xref: /openbmc/linux/mm/khugepaged.c (revision 6219b20e)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 	       scan_sleep_millisecs_store);
152 
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 					  struct kobj_attribute *attr,
155 					  char *buf)
156 {
157 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159 
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 					   struct kobj_attribute *attr,
162 					   const char *buf, size_t count)
163 {
164 	unsigned int msecs;
165 	int err;
166 
167 	err = kstrtouint(buf, 10, &msecs);
168 	if (err)
169 		return -EINVAL;
170 
171 	khugepaged_alloc_sleep_millisecs = msecs;
172 	khugepaged_sleep_expire = 0;
173 	wake_up_interruptible(&khugepaged_wait);
174 
175 	return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 	       alloc_sleep_millisecs_store);
180 
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 				  struct kobj_attribute *attr,
183 				  char *buf)
184 {
185 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 				   struct kobj_attribute *attr,
189 				   const char *buf, size_t count)
190 {
191 	unsigned int pages;
192 	int err;
193 
194 	err = kstrtouint(buf, 10, &pages);
195 	if (err || !pages)
196 		return -EINVAL;
197 
198 	khugepaged_pages_to_scan = pages;
199 
200 	return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 	       pages_to_scan_store);
205 
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 				    struct kobj_attribute *attr,
208 				    char *buf)
209 {
210 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 	__ATTR_RO(pages_collapsed);
214 
215 static ssize_t full_scans_show(struct kobject *kobj,
216 			       struct kobj_attribute *attr,
217 			       char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 	__ATTR_RO(full_scans);
223 
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 				      struct kobj_attribute *attr, char *buf)
226 {
227 	return single_hugepage_flag_show(kobj, attr, buf,
228 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 				       struct kobj_attribute *attr,
232 				       const char *buf, size_t count)
233 {
234 	return single_hugepage_flag_store(kobj, attr, buf, count,
235 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 	__ATTR(defrag, 0644, khugepaged_defrag_show,
239 	       khugepaged_defrag_store);
240 
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 					     struct kobj_attribute *attr,
251 					     char *buf)
252 {
253 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 					      struct kobj_attribute *attr,
257 					      const char *buf, size_t count)
258 {
259 	int err;
260 	unsigned long max_ptes_none;
261 
262 	err = kstrtoul(buf, 10, &max_ptes_none);
263 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 		return -EINVAL;
265 
266 	khugepaged_max_ptes_none = max_ptes_none;
267 
268 	return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 	       khugepaged_max_ptes_none_store);
273 
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 					     struct kobj_attribute *attr,
276 					     char *buf)
277 {
278 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280 
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 					      struct kobj_attribute *attr,
283 					      const char *buf, size_t count)
284 {
285 	int err;
286 	unsigned long max_ptes_swap;
287 
288 	err  = kstrtoul(buf, 10, &max_ptes_swap);
289 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 		return -EINVAL;
291 
292 	khugepaged_max_ptes_swap = max_ptes_swap;
293 
294 	return count;
295 }
296 
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 	       khugepaged_max_ptes_swap_store);
300 
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 					       struct kobj_attribute *attr,
303 					       char *buf)
304 {
305 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307 
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 					      struct kobj_attribute *attr,
310 					      const char *buf, size_t count)
311 {
312 	int err;
313 	unsigned long max_ptes_shared;
314 
315 	err  = kstrtoul(buf, 10, &max_ptes_shared);
316 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 		return -EINVAL;
318 
319 	khugepaged_max_ptes_shared = max_ptes_shared;
320 
321 	return count;
322 }
323 
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 	       khugepaged_max_ptes_shared_store);
327 
328 static struct attribute *khugepaged_attr[] = {
329 	&khugepaged_defrag_attr.attr,
330 	&khugepaged_max_ptes_none_attr.attr,
331 	&khugepaged_max_ptes_swap_attr.attr,
332 	&khugepaged_max_ptes_shared_attr.attr,
333 	&pages_to_scan_attr.attr,
334 	&pages_collapsed_attr.attr,
335 	&full_scans_attr.attr,
336 	&scan_sleep_millisecs_attr.attr,
337 	&alloc_sleep_millisecs_attr.attr,
338 	NULL,
339 };
340 
341 struct attribute_group khugepaged_attr_group = {
342 	.attrs = khugepaged_attr,
343 	.name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346 
347 int hugepage_madvise(struct vm_area_struct *vma,
348 		     unsigned long *vm_flags, int advice)
349 {
350 	switch (advice) {
351 	case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 		/*
354 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 		 * can't handle this properly after s390_enable_sie, so we simply
356 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 		 */
358 		if (mm_has_pgste(vma->vm_mm))
359 			return 0;
360 #endif
361 		*vm_flags &= ~VM_NOHUGEPAGE;
362 		*vm_flags |= VM_HUGEPAGE;
363 		/*
364 		 * If the vma become good for khugepaged to scan,
365 		 * register it here without waiting a page fault that
366 		 * may not happen any time soon.
