433 void __khugepaged_enter(struct mm_struct *mm) 434 { 435 struct mm_slot *mm_slot; 436 int wakeup; 437 438 mm_slot = alloc_mm_slot(); 439 if (!mm_slot) 440 return; 441 442 /* __khugepaged_exit() must not run from under us */ 443 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 444 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 445 free_mm_slot(mm_slot); 446 return; 447 } 448 449 spin_lock(&khugepaged_mm_lock); 450 insert_to_mm_slots_hash(mm, mm_slot); 451 /* 452 * Insert just behind the scanning cursor, to let the area settle 453 * down a little. 454 */ 455 wakeup = list_empty(&khugepaged_scan.mm_head); 456 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 457 spin_unlock(&khugepaged_mm_lock); 458 459 mmgrab(mm); 460 if (wakeup) 461 wake_up_interruptible(&khugepaged_wait); 462 } 463 464 void khugepaged_enter_vma(struct vm_area_struct *vma, 465 unsigned long vm_flags) 466 { 467 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 468 hugepage_flags_enabled()) { 469 if (hugepage_vma_check(vma, vm_flags, false, false)) 470 __khugepaged_enter(vma->vm_mm); 471 } 472 } 473 474 void __khugepaged_exit(struct mm_struct *mm) 475 { 476 struct mm_slot *mm_slot; 477 int free = 0; 478 479 spin_lock(&khugepaged_mm_lock); 480 mm_slot = get_mm_slot(mm); 481 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 482 hash_del(&mm_slot->hash); 483 list_del(&mm_slot->mm_node); 484 free = 1; 485 } 486 spin_unlock(&khugepaged_mm_lock); 487 488 if (free) { 489 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 490 free_mm_slot(mm_slot); 491 mmdrop(mm); 492 } else if (mm_slot) { 493 /* 494 * This is required to serialize against 495 * khugepaged_test_exit() (which is guaranteed to run 496 * under mmap sem read mode). Stop here (after we 497 * return all pagetables will be destroyed) until 498 * khugepaged has finished working on the pagetables 499 * under the mmap_lock. 500 */ 501 mmap_write_lock(mm); 502 mmap_write_unlock(mm); 503 } 504 } 505 506 static void release_pte_page(struct page *page) 507 { 508 mod_node_page_state(page_pgdat(page), 509 NR_ISOLATED_ANON + page_is_file_lru(page), 510 -compound_nr(page)); 511 unlock_page(page); 512 putback_lru_page(page); 513 } 514 515 static void release_pte_pages(pte_t *pte, pte_t *_pte, 516 struct list_head *compound_pagelist) 517 { 518 struct page *page, *tmp; 519 520 while (--_pte >= pte) { 521 pte_t pteval = *_pte; 522 523 page = pte_page(pteval); 524 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 525 !PageCompound(page)) 526 release_pte_page(page); 527 } 528 529 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 530 list_del(&page->lru); 531 release_pte_page(page); 532 } 533 } 534 535 static bool is_refcount_suitable(struct page *page) 536 { 537 int expected_refcount; 538 539 expected_refcount = total_mapcount(page); 540 if (PageSwapCache(page)) 541 expected_refcount += compound_nr(page); 542 543 return page_count(page) == expected_refcount; 544 } 545 546 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 547 unsigned long address, 548 pte_t *pte, 549 struct list_head *compound_pagelist) 550 { 551 struct page *page = NULL; 552 pte_t *_pte; 553 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 554 bool writable = false; 555 556 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 557 _pte++, address += PAGE_SIZE) { 558 pte_t pteval = *_pte; 559 if (pte_none(pteval) || (pte_present(pteval) && 560 is_zero_pfn(pte_pfn(pteval)))) { 561 if (!userfaultfd_armed(vma) && 562 ++none_or_zero <= khugepaged_max_ptes_none) { 563 continue; 564 } else { 565 result = SCAN_EXCEED_NONE_PTE; 566 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 567 goto out; 568 } 569 } 570 if (!pte_present(pteval)) { 571 result = SCAN_PTE_NON_PRESENT; 572 goto out; 573 } 574 page = vm_normal_page(vma, address, pteval); 575 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 576 result = SCAN_PAGE_NULL; 577 goto out; 578 } 579 580 VM_BUG_ON_PAGE(!PageAnon(page), page); 581 582 if (page_mapcount(page) > 1 && 583 ++shared > khugepaged_max_ptes_shared) { 584 result = SCAN_EXCEED_SHARED_PTE; 585 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 586 goto out; 587 } 588 589 if (PageCompound(page)) { 590 struct page *p; 591 page = compound_head(page); 592 593 /* 594 * Check if we have dealt with the compound page 595 * already 596 */ 597 list_for_each_entry(p, compound_pagelist, lru) { 598 if (page == p) 599 goto next; 600 } 601 } 602 603 /* 604 * We can do it before isolate_lru_page because the 605 * page can't be freed from under us. NOTE: PG_lock 606 * is needed to serialize against split_huge_page 607 * when invoked from the VM. 608 */ 609 if (!trylock_page(page)) { 610 result = SCAN_PAGE_LOCK; 611 goto out; 612 } 613 614 /* 615 * Check if the page has any GUP (or other external) pins. 616 * 617 * The page table that maps the page has been already unlinked 618 * from the page table tree and this process cannot get 619 * an additional pin on the page. 620 * 621 * New pins can come later if the page is shared across fork, 622 * but not from this process. The other process cannot write to 623 * the page, only trigger CoW. 624 */ 625 if (!is_refcount_suitable(page)) { 626 unlock_page(page); 627 result = SCAN_PAGE_COUNT; 628 goto out; 629 } 630 631 /* 632 * Isolate the page to avoid collapsing an hugepage 633 * currently in use by the VM. 634 */ 635 if (isolate_lru_page(page)) { 636 unlock_page(page); 637 result = SCAN_DEL_PAGE_LRU; 638 goto out; 639 } 640 mod_node_page_state(page_pgdat(page), 641 NR_ISOLATED_ANON + page_is_file_lru(page), 642 compound_nr(page)); 643 VM_BUG_ON_PAGE(!PageLocked(page), page); 644 VM_BUG_ON_PAGE(PageLRU(page), page); 645 646 if (PageCompound(page)) 647 list_add_tail(&page->lru, compound_pagelist); 648 next: 649 /* There should be enough young pte to collapse the page */ 650 if (pte_young(pteval) || 651 page_is_young(page) || PageReferenced(page) || 652 mmu_notifier_test_young(vma->vm_mm, address)) 653 referenced++; 654 655 if (pte_write(pteval)) 656 writable = true; 657 } 658 659 if (unlikely(!writable)) { 660 result = SCAN_PAGE_RO; 661 } else if (unlikely(!referenced)) { 662 result = SCAN_LACK_REFERENCED_PAGE; 663 } else { 664 result = SCAN_SUCCEED; 665 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 666 referenced, writable, result); 667 return 1; 668 } 669 out: 670 release_pte_pages(pte, _pte, compound_pagelist); 671 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 672 referenced, writable, result); 673 return 0; 674 } 675 676 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 677 struct vm_area_struct *vma, 678 unsigned long address, 679 spinlock_t *ptl, 680 struct list_head *compound_pagelist) 681 { 682 struct page *src_page, *tmp; 683 pte_t *_pte; 684 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 685 _pte++, page++, address += PAGE_SIZE) { 686 pte_t pteval = *_pte; 687 688 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 689 clear_user_highpage(page, address); 690 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 691 if (is_zero_pfn(pte_pfn(pteval))) { 692 /* 693 * ptl mostly unnecessary. 