1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/swapops.h> 20 #include <linux/shmem_fs.h> 21 22 #include <asm/tlb.h> 23 #include <asm/pgalloc.h> 24 #include "internal.h" 25 26 enum scan_result { 27 SCAN_FAIL, 28 SCAN_SUCCEED, 29 SCAN_PMD_NULL, 30 SCAN_EXCEED_NONE_PTE, 31 SCAN_EXCEED_SWAP_PTE, 32 SCAN_EXCEED_SHARED_PTE, 33 SCAN_PTE_NON_PRESENT, 34 SCAN_PTE_UFFD_WP, 35 SCAN_PAGE_RO, 36 SCAN_LACK_REFERENCED_PAGE, 37 SCAN_PAGE_NULL, 38 SCAN_SCAN_ABORT, 39 SCAN_PAGE_COUNT, 40 SCAN_PAGE_LRU, 41 SCAN_PAGE_LOCK, 42 SCAN_PAGE_ANON, 43 SCAN_PAGE_COMPOUND, 44 SCAN_ANY_PROCESS, 45 SCAN_VMA_NULL, 46 SCAN_VMA_CHECK, 47 SCAN_ADDRESS_RANGE, 48 SCAN_SWAP_CACHE_PAGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 /* default scan 8*512 pte (or vmas) every 30 second */ 60 static unsigned int khugepaged_pages_to_scan __read_mostly; 61 static unsigned int khugepaged_pages_collapsed; 62 static unsigned int khugepaged_full_scans; 63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 64 /* during fragmentation poll the hugepage allocator once every minute */ 65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 66 static unsigned long khugepaged_sleep_expire; 67 static DEFINE_SPINLOCK(khugepaged_mm_lock); 68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 69 /* 70 * default collapse hugepages if there is at least one pte mapped like 71 * it would have happened if the vma was large enough during page 72 * fault. 73 */ 74 static unsigned int khugepaged_max_ptes_none __read_mostly; 75 static unsigned int khugepaged_max_ptes_swap __read_mostly; 76 static unsigned int khugepaged_max_ptes_shared __read_mostly; 77 78 #define MM_SLOTS_HASH_BITS 10 79 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 80 81 static struct kmem_cache *mm_slot_cache __read_mostly; 82 83 #define MAX_PTE_MAPPED_THP 8 84 85 /** 86 * struct mm_slot - hash lookup from mm to mm_slot 87 * @hash: hash collision list 88 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 89 * @mm: the mm that this information is valid for 90 */ 91 struct mm_slot { 92 struct hlist_node hash; 93 struct list_head mm_node; 94 struct mm_struct *mm; 95 96 /* pte-mapped THP in this mm */ 97 int nr_pte_mapped_thp; 98 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 99 }; 100 101 /** 102 * struct khugepaged_scan - cursor for scanning 103 * @mm_head: the head of the mm list to scan 104 * @mm_slot: the current mm_slot we are scanning 105 * @address: the next address inside that to be scanned 106 * 107 * There is only the one khugepaged_scan instance of this cursor structure. 108 */ 109 struct khugepaged_scan { 110 struct list_head mm_head; 111 struct mm_slot *mm_slot; 112 unsigned long address; 113 }; 114 115 static struct khugepaged_scan khugepaged_scan = { 116 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 117 }; 118 119 #ifdef CONFIG_SYSFS 120 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 121 struct kobj_attribute *attr, 122 char *buf) 123 { 124 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 125 } 126 127 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 128 struct kobj_attribute *attr, 129 const char *buf, size_t count) 130 { 131 unsigned long msecs; 132 int err; 133 134 err = kstrtoul(buf, 10, &msecs); 135 if (err || msecs > UINT_MAX) 136 return -EINVAL; 137 138 khugepaged_scan_sleep_millisecs = msecs; 139 khugepaged_sleep_expire = 0; 140 wake_up_interruptible(&khugepaged_wait); 141 142 return count; 143 } 144 static struct kobj_attribute scan_sleep_millisecs_attr = 145 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 146 scan_sleep_millisecs_store); 147 148 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 149 struct kobj_attribute *attr, 150 char *buf) 151 { 152 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 153 } 154 155 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 156 struct kobj_attribute *attr, 157 const char *buf, size_t count) 158 { 159 unsigned long msecs; 160 int err; 161 162 err = kstrtoul(buf, 10, &msecs); 163 if (err || msecs > UINT_MAX) 164 return -EINVAL; 165 166 khugepaged_alloc_sleep_millisecs = msecs; 167 khugepaged_sleep_expire = 0; 168 wake_up_interruptible(&khugepaged_wait); 169 170 return count; 171 } 172 static struct kobj_attribute alloc_sleep_millisecs_attr = 173 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 174 alloc_sleep_millisecs_store); 175 176 static ssize_t pages_to_scan_show(struct kobject *kobj, 177 struct kobj_attribute *attr, 178 char *buf) 179 { 180 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 181 } 182 static ssize_t pages_to_scan_store(struct kobject *kobj, 183 struct kobj_attribute *attr, 184 const char *buf, size_t count) 185 { 186 int err; 187 unsigned long pages; 188 189 err = kstrtoul(buf, 10, &pages); 190 if (err || !pages || pages > UINT_MAX) 191 return -EINVAL; 192 193 khugepaged_pages_to_scan = pages; 194 195 return count; 196 } 197 static struct kobj_attribute pages_to_scan_attr = 198 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 199 pages_to_scan_store); 200 201 static ssize_t pages_collapsed_show(struct kobject *kobj, 202 struct kobj_attribute *attr, 203 char *buf) 204 { 205 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 206 } 207 static struct kobj_attribute pages_collapsed_attr = 208 __ATTR_RO(pages_collapsed); 209 210 static ssize_t full_scans_show(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 char *buf) 213 { 214 return sprintf(buf, "%u\n", khugepaged_full_scans); 215 } 216 static struct kobj_attribute full_scans_attr = 217 __ATTR_RO(full_scans); 218 219 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf) 221 { 222 return single_hugepage_flag_show(kobj, attr, buf, 223 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 224 } 225 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 226 struct kobj_attribute *attr, 227 const char *buf, size_t count) 228 { 229 return single_hugepage_flag_store(kobj, attr, buf, count, 230 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 231 } 232 static struct kobj_attribute khugepaged_defrag_attr = 233 __ATTR(defrag, 0644, khugepaged_defrag_show, 234 khugepaged_defrag_store); 235 236 /* 237 * max_ptes_none controls if khugepaged should collapse hugepages over 238 * any unmapped ptes in turn potentially increasing the memory 239 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 240 * reduce the available free memory in the system as it 241 * runs. Increasing max_ptes_none will instead potentially reduce the 242 * free memory in the system during the khugepaged scan. 243 */ 244 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 245 struct kobj_attribute *attr, 246 char *buf) 247 { 248 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 249 } 250 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 251 struct kobj_attribute *attr, 252 const char *buf, size_t count) 253 { 254 int err; 255 unsigned long max_ptes_none; 256 257 err = kstrtoul(buf, 10, &max_ptes_none); 258 if (err || max_ptes_none > HPAGE_PMD_NR-1) 259 return -EINVAL; 260 261 khugepaged_max_ptes_none = max_ptes_none; 262 263 return count; 264 } 265 static struct kobj_attribute khugepaged_max_ptes_none_attr = 266 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 267 khugepaged_max_ptes_none_store); 268 269 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 270 struct kobj_attribute *attr, 271 char *buf) 272 { 273 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); 274 } 275 276 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 277 struct kobj_attribute *attr, 278 const char *buf, size_t count) 279 { 280 int err; 281 unsigned long max_ptes_swap; 282 283 err = kstrtoul(buf, 10, &max_ptes_swap); 284 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 285 return -EINVAL; 286 287 khugepaged_max_ptes_swap = max_ptes_swap; 288 289 return count; 290 } 291 292 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 293 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 294 khugepaged_max_ptes_swap_store); 295 296 