367 		 */
368 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 				khugepaged_enter_vma_merge(vma, *vm_flags))
370 			return -ENOMEM;
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct mm_slot),
390 					  __alignof__(struct mm_slot), 0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 	if (!mm_slot_cache)	/* initialization failed */
410 		return NULL;
411 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413 
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 	kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418 
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 	struct mm_slot *mm_slot;
422 
423 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 		if (mm == mm_slot->mm)
425 			return mm_slot;
426 
427 	return NULL;
428 }
429 
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 				    struct mm_slot *mm_slot)
432 {
433 	mm_slot->mm = mm;
434 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436 
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 	return atomic_read(&mm->mm_users) == 0;
440 }
441 
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 			       unsigned long vm_flags)
444 {
445 	if (!transhuge_vma_enabled(vma, vm_flags))
446 		return false;
447 
448 	/* Enabled via shmem mount options or sysfs settings. */
449 	if (shmem_file(vma->vm_file) && shmem_huge_enabled(vma)) {
450 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
451 				HPAGE_PMD_NR);
452 	}
453 
454 	/* THP settings require madvise. */
455 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
456 		return false;
457 
458 	/* Read-only file mappings need to be aligned for THP to work. */
459 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
460 	    !inode_is_open_for_write(vma->vm_file->f_inode) &&
461 	    (vm_flags & VM_EXEC)) {
462 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
463 				HPAGE_PMD_NR);
464 	}
465 
466 	if (!vma->anon_vma || vma->vm_ops)
467 		return false;
468 	if (vma_is_temporary_stack(vma))
469 		return false;
470 	return !(vm_flags & VM_NO_KHUGEPAGED);
471 }
472 
473 int __khugepaged_enter(struct mm_struct *mm)
474 {
475 	struct mm_slot *mm_slot;
476 	int wakeup;
477 
478 	mm_slot = alloc_mm_slot();
479 	if (!mm_slot)
480 		return -ENOMEM;
481 
482 	/* __khugepaged_exit() must not run from under us */
483 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
484 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
485 		free_mm_slot(mm_slot);
486 		return 0;
487 	}
488 
489 	spin_lock(&khugepaged_mm_lock);
490 	insert_to_mm_slots_hash(mm, mm_slot);
491 	/*
492 	 * Insert just behind the scanning cursor, to let the area settle
493 	 * down a little.
494 	 */
495 	wakeup = list_empty(&khugepaged_scan.mm_head);
496 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
497 	spin_unlock(&khugepaged_mm_lock);
498 
499 	mmgrab(mm);
500 	if (wakeup)
501 		wake_up_interruptible(&khugepaged_wait);
502 
503 	return 0;
504 }
505 
506 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
507 			       unsigned long vm_flags)
508 {
509 	unsigned long hstart, hend;
510 
511 	/*
512 	 * khugepaged only supports read-only files for non-shmem files.
513 	 * khugepaged does not yet work on special mappings. And
514 	 * file-private shmem THP is not supported.