694 */ 695 spin_lock(ptl); 696 ptep_clear(vma->vm_mm, address, _pte); 697 spin_unlock(ptl); 698 } 699 } else { 700 src_page = pte_page(pteval); 701 copy_user_highpage(page, src_page, address, vma); 702 if (!PageCompound(src_page)) 703 release_pte_page(src_page); 704 /* 705 * ptl mostly unnecessary, but preempt has to 706 * be disabled to update the per-cpu stats 707 * inside page_remove_rmap(). 708 */ 709 spin_lock(ptl); 710 ptep_clear(vma->vm_mm, address, _pte); 711 page_remove_rmap(src_page, vma, false); 712 spin_unlock(ptl); 713 free_page_and_swap_cache(src_page); 714 } 715 } 716 717 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 718 list_del(&src_page->lru); 719 mod_node_page_state(page_pgdat(src_page), 720 NR_ISOLATED_ANON + page_is_file_lru(src_page), 721 -compound_nr(src_page)); 722 unlock_page(src_page); 723 free_swap_cache(src_page); 724 putback_lru_page(src_page); 725 } 726 } 727 728 static void khugepaged_alloc_sleep(void) 729 { 730 DEFINE_WAIT(wait); 731 732 add_wait_queue(&khugepaged_wait, &wait); 733 freezable_schedule_timeout_interruptible( 734 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 735 remove_wait_queue(&khugepaged_wait, &wait); 736 } 737 738 static int khugepaged_node_load[MAX_NUMNODES]; 739 740 static bool khugepaged_scan_abort(int nid) 741 { 742 int i; 743 744 /* 745 * If node_reclaim_mode is disabled, then no extra effort is made to 746 * allocate memory locally. 747 */ 748 if (!node_reclaim_enabled()) 749 return false; 750 751 /* If there is a count for this node already, it must be acceptable */ 752 if (khugepaged_node_load[nid]) 753 return false; 754 755 for (i = 0; i < MAX_NUMNODES; i++) { 756 if (!khugepaged_node_load[i]) 757 continue; 758 if (node_distance(nid, i) > node_reclaim_distance) 759 return true; 760 } 761 return false; 762 } 763 764 #define khugepaged_defrag() \ 765 (transparent_hugepage_flags & \ 766 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 767 768 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 769 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 770 { 771 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 772 } 773 774 #ifdef CONFIG_NUMA 775 static int khugepaged_find_target_node(void) 776 { 777 static int last_khugepaged_target_node = NUMA_NO_NODE; 778 int nid, target_node = 0, max_value = 0; 779 780 /* find first node with max normal pages hit */ 781 for (nid = 0; nid < MAX_NUMNODES; nid++) 782 if (khugepaged_node_load[nid] > max_value) { 783 max_value = khugepaged_node_load[nid]; 784 target_node = nid; 785 } 786 787 /* do some balance if several nodes have the same hit record */ 788 if (target_node <= last_khugepaged_target_node) 789 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 790 nid++) 791 if (max_value == khugepaged_node_load[nid]) { 792 target_node = nid; 793 break; 794 } 795 796 last_khugepaged_target_node = target_node; 797 return target_node; 798 } 799 800 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 801 { 802 if (IS_ERR(*hpage)) { 803 if (!*wait) 804 return false; 805 806 *wait = false; 807 *hpage = NULL; 808 khugepaged_alloc_sleep(); 809 } else if (*hpage) { 810 put_page(*hpage); 811 *hpage = NULL; 812 } 813 814 return true; 815 } 816 817 static struct page * 818 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 819 { 820 VM_BUG_ON_PAGE(*hpage, *hpage); 821 822 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 823 if (unlikely(!*hpage)) { 824 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 825 *hpage = ERR_PTR(-ENOMEM); 826 return NULL; 827 } 828 829 prep_transhuge_page(*hpage); 830 count_vm_event(THP_COLLAPSE_ALLOC); 831 return *hpage; 832 } 833 #else 834 static int khugepaged_find_target_node(void) 835 { 836 return 0; 837 } 838 839 static inline struct page *alloc_khugepaged_hugepage(void) 840 { 841 struct page *page; 842 843 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 844 HPAGE_PMD_ORDER); 845 if (page) 846 prep_transhuge_page(page); 847 return page; 848 } 849 850 static struct page *khugepaged_alloc_hugepage(bool *wait) 851 { 852 struct page *hpage; 853 854 do { 855 hpage = alloc_khugepaged_hugepage(); 856 if (!hpage) { 857 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 858 if (!*wait) 859 return NULL; 860 861 *wait = false; 862 khugepaged_alloc_sleep(); 863 } else 864 count_vm_event(THP_COLLAPSE_ALLOC); 865 } while (unlikely(!hpage) && likely(hugepage_flags_enabled())); 866 867 return hpage; 868 } 869 870 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 871 { 872 /* 873 * If the hpage allocated earlier was briefly exposed in page cache 874 * before collapse_file() failed, it is possible that racing lookups 875 * have not yet completed, and would then be unpleasantly surprised by 876 * finding the hpage reused for the same mapping at a different offset. 877 * Just release the previous allocation if there is any danger of that. 878 */ 879 if (*hpage && page_count(*hpage) > 1) { 880 put_page(*hpage); 881 *hpage = NULL; 882 } 883 884 if (!*hpage) 885 *hpage = khugepaged_alloc_hugepage(wait); 886 887 if (unlikely(!*hpage)) 888 return false; 889 890 return true; 891 } 892 893 static struct page * 894 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 895 { 896 VM_BUG_ON(!*hpage); 897 898 return *hpage; 899 } 900 #endif 901 902 /* 903 * If mmap_lock temporarily dropped, revalidate vma 904 * before taking mmap_lock. 905 * Return 0 if succeeds, otherwise return none-zero 906 * value (scan code). 907 */ 908 909 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 910 struct vm_area_struct **vmap) 911 { 912 struct vm_area_struct *vma; 913 914 if (unlikely(khugepaged_test_exit(mm))) 915 return SCAN_ANY_PROCESS; 916 917 *vmap = vma = find_vma(mm, address); 918 if (!vma) 919 return SCAN_VMA_NULL; 920 921 if (!transhuge_vma_suitable(vma, address)) 922 return SCAN_ADDRESS_RANGE; 923 if (!hugepage_vma_check(vma, vma->vm_flags, false, false)) 924 return SCAN_VMA_CHECK; 925 /* 926 * Anon VMA expected, the address may be unmapped then 927 * remapped to file after khugepaged reaquired the mmap_lock. 928 * 929 * hugepage_vma_check may return true for qualified file 930 * vmas. 931 */ 932 if (!vma->anon_vma || !vma_is_anonymous(vma)) 933 return SCAN_VMA_CHECK; 934 return 0; 935 } 936 937 /* 938 * Bring missing pages in from swap, to complete THP collapse. 939 * Only done if khugepaged_scan_pmd believes it is worthwhile. 