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 297 struct kobj_attribute *attr, 298 char *buf) 299 { 300 return sprintf(buf, "%u\n", khugepaged_max_ptes_shared); 301 } 302 303 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 const char *buf, size_t count) 306 { 307 int err; 308 unsigned long max_ptes_shared; 309 310 err = kstrtoul(buf, 10, &max_ptes_shared); 311 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 312 return -EINVAL; 313 314 khugepaged_max_ptes_shared = max_ptes_shared; 315 316 return count; 317 } 318 319 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 320 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 321 khugepaged_max_ptes_shared_store); 322 323 static struct attribute *khugepaged_attr[] = { 324 &khugepaged_defrag_attr.attr, 325 &khugepaged_max_ptes_none_attr.attr, 326 &khugepaged_max_ptes_swap_attr.attr, 327 &khugepaged_max_ptes_shared_attr.attr, 328 &pages_to_scan_attr.attr, 329 &pages_collapsed_attr.attr, 330 &full_scans_attr.attr, 331 &scan_sleep_millisecs_attr.attr, 332 &alloc_sleep_millisecs_attr.attr, 333 NULL, 334 }; 335 336 struct attribute_group khugepaged_attr_group = { 337 .attrs = khugepaged_attr, 338 .name = "khugepaged", 339 }; 340 #endif /* CONFIG_SYSFS */ 341 342 int hugepage_madvise(struct vm_area_struct *vma, 343 unsigned long *vm_flags, int advice) 344 { 345 switch (advice) { 346 case MADV_HUGEPAGE: 347 #ifdef CONFIG_S390 348 /* 349 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 350 * can't handle this properly after s390_enable_sie, so we simply 351 * ignore the madvise to prevent qemu from causing a SIGSEGV. 352 */ 353 if (mm_has_pgste(vma->vm_mm)) 354 return 0; 355 #endif 356 *vm_flags &= ~VM_NOHUGEPAGE; 357 *vm_flags |= VM_HUGEPAGE; 358 /* 359 * If the vma become good for khugepaged to scan, 360 * register it here without waiting a page fault that 361 * may not happen any time soon. 362 */ 363 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 364 khugepaged_enter_vma_merge(vma, *vm_flags)) 365 return -ENOMEM; 366 break; 367 case MADV_NOHUGEPAGE: 368 *vm_flags &= ~VM_HUGEPAGE; 369 *vm_flags |= VM_NOHUGEPAGE; 370 /* 371 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 372 * this vma even if we leave the mm registered in khugepaged if 373 * it got registered before VM_NOHUGEPAGE was set. 374 */ 375 break; 376 } 377 378 return 0; 379 } 380 381 int __init khugepaged_init(void) 382 { 383 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 384 sizeof(struct mm_slot), 385 __alignof__(struct mm_slot), 0, NULL); 386 if (!mm_slot_cache) 387 return -ENOMEM; 388 389 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 390 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 391 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 392 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 393 394 return 0; 395 } 396 397 void __init khugepaged_destroy(void) 398 { 399 kmem_cache_destroy(mm_slot_cache); 400 } 401 402 static inline struct mm_slot *alloc_mm_slot(void) 403 { 404 if (!mm_slot_cache) /* initialization failed */ 405 return NULL; 406 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 407 } 408 409 static inline void free_mm_slot(struct mm_slot *mm_slot) 410 { 411 kmem_cache_free(mm_slot_cache, mm_slot); 412 } 413 414 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 415 { 416 struct mm_slot *mm_slot; 417 418 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 419 if (mm == mm_slot->mm) 420 return mm_slot; 421 422 return NULL; 423 } 424 425 static void insert_to_mm_slots_hash(struct mm_struct *mm, 426 struct mm_slot *mm_slot) 427 { 428 mm_slot->mm = mm; 429 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 430 } 431 432 static inline int khugepaged_test_exit(struct mm_struct *mm) 433 { 434 return atomic_read(&mm->mm_users) == 0; 435 } 436 437 static bool hugepage_vma_check(struct vm_area_struct *vma, 438 unsigned long vm_flags) 439 { 440 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 441 (vm_flags & VM_NOHUGEPAGE) || 442 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 443 return false; 444 445 if (shmem_file(vma->vm_file) || 446 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 447 vma->vm_file && 448 (vm_flags & VM_DENYWRITE))) { 449 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 450 HPAGE_PMD_NR); 451 } 452 if (!vma->anon_vma || vma->vm_ops) 453 return false; 454 if (vma_is_temporary_stack(vma)) 455 return false; 456 return !(vm_flags & VM_NO_KHUGEPAGED); 457 } 458 459 int __khugepaged_enter(struct mm_struct *mm) 460 { 461 struct mm_slot *mm_slot; 462 int wakeup; 463 464 mm_slot = alloc_mm_slot(); 465 if (!mm_slot) 466 return -ENOMEM; 467 468 /* __khugepaged_exit() must not run from under us */ 469 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 470 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 471 free_mm_slot(mm_slot); 472 return 0; 473 } 474 475 spin_lock(&khugepaged_mm_lock); 476 insert_to_mm_slots_hash(mm, mm_slot); 477 /* 478 * Insert just behind the scanning cursor, to let the area settle 479 * down a little. 480 */ 481 wakeup = list_empty(&khugepaged_scan.mm_head); 482 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 483 spin_unlock(&khugepaged_mm_lock); 484 485 mmgrab(mm); 486 if (wakeup) 487 wake_up_interruptible(&khugepaged_wait); 488 489 return 0; 490 } 491 492 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 493 unsigned long vm_flags) 494 { 495 unsigned long hstart, hend; 496 497 /* 498 * khugepaged only supports read-only files for non-shmem files. 499 * khugepaged does not yet work on special mappings. And 500 * file-private shmem THP is not supported. 501 */ 502 if (!hugepage_vma_check(vma, vm_flags)) 503 return 0; 504 505 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 506 hend = vma->vm_end & HPAGE_PMD_MASK; 507 if (hstart < hend) 508 return khugepaged_enter(vma, vm_flags); 509 return 0; 510 } 511 512 void __khugepaged_exit(struct mm_struct *mm) 513 { 514 struct mm_slot *mm_slot; 515 int free = 0; 516 517 spin_lock(&khugepaged_mm_lock); 518 mm_slot = get_mm_slot(mm); 519 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 520 hash_del(&mm_slot->hash); 521 list_del(&mm_slot->mm_node); 522 free = 1; 523 } 524 spin_unlock(&khugepaged_mm_lock); 525 526 if (free) { 527 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 528 free_mm_slot(mm_slot); 529 mmdrop(mm); 530 } else if (mm_slot) { 531 /* 532 * This is required to serialize against 533 * khugepaged_test_exit() (which is guaranteed to run 534 * under mmap sem read mode). Stop here (after we 535 * return all pagetables will be destroyed) until 536 * khugepaged has finished working on the pagetables 537 * under the mmap_lock. 538 */ 539 mmap_write_lock(mm); 540 mmap_write_unlock(mm); 541 } 542 } 543 544 static void release_pte_page(struct page *page) 545 { 546 mod_node_page_state(page_pgdat(page), 547 NR_ISOLATED_ANON + page_is_file_lru(page), 548 -compound_nr(page)); 549 unlock_page(page); 550 putback_lru_page(page); 551 } 552 553 static void release_pte_pages(pte_t *pte, pte_t *_pte, 554 struct list_head *compound_pagelist) 555 { 556 struct page *page, *tmp; 557 558 while (--_pte >= pte) { 559 pte_t pteval = *_pte; 560 561 page = pte_page(pteval); 562 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 563 !PageCompound(page)) 564 release_pte_page(page); 565 } 566 567 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 568 list_del(&page->lru); 569 release_pte_page(page); 570 } 571 } 572 573 static bool is_refcount_suitable(struct page *page) 574 { 575 int expected_refcount; 576 577 expected_refcount = total_mapcount(page); 578 if (PageSwapCache(page)) 579 expected_refcount += compound_nr(page); 580 581 return page_count(page) == expected_refcount; 582 } 583 584 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 585 unsigned long address, 586 pte_t *pte, 587 struct list_head *compound_pagelist) 588 { 589 struct page *page = NULL; 590 pte_t *_pte; 591 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 592 