515 	 */
516 	if (!hugepage_vma_check(vma, vm_flags))
517 		return 0;
518 
519 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
520 	hend = vma->vm_end & HPAGE_PMD_MASK;
521 	if (hstart < hend)
522 		return khugepaged_enter(vma, vm_flags);
523 	return 0;
524 }
525 
526 void __khugepaged_exit(struct mm_struct *mm)
527 {
528 	struct mm_slot *mm_slot;
529 	int free = 0;
530 
531 	spin_lock(&khugepaged_mm_lock);
532 	mm_slot = get_mm_slot(mm);
533 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
534 		hash_del(&mm_slot->hash);
535 		list_del(&mm_slot->mm_node);
536 		free = 1;
537 	}
538 	spin_unlock(&khugepaged_mm_lock);
539 
540 	if (free) {
541 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
542 		free_mm_slot(mm_slot);
543 		mmdrop(mm);
544 	} else if (mm_slot) {
545 		/*
546 		 * This is required to serialize against
547 		 * khugepaged_test_exit() (which is guaranteed to run
548 		 * under mmap sem read mode). Stop here (after we
549 		 * return all pagetables will be destroyed) until
550 		 * khugepaged has finished working on the pagetables
551 		 * under the mmap_lock.
552 		 */
553 		mmap_write_lock(mm);
554 		mmap_write_unlock(mm);
555 	}
556 }
557 
558 static void release_pte_page(struct page *page)
559 {
560 	mod_node_page_state(page_pgdat(page),
561 			NR_ISOLATED_ANON + page_is_file_lru(page),
562 			-compound_nr(page));
563 	unlock_page(page);
564 	putback_lru_page(page);
565 }
566 
567 static void release_pte_pages(pte_t *pte, pte_t *_pte,
568 		struct list_head *compound_pagelist)
569 {
570 	struct page *page, *tmp;
571 
572 	while (--_pte >= pte) {
573 		pte_t pteval = *_pte;
574 
575 		page = pte_page(pteval);
576 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
577 				!PageCompound(page))
578 			release_pte_page(page);
579 	}
580 
581 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
582 		list_del(&page->lru);
583 		release_pte_page(page);
584 	}
585 }
586 
587 static bool is_refcount_suitable(struct page *page)
588 {
589 	int expected_refcount;
590 
591 	expected_refcount = total_mapcount(page);
592 	if (PageSwapCache(page))
593 		expected_refcount += compound_nr(page);
594 
595 	return page_count(page) == expected_refcount;
596 }
597 
598 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
599 					unsigned long address,
600 					pte_t *pte,
601 					struct list_head *compound_pagelist)
602 {
603 	struct page *page = NULL;
604 	pte_t *_pte;
605 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
606 	bool writable = false;
607 
608 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
609 	     _pte++, address += PAGE_SIZE) {
610 		pte_t pteval = *_pte;
611 		if (pte_none(pteval) || (pte_present(pteval) &&
612 				is_zero_pfn(pte_pfn(pteval)))) {
613 			if (!userfaultfd_armed(vma) &&
614 			    ++none_or_zero <= khugepaged_max_ptes_none) {
615 				continue;
616 			} else {
617 				result = SCAN_EXCEED_NONE_PTE;
618 				goto out;
619 			}
620 		}
621 		if (!pte_present(pteval)) {
622 			result = SCAN_PTE_NON_PRESENT;
623 			goto out;
624 		}
625 		page = vm_normal_page(vma, address, pteval);
626 		if (unlikely(!page)) {
627 			result = SCAN_PAGE_NULL;
628 			goto out;
629 		}
630 
631 		VM_BUG_ON_PAGE(!PageAnon(page), page);
632 
633 		if (page_mapcount(page) > 1 &&
634 				++shared > khugepaged_max_ptes_shared) {
635 			result = SCAN_EXCEED_SHARED_PTE;
636 			goto out;
637 		}
638 
639 		if (PageCompound(page)) {
640 			struct page *p;
641 			page = compound_head(page);
642 
643 			/*
644 			 * Check if we have dealt with the compound page
645 			 * already
646 			 */
647 			list_for_each_entry(p, compound_pagelist, lru) {
648 				if (page == p)
649 					goto next;
650 			}
651 		}
652 
653 		/*
654 		 * We can do it before isolate_lru_page because the
655 		 * page can't be freed from under us. NOTE: PG_lock
656 		 * is needed to serialize against split_huge_page
657 		 * when invoked from the VM.
658 		 */
659 		if (!trylock_page(page)) {
660 			result = SCAN_PAGE_LOCK;
661 			goto out;
662 		}
663 
664 		/*
665 		 * Check if the page has any GUP (or other external) pins.
666 		 *
667 		 * The page table that maps the page has been already unlinked
668 		 * from the page table tree and this process cannot get
669 		 * an additional pin on the page.