940 * 941 * Called and returns without pte mapped or spinlocks held. 942 * Note that if false is returned, mmap_lock will be released. 943 */ 944 945 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 946 struct vm_area_struct *vma, 947 unsigned long haddr, pmd_t *pmd, 948 int referenced) 949 { 950 int swapped_in = 0; 951 vm_fault_t ret = 0; 952 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 953 954 for (address = haddr; address < end; address += PAGE_SIZE) { 955 struct vm_fault vmf = { 956 .vma = vma, 957 .address = address, 958 .pgoff = linear_page_index(vma, haddr), 959 .flags = FAULT_FLAG_ALLOW_RETRY, 960 .pmd = pmd, 961 }; 962 963 vmf.pte = pte_offset_map(pmd, address); 964 vmf.orig_pte = *vmf.pte; 965 if (!is_swap_pte(vmf.orig_pte)) { 966 pte_unmap(vmf.pte); 967 continue; 968 } 969 ret = do_swap_page(&vmf); 970 971 /* 972 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 973 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 974 * we do not retry here and swap entry will remain in pagetable 975 * resulting in later failure. 976 */ 977 if (ret & VM_FAULT_RETRY) { 978 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 979 return false; 980 } 981 if (ret & VM_FAULT_ERROR) { 982 mmap_read_unlock(mm); 983 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 984 return false; 985 } 986 swapped_in++; 987 } 988 989 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 990 if (swapped_in) 991 lru_add_drain(); 992 993 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 994 return true; 995 } 996 997 static void collapse_huge_page(struct mm_struct *mm, 998 unsigned long address, 999 struct page **hpage, 1000 int node, int referenced, int unmapped) 1001 { 1002 LIST_HEAD(compound_pagelist); 1003 pmd_t *pmd, _pmd; 1004 pte_t *pte; 1005 pgtable_t pgtable; 1006 struct page *new_page; 1007 spinlock_t *pmd_ptl, *pte_ptl; 1008 int isolated = 0, result = 0; 1009 struct vm_area_struct *vma; 1010 struct mmu_notifier_range range; 1011 gfp_t gfp; 1012 1013 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1014 1015 /* Only allocate from the target node */ 1016 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1017 1018 /* 1019 * Before allocating the hugepage, release the mmap_lock read lock. 1020 * The allocation can take potentially a long time if it involves 1021 * sync compaction, and we do not need to hold the mmap_lock during 1022 * that. We will recheck the vma after taking it again in write mode. 1023 */ 1024 mmap_read_unlock(mm); 1025 new_page = khugepaged_alloc_page(hpage, gfp, node); 1026 if (!new_page) { 1027 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1028 goto out_nolock; 1029 } 1030 1031 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1032 result = SCAN_CGROUP_CHARGE_FAIL; 1033 goto out_nolock; 1034 } 1035 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1036 1037 mmap_read_lock(mm); 1038 result = hugepage_vma_revalidate(mm, address, &vma); 1039 if (result) { 1040 mmap_read_unlock(mm); 1041 goto out_nolock; 1042 } 1043 1044 pmd = mm_find_pmd(mm, address); 1045 if (!pmd) { 1046 result = SCAN_PMD_NULL; 1047 mmap_read_unlock(mm); 1048 goto out_nolock; 1049 } 1050 1051 /* 1052 * __collapse_huge_page_swapin will return with mmap_lock released 1053 * when it fails. So we jump out_nolock directly in that case. 1054 * Continuing to collapse causes inconsistency. 1055 */ 1056 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1057 pmd, referenced)) { 1058 goto out_nolock; 1059 } 1060 1061 mmap_read_unlock(mm); 1062 /* 1063 * Prevent all access to pagetables with the exception of 1064 * gup_fast later handled by the ptep_clear_flush and the VM 1065 * handled by the anon_vma lock + PG_lock. 1066 */ 1067 mmap_write_lock(mm); 1068 result = hugepage_vma_revalidate(mm, address, &vma); 1069 if (result) 1070 goto out_up_write; 1071 /* check if the pmd is still valid */ 1072 if (mm_find_pmd(mm, address) != pmd) 1073 goto out_up_write; 1074 1075 anon_vma_lock_write(vma->anon_vma); 1076 1077 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1078 address, address + HPAGE_PMD_SIZE); 1079 mmu_notifier_invalidate_range_start(&range); 1080 1081 pte = pte_offset_map(pmd, address); 1082 pte_ptl = pte_lockptr(mm, pmd); 1083 1084 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1085 /* 1086 * This removes any huge TLB entry from the CPU so we won't allow 1087 * huge and small TLB entries for the same virtual address to 1088 * avoid the risk of CPU bugs in that area. 1089 * 1090 * Parallel fast GUP is fine since fast GUP will back off when 1091 * it detects PMD is changed. 1092 */ 1093 _pmd = pmdp_collapse_flush(vma, address, pmd); 1094 spin_unlock(pmd_ptl); 1095 mmu_notifier_invalidate_range_end(&range); 1096 1097 spin_lock(pte_ptl); 1098 isolated = __collapse_huge_page_isolate(vma, address, pte, 1099 &compound_pagelist); 1100 spin_unlock(pte_ptl); 1101 1102 if (unlikely(!isolated)) { 1103 pte_unmap(pte); 1104 spin_lock(pmd_ptl); 1105 BUG_ON(!pmd_none(*pmd)); 1106 /* 1107 * We can only use set_pmd_at when establishing 1108 * hugepmds and never for establishing regular pmds that 1109 * points to regular pagetables. Use pmd_populate for that 1110 */ 1111 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1112 spin_unlock(pmd_ptl); 1113 anon_vma_unlock_write(vma->anon_vma); 1114 result = SCAN_FAIL; 1115 goto out_up_write; 1116 } 1117 1118 /* 1119 * All pages are isolated and locked so anon_vma rmap 1120 * can't run anymore. 1121 */ 1122 anon_vma_unlock_write(vma->anon_vma); 1123 1124 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1125 &compound_pagelist); 1126 pte_unmap(pte); 1127 /* 1128 * spin_lock() below is not the equivalent of smp_wmb(), but 1129 * the smp_wmb() inside __SetPageUptodate() can be reused to 1130 * avoid the copy_huge_page writes to become visible after 1131 * the set_pmd_at() write. 