bool writable = false; 593 594 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 595 _pte++, address += PAGE_SIZE) { 596 pte_t pteval = *_pte; 597 if (pte_none(pteval) || (pte_present(pteval) && 598 is_zero_pfn(pte_pfn(pteval)))) { 599 if (!userfaultfd_armed(vma) && 600 ++none_or_zero <= khugepaged_max_ptes_none) { 601 continue; 602 } else { 603 result = SCAN_EXCEED_NONE_PTE; 604 goto out; 605 } 606 } 607 if (!pte_present(pteval)) { 608 result = SCAN_PTE_NON_PRESENT; 609 goto out; 610 } 611 page = vm_normal_page(vma, address, pteval); 612 if (unlikely(!page)) { 613 result = SCAN_PAGE_NULL; 614 goto out; 615 } 616 617 VM_BUG_ON_PAGE(!PageAnon(page), page); 618 619 if (page_mapcount(page) > 1 && 620 ++shared > khugepaged_max_ptes_shared) { 621 result = SCAN_EXCEED_SHARED_PTE; 622 goto out; 623 } 624 625 if (PageCompound(page)) { 626 struct page *p; 627 page = compound_head(page); 628 629 /* 630 * Check if we have dealt with the compound page 631 * already 632 */ 633 list_for_each_entry(p, compound_pagelist, lru) { 634 if (page == p) 635 goto next; 636 } 637 } 638 639 /* 640 * We can do it before isolate_lru_page because the 641 * page can't be freed from under us. NOTE: PG_lock 642 * is needed to serialize against split_huge_page 643 * when invoked from the VM. 644 */ 645 if (!trylock_page(page)) { 646 result = SCAN_PAGE_LOCK; 647 goto out; 648 } 649 650 /* 651 * Check if the page has any GUP (or other external) pins. 652 * 653 * The page table that maps the page has been already unlinked 654 * from the page table tree and this process cannot get 655 * an additinal pin on the page. 656 * 657 * New pins can come later if the page is shared across fork, 658 * but not from this process. The other process cannot write to 659 * the page, only trigger CoW. 660 */ 661 if (!is_refcount_suitable(page)) { 662 unlock_page(page); 663 result = SCAN_PAGE_COUNT; 664 goto out; 665 } 666 if (!pte_write(pteval) && PageSwapCache(page) && 667 !reuse_swap_page(page, NULL)) { 668 /* 669 * Page is in the swap cache and cannot be re-used. 670 * It cannot be collapsed into a THP. 671 */ 672 unlock_page(page); 673 result = SCAN_SWAP_CACHE_PAGE; 674 goto out; 675 } 676 677 /* 678 * Isolate the page to avoid collapsing an hugepage 679 * currently in use by the VM. 680 */ 681 if (isolate_lru_page(page)) { 682 unlock_page(page); 683 result = SCAN_DEL_PAGE_LRU; 684 goto out; 685 } 686 mod_node_page_state(page_pgdat(page), 687 NR_ISOLATED_ANON + page_is_file_lru(page), 688 compound_nr(page)); 689 VM_BUG_ON_PAGE(!PageLocked(page), page); 690 VM_BUG_ON_PAGE(PageLRU(page), page); 691 692 if (PageCompound(page)) 693 list_add_tail(&page->lru, compound_pagelist); 694 next: 695 /* There should be enough young pte to collapse the page */ 696 if (pte_young(pteval) || 697 page_is_young(page) || PageReferenced(page) || 698 mmu_notifier_test_young(vma->vm_mm, address)) 699 referenced++; 700 701 if (pte_write(pteval)) 702 writable = true; 703 } 704 if (likely(writable)) { 705 if (likely(referenced)) { 706 result = SCAN_SUCCEED; 707 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 708 referenced, writable, result); 709 return 1; 710 } 711 } else { 712 result = SCAN_PAGE_RO; 713 } 714 715 out: 716 release_pte_pages(pte, _pte, compound_pagelist); 717 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 718 referenced, writable, result); 719 return 0; 720 } 721 722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 723 struct vm_area_struct *vma, 724 unsigned long address, 725 spinlock_t *ptl, 726 struct list_head *compound_pagelist) 727 { 728 struct page *src_page, *tmp; 729 pte_t *_pte; 730 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 731 _pte++, page++, address += PAGE_SIZE) { 732 pte_t pteval = *_pte; 733 734 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 735 clear_user_highpage(page, address); 736 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 737 if (is_zero_pfn(pte_pfn(pteval))) { 738 /* 739 * ptl mostly unnecessary. 740 */ 741 spin_lock(ptl); 742 /* 743 * paravirt calls inside pte_clear here are 744 * superfluous. 745 */ 746 pte_clear(vma->vm_mm, address, _pte); 747 spin_unlock(ptl); 748 } 749 } else { 750 src_page = pte_page(pteval); 751 copy_user_highpage(page, src_page, address, vma); 752 if (!PageCompound(src_page)) 753 release_pte_page(src_page); 754 /* 755 * ptl mostly unnecessary, but preempt has to 756 * be disabled to update the per-cpu stats 757 * inside page_remove_rmap(). 758 */ 759 spin_lock(ptl); 760 /* 761 * paravirt calls inside pte_clear here are 762 * superfluous. 763 */ 764 pte_clear(vma->vm_mm, address, _pte); 765 page_remove_rmap(src_page, false); 766 spin_unlock(ptl); 767 free_page_and_swap_cache(src_page); 768 } 769 } 770 771 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 772 list_del(&src_page->lru); 773 release_pte_page(src_page); 774 } 775 } 776 777 static void khugepaged_alloc_sleep(void) 778 { 779 DEFINE_WAIT(wait); 780 781 add_wait_queue(&khugepaged_wait, &wait); 782 freezable_schedule_timeout_interruptible( 783 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 784 remove_wait_queue(&khugepaged_wait, &wait); 785 } 786 787 static int khugepaged_node_load[MAX_NUMNODES]; 788 789 static bool khugepaged_scan_abort(int nid) 790 { 791 int i; 792 793 /* 794 * If node_reclaim_mode is disabled, then no extra effort is made to 795 * allocate memory locally. 796 */ 797 if (!node_reclaim_mode) 798 return false; 799 800 /* If there is a count for this node already, it must be acceptable */ 801 if (khugepaged_node_load[nid]) 802 return false; 803 804 for (i = 0; i < MAX_NUMNODES; i++) { 805 if (!khugepaged_node_load[i]) 806 continue; 807 if (node_distance(nid, i) > node_reclaim_distance) 808 return true; 809 } 810 return false; 811 } 812 813 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 814 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 815 { 816 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 817 } 818 819 #ifdef CONFIG_NUMA 820 static int khugepaged_find_target_node(void) 821 { 822 static int last_khugepaged_target_node = NUMA_NO_NODE; 823 int nid, target_node = 0, max_value = 0; 824 825 /* find first node with max normal pages hit */ 826 for (nid = 0; nid < MAX_NUMNODES; nid++) 827 if (khugepaged_node_load[nid] > max_value) { 828 max_value = khugepaged_node_load[nid]; 829 target_node = nid; 830 } 831 832 /* do some balance if several nodes have the same hit record */ 833 if (target_node <= last_khugepaged_target_node) 834 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 835 nid++) 836 if (max_value == khugepaged_node_load[nid]) { 837 target_node = nid; 838 break; 839 } 840 841 last_khugepaged_target_node = target_node; 842 return target_node; 843 } 844 845 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 846 { 847 if (IS_ERR(*hpage)) { 848 if (!*wait) 849 return false; 850 851 *wait = false; 852 *hpage = NULL; 853 khugepaged_alloc_sleep(); 854 } else if (*hpage) { 855 put_page(*hpage); 856 *hpage = NULL; 857 } 858 859 return true; 860 } 861 862 static struct page * 863 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 864 { 865 VM_BUG_ON_PAGE(*hpage, *hpage); 866 867 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 868 if (unlikely(!*hpage)) { 869 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 870 *hpage = ERR_PTR(-ENOMEM); 871 return NULL; 872 } 873 874 prep_transhuge_page(*hpage); 875 count_vm_event(THP_COLLAPSE_ALLOC); 876 return *hpage; 877 } 878 #else 879 static int khugepaged_find_target_node(void) 880 { 881 return 0; 882 } 883 884 static inline struct page *alloc_khugepaged_hugepage(void) 885 { 886 struct page *page; 887 888 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 889 HPAGE_PMD_ORDER); 890 if (page) 891 prep_transhuge_page(page); 892 return page; 893 } 894 895 static struct page *khugepaged_alloc_hugepage(bool *wait) 896 { 897 struct page *hpage; 898 899 do { 900 hpage = alloc_khugepaged_hugepage(); 901 if (!hpage) { 902 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 903 if (!