670 		 *
671 		 * New pins can come later if the page is shared across fork,
672 		 * but not from this process. The other process cannot write to
673 		 * the page, only trigger CoW.
674 		 */
675 		if (!is_refcount_suitable(page)) {
676 			unlock_page(page);
677 			result = SCAN_PAGE_COUNT;
678 			goto out;
679 		}
680 		if (!pte_write(pteval) && PageSwapCache(page) &&
681 				!reuse_swap_page(page, NULL)) {
682 			/*
683 			 * Page is in the swap cache and cannot be re-used.
684 			 * It cannot be collapsed into a THP.
685 			 */
686 			unlock_page(page);
687 			result = SCAN_SWAP_CACHE_PAGE;
688 			goto out;
689 		}
690 
691 		/*
692 		 * Isolate the page to avoid collapsing an hugepage
693 		 * currently in use by the VM.
694 		 */
695 		if (isolate_lru_page(page)) {
696 			unlock_page(page);
697 			result = SCAN_DEL_PAGE_LRU;
698 			goto out;
699 		}
700 		mod_node_page_state(page_pgdat(page),
701 				NR_ISOLATED_ANON + page_is_file_lru(page),
702 				compound_nr(page));
703 		VM_BUG_ON_PAGE(!PageLocked(page), page);
704 		VM_BUG_ON_PAGE(PageLRU(page), page);
705 
706 		if (PageCompound(page))
707 			list_add_tail(&page->lru, compound_pagelist);
708 next:
709 		/* There should be enough young pte to collapse the page */
710 		if (pte_young(pteval) ||
711 		    page_is_young(page) || PageReferenced(page) ||
712 		    mmu_notifier_test_young(vma->vm_mm, address))
713 			referenced++;
714 
715 		if (pte_write(pteval))
716 			writable = true;
717 	}
718 
719 	if (unlikely(!writable)) {
720 		result = SCAN_PAGE_RO;
721 	} else if (unlikely(!referenced)) {
722 		result = SCAN_LACK_REFERENCED_PAGE;
723 	} else {
724 		result = SCAN_SUCCEED;
725 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
726 						    referenced, writable, result);
727 		return 1;
728 	}
729 out:
730 	release_pte_pages(pte, _pte, compound_pagelist);
731 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
732 					    referenced, writable, result);
733 	return 0;
734 }
735 
736 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
737 				      struct vm_area_struct *vma,
738 				      unsigned long address,
739 				      spinlock_t *ptl,
740 				      struct list_head *compound_pagelist)
741 {
742 	struct page *src_page, *tmp;
743 	pte_t *_pte;
744 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
745 				_pte++, page++, address += PAGE_SIZE) {
746 		pte_t pteval = *_pte;
747 
748 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
749 			clear_user_highpage(page, address);
750 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
751 			if (is_zero_pfn(pte_pfn(pteval))) {
752 				/*
753 				 * ptl mostly unnecessary.
754 				 */
755 				spin_lock(ptl);
756 				/*
757 				 * paravirt calls inside pte_clear here are
758 				 * superfluous.
759 				 */
760 				pte_clear(vma->vm_mm, address, _pte);
761 				spin_unlock(ptl);
762 			}
763 		} else {
764 			src_page = pte_page(pteval);
765 			copy_user_highpage(page, src_page, address, vma);
766 			if (!PageCompound(src_page))
767 				release_pte_page(src_page);
768 			/*
769 			 * ptl mostly unnecessary, but preempt has to
770 			 * be disabled to update the per-cpu stats
771 			 * inside page_remove_rmap().
772 			 */
773 			spin_lock(ptl);
774 			/*
775 			 * paravirt calls inside pte_clear here are
776 			 * superfluous.
777 			 */
778 			pte_clear(vma->vm_mm, address, _pte);
779 			page_remove_rmap(src_page, false);
780 			spin_unlock(ptl);
781 			free_page_and_swap_cache(src_page);
782 		}
783 	}
784 
785 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
786 		list_del(&src_page->lru);
787 		release_pte_page(src_page);
788 	}
789 }
790 
791 static void khugepaged_alloc_sleep(void)
792 {
793 	DEFINE_WAIT(wait);
794 
795 	add_wait_queue(&khugepaged_wait, &wait);
796 	freezable_schedule_timeout_interruptible(
797 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
798 	remove_wait_queue(&khugepaged_wait, &wait);
799 }
800 
801 static int khugepaged_node_load[MAX_NUMNODES];
802 
803 static bool khugepaged_scan_abort(int nid)
804 {
805 	int i;
806 
807 	/*
808 	 * If node_reclaim_mode is disabled, then no extra effort is made to
809 	 * allocate memory locally.