1132 */ 1133 __SetPageUptodate(new_page); 1134 pgtable = pmd_pgtable(_pmd); 1135 1136 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1137 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1138 1139 spin_lock(pmd_ptl); 1140 BUG_ON(!pmd_none(*pmd)); 1141 page_add_new_anon_rmap(new_page, vma, address); 1142 lru_cache_add_inactive_or_unevictable(new_page, vma); 1143 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1144 set_pmd_at(mm, address, pmd, _pmd); 1145 update_mmu_cache_pmd(vma, address, pmd); 1146 spin_unlock(pmd_ptl); 1147 1148 *hpage = NULL; 1149 1150 khugepaged_pages_collapsed++; 1151 result = SCAN_SUCCEED; 1152 out_up_write: 1153 mmap_write_unlock(mm); 1154 out_nolock: 1155 if (!IS_ERR_OR_NULL(*hpage)) 1156 mem_cgroup_uncharge(page_folio(*hpage)); 1157 trace_mm_collapse_huge_page(mm, isolated, result); 1158 return; 1159 } 1160 1161 static int khugepaged_scan_pmd(struct mm_struct *mm, 1162 struct vm_area_struct *vma, 1163 unsigned long address, 1164 struct page **hpage) 1165 { 1166 pmd_t *pmd; 1167 pte_t *pte, *_pte; 1168 int ret = 0, result = 0, referenced = 0; 1169 int none_or_zero = 0, shared = 0; 1170 struct page *page = NULL; 1171 unsigned long _address; 1172 spinlock_t *ptl; 1173 int node = NUMA_NO_NODE, unmapped = 0; 1174 bool writable = false; 1175 1176 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1177 1178 pmd = mm_find_pmd(mm, address); 1179 if (!pmd) { 1180 result = SCAN_PMD_NULL; 1181 goto out; 1182 } 1183 1184 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1185 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1186 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1187 _pte++, _address += PAGE_SIZE) { 1188 pte_t pteval = *_pte; 1189 if (is_swap_pte(pteval)) { 1190 if (++unmapped <= khugepaged_max_ptes_swap) { 1191 /* 1192 * Always be strict with uffd-wp 1193 * enabled swap entries. Please see 1194 * comment below for pte_uffd_wp(). 1195 */ 1196 if (pte_swp_uffd_wp(pteval)) { 1197 result = SCAN_PTE_UFFD_WP; 1198 goto out_unmap; 1199 } 1200 continue; 1201 } else { 1202 result = SCAN_EXCEED_SWAP_PTE; 1203 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1204 goto out_unmap; 1205 } 1206 } 1207 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1208 if (!userfaultfd_armed(vma) && 1209 ++none_or_zero <= khugepaged_max_ptes_none) { 1210 continue; 1211 } else { 1212 result = SCAN_EXCEED_NONE_PTE; 1213 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1214 goto out_unmap; 1215 } 1216 } 1217 if (pte_uffd_wp(pteval)) { 1218 /* 1219 * Don't collapse the page if any of the small 1220 * PTEs are armed with uffd write protection. 1221 * Here we can also mark the new huge pmd as 1222 * write protected if any of the small ones is 1223 * marked but that could bring unknown 1224 * userfault messages that falls outside of 1225 * the registered range. So, just be simple. 1226 */ 1227 result = SCAN_PTE_UFFD_WP; 1228 goto out_unmap; 1229 } 1230 if (pte_write(pteval)) 1231 writable = true; 1232 1233 page = vm_normal_page(vma, _address, pteval); 1234 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1235 result = SCAN_PAGE_NULL; 1236 goto out_unmap; 1237 } 1238 1239 if (page_mapcount(page) > 1 && 1240 ++shared > khugepaged_max_ptes_shared) { 1241 result = SCAN_EXCEED_SHARED_PTE; 1242 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1243 goto out_unmap; 1244 } 1245 1246 page = compound_head(page); 1247 1248 /* 1249 * Record which node the original page is from and save this 1250 * information to khugepaged_node_load[]. 1251 * Khugepaged will allocate hugepage from the node has the max 1252 * hit record. 1253 */ 1254 node = page_to_nid(page); 1255 if (khugepaged_scan_abort(node)) { 1256 result = SCAN_SCAN_ABORT; 1257 goto out_unmap; 1258 } 1259 khugepaged_node_load[node]++; 1260 if (!PageLRU(page)) { 1261 result = SCAN_PAGE_LRU; 1262 goto out_unmap; 1263 } 1264 if (PageLocked(page)) { 1265 result = SCAN_PAGE_LOCK; 1266 goto out_unmap; 1267 } 1268 if (!PageAnon(page)) { 1269 result = SCAN_PAGE_ANON; 1270 goto out_unmap; 1271 } 1272 1273 /* 1274 * Check if the page has any GUP (or other external) pins. 1275 * 1276 * Here the check is racy it may see total_mapcount > refcount 1277 * in some cases. 1278 * For example, one process with one forked child process. 1279 * The parent has the PMD split due to MADV_DONTNEED, then 1280 * the child is trying unmap the whole PMD, but khugepaged 1281 * may be scanning the parent between the child has 1282 * PageDoubleMap flag cleared and dec the mapcount. So 1283 * khugepaged may see total_mapcount > refcount. 1284 * 1285 * But such case is ephemeral we could always retry collapse 1286 * later. However it may report false positive if the page 1287 * has excessive GUP pins (i.e. 512). Anyway the same check 1288 * will be done again later the risk seems low. 1289 */ 1290 if (!is_refcount_suitable(page)) { 1291 result = SCAN_PAGE_COUNT; 1292 goto out_unmap; 1293 } 1294 if (pte_young(pteval) || 1295 page_is_young(page) || PageReferenced(page) || 1296 mmu_notifier_test_young(vma->vm_mm, address)) 1297 referenced++; 1298 } 1299 if (!writable) { 1300 result = SCAN_PAGE_RO; 1301 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1302 result = SCAN_LACK_REFERENCED_PAGE; 1303 } else { 1304 result = SCAN_SUCCEED; 1305 ret = 1; 1306 } 1307 out_unmap: 1308 pte_unmap_unlock(pte, ptl); 1309 if (ret) { 1310 node = khugepaged_find_target_node(); 1311 /* collapse_huge_page will return with the mmap_lock released */ 1312 collapse_huge_page(mm, address, hpage, node, 1313 referenced, unmapped); 1314 } 1315 out: 1316 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1317 none_or_zero, result, unmapped); 1318 return ret; 1319 } 1320 1321 static void collect_mm_slot(struct mm_slot *mm_slot) 1322 { 1323 struct mm_struct *mm = mm_slot->mm; 1324 1325 lockdep_assert_held(&khugepaged_mm_lock); 1326 1327 if (khugepaged_test_exit(mm)) { 1328 /* free mm_slot */ 1329 hash_del(&mm_slot->hash); 1330 list_del(&mm_slot->mm_node); 1331 1332 /* 1333 * Not strictly needed because the mm exited already. 1334 * 1335 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1336 */ 1337 1338 /* khugepaged_mm_lock actually not necessary for the below */ 1339 free_mm_slot(mm_slot); 1340 mmdrop(mm); 1341 } 1342 } 1343 1344 #ifdef CONFIG_SHMEM 1345 /* 1346 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1347 * khugepaged should try to collapse the page table. 1348 */ 1349 static void khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1350 unsigned long addr) 1351 { 1352 struct mm_slot *mm_slot; 1353 1354 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1355 1356 spin_lock(&khugepaged_mm_lock); 1357 mm_slot = get_mm_slot(mm); 1358 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1359 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1360 spin_unlock(&khugepaged_mm_lock); 1361 } 1362 1363 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1364 unsigned long addr, pmd_t *pmdp) 1365 { 1366 spinlock_t *ptl; 1367 pmd_t pmd; 1368 1369 mmap_assert_write_locked(mm); 1370 ptl = pmd_lock(vma->vm_mm, pmdp); 1371 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1372 spin_unlock(ptl); 1373 mm_dec_nr_ptes(mm); 1374 page_table_check_pte_clear_range(mm, addr, pmd); 1375 pte_free(mm, pmd_pgtable(pmd)); 1376 } 1377 1378 /** 1379 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1380 * address haddr. 1381 * 1382 * @mm: process address space where collapse happens 1383 * @addr: THP collapse address 1384 * 1385 * This function checks whether all the PTEs in the PMD are pointing to the 1386 * right THP. If so, retract the page table so the THP can refault in with 1387 * as pmd-mapped. 