*wait) 904 return NULL; 905 906 *wait = false; 907 khugepaged_alloc_sleep(); 908 } else 909 count_vm_event(THP_COLLAPSE_ALLOC); 910 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 911 912 return hpage; 913 } 914 915 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 916 { 917 if (!*hpage) 918 *hpage = khugepaged_alloc_hugepage(wait); 919 920 if (unlikely(!*hpage)) 921 return false; 922 923 return true; 924 } 925 926 static struct page * 927 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 928 { 929 VM_BUG_ON(!*hpage); 930 931 return *hpage; 932 } 933 #endif 934 935 /* 936 * If mmap_lock temporarily dropped, revalidate vma 937 * before taking mmap_lock. 938 * Return 0 if succeeds, otherwise return none-zero 939 * value (scan code). 940 */ 941 942 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 943 struct vm_area_struct **vmap) 944 { 945 struct vm_area_struct *vma; 946 unsigned long hstart, hend; 947 948 if (unlikely(khugepaged_test_exit(mm))) 949 return SCAN_ANY_PROCESS; 950 951 *vmap = vma = find_vma(mm, address); 952 if (!vma) 953 return SCAN_VMA_NULL; 954 955 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 956 hend = vma->vm_end & HPAGE_PMD_MASK; 957 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 958 return SCAN_ADDRESS_RANGE; 959 if (!hugepage_vma_check(vma, vma->vm_flags)) 960 return SCAN_VMA_CHECK; 961 /* Anon VMA expected */ 962 if (!vma->anon_vma || vma->vm_ops) 963 return SCAN_VMA_CHECK; 964 return 0; 965 } 966 967 /* 968 * Bring missing pages in from swap, to complete THP collapse. 969 * Only done if khugepaged_scan_pmd believes it is worthwhile. 970 * 971 * Called and returns without pte mapped or spinlocks held, 972 * but with mmap_lock held to protect against vma changes. 973 */ 974 975 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 976 struct vm_area_struct *vma, 977 unsigned long address, pmd_t *pmd, 978 int referenced) 979 { 980 int swapped_in = 0; 981 vm_fault_t ret = 0; 982 struct vm_fault vmf = { 983 .vma = vma, 984 .address = address, 985 .flags = FAULT_FLAG_ALLOW_RETRY, 986 .pmd = pmd, 987 .pgoff = linear_page_index(vma, address), 988 }; 989 990 vmf.pte = pte_offset_map(pmd, address); 991 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE; 992 vmf.pte++, vmf.address += PAGE_SIZE) { 993 vmf.orig_pte = *vmf.pte; 994 if (!is_swap_pte(vmf.orig_pte)) 995 continue; 996 swapped_in++; 997 ret = do_swap_page(&vmf); 998 999 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1000 if (ret & VM_FAULT_RETRY) { 1001 mmap_read_lock(mm); 1002 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) { 1003 /* vma is no longer available, don't continue to swapin */ 1004 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1005 return false; 1006 } 1007 /* check if the pmd is still valid */ 1008 if (mm_find_pmd(mm, address) != pmd) { 1009 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1010 return false; 1011 } 1012 } 1013 if (ret & VM_FAULT_ERROR) { 1014 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1015 return false; 1016 } 1017 /* pte is unmapped now, we need to map it */ 1018 vmf.pte = pte_offset_map(pmd, vmf.address); 1019 } 1020 vmf.pte--; 1021 pte_unmap(vmf.pte); 1022 1023 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1024 if (swapped_in) 1025 lru_add_drain(); 1026 1027 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1028 return true; 1029 } 1030 1031 static void collapse_huge_page(struct mm_struct *mm, 1032 unsigned long address, 1033 struct page **hpage, 1034 int node, int referenced, int unmapped) 1035 { 1036 LIST_HEAD(compound_pagelist); 1037 pmd_t *pmd, _pmd; 1038 pte_t *pte; 1039 pgtable_t pgtable; 1040 struct page *new_page; 1041 spinlock_t *pmd_ptl, *pte_ptl; 1042 int isolated = 0, result = 0; 1043 struct vm_area_struct *vma; 1044 struct mmu_notifier_range range; 1045 gfp_t gfp; 1046 1047 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1048 1049 /* Only allocate from the target node */ 1050 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1051 1052 /* 1053 * Before allocating the hugepage, release the mmap_lock read lock. 1054 * The allocation can take potentially a long time if it involves 1055 * sync compaction, and we do not need to hold the mmap_lock during 1056 * that. We will recheck the vma after taking it again in write mode. 1057 */ 1058 mmap_read_unlock(mm); 1059 new_page = khugepaged_alloc_page(hpage, gfp, node); 1060 if (!new_page) { 1061 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1062 goto out_nolock; 1063 } 1064 1065 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1066 result = SCAN_CGROUP_CHARGE_FAIL; 1067 goto out_nolock; 1068 } 1069 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1070 1071 mmap_read_lock(mm); 1072 result = hugepage_vma_revalidate(mm, address, &vma); 1073 if (result) { 1074 mmap_read_unlock(mm); 1075 goto out_nolock; 1076 } 1077 1078 pmd = mm_find_pmd(mm, address); 1079 if (!pmd) { 1080 result = SCAN_PMD_NULL; 1081 mmap_read_unlock(mm); 1082 goto out_nolock; 1083 } 1084 1085 /* 1086 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1087 * If it fails, we release mmap_lock and jump out_nolock. 1088 * Continuing to collapse causes inconsistency. 1089 */ 1090 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1091 pmd, referenced)) { 1092 mmap_read_unlock(mm); 1093 goto out_nolock; 1094 } 1095 1096 mmap_read_unlock(mm); 1097 /* 1098 * Prevent all access to pagetables with the exception of 1099 * gup_fast later handled by the ptep_clear_flush and the VM 1100 * handled by the anon_vma lock + PG_lock. 1101 */ 1102 mmap_write_lock(mm); 1103 result = SCAN_ANY_PROCESS; 1104 if (!mmget_still_valid(mm)) 1105 goto out; 1106 result = hugepage_vma_revalidate(mm, address, &vma); 1107 if (result) 1108 goto out; 1109 /* check if the pmd is still valid */ 1110 if (mm_find_pmd(mm, address) != pmd) 1111 goto out; 1112 1113 anon_vma_lock_write(vma->anon_vma); 1114 1115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1116 address, address + HPAGE_PMD_SIZE); 1117 mmu_notifier_invalidate_range_start(&range); 1118 1119 pte = pte_offset_map(pmd, address); 1120 pte_ptl = pte_lockptr(mm, pmd); 1121 1122 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1123 /* 1124 * After this gup_fast can't run anymore. This also removes 1125 * any huge TLB entry from the CPU so we won't allow 1126 * huge and small TLB entries for the same virtual address 1127 * to avoid the risk of CPU bugs in that area. 1128 */ 1129 _pmd = pmdp_collapse_flush(vma, address, pmd); 1130 spin_unlock(pmd_ptl); 1131 mmu_notifier_invalidate_range_end(&range); 1132 1133 spin_lock(pte_ptl); 1134 isolated = __collapse_huge_page_isolate(vma, address, pte, 1135 &compound_pagelist); 1136 spin_unlock(pte_ptl); 1137 1138 if (unlikely(!isolated)) { 1139 pte_unmap(pte); 1140 spin_lock(pmd_ptl); 1141 BUG_ON(!pmd_none(*pmd)); 1142 /* 1143 * We can only use set_pmd_at when establishing 1144 * hugepmds and never for establishing regular pmds that 1145 * points to regular pagetables. Use pmd_populate for that 1146 */ 1147 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1148 spin_unlock(pmd_ptl); 1149 anon_vma_unlock_write(vma->anon_vma); 1150 result = SCAN_FAIL; 1151 goto out; 1152 } 1153 1154 /* 1155 * All pages are isolated and locked so anon_vma rmap 1156 * can't run anymore. 1157 */ 1158 anon_vma_unlock_write(vma->anon_vma); 1159 1160 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1161 &compound_pagelist); 1162 pte_unmap(pte); 1163 __SetPageUptodate(new_page); 1164 pgtable = pmd_pgtable(_pmd); 1165 1166 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1167 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1168 1169 /* 1170 * spin_lock() below is not the equivalent of smp_wmb(), so 1171 * this is needed to avoid the copy_huge_page writes to become 1172 * visible after the set_pmd_at() write. 