810 	 */
811 	if (!node_reclaim_enabled())
812 		return false;
813 
814 	/* If there is a count for this node already, it must be acceptable */
815 	if (khugepaged_node_load[nid])
816 		return false;
817 
818 	for (i = 0; i < MAX_NUMNODES; i++) {
819 		if (!khugepaged_node_load[i])
820 			continue;
821 		if (node_distance(nid, i) > node_reclaim_distance)
822 			return true;
823 	}
824 	return false;
825 }
826 
827 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
828 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
829 {
830 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
831 }
832 
833 #ifdef CONFIG_NUMA
834 static int khugepaged_find_target_node(void)
835 {
836 	static int last_khugepaged_target_node = NUMA_NO_NODE;
837 	int nid, target_node = 0, max_value = 0;
838 
839 	/* find first node with max normal pages hit */
840 	for (nid = 0; nid < MAX_NUMNODES; nid++)
841 		if (khugepaged_node_load[nid] > max_value) {
842 			max_value = khugepaged_node_load[nid];
843 			target_node = nid;
844 		}
845 
846 	/* do some balance if several nodes have the same hit record */
847 	if (target_node <= last_khugepaged_target_node)
848 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
849 				nid++)
850 			if (max_value == khugepaged_node_load[nid]) {
851 				target_node = nid;
852 				break;
853 			}
854 
855 	last_khugepaged_target_node = target_node;
856 	return target_node;
857 }
858 
859 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
860 {
861 	if (IS_ERR(*hpage)) {
862 		if (!*wait)
863 			return false;
864 
865 		*wait = false;
866 		*hpage = NULL;
867 		khugepaged_alloc_sleep();
868 	} else if (*hpage) {
869 		put_page(*hpage);
870 		*hpage = NULL;
871 	}
872 
873 	return true;
874 }
875 
876 static struct page *
877 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
878 {
879 	VM_BUG_ON_PAGE(*hpage, *hpage);
880 
881 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
882 	if (unlikely(!*hpage)) {
883 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
884 		*hpage = ERR_PTR(-ENOMEM);
885 		return NULL;
886 	}
887 
888 	prep_transhuge_page(*hpage);
889 	count_vm_event(THP_COLLAPSE_ALLOC);
890 	return *hpage;
891 }
892 #else
893 static int khugepaged_find_target_node(void)
894 {
895 	return 0;
896 }
897 
898 static inline struct page *alloc_khugepaged_hugepage(void)
899 {
900 	struct page *page;
901 
902 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
903 			   HPAGE_PMD_ORDER);
904 	if (page)
905 		prep_transhuge_page(page);
906 	return page;
907 }
908 
909 static struct page *khugepaged_alloc_hugepage(bool *wait)
910 {
911 	struct page *hpage;
912 
913 	do {
914 		hpage = alloc_khugepaged_hugepage();
915 		if (!hpage) {
916 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
917 			if (!*wait)
918 				return NULL;
919 
920 			*wait = false;
921 			khugepaged_alloc_sleep();
922 		} else
923 			count_vm_event(THP_COLLAPSE_ALLOC);
924 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
925 
926 	return hpage;
927 }
928 
929 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
930 {
931 	/*
932 	 * If the hpage allocated earlier was briefly exposed in page cache
933 	 * before collapse_file() failed, it is possible that racing lookups
934 	 * have not yet completed, and would then be unpleasantly surprised by
935 	 * finding the hpage reused for the same mapping at a different offset.
936 	 * Just release the previous allocation if there is any danger of that.