1388 */ 1389 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1390 { 1391 unsigned long haddr = addr & HPAGE_PMD_MASK; 1392 struct vm_area_struct *vma = find_vma(mm, haddr); 1393 struct page *hpage; 1394 pte_t *start_pte, *pte; 1395 pmd_t *pmd; 1396 spinlock_t *ptl; 1397 int count = 0; 1398 int i; 1399 1400 if (!vma || !vma->vm_file || 1401 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1402 return; 1403 1404 /* 1405 * This vm_flags may not have VM_HUGEPAGE if the page was not 1406 * collapsed by this mm. But we can still collapse if the page is 1407 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1408 * will not fail the vma for missing VM_HUGEPAGE 1409 */ 1410 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE, false, false)) 1411 return; 1412 1413 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1414 if (userfaultfd_wp(vma)) 1415 return; 1416 1417 hpage = find_lock_page(vma->vm_file->f_mapping, 1418 linear_page_index(vma, haddr)); 1419 if (!hpage) 1420 return; 1421 1422 if (!PageHead(hpage)) 1423 goto drop_hpage; 1424 1425 pmd = mm_find_pmd(mm, haddr); 1426 if (!pmd) 1427 goto drop_hpage; 1428 1429 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1430 1431 /* step 1: check all mapped PTEs are to the right huge page */ 1432 for (i = 0, addr = haddr, pte = start_pte; 1433 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1434 struct page *page; 1435 1436 /* empty pte, skip */ 1437 if (pte_none(*pte)) 1438 continue; 1439 1440 /* page swapped out, abort */ 1441 if (!pte_present(*pte)) 1442 goto abort; 1443 1444 page = vm_normal_page(vma, addr, *pte); 1445 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1446 page = NULL; 1447 /* 1448 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1449 * page table, but the new page will not be a subpage of hpage. 1450 */ 1451 if (hpage + i != page) 1452 goto abort; 1453 count++; 1454 } 1455 1456 /* step 2: adjust rmap */ 1457 for (i = 0, addr = haddr, pte = start_pte; 1458 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1459 struct page *page; 1460 1461 if (pte_none(*pte)) 1462 continue; 1463 page = vm_normal_page(vma, addr, *pte); 1464 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1465 goto abort; 1466 page_remove_rmap(page, vma, false); 1467 } 1468 1469 pte_unmap_unlock(start_pte, ptl); 1470 1471 /* step 3: set proper refcount and mm_counters. */ 1472 if (count) { 1473 page_ref_sub(hpage, count); 1474 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1475 } 1476 1477 /* step 4: collapse pmd */ 1478 collapse_and_free_pmd(mm, vma, haddr, pmd); 1479 drop_hpage: 1480 unlock_page(hpage); 1481 put_page(hpage); 1482 return; 1483 1484 abort: 1485 pte_unmap_unlock(start_pte, ptl); 1486 goto drop_hpage; 1487 } 1488 1489 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1490 { 1491 struct mm_struct *mm = mm_slot->mm; 1492 int i; 1493 1494 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1495 return; 1496 1497 if (!mmap_write_trylock(mm)) 1498 return; 1499 1500 if (unlikely(khugepaged_test_exit(mm))) 1501 goto out; 1502 1503 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1504 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1505 1506 out: 1507 mm_slot->nr_pte_mapped_thp = 0; 1508 mmap_write_unlock(mm); 1509 } 1510 1511 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1512 { 1513 struct vm_area_struct *vma; 1514 struct mm_struct *mm; 1515 unsigned long addr; 1516 pmd_t *pmd; 1517 1518 i_mmap_lock_write(mapping); 1519 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1520 /* 1521 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1522 * got written to. These VMAs are likely not worth investing 1523 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1524 * later. 1525 * 1526 * Note that vma->anon_vma check is racy: it can be set up after 1527 * the check but before we took mmap_lock by the fault path. 1528 * But page lock would prevent establishing any new ptes of the 1529 * page, so we are safe. 1530 * 1531 * An alternative would be drop the check, but check that page 1532 * table is clear before calling pmdp_collapse_flush() under 1533 * ptl. It has higher chance to recover THP for the VMA, but 1534 * has higher cost too. 1535 */ 1536 if (vma->anon_vma) 1537 continue; 1538 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1539 if (addr & ~HPAGE_PMD_MASK) 1540 continue; 1541 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1542 continue; 1543 mm = vma->vm_mm; 1544 pmd = mm_find_pmd(mm, addr); 1545 if (!pmd) 1546 continue; 1547 /* 1548 * We need exclusive mmap_lock to retract page table. 1549 * 1550 * We use trylock due to lock inversion: we need to acquire 1551 * mmap_lock while holding page lock. Fault path does it in 1552 * reverse order. Trylock is a way to avoid deadlock. 1553 */ 1554 if (mmap_write_trylock(mm)) { 1555 /* 1556 * When a vma is registered with uffd-wp, we can't 1557 * recycle the pmd pgtable because there can be pte 1558 * markers installed. Skip it only, so the rest mm/vma 1559 * can still have the same file mapped hugely, however 1560 * it'll always mapped in small page size for uffd-wp 1561 * registered ranges. 1562 */ 1563 if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma)) 1564 collapse_and_free_pmd(mm, vma, addr, pmd); 1565 mmap_write_unlock(mm); 1566 } else { 1567 /* Try again later */ 1568 khugepaged_add_pte_mapped_thp(mm, addr); 1569 } 1570 } 1571 i_mmap_unlock_write(mapping); 1572 } 1573 1574 /** 1575 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1576 * 1577 * @mm: process address space where collapse happens 1578 * @file: file that collapse on 1579 * @start: collapse start address 1580 * @hpage: new allocated huge page for collapse 1581 * @node: appointed node the new huge page allocate from 1582 * 1583 * Basic scheme is simple, details are more complex: 1584 * - allocate and lock a new huge page; 1585 * - scan page cache replacing old pages with the new one 1586 * + swap/gup in pages if necessary; 1587 * + fill in gaps; 1588 * + keep old pages around in case rollback is required; 1589 * - if replacing succeeds: 1590 * + copy data over; 1591 * + free old pages; 1592 * + unlock huge page; 1593 * - if replacing failed; 1594 * + put all pages back and unfreeze them; 1595 * + restore gaps in the page cache; 1596 * + unlock and free huge page; 1597 */ 1598 static void collapse_file(struct mm_struct *mm, 1599 struct file *file, pgoff_t start, 1600 struct page **hpage, int node) 1601 { 1602 struct address_space *mapping = file->f_mapping; 1603 gfp_t gfp; 1604 struct page *new_page; 1605 pgoff_t index, end = start + HPAGE_PMD_NR; 1606 LIST_HEAD(pagelist); 1607 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1608 int nr_none = 0, result = SCAN_SUCCEED; 1609 bool