1173 */ 1174 smp_wmb(); 1175 1176 spin_lock(pmd_ptl); 1177 BUG_ON(!pmd_none(*pmd)); 1178 page_add_new_anon_rmap(new_page, vma, address, true); 1179 lru_cache_add_active_or_unevictable(new_page, vma); 1180 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1181 set_pmd_at(mm, address, pmd, _pmd); 1182 update_mmu_cache_pmd(vma, address, pmd); 1183 spin_unlock(pmd_ptl); 1184 1185 *hpage = NULL; 1186 1187 khugepaged_pages_collapsed++; 1188 result = SCAN_SUCCEED; 1189 out_up_write: 1190 mmap_write_unlock(mm); 1191 out_nolock: 1192 if (!IS_ERR_OR_NULL(*hpage)) 1193 mem_cgroup_uncharge(*hpage); 1194 trace_mm_collapse_huge_page(mm, isolated, result); 1195 return; 1196 out: 1197 goto out_up_write; 1198 } 1199 1200 static int khugepaged_scan_pmd(struct mm_struct *mm, 1201 struct vm_area_struct *vma, 1202 unsigned long address, 1203 struct page **hpage) 1204 { 1205 pmd_t *pmd; 1206 pte_t *pte, *_pte; 1207 int ret = 0, result = 0, referenced = 0; 1208 int none_or_zero = 0, shared = 0; 1209 struct page *page = NULL; 1210 unsigned long _address; 1211 spinlock_t *ptl; 1212 int node = NUMA_NO_NODE, unmapped = 0; 1213 bool writable = false; 1214 1215 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1216 1217 pmd = mm_find_pmd(mm, address); 1218 if (!pmd) { 1219 result = SCAN_PMD_NULL; 1220 goto out; 1221 } 1222 1223 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1224 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1225 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1226 _pte++, _address += PAGE_SIZE) { 1227 pte_t pteval = *_pte; 1228 if (is_swap_pte(pteval)) { 1229 if (++unmapped <= khugepaged_max_ptes_swap) { 1230 /* 1231 * Always be strict with uffd-wp 1232 * enabled swap entries. Please see 1233 * comment below for pte_uffd_wp(). 1234 */ 1235 if (pte_swp_uffd_wp(pteval)) { 1236 result = SCAN_PTE_UFFD_WP; 1237 goto out_unmap; 1238 } 1239 continue; 1240 } else { 1241 result = SCAN_EXCEED_SWAP_PTE; 1242 goto out_unmap; 1243 } 1244 } 1245 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1246 if (!userfaultfd_armed(vma) && 1247 ++none_or_zero <= khugepaged_max_ptes_none) { 1248 continue; 1249 } else { 1250 result = SCAN_EXCEED_NONE_PTE; 1251 goto out_unmap; 1252 } 1253 } 1254 if (!pte_present(pteval)) { 1255 result = SCAN_PTE_NON_PRESENT; 1256 goto out_unmap; 1257 } 1258 if (pte_uffd_wp(pteval)) { 1259 /* 1260 * Don't collapse the page if any of the small 1261 * PTEs are armed with uffd write protection. 1262 * Here we can also mark the new huge pmd as 1263 * write protected if any of the small ones is 1264 * marked but that could bring uknown 1265 * userfault messages that falls outside of 1266 * the registered range. So, just be simple. 1267 */ 1268 result = SCAN_PTE_UFFD_WP; 1269 goto out_unmap; 1270 } 1271 if (pte_write(pteval)) 1272 writable = true; 1273 1274 page = vm_normal_page(vma, _address, pteval); 1275 if (unlikely(!page)) { 1276 result = SCAN_PAGE_NULL; 1277 goto out_unmap; 1278 } 1279 1280 if (page_mapcount(page) > 1 && 1281 ++shared > khugepaged_max_ptes_shared) { 1282 result = SCAN_EXCEED_SHARED_PTE; 1283 goto out_unmap; 1284 } 1285 1286 page = compound_head(page); 1287 1288 /* 1289 * Record which node the original page is from and save this 1290 * information to khugepaged_node_load[]. 1291 * Khupaged will allocate hugepage from the node has the max 1292 * hit record. 1293 */ 1294 node = page_to_nid(page); 1295 if (khugepaged_scan_abort(node)) { 1296 result = SCAN_SCAN_ABORT; 1297 goto out_unmap; 1298 } 1299 khugepaged_node_load[node]++; 1300 if (!PageLRU(page)) { 1301 result = SCAN_PAGE_LRU; 1302 goto out_unmap; 1303 } 1304 if (PageLocked(page)) { 1305 result = SCAN_PAGE_LOCK; 1306 goto out_unmap; 1307 } 1308 if (!PageAnon(page)) { 1309 result = SCAN_PAGE_ANON; 1310 goto out_unmap; 1311 } 1312 1313 /* 1314 * Check if the page has any GUP (or other external) pins. 1315 * 1316 * Here the check is racy it may see totmal_mapcount > refcount 1317 * in some cases. 1318 * For example, one process with one forked child process. 1319 * The parent has the PMD split due to MADV_DONTNEED, then 1320 * the child is trying unmap the whole PMD, but khugepaged 1321 * may be scanning the parent between the child has 1322 * PageDoubleMap flag cleared and dec the mapcount. So 1323 * khugepaged may see total_mapcount > refcount. 1324 * 1325 * But such case is ephemeral we could always retry collapse 1326 * later. However it may report false positive if the page 1327 * has excessive GUP pins (i.e. 512). Anyway the same check 1328 * will be done again later the risk seems low. 1329 */ 1330 if (!is_refcount_suitable(page)) { 1331 result = SCAN_PAGE_COUNT; 1332 goto out_unmap; 1333 } 1334 if (pte_young(pteval) || 1335 page_is_young(page) || PageReferenced(page) || 1336 mmu_notifier_test_young(vma->vm_mm, address)) 1337 referenced++; 1338 } 1339 if (!writable) { 1340 result = SCAN_PAGE_RO; 1341 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1342 result = SCAN_LACK_REFERENCED_PAGE; 1343 } else { 1344 result = SCAN_SUCCEED; 1345 ret = 1; 1346 } 1347 out_unmap: 1348 pte_unmap_unlock(pte, ptl); 1349 if (ret) { 1350 node = khugepaged_find_target_node(); 1351 /* collapse_huge_page will return with the mmap_lock released */ 1352 collapse_huge_page(mm, address, hpage, node, 1353 referenced, unmapped); 1354 } 1355 out: 1356 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1357 none_or_zero, result, unmapped); 1358 return ret; 1359 } 1360 1361 static void collect_mm_slot(struct mm_slot *mm_slot) 1362 { 1363 struct mm_struct *mm = mm_slot->mm; 1364 1365 lockdep_assert_held(&khugepaged_mm_lock); 1366 1367 if (khugepaged_test_exit(mm)) { 1368 /* free mm_slot */ 1369 hash_del(&mm_slot->hash); 1370 list_del(&mm_slot->mm_node); 1371 1372 /* 1373 * Not strictly needed because the mm exited already. 1374 * 1375 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1376 */ 1377 1378 /* khugepaged_mm_lock actually not necessary for the below */ 1379 free_mm_slot(mm_slot); 1380 mmdrop(mm); 1381 } 1382 } 1383 1384 #ifdef CONFIG_SHMEM 1385 /* 1386 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1387 * khugepaged should try to collapse the page table. 1388 */ 1389 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1390 unsigned long addr) 1391 { 1392 struct mm_slot *mm_slot; 1393 1394 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1395 1396 spin_lock(&khugepaged_mm_lock); 1397 mm_slot = get_mm_slot(mm); 1398 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1399 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1400 spin_unlock(&khugepaged_mm_lock); 1401 return 0; 1402 } 1403 1404 /** 1405 * Try to collapse a pte-mapped THP for mm at address haddr. 1406 * 1407 * This function checks whether all the PTEs in the PMD are pointing to the 1408 * right THP. If so, retract the page table so the THP can refault in with 1409 * as pmd-mapped. 1410 */ 1411 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1412 { 1413 unsigned long haddr = addr & HPAGE_PMD_MASK; 1414 struct vm_area_struct *vma = find_vma(mm, haddr); 1415 struct page *hpage = NULL; 1416 pte_t *start_pte, *pte; 1417 pmd_t *pmd, _pmd; 1418 spinlock_t *ptl; 1419 int count = 0; 1420 int i; 1421 1422 if (!vma || !vma->vm_file || 1423 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE) 1424 return; 1425 1426 /* 1427 * This vm_flags may not have VM_HUGEPAGE if the page was not 1428 * collapsed by this mm. But we can still collapse if the page is 1429 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1430 * will not fail the vma for missing VM_HUGEPAGE 1431 */ 1432 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1433 return; 1434 1435 pmd = mm_find_pmd(mm, haddr); 1436 if (!pmd) 1437 return; 1438 1439 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1440 1441 /* step 1: check all mapped PTEs are to the right huge page */ 1442 for (i = 0, addr = haddr, pte = start_pte; 1443 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1444 struct page *page; 1445 1446 /* empty pte, skip */ 1447 if (pte_none(*pte)) 1448 continue; 1449 1450 /* page swapped out, abort */ 1451 if (!pte_present(*pte)) 1452 goto abort; 1453 1454 page = vm_normal_page(vma, addr, *pte); 1455 1456 if (!page || !PageCompound(page)) 1457 goto abort; 1458 1459 if (!hpage) { 1460 hpage = compound_head(page); 1461 /* 1462 * The mapping of the THP should not change. 