937 	 */
938 	if (*hpage && page_count(*hpage) > 1) {
939 		put_page(*hpage);
940 		*hpage = NULL;
941 	}
942 
943 	if (!*hpage)
944 		*hpage = khugepaged_alloc_hugepage(wait);
945 
946 	if (unlikely(!*hpage))
947 		return false;
948 
949 	return true;
950 }
951 
952 static struct page *
953 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
954 {
955 	VM_BUG_ON(!*hpage);
956 
957 	return  *hpage;
958 }
959 #endif
960 
961 /*
962  * If mmap_lock temporarily dropped, revalidate vma
963  * before taking mmap_lock.
964  * Return 0 if succeeds, otherwise return none-zero
965  * value (scan code).
966  */
967 
968 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
969 		struct vm_area_struct **vmap)
970 {
971 	struct vm_area_struct *vma;
972 	unsigned long hstart, hend;
973 
974 	if (unlikely(khugepaged_test_exit(mm)))
975 		return SCAN_ANY_PROCESS;
976 
977 	*vmap = vma = find_vma(mm, address);
978 	if (!vma)
979 		return SCAN_VMA_NULL;
980 
981 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
982 	hend = vma->vm_end & HPAGE_PMD_MASK;
983 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
984 		return SCAN_ADDRESS_RANGE;
985 	if (!hugepage_vma_check(vma, vma->vm_flags))
986 		return SCAN_VMA_CHECK;
987 	/* Anon VMA expected */
988 	if (!vma->anon_vma || vma->vm_ops)
989 		return SCAN_VMA_CHECK;
990 	return 0;
991 }
992 
993 /*
994  * Bring missing pages in from swap, to complete THP collapse.
995  * Only done if khugepaged_scan_pmd believes it is worthwhile.
996  *
997  * Called and returns without pte mapped or spinlocks held,
998  * but with mmap_lock held to protect against vma changes.
999  */
1000 
1001 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1002 					struct vm_area_struct *vma,
1003 					unsigned long haddr, pmd_t *pmd,
1004 					int referenced)
1005 {
1006 	int swapped_in = 0;
1007 	vm_fault_t ret = 0;
1008 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1009 
1010 	for (address = haddr; address < end; address += PAGE_SIZE) {
1011 		struct vm_fault vmf = {
1012 			.vma = vma,
1013 			.address = address,
1014 			.pgoff = linear_page_index(vma, haddr),
1015 			.flags = FAULT_FLAG_ALLOW_RETRY,
1016 			.pmd = pmd,
1017 		};
1018 
1019 		vmf.pte = pte_offset_map(pmd, address);
1020 		vmf.orig_pte = *vmf.pte;
1021 		if (!is_swap_pte(vmf.orig_pte)) {
1022 			pte_unmap(vmf.pte);
1023 			continue;
1024 		}
1025 		swapped_in++;
1026 		ret = do_swap_page(&vmf);
1027 
1028 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1029 		if (ret & VM_FAULT_RETRY) {
1030 			mmap_read_lock(mm);
1031 			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1032 				/* vma is no longer available, don't continue to swapin */
1033 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1034 				return false;
1035 			}
1036 			/* check if the pmd is still valid */
1037 			if (mm_find_pmd(mm, haddr) != pmd) {
1038 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1039 				return false;
1040 			}
1041 		}
1042 		if (ret & VM_FAULT_ERROR) {
1043 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1044 			return false;
1045 		}
1046 	}
1047 
1048 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1049 	if (swapped_in)
1050 		lru_add_drain();
1051 
1052 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1053 	return true;
1054 }
1055 
1056 static void collapse_huge_page(struct mm_struct *mm,
1057 				   unsigned long address,
1058 				   struct page **hpage,
1059 				   int node, int referenced, int unmapped)
1060 {
1061 	LIST_HEAD(compound_pagelist);
1062 	pmd_t *pmd, _pmd;
1063 	pte_t *pte;
1064 	pgtable_t pgtable;
1065 	struct page *new_page;
1066 	spinlock_t *pmd_ptl, *pte_ptl;
1067 	int isolated = 0, result = 0;
1068 	struct vm_area_struct *vma;
1069 	struct mmu_notifier_range range;
1070 	gfp_t gfp;
1071 
1072 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1073 
1074 	/* Only allocate from the target node */
1075 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1076 
1077 	/*
1078 	 * Before allocating the hugepage, release the mmap_lock read lock.