is_shmem = shmem_file(file); 1610 int nr; 1611 1612 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1613 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1614 1615 /* Only allocate from the target node */ 1616 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1617 1618 new_page = khugepaged_alloc_page(hpage, gfp, node); 1619 if (!new_page) { 1620 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1621 goto out; 1622 } 1623 1624 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1625 result = SCAN_CGROUP_CHARGE_FAIL; 1626 goto out; 1627 } 1628 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1629 1630 /* 1631 * Ensure we have slots for all the pages in the range. This is 1632 * almost certainly a no-op because most of the pages must be present 1633 */ 1634 do { 1635 xas_lock_irq(&xas); 1636 xas_create_range(&xas); 1637 if (!xas_error(&xas)) 1638 break; 1639 xas_unlock_irq(&xas); 1640 if (!xas_nomem(&xas, GFP_KERNEL)) { 1641 result = SCAN_FAIL; 1642 goto out; 1643 } 1644 } while (1); 1645 1646 __SetPageLocked(new_page); 1647 if (is_shmem) 1648 __SetPageSwapBacked(new_page); 1649 new_page->index = start; 1650 new_page->mapping = mapping; 1651 1652 /* 1653 * At this point the new_page is locked and not up-to-date. 1654 * It's safe to insert it into the page cache, because nobody would 1655 * be able to map it or use it in another way until we unlock it. 1656 */ 1657 1658 xas_set(&xas, start); 1659 for (index = start; index < end; index++) { 1660 struct page *page = xas_next(&xas); 1661 1662 VM_BUG_ON(index != xas.xa_index); 1663 if (is_shmem) { 1664 if (!page) { 1665 /* 1666 * Stop if extent has been truncated or 1667 * hole-punched, and is now completely 1668 * empty. 1669 */ 1670 if (index == start) { 1671 if (!xas_next_entry(&xas, end - 1)) { 1672 result = SCAN_TRUNCATED; 1673 goto xa_locked; 1674 } 1675 xas_set(&xas, index); 1676 } 1677 if (!shmem_charge(mapping->host, 1)) { 1678 result = SCAN_FAIL; 1679 goto xa_locked; 1680 } 1681 xas_store(&xas, new_page); 1682 nr_none++; 1683 continue; 1684 } 1685 1686 if (xa_is_value(page) || !PageUptodate(page)) { 1687 xas_unlock_irq(&xas); 1688 /* swap in or instantiate fallocated page */ 1689 if (shmem_getpage(mapping->host, index, &page, 1690 SGP_NOALLOC)) { 1691 result = SCAN_FAIL; 1692 goto xa_unlocked; 1693 } 1694 } else if (trylock_page(page)) { 1695 get_page(page); 1696 xas_unlock_irq(&xas); 1697 } else { 1698 result = SCAN_PAGE_LOCK; 1699 goto xa_locked; 1700 } 1701 } else { /* !is_shmem */ 1702 if (!page || xa_is_value(page)) { 1703 xas_unlock_irq(&xas); 1704 page_cache_sync_readahead(mapping, &file->f_ra, 1705 file, index, 1706 end - index); 1707 /* drain pagevecs to help isolate_lru_page() */ 1708 lru_add_drain(); 1709 page = find_lock_page(mapping, index); 1710 if (unlikely(page == NULL)) { 1711 result = SCAN_FAIL; 1712 goto xa_unlocked; 1713 } 1714 } else if (PageDirty(page)) { 1715 /* 1716 * khugepaged only works on read-only fd, 1717 * so this page is dirty because it hasn't 1718 * been flushed since first write. There 1719 * won't be new dirty pages. 1720 * 1721 * Trigger async flush here and hope the 1722 * writeback is done when khugepaged 1723 * revisits this page. 1724 * 1725 * This is a one-off situation. We are not 1726 * forcing writeback in loop. 1727 */ 1728 xas_unlock_irq(&xas); 1729 filemap_flush(mapping); 1730 result = SCAN_FAIL; 1731 goto xa_unlocked; 1732 } else if (PageWriteback(page)) { 1733 xas_unlock_irq(&xas); 1734 result = SCAN_FAIL; 1735 goto xa_unlocked; 1736 } else if (trylock_page(page)) { 1737 get_page(page); 1738 xas_unlock_irq(&xas); 1739 } else { 1740 result = SCAN_PAGE_LOCK; 1741 goto xa_locked; 1742 } 1743 } 1744 1745 /* 1746 * The page must be locked, so we can drop the i_pages lock 1747 * without racing with truncate. 1748 */ 1749 VM_BUG_ON_PAGE(!PageLocked(page), page); 1750 1751 /* make sure the page is up to date */ 1752 if (unlikely(!PageUptodate(page))) { 1753 result = SCAN_FAIL; 1754 goto out_unlock; 1755 } 1756 1757 /* 1758 * If file was truncated then extended, or hole-punched, before 1759 * we locked the first page, then a THP might be there already. 1760 */ 1761 if (PageTransCompound(page)) { 1762 result = SCAN_PAGE_COMPOUND; 1763 goto out_unlock; 1764 } 1765 1766 if (page_mapping(page) != mapping) { 1767 result = SCAN_TRUNCATED; 1768 goto out_unlock; 1769 } 1770 1771 if (!is_shmem && (PageDirty(page) || 1772 PageWriteback(page))) { 1773 /* 1774 * khugepaged only works on read-only fd, so this 1775 * page is dirty because it hasn't been flushed 1776 * since first write. 1777 */ 1778 result = SCAN_FAIL; 1779 goto out_unlock; 1780 } 1781 1782 if (isolate_lru_page(page)) { 1783 result = SCAN_DEL_PAGE_LRU; 1784 goto out_unlock; 1785 } 1786 1787 if (page_has_private(page) && 1788 !try_to_release_page(page, GFP_KERNEL)) { 1789 result = SCAN_PAGE_HAS_PRIVATE; 1790 putback_lru_page(page); 1791 goto out_unlock; 1792 } 1793 1794 if (page_mapped(page)) 1795 try_to_unmap(page_folio(page), 1796 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1797 1798 xas_lock_irq(&xas); 1799 xas_set(&xas, index); 1800 1801 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1802 1803 /* 1804 * The page is expected to have page_count() == 3: 1805 * - we hold a pin on it; 1806 * - one reference from page cache; 1807 * - one from isolate_lru_page; 1808 */ 1809 if (!page_ref_freeze(page, 3)) { 1810 result = SCAN_PAGE_COUNT; 1811 xas_unlock_irq(&xas); 1812 putback_lru_page(page); 1813 goto out_unlock; 1814 } 1815 1816 /* 1817 * Add the page to the list to be able to undo the collapse if 1818 * something go wrong. 1819 */ 1820 list_add_tail(&page->lru, &pagelist); 1821 1822 /* Finally, replace with the new page. */ 1823 xas_store(&xas, new_page); 1824 continue; 1825 out_unlock: 1826 unlock_page(page); 1827 put_page(page); 1828 goto xa_unlocked; 1829 } 1830 nr = thp_nr_pages(new_page); 1831 1832 if (is_shmem) 1833 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); 1834 else { 1835 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); 1836 filemap_nr_thps_inc(mapping); 1837 /* 1838 * Paired with smp_mb() in do_dentry_open() to ensure 1839 * i_writecount is up to date and the update to nr_thps is 1840 * visible. Ensures the page cache will be truncated if the 1841 * file is opened writable. 1842 */ 1843 smp_mb(); 1844 if (inode_is_open_for_write(mapping->host)) { 1845 result = SCAN_FAIL; 1846 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); 1847 filemap_nr_thps_dec(mapping); 1848 goto xa_locked; 1849 } 1850 } 1851 1852 if (nr_none) { 1853 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1854 /* nr_none is always 0 for non-shmem. */ 1855 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1856 } 1857 1858 /* Join all the small entries into a single multi-index entry */ 1859 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 1860 xas_store(&xas, new_page); 1861 xa_locked: 1862 xas_unlock_irq(&xas); 1863 xa_unlocked: 1864 1865 /* 1866 * If collapse is successful, flush must be done now before copying. 