1463 * 1464 * Note that uprobe, debugger, or MAP_PRIVATE may 1465 * change the page table, but the new page will 1466 * not pass PageCompound() check. 1467 */ 1468 if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping)) 1469 goto abort; 1470 } 1471 1472 /* 1473 * Confirm the page maps to the correct subpage. 1474 * 1475 * Note that uprobe, debugger, or MAP_PRIVATE may change 1476 * the page table, but the new page will not pass 1477 * PageCompound() check. 1478 */ 1479 if (WARN_ON(hpage + i != page)) 1480 goto abort; 1481 count++; 1482 } 1483 1484 /* step 2: adjust rmap */ 1485 for (i = 0, addr = haddr, pte = start_pte; 1486 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1487 struct page *page; 1488 1489 if (pte_none(*pte)) 1490 continue; 1491 page = vm_normal_page(vma, addr, *pte); 1492 page_remove_rmap(page, false); 1493 } 1494 1495 pte_unmap_unlock(start_pte, ptl); 1496 1497 /* step 3: set proper refcount and mm_counters. */ 1498 if (hpage) { 1499 page_ref_sub(hpage, count); 1500 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1501 } 1502 1503 /* step 4: collapse pmd */ 1504 ptl = pmd_lock(vma->vm_mm, pmd); 1505 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1506 spin_unlock(ptl); 1507 mm_dec_nr_ptes(mm); 1508 pte_free(mm, pmd_pgtable(_pmd)); 1509 return; 1510 1511 abort: 1512 pte_unmap_unlock(start_pte, ptl); 1513 } 1514 1515 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1516 { 1517 struct mm_struct *mm = mm_slot->mm; 1518 int i; 1519 1520 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1521 return 0; 1522 1523 if (!mmap_write_trylock(mm)) 1524 return -EBUSY; 1525 1526 if (unlikely(khugepaged_test_exit(mm))) 1527 goto out; 1528 1529 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1530 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1531 1532 out: 1533 mm_slot->nr_pte_mapped_thp = 0; 1534 mmap_write_unlock(mm); 1535 return 0; 1536 } 1537 1538 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1539 { 1540 struct vm_area_struct *vma; 1541 unsigned long addr; 1542 pmd_t *pmd, _pmd; 1543 1544 i_mmap_lock_write(mapping); 1545 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1546 /* 1547 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1548 * got written to. These VMAs are likely not worth investing 1549 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1550 * later. 1551 * 1552 * Not that vma->anon_vma check is racy: it can be set up after 1553 * the check but before we took mmap_lock by the fault path. 1554 * But page lock would prevent establishing any new ptes of the 1555 * page, so we are safe. 1556 * 1557 * An alternative would be drop the check, but check that page 1558 * table is clear before calling pmdp_collapse_flush() under 1559 * ptl. It has higher chance to recover THP for the VMA, but 1560 * has higher cost too. 1561 */ 1562 if (vma->anon_vma) 1563 continue; 1564 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1565 if (addr & ~HPAGE_PMD_MASK) 1566 continue; 1567 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1568 continue; 1569 pmd = mm_find_pmd(vma->vm_mm, addr); 1570 if (!pmd) 1571 continue; 1572 /* 1573 * We need exclusive mmap_lock to retract page table. 1574 * 1575 * We use trylock due to lock inversion: we need to acquire 1576 * mmap_lock while holding page lock. Fault path does it in 1577 * reverse order. Trylock is a way to avoid deadlock. 1578 */ 1579 if (mmap_write_trylock(vma->vm_mm)) { 1580 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd); 1581 /* assume page table is clear */ 1582 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1583 spin_unlock(ptl); 1584 mmap_write_unlock(vma->vm_mm); 1585 mm_dec_nr_ptes(vma->vm_mm); 1586 pte_free(vma->vm_mm, pmd_pgtable(_pmd)); 1587 } else { 1588 /* Try again later */ 1589 khugepaged_add_pte_mapped_thp(vma->vm_mm, addr); 1590 } 1591 } 1592 i_mmap_unlock_write(mapping); 1593 } 1594 1595 /** 1596 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1597 * 1598 * Basic scheme is simple, details are more complex: 1599 * - allocate and lock a new huge page; 1600 * - scan page cache replacing old pages with the new one 1601 * + swap/gup in pages if necessary; 1602 * + fill in gaps; 1603 * + keep old pages around in case rollback is required; 1604 * - if replacing succeeds: 1605 * + copy data over; 1606 * + free old pages; 1607 * + unlock huge page; 1608 * - if replacing failed; 1609 * + put all pages back and unfreeze them; 1610 * + restore gaps in the page cache; 1611 * + unlock and free huge page; 1612 */ 1613 static void collapse_file(struct mm_struct *mm, 1614 struct file *file, pgoff_t start, 1615 struct page **hpage, int node) 1616 { 1617 struct address_space *mapping = file->f_mapping; 1618 gfp_t gfp; 1619 struct page *new_page; 1620 pgoff_t index, end = start + HPAGE_PMD_NR; 1621 LIST_HEAD(pagelist); 1622 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1623 int nr_none = 0, result = SCAN_SUCCEED; 1624 bool is_shmem = shmem_file(file); 1625 1626 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1627 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1628 1629 /* Only allocate from the target node */ 1630 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1631 1632 new_page = khugepaged_alloc_page(hpage, gfp, node); 1633 if (!new_page) { 1634 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1635 goto out; 1636 } 1637 1638 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1639 result = SCAN_CGROUP_CHARGE_FAIL; 1640 goto out; 1641 } 1642 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1643 1644 /* This will be less messy when we use multi-index entries */ 1645 do { 1646 xas_lock_irq(&xas); 1647 xas_create_range(&xas); 1648 if (!xas_error(&xas)) 1649 break; 1650 xas_unlock_irq(&xas); 1651 if (!xas_nomem(&xas, GFP_KERNEL)) { 1652 result = SCAN_FAIL; 1653 goto out; 1654 } 1655 } while (1); 1656 1657 __SetPageLocked(new_page); 1658 if (is_shmem) 1659 __SetPageSwapBacked(new_page); 1660 new_page->index = start; 1661 new_page->mapping = mapping; 1662 1663 /* 1664 * At this point the new_page is locked and not up-to-date. 1665 * It's safe to insert it into the page cache, because nobody would 1666 * be able to map it or use it in another way until we unlock it. 1667 */ 1668 1669 xas_set(&xas, start); 1670 for (index = start; index < end; index++) { 1671 struct page *page = xas_next(&xas); 1672 1673 VM_BUG_ON(index != xas.xa_index); 1674 if (is_shmem) { 1675 if (!page) { 1676 /* 1677 * Stop if extent has been truncated or 1678 * hole-punched, and is now completely 1679 * empty. 1680 */ 1681 if (index == start) { 1682 if (!xas_next_entry(&xas, end - 1)) { 1683 result = SCAN_TRUNCATED; 1684 goto xa_locked; 1685 } 1686 xas_set(&xas, index); 1687 } 1688 if (!shmem_charge(mapping->host, 1)) { 1689 result = SCAN_FAIL; 1690 goto xa_locked; 1691 } 1692 xas_store(&xas, new_page); 1693 nr_none++; 1694 continue; 1695 } 1696 1697 if (xa_is_value(page) || !PageUptodate(page)) { 1698 xas_unlock_irq(&xas); 1699 /* swap in or instantiate fallocated page */ 1700 if (shmem_getpage(mapping->host, index, &page, 1701 SGP_NOHUGE)) { 1702 result = SCAN_FAIL; 1703 goto xa_unlocked; 1704 } 1705 } else if (trylock_page(page)) { 1706 get_page(page); 1707 xas_unlock_irq(&xas); 1708 } else { 1709 result = SCAN_PAGE_LOCK; 1710 goto xa_locked; 1711 } 1712 } else { /* !is_shmem */ 1713 if (!page || xa_is_value(page)) { 1714 xas_unlock_irq(&xas); 1715 page_cache_sync_readahead(mapping, &file->f_ra, 1716 file, index, 1717 PAGE_SIZE); 1718 /* drain pagevecs to help isolate_lru_page() */ 1719 lru_add_drain(); 1720 page = find_lock_page(mapping, index); 1721 if (unlikely(page == NULL)) { 1722 result = SCAN_FAIL; 1723 goto xa_unlocked; 1724 } 1725 } else if (PageDirty(page)) { 1726 /* 1727 * khugepaged only works on read-only fd, 1728 * so this page is dirty because it hasn't 1729 * been flushed since first write. There 1730 * won't be new dirty pages. 