1079 	 * The allocation can take potentially a long time if it involves
1080 	 * sync compaction, and we do not need to hold the mmap_lock during
1081 	 * that. We will recheck the vma after taking it again in write mode.
1082 	 */
1083 	mmap_read_unlock(mm);
1084 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1085 	if (!new_page) {
1086 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1087 		goto out_nolock;
1088 	}
1089 
1090 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1091 		result = SCAN_CGROUP_CHARGE_FAIL;
1092 		goto out_nolock;
1093 	}
1094 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1095 
1096 	mmap_read_lock(mm);
1097 	result = hugepage_vma_revalidate(mm, address, &vma);
1098 	if (result) {
1099 		mmap_read_unlock(mm);
1100 		goto out_nolock;
1101 	}
1102 
1103 	pmd = mm_find_pmd(mm, address);
1104 	if (!pmd) {
1105 		result = SCAN_PMD_NULL;
1106 		mmap_read_unlock(mm);
1107 		goto out_nolock;
1108 	}
1109 
1110 	/*
1111 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1112 	 * If it fails, we release mmap_lock and jump out_nolock.
1113 	 * Continuing to collapse causes inconsistency.
1114 	 */
1115 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1116 						     pmd, referenced)) {
1117 		mmap_read_unlock(mm);
1118 		goto out_nolock;
1119 	}
1120 
1121 	mmap_read_unlock(mm);
1122 	/*
1123 	 * Prevent all access to pagetables with the exception of
1124 	 * gup_fast later handled by the ptep_clear_flush and the VM
1125 	 * handled by the anon_vma lock + PG_lock.
1126 	 */
1127 	mmap_write_lock(mm);
1128 	result = hugepage_vma_revalidate(mm, address, &vma);
1129 	if (result)
1130 		goto out_up_write;
1131 	/* check if the pmd is still valid */
1132 	if (mm_find_pmd(mm, address) != pmd)
1133 		goto out_up_write;
1134 
1135 	anon_vma_lock_write(vma->anon_vma);
1136 
1137 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1138 				address, address + HPAGE_PMD_SIZE);
1139 	mmu_notifier_invalidate_range_start(&range);
1140 
1141 	pte = pte_offset_map(pmd, address);
1142 	pte_ptl = pte_lockptr(mm, pmd);
1143 
1144 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1145 	/*
1146 	 * After this gup_fast can't run anymore. This also removes
1147 	 * any huge TLB entry from the CPU so we won't allow
1148 	 * huge and small TLB entries for the same virtual address
1149 	 * to avoid the risk of CPU bugs in that area.
1150 	 */
1151 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1152 	spin_unlock(pmd_ptl);
1153 	mmu_notifier_invalidate_range_end(&range);
1154 
1155 	spin_lock(pte_ptl);
1156 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1157 			&compound_pagelist);
1158 	spin_unlock(pte_ptl);
1159 
1160 	if (unlikely(!isolated)) {
1161 		pte_unmap(pte);
1162 		spin_lock(pmd_ptl);
1163 		BUG_ON(!pmd_none(*pmd));
1164 		/*
1165 		 * We can only use set_pmd_at when establishing
1166 		 * hugepmds and never for establishing regular pmds that
1167 		 * points to regular pagetables. Use pmd_populate for that
1168 		 */
1169 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1170 		spin_unlock(pmd_ptl);
1171 		anon_vma_unlock_write(vma->anon_vma);
1172 		result = SCAN_FAIL;
1173 		goto out_up_write;
1174 	}
1175 
1176 	/*
1177 	 * All pages are isolated and locked so anon_vma rmap
1178 	 * can't run anymore.
1179 	 */
1180 	anon_vma_unlock_write(vma->anon_vma);
1181 
1182 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1183 			&compound_pagelist);
1184 	pte_unmap(pte);
1185 	/*
1186 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1187 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1188 	 * avoid the copy_huge_page writes to become visible after
1189 	 * the set_pmd_at() write.