1867 * If collapse is unsuccessful, does flush actually need to be done? 1868 * Do it anyway, to clear the state. 1869 */ 1870 try_to_unmap_flush(); 1871 1872 if (result == SCAN_SUCCEED) { 1873 struct page *page, *tmp; 1874 1875 /* 1876 * Replacing old pages with new one has succeeded, now we 1877 * need to copy the content and free the old pages. 1878 */ 1879 index = start; 1880 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1881 while (index < page->index) { 1882 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1883 index++; 1884 } 1885 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1886 page); 1887 list_del(&page->lru); 1888 page->mapping = NULL; 1889 page_ref_unfreeze(page, 1); 1890 ClearPageActive(page); 1891 ClearPageUnevictable(page); 1892 unlock_page(page); 1893 put_page(page); 1894 index++; 1895 } 1896 while (index < end) { 1897 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1898 index++; 1899 } 1900 1901 SetPageUptodate(new_page); 1902 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1903 if (is_shmem) 1904 set_page_dirty(new_page); 1905 lru_cache_add(new_page); 1906 1907 /* 1908 * Remove pte page tables, so we can re-fault the page as huge. 1909 */ 1910 retract_page_tables(mapping, start); 1911 *hpage = NULL; 1912 1913 khugepaged_pages_collapsed++; 1914 } else { 1915 struct page *page; 1916 1917 /* Something went wrong: roll back page cache changes */ 1918 xas_lock_irq(&xas); 1919 if (nr_none) { 1920 mapping->nrpages -= nr_none; 1921 shmem_uncharge(mapping->host, nr_none); 1922 } 1923 1924 xas_set(&xas, start); 1925 xas_for_each(&xas, page, end - 1) { 1926 page = list_first_entry_or_null(&pagelist, 1927 struct page, lru); 1928 if (!page || xas.xa_index < page->index) { 1929 if (!nr_none) 1930 break; 1931 nr_none--; 1932 /* Put holes back where they were */ 1933 xas_store(&xas, NULL); 1934 continue; 1935 } 1936 1937 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1938 1939 /* Unfreeze the page. */ 1940 list_del(&page->lru); 1941 page_ref_unfreeze(page, 2); 1942 xas_store(&xas, page); 1943 xas_pause(&xas); 1944 xas_unlock_irq(&xas); 1945 unlock_page(page); 1946 putback_lru_page(page); 1947 xas_lock_irq(&xas); 1948 } 1949 VM_BUG_ON(nr_none); 1950 xas_unlock_irq(&xas); 1951 1952 new_page->mapping = NULL; 1953 } 1954 1955 unlock_page(new_page); 1956 out: 1957 VM_BUG_ON(!list_empty(&pagelist)); 1958 if (!IS_ERR_OR_NULL(*hpage)) 1959 mem_cgroup_uncharge(page_folio(*hpage)); 1960 /* TODO: tracepoints */ 1961 } 1962 1963 static void khugepaged_scan_file(struct mm_struct *mm, 1964 struct file *file, pgoff_t start, struct page **hpage) 1965 { 1966 struct page *page = NULL; 1967 struct address_space *mapping = file->f_mapping; 1968 XA_STATE(xas, &mapping->i_pages, start); 1969 int present, swap; 1970 int node = NUMA_NO_NODE; 1971 int result = SCAN_SUCCEED; 1972 1973 present = 0; 1974 swap = 0; 1975 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1976 rcu_read_lock(); 1977 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 1978 if (xas_retry(&xas, page)) 1979 continue; 1980 1981 if (xa_is_value(page)) { 1982 if (++swap > khugepaged_max_ptes_swap) { 1983 result = SCAN_EXCEED_SWAP_PTE; 1984 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1985 break; 1986 } 1987 continue; 1988 } 1989 1990 /* 1991 * XXX: khugepaged should compact smaller compound pages 1992 * into a PMD sized page 1993 */ 1994 if (PageTransCompound(page)) { 1995 result = SCAN_PAGE_COMPOUND; 1996 break; 1997 } 1998 1999 node = page_to_nid(page); 2000 if (khugepaged_scan_abort(node)) { 2001 result = SCAN_SCAN_ABORT; 2002 break; 2003 } 2004 khugepaged_node_load[node]++; 2005 2006 if (!PageLRU(page)) { 2007 result = SCAN_PAGE_LRU; 2008 break; 2009 } 2010 2011 if (page_count(page) != 2012 1 + page_mapcount(page) + page_has_private(page)) { 2013 result = SCAN_PAGE_COUNT; 2014 break; 2015 } 2016 2017 /* 2018 * We probably should check if the page is referenced here, but 2019 * nobody would transfer pte_young() to PageReferenced() for us. 2020 * And rmap walk here is just too costly... 2021 */ 2022 2023 present++; 2024 2025 if (need_resched()) { 2026 xas_pause(&xas); 2027 cond_resched_rcu(); 2028 } 2029 } 2030 rcu_read_unlock(); 2031 2032 if (result == SCAN_SUCCEED) { 2033 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2034 result = SCAN_EXCEED_NONE_PTE; 2035 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2036 } else { 2037 node = khugepaged_find_target_node(); 2038 collapse_file(mm, file, start, hpage, node); 2039 } 2040 } 2041 2042 /* TODO: tracepoints */ 2043 } 2044 #else 2045 static void khugepaged_scan_file(struct mm_struct *mm, 2046 struct file *file, pgoff_t start, struct page **hpage) 2047 { 2048 BUILD_BUG(); 2049 } 2050 2051 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2052 { 2053 } 2054 #endif 2055 2056 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2057 struct page **hpage) 2058 __releases(&khugepaged_mm_lock) 2059 __acquires(&khugepaged_mm_lock) 2060 { 2061 struct mm_slot *mm_slot; 2062 struct mm_struct *mm; 2063 struct vm_area_struct *vma; 2064 int progress = 0; 2065 2066 VM_BUG_ON(!pages); 2067 lockdep_assert_held(&khugepaged_mm_lock); 2068 2069 if (khugepaged_scan.mm_slot) 2070 mm_slot = khugepaged_scan.mm_slot; 2071 else { 2072 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2073 struct mm_slot, mm_node); 2074 khugepaged_scan.address = 0; 2075 khugepaged_scan.mm_slot = mm_slot; 2076 } 2077 spin_unlock(&khugepaged_mm_lock); 2078 khugepaged_collapse_pte_mapped_thps(mm_slot); 2079 2080 mm = mm_slot->mm; 2081 /* 2082 * Don't wait for semaphore (to avoid long wait times). Just move to 2083 * the next mm on the list. 2084 */ 2085 vma = NULL; 2086 if (unlikely(!mmap_read_trylock(mm))) 2087 goto breakouterloop_mmap_lock; 2088 if (likely(!khugepaged_test_exit(mm))) 2089 vma = find_vma(mm, khugepaged_scan.address); 2090 2091 progress++; 2092 for (; vma; vma = vma->vm_next) { 2093 unsigned long hstart, hend; 2094 2095 cond_resched(); 2096 if (unlikely(khugepaged_test_exit(mm))) { 2097 progress++; 2098 break; 2099 } 2100 if (!hugepage_vma_check(vma, vma->vm_flags, false, false)) { 2101 skip: 2102 progress++; 2103 continue; 2104 } 2105 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2106 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2107 if (khugepaged_scan.address > hend) 2108 goto skip; 2109 if (khugepaged_scan.address < hstart) 2110 khugepaged_scan.address = hstart; 2111 