1731 * 1732 * Trigger async flush here and hope the 1733 * writeback is done when khugepaged 1734 * revisits this page. 1735 * 1736 * This is a one-off situation. We are not 1737 * forcing writeback in loop. 1738 */ 1739 xas_unlock_irq(&xas); 1740 filemap_flush(mapping); 1741 result = SCAN_FAIL; 1742 goto xa_unlocked; 1743 } else if (trylock_page(page)) { 1744 get_page(page); 1745 xas_unlock_irq(&xas); 1746 } else { 1747 result = SCAN_PAGE_LOCK; 1748 goto xa_locked; 1749 } 1750 } 1751 1752 /* 1753 * The page must be locked, so we can drop the i_pages lock 1754 * without racing with truncate. 1755 */ 1756 VM_BUG_ON_PAGE(!PageLocked(page), page); 1757 1758 /* make sure the page is up to date */ 1759 if (unlikely(!PageUptodate(page))) { 1760 result = SCAN_FAIL; 1761 goto out_unlock; 1762 } 1763 1764 /* 1765 * If file was truncated then extended, or hole-punched, before 1766 * we locked the first page, then a THP might be there already. 1767 */ 1768 if (PageTransCompound(page)) { 1769 result = SCAN_PAGE_COMPOUND; 1770 goto out_unlock; 1771 } 1772 1773 if (page_mapping(page) != mapping) { 1774 result = SCAN_TRUNCATED; 1775 goto out_unlock; 1776 } 1777 1778 if (!is_shmem && PageDirty(page)) { 1779 /* 1780 * khugepaged only works on read-only fd, so this 1781 * page is dirty because it hasn't been flushed 1782 * since first write. 1783 */ 1784 result = SCAN_FAIL; 1785 goto out_unlock; 1786 } 1787 1788 if (isolate_lru_page(page)) { 1789 result = SCAN_DEL_PAGE_LRU; 1790 goto out_unlock; 1791 } 1792 1793 if (page_has_private(page) && 1794 !try_to_release_page(page, GFP_KERNEL)) { 1795 result = SCAN_PAGE_HAS_PRIVATE; 1796 putback_lru_page(page); 1797 goto out_unlock; 1798 } 1799 1800 if (page_mapped(page)) 1801 unmap_mapping_pages(mapping, index, 1, false); 1802 1803 xas_lock_irq(&xas); 1804 xas_set(&xas, index); 1805 1806 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1807 VM_BUG_ON_PAGE(page_mapped(page), page); 1808 1809 /* 1810 * The page is expected to have page_count() == 3: 1811 * - we hold a pin on it; 1812 * - one reference from page cache; 1813 * - one from isolate_lru_page; 1814 */ 1815 if (!page_ref_freeze(page, 3)) { 1816 result = SCAN_PAGE_COUNT; 1817 xas_unlock_irq(&xas); 1818 putback_lru_page(page); 1819 goto out_unlock; 1820 } 1821 1822 /* 1823 * Add the page to the list to be able to undo the collapse if 1824 * something go wrong. 1825 */ 1826 list_add_tail(&page->lru, &pagelist); 1827 1828 /* Finally, replace with the new page. */ 1829 xas_store(&xas, new_page); 1830 continue; 1831 out_unlock: 1832 unlock_page(page); 1833 put_page(page); 1834 goto xa_unlocked; 1835 } 1836 1837 if (is_shmem) 1838 __inc_node_page_state(new_page, NR_SHMEM_THPS); 1839 else { 1840 __inc_node_page_state(new_page, NR_FILE_THPS); 1841 filemap_nr_thps_inc(mapping); 1842 } 1843 1844 if (nr_none) { 1845 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1846 if (is_shmem) 1847 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1848 } 1849 1850 xa_locked: 1851 xas_unlock_irq(&xas); 1852 xa_unlocked: 1853 1854 if (result == SCAN_SUCCEED) { 1855 struct page *page, *tmp; 1856 1857 /* 1858 * Replacing old pages with new one has succeeded, now we 1859 * need to copy the content and free the old pages. 1860 */ 1861 index = start; 1862 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1863 while (index < page->index) { 1864 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1865 index++; 1866 } 1867 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1868 page); 1869 list_del(&page->lru); 1870 page->mapping = NULL; 1871 page_ref_unfreeze(page, 1); 1872 ClearPageActive(page); 1873 ClearPageUnevictable(page); 1874 unlock_page(page); 1875 put_page(page); 1876 index++; 1877 } 1878 while (index < end) { 1879 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1880 index++; 1881 } 1882 1883 SetPageUptodate(new_page); 1884 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1885 if (is_shmem) 1886 set_page_dirty(new_page); 1887 lru_cache_add(new_page); 1888 1889 /* 1890 * Remove pte page tables, so we can re-fault the page as huge. 1891 */ 1892 retract_page_tables(mapping, start); 1893 *hpage = NULL; 1894 1895 khugepaged_pages_collapsed++; 1896 } else { 1897 struct page *page; 1898 1899 /* Something went wrong: roll back page cache changes */ 1900 xas_lock_irq(&xas); 1901 mapping->nrpages -= nr_none; 1902 1903 if (is_shmem) 1904 shmem_uncharge(mapping->host, nr_none); 1905 1906 xas_set(&xas, start); 1907 xas_for_each(&xas, page, end - 1) { 1908 page = list_first_entry_or_null(&pagelist, 1909 struct page, lru); 1910 if (!page || xas.xa_index < page->index) { 1911 if (!nr_none) 1912 break; 1913 nr_none--; 1914 /* Put holes back where they were */ 1915 xas_store(&xas, NULL); 1916 continue; 1917 } 1918 1919 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1920 1921 /* Unfreeze the page. */ 1922 list_del(&page->lru); 1923 page_ref_unfreeze(page, 2); 1924 xas_store(&xas, page); 1925 xas_pause(&xas); 1926 xas_unlock_irq(&xas); 1927 unlock_page(page); 1928 putback_lru_page(page); 1929 xas_lock_irq(&xas); 1930 } 1931 VM_BUG_ON(nr_none); 1932 xas_unlock_irq(&xas); 1933 1934 new_page->mapping = NULL; 1935 } 1936 1937 unlock_page(new_page); 1938 out: 1939 VM_BUG_ON(!list_empty(&pagelist)); 1940 if (!IS_ERR_OR_NULL(*hpage)) 1941 mem_cgroup_uncharge(*hpage); 1942 /* TODO: tracepoints */ 1943 } 1944 1945 static void khugepaged_scan_file(struct mm_struct *mm, 1946 struct file *file, pgoff_t start, struct page **hpage) 1947 { 1948 struct page *page = NULL; 1949 struct address_space *mapping = file->f_mapping; 1950 XA_STATE(xas, &mapping->i_pages, start); 1951 int present, swap; 1952 int node = NUMA_NO_NODE; 1953 int result = SCAN_SUCCEED; 1954 1955 present = 0; 1956 swap = 0; 1957 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1958 rcu_read_lock(); 1959 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 1960 if (xas_retry(&xas, page)) 1961 continue; 1962 1963 if (xa_is_value(page)) { 1964 if (++swap > khugepaged_max_ptes_swap) { 1965 result = SCAN_EXCEED_SWAP_PTE; 1966 break; 1967 } 1968 continue; 1969 } 1970 1971 if (PageTransCompound(page)) { 1972 result = SCAN_PAGE_COMPOUND; 1973 break; 1974 } 1975 1976 node = page_to_nid(page); 1977 if (khugepaged_scan_abort(node)) { 1978 result = SCAN_SCAN_ABORT; 1979 break; 1980 } 1981 khugepaged_node_load[node]++; 1982 1983 if (!PageLRU(page)) { 1984 result = SCAN_PAGE_LRU; 1985 break; 1986 } 1987 1988 if (page_count(page) != 1989 1 + page_mapcount(page) + page_has_private(page)) { 1990 result = SCAN_PAGE_COUNT; 1991 break; 1992 } 1993 1994 /* 1995 * We probably should check if the page is referenced here, but 1996 * nobody would transfer pte_young() to PageReferenced() for us. 1997 * And rmap walk here is just too costly... 1998 */ 1999 2000 present++; 2001 2002 if (need_resched()) { 2003 xas_pause(&xas); 2004 cond_resched_rcu(); 2005 } 2006 } 2007 rcu_read_unlock(); 2008 2009 if (result == SCAN_SUCCEED) { 2010 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2011 result = SCAN_EXCEED_NONE_PTE; 2012 } else { 2013 node = khugepaged_find_target_node(); 2014 collapse_file(mm, file, start, hpage, node); 2015 } 2016 } 2017 2018 /* TODO: tracepoints */ 2019 } 2020 #else 2021 static void khugepaged_scan_file(struct mm_struct *mm, 2022 struct file *file, pgoff_t start, struct page **hpage) 2023 { 2024 BUILD_BUG(); 2025 } 2026 2027 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2028 { 2029 return 0; 2030 } 2031 #endif 2032 2033 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2034 struct page **hpage) 2035 __releases(&khugepaged_mm_lock) 2036 __acquires(&khugepaged_mm_lock) 2037 { 2038 struct mm_slot *mm_slot; 2039 struct mm_struct *mm; 2040 struct vm_area_struct *vma; 2041 int progress = 0; 2042 2043 VM_BUG_ON(!pages); 2044 lockdep_assert_held(&khugepaged_mm_lock); 2045 2046 if (khugepaged_scan.mm_slot) 2047 mm_slot = khugepaged_scan.mm_slot; 2048 else { 2049 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2050 struct mm_slot, mm_node); 2051 khugepaged_scan.address = 0; 2052 khugepaged_scan.mm_slot = mm_slot; 2053 } 2054 spin_unlock(&khugepaged_mm_lock); 2055 khugepaged_collapse_pte_mapped_thps(mm_slot); 2056 2057 mm = mm_slot->mm; 2058 /* 2059 * Don't wait for semaphore (to avoid long wait times). Just move to 2060 * the next mm on the list. 2061 */ 2062 vma = NULL; 2063 if (unlikely(!mmap_read_trylock(mm))) 2064 goto breakouterloop_mmap_lock; 2065 if (likely(!khugepaged_test_exit(mm))) 2066 vma = find_vma(mm, khugepaged_scan.address); 2067 2068 progress++; 2069 for (; vma; vma = vma->vm_next) { 2070 unsigned long hstart, hend; 2071 2072 cond_resched(); 2073 if (unlikely(khugepaged_test_exit(mm))) { 2074 progress++; 2075 break; 2076 } 2077 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2078 skip: 2079 progress++; 2080 continue; 2081 } 2082 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2083 hend = vma->vm_end & HPAGE_PMD_MASK; 2084 if (hstart >= hend) 2085 goto skip; 2086 if (khugepaged_scan.address > hend) 2087 goto skip; 2088 if (khugepaged_scan.address < hstart) 2089 khugepaged_scan.address = hstart; 2090 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2091 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2092 goto skip; 2093 2094 while (khugepaged_scan.address < hend) { 2095 int ret; 2096 cond_resched(); 2097 if (unlikely(khugepaged_test_exit(mm))) 2098 goto breakouterloop; 2099 2100 VM_BUG_ON(khugepaged_scan.address < hstart || 2101 khugepaged_scan.address + HPAGE_PMD_SIZE > 2102 hend); 2103 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2104 struct file *file = get_file(vma->vm_file); 2105 pgoff_t pgoff = linear_page_index(vma, 2106 khugepaged_scan.address); 2107 2108 mmap_read_unlock(mm); 2109 ret = 1; 2110 khugepaged_scan_file(mm, file, pgoff, hpage); 2111 fput(file); 2112 } else { 2113 ret = khugepaged_scan_pmd(mm, vma, 2114 khugepaged_scan.address, 2115 hpage); 2116 } 2117 /* move to next address */ 2118 khugepaged_scan.address += HPAGE_PMD_SIZE; 2119 progress += HPAGE_PMD_NR; 2120 if (ret) 2121 /* we released mmap_lock so break loop */ 2122 goto breakouterloop_mmap_lock; 2123 if (progress >= pages) 2124 goto breakouterloop; 2125 } 2126 } 2127 breakouterloop: 2128 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2129 breakouterloop_mmap_lock: 2130 2131 spin_lock(&khugepaged_mm_lock); 2132 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2133 /* 2134 * Release the current mm_slot if this mm is about to die, or 2135 * if we scanned all vmas of this mm. 2136 */ 2137 if (khugepaged_test_exit(mm) || !vma) { 2138 /* 2139 * Make sure that if mm_users is reaching zero while 2140 * khugepaged runs here, khugepaged_exit will find 2141 * mm_slot not pointing to the exiting mm. 2142 */ 2143 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2144 khugepaged_scan.mm_slot = list_entry( 2145 mm_slot->mm_node.next, 2146 struct mm_slot, mm_node); 2147 khugepaged_scan.address = 0; 2148 } else { 2149 khugepaged_scan.mm_slot = NULL; 2150 khugepaged_full_scans++; 2151 } 2152 2153 collect_mm_slot(mm_slot); 2154 } 2155 2156 return progress; 2157 } 2158 2159 static int khugepaged_has_work(void) 2160 { 2161 return !list_empty(&khugepaged_scan.mm_head) && 2162 khugepaged_enabled(); 2163 } 2164 2165 static int khugepaged_wait_event(void) 2166 { 2167 return !list_empty(&khugepaged_scan.mm_head) || 2168 kthread_should_stop(); 2169 } 2170 2171 static void khugepaged_do_scan(void) 2172 { 2173 struct page *hpage = NULL; 2174 unsigned int progress = 0, pass_through_head = 0; 2175 unsigned int pages = khugepaged_pages_to_scan; 2176 bool wait = true; 2177 2178 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2179 2180 lru_add_drain_all(); 2181 2182 while (progress < pages) { 2183 if (!khugepaged_prealloc_page(&hpage, &wait)) 2184 break; 2185 2186 cond_resched(); 2187 2188 if (unlikely(kthread_should_stop() || try_to_freeze())) 2189 break; 2190 2191 spin_lock(&khugepaged_mm_lock); 2192 if (!khugepaged_scan.mm_slot) 2193 pass_through_head++; 2194 if (khugepaged_has_work() && 2195 pass_through_head < 2) 2196 progress += khugepaged_scan_mm_slot(pages - progress, 2197 &hpage); 2198 else 2199 progress = pages; 2200 spin_unlock(&khugepaged_mm_lock); 2201 } 2202 2203 if (!IS_ERR_OR_NULL(hpage)) 2204 put_page(hpage); 2205 } 2206 2207 static bool khugepaged_should_wakeup(void) 2208 { 2209 return kthread_should_stop() || 2210 time_after_eq(jiffies, khugepaged_sleep_expire); 2211 } 2212 2213 static void khugepaged_wait_work(void) 2214 { 2215 if (khugepaged_has_work()) { 2216 const unsigned long scan_sleep_jiffies = 2217 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2218 2219 if (!scan_sleep_jiffies) 2220 return; 2221 2222 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2223 wait_event_freezable_timeout(khugepaged_wait, 2224 khugepaged_should_wakeup(), 2225 scan_sleep_jiffies); 2226 return; 2227 } 2228 2229 if (khugepaged_enabled()) 2230 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2231 } 2232 2233 static int khugepaged(void *none) 2234 { 2235 struct mm_slot *mm_slot; 2236 2237 set_freezable(); 2238 set_user_nice(current, MAX_NICE); 2239 2240 while (!kthread_should_stop()) { 2241 khugepaged_do_scan(); 2242 khugepaged_wait_work(); 2243 } 2244 2245 spin_lock(&khugepaged_mm_lock); 2246 mm_slot = khugepaged_scan.mm_slot; 2247 khugepaged_scan.mm_slot = NULL; 2248 if (mm_slot) 2249 collect_mm_slot(mm_slot); 2250 spin_unlock(&khugepaged_mm_lock); 2251 return 0; 2252 } 2253 2254 static void set_recommended_min_free_kbytes(void) 2255 { 2256 struct zone *zone; 2257 int nr_zones = 0; 2258 unsigned long recommended_min; 2259 2260 for_each_populated_zone(zone) { 2261 /* 2262 * We don't need to worry about fragmentation of 2263 * ZONE_MOVABLE since it only has movable pages. 2264 */ 2265 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2266 continue; 2267 2268 nr_zones++; 2269 } 2270 2271 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2272 recommended_min = pageblock_nr_pages * nr_zones * 2; 2273 2274 /* 2275 * Make sure that on average at least two pageblocks are almost free 2276 * of another type, one for a migratetype to fall back to and a 2277 * second to avoid subsequent fallbacks of other types There are 3 2278 * MIGRATE_TYPES we care about. 2279 */ 2280 recommended_min += pageblock_nr_pages * nr_zones * 2281 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2282 2283 /* don't ever allow to reserve more than 5% of the lowmem */ 2284 recommended_min = min(recommended_min, 2285 (unsigned long) nr_free_buffer_pages() / 20); 2286 recommended_min <<= (PAGE_SHIFT-10); 2287 2288 if (recommended_min > min_free_kbytes) { 2289 if (user_min_free_kbytes >= 0) 2290 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2291 min_free_kbytes, recommended_min); 2292 2293 min_free_kbytes = recommended_min; 2294 } 2295 setup_per_zone_wmarks(); 2296 } 2297 2298 int start_stop_khugepaged(void) 2299 { 2300 static struct task_struct *khugepaged_thread __read_mostly; 2301 static DEFINE_MUTEX(khugepaged_mutex); 2302 int err = 0; 2303 2304 mutex_lock(&khugepaged_mutex); 2305 if (khugepaged_enabled()) { 2306 if (!khugepaged_thread) 2307 khugepaged_thread = kthread_run(khugepaged, NULL, 2308 "khugepaged"); 2309 if (IS_ERR(khugepaged_thread)) { 2310 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2311 err = PTR_ERR(khugepaged_thread); 2312 khugepaged_thread = NULL; 2313 goto fail; 2314 } 2315 2316 if (!list_empty(&khugepaged_scan.mm_head)) 2317 wake_up_interruptible(&khugepaged_wait); 2318 2319 set_recommended_min_free_kbytes(); 2320 } else if (khugepaged_thread) { 2321 kthread_stop(khugepaged_thread); 2322 khugepaged_thread = NULL; 2323 } 2324 fail: 2325 mutex_unlock(&khugepaged_mutex); 2326 return err; 2327 } 2328