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2112 2113 while (khugepaged_scan.address < hend) { 2114 int ret; 2115 cond_resched(); 2116 if (unlikely(khugepaged_test_exit(mm))) 2117 goto breakouterloop; 2118 2119 VM_BUG_ON(khugepaged_scan.address < hstart || 2120 khugepaged_scan.address + HPAGE_PMD_SIZE > 2121 hend); 2122 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2123 struct file *file = get_file(vma->vm_file); 2124 pgoff_t pgoff = linear_page_index(vma, 2125 khugepaged_scan.address); 2126 2127 mmap_read_unlock(mm); 2128 ret = 1; 2129 khugepaged_scan_file(mm, file, pgoff, hpage); 2130 fput(file); 2131 } else { 2132 ret = khugepaged_scan_pmd(mm, vma, 2133 khugepaged_scan.address, 2134 hpage); 2135 } 2136 /* move to next address */ 2137 khugepaged_scan.address += HPAGE_PMD_SIZE; 2138 progress += HPAGE_PMD_NR; 2139 if (ret) 2140 /* we released mmap_lock so break loop */ 2141 goto breakouterloop_mmap_lock; 2142 if (progress >= pages) 2143 goto breakouterloop; 2144 } 2145 } 2146 breakouterloop: 2147 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2148 breakouterloop_mmap_lock: 2149 2150 spin_lock(&khugepaged_mm_lock); 2151 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2152 /* 2153 * Release the current mm_slot if this mm is about to die, or 2154 * if we scanned all vmas of this mm. 2155 */ 2156 if (khugepaged_test_exit(mm) || !vma) { 2157 /* 2158 * Make sure that if mm_users is reaching zero while 2159 * khugepaged runs here, khugepaged_exit will find 2160 * mm_slot not pointing to the exiting mm. 2161 */ 2162 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2163 khugepaged_scan.mm_slot = list_entry( 2164 mm_slot->mm_node.next, 2165 struct mm_slot, mm_node); 2166 khugepaged_scan.address = 0; 2167 } else { 2168 khugepaged_scan.mm_slot = NULL; 2169 khugepaged_full_scans++; 2170 } 2171 2172 collect_mm_slot(mm_slot); 2173 } 2174 2175 return progress; 2176 } 2177 2178 static int khugepaged_has_work(void) 2179 { 2180 return !list_empty(&khugepaged_scan.mm_head) && 2181 hugepage_flags_enabled(); 2182 } 2183 2184 static int khugepaged_wait_event(void) 2185 { 2186 return !list_empty(&khugepaged_scan.mm_head) || 2187 kthread_should_stop(); 2188 } 2189 2190 static void khugepaged_do_scan(void) 2191 { 2192 struct page *hpage = NULL; 2193 unsigned int progress = 0, pass_through_head = 0; 2194 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2195 bool wait = true; 2196 2197 lru_add_drain_all(); 2198 2199 while (progress < pages) { 2200 if (!khugepaged_prealloc_page(&hpage, &wait)) 2201 break; 2202 2203 cond_resched(); 2204 2205 if (unlikely(kthread_should_stop() || try_to_freeze())) 2206 break; 2207 2208 spin_lock(&khugepaged_mm_lock); 2209 if (!khugepaged_scan.mm_slot) 2210 pass_through_head++; 2211 if (khugepaged_has_work() && 2212 pass_through_head < 2) 2213 progress += khugepaged_scan_mm_slot(pages - progress, 2214 &hpage); 2215 else 2216 progress = pages; 2217 spin_unlock(&khugepaged_mm_lock); 2218 } 2219 2220 if (!IS_ERR_OR_NULL(hpage)) 2221 put_page(hpage); 2222 } 2223 2224 static bool khugepaged_should_wakeup(void) 2225 { 2226 return kthread_should_stop() || 2227 time_after_eq(jiffies, khugepaged_sleep_expire); 2228 } 2229 2230 static void khugepaged_wait_work(void) 2231 { 2232 if (khugepaged_has_work()) { 2233 const unsigned long scan_sleep_jiffies = 2234 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2235 2236 if (!scan_sleep_jiffies) 2237 return; 2238 2239 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2240 wait_event_freezable_timeout(khugepaged_wait, 2241 khugepaged_should_wakeup(), 2242 scan_sleep_jiffies); 2243 return; 2244 } 2245 2246 if (hugepage_flags_enabled()) 2247 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2248 } 2249 2250 static int khugepaged(void *none) 2251 { 2252 struct mm_slot *mm_slot; 2253 2254 set_freezable(); 2255 set_user_nice(current, MAX_NICE); 2256 2257 while (!kthread_should_stop()) { 2258 khugepaged_do_scan(); 2259 khugepaged_wait_work(); 2260 } 2261 2262 spin_lock(&khugepaged_mm_lock); 2263 mm_slot = khugepaged_scan.mm_slot; 2264 khugepaged_scan.mm_slot = NULL; 2265 if (mm_slot) 2266 collect_mm_slot(mm_slot); 2267 spin_unlock(&khugepaged_mm_lock); 2268 return 0; 2269 } 2270 2271 static void set_recommended_min_free_kbytes(void) 2272 { 2273 struct zone *zone; 2274 int nr_zones = 0; 2275 unsigned long recommended_min; 2276 2277 if (!hugepage_flags_enabled()) { 2278 calculate_min_free_kbytes(); 2279 goto update_wmarks; 2280 } 2281 2282 for_each_populated_zone(zone) { 2283 /* 2284 * We don't need to worry about fragmentation of 2285 * ZONE_MOVABLE since it only has movable pages. 2286 */ 2287 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2288 continue; 2289 2290 nr_zones++; 2291 } 2292 2293 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2294 recommended_min = pageblock_nr_pages * nr_zones * 2; 2295 2296 /* 2297 * Make sure that on average at least two pageblocks are almost free 2298 * of another type, one for a migratetype to fall back to and a 2299 * second to avoid subsequent fallbacks of other types There are 3 2300 * MIGRATE_TYPES we care about. 2301 */ 2302 recommended_min += pageblock_nr_pages * nr_zones * 2303 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2304 2305 /* don't ever allow to reserve more than 5% of the lowmem */ 2306 recommended_min = min(recommended_min, 2307 (unsigned long) nr_free_buffer_pages() / 20); 2308 recommended_min <<= (PAGE_SHIFT-10); 2309 2310 if (recommended_min > min_free_kbytes) { 2311 if (user_min_free_kbytes >= 0) 2312 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2313 min_free_kbytes, recommended_min); 2314 2315 min_free_kbytes = recommended_min; 2316 } 2317 2318 update_wmarks: 2319 setup_per_zone_wmarks(); 2320 } 2321 2322 int start_stop_khugepaged(void) 2323 { 2324 int err = 0; 2325 2326 mutex_lock(&khugepaged_mutex); 2327 if (hugepage_flags_enabled()) { 2328 if (!khugepaged_thread) 2329 khugepaged_thread = kthread_run(khugepaged, NULL, 2330 "khugepaged"); 2331 if (IS_ERR(khugepaged_thread)) { 2332 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2333 err = PTR_ERR(khugepaged_thread); 2334 khugepaged_thread = NULL; 2335 goto fail; 2336 } 2337 2338 if (!list_empty(&khugepaged_scan.mm_head)) 2339 wake_up_interruptible(&khugepaged_wait); 2340 } else if (khugepaged_thread) { 2341 kthread_stop(khugepaged_thread); 2342 khugepaged_thread = NULL; 2343 } 2344 set_recommended_min_free_kbytes(); 2345 fail: 2346 mutex_unlock(&khugepaged_mutex); 2347 return err; 2348 } 2349 2350 void khugepaged_min_free_kbytes_update(void) 2351 { 2352 mutex_lock(&khugepaged_mutex); 2353 if (hugepage_flags_enabled() && khugepaged_thread) 2354 set_recommended_min_free_kbytes(); 2355 mutex_unlock(&khugepaged_mutex); 2356 } 2357