1190 	 */
1191 	__SetPageUptodate(new_page);
1192 	pgtable = pmd_pgtable(_pmd);
1193 
1194 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1195 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1196 
1197 	spin_lock(pmd_ptl);
1198 	BUG_ON(!pmd_none(*pmd));
1199 	page_add_new_anon_rmap(new_page, vma, address, true);
1200 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1201 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1202 	set_pmd_at(mm, address, pmd, _pmd);
1203 	update_mmu_cache_pmd(vma, address, pmd);
1204 	spin_unlock(pmd_ptl);
1205 
1206 	*hpage = NULL;
1207 
1208 	khugepaged_pages_collapsed++;
1209 	result = SCAN_SUCCEED;
1210 out_up_write:
1211 	mmap_write_unlock(mm);
1212 out_nolock:
1213 	if (!IS_ERR_OR_NULL(*hpage))
1214 		mem_cgroup_uncharge(*hpage);
1215 	trace_mm_collapse_huge_page(mm, isolated, result);
1216 	return;
1217 }
1218 
1219 static int khugepaged_scan_pmd(struct mm_struct *mm,
1220 			       struct vm_area_struct *vma,
1221 			       unsigned long address,
1222 			       struct page **hpage)
1223 {
1224 	pmd_t *pmd;
1225 	pte_t *pte, *_pte;
1226 	int ret = 0, result = 0, referenced = 0;
1227 	int none_or_zero = 0, shared = 0;
1228 	struct page *page = NULL;
1229 	unsigned long _address;
1230 	spinlock_t *ptl;
1231 	int node = NUMA_NO_NODE, unmapped = 0;
1232 	bool writable = false;
1233 
1234 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1235 
1236 	pmd = mm_find_pmd(mm, address);
1237 	if (!pmd) {
1238 		result = SCAN_PMD_NULL;
1239 		goto out;
1240 	}
1241 
1242 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1243 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1244 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1245 	     _pte++, _address += PAGE_SIZE) {
1246 		pte_t pteval = *_pte;
1247 		if (is_swap_pte(pteval)) {
1248 			if (++unmapped <= khugepaged_max_ptes_swap) {
1249 				/*
1250 				 * Always be strict with uffd-wp
1251 				 * enabled swap entries.  Please see
1252 				 * comment below for pte_uffd_wp().
1253 				 */
1254 				if (pte_swp_uffd_wp(pteval)) {
1255 					result = SCAN_PTE_UFFD_WP;
1256 					goto out_unmap;
1257 				}
1258 				continue;
1259 			} else {
1260 				result = SCAN_EXCEED_SWAP_PTE;
1261 				goto out_unmap;
1262 			}
1263 		}
1264 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1265 			if (!userfaultfd_armed(vma) &&
1266 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1267 				continue;
1268 			} else {
1269 				result = SCAN_EXCEED_NONE_PTE;
1270 				goto out_unmap;
1271 			}
1272 		}
1273 		if (pte_uffd_wp(pteval)) {
1274 			/*
1275 			 * Don't collapse the page if any of the small
1276 			 * PTEs are armed with uffd write protection.
1277 			 * Here we can also mark the new huge pmd as
1278 			 * write protected if any of the small ones is
1279 			 * marked but that could bring unknown
1280 			 * userfault messages that falls outside of
1281 			 * the registered range.  So, just be simple.
1282 			 */
1283 			result = SCAN_PTE_UFFD_WP;
1284 			goto out_unmap;
1285 		}
1286 		if (pte_write(pteval))
1287 			writable = true;
1288 
1289 		page = vm_normal_page(vma, _address, pteval);
1290 		if (unlikely(!page)) {
1291 			result = SCAN_PAGE_NULL;
1292 			goto out_unmap;
1293 		}
1294 
1295 		if (page_mapcount(page) > 1 &&
1296 				++shared > khugepaged_max_ptes_shared) {
1297 			result = SCAN_EXCEED_SHARED_PTE;
1298 			goto out_unmap;
1299 		}
1300 
1301 		page = compound_head(page);
1302 
1303 		/*
1304 		 * Record which node the original page is from and save this
1305 		 * information to khugepaged_node_load[].
1306 		 * Khupaged will allocate hugepage from the node has the max
1307 		 * hit record.
1308 		 */
1309 		node = page_to_nid(page);
1310 		if (khugepaged_scan_abort(node)) {
1311 			result = SCAN_SCAN_ABORT;
1312 			goto out_unmap;
1313 		}
1314 		khugepaged_node_load[node]++;
1315 		if (!PageLRU(page)) {
1316 			result = SCAN_PAGE_LRU;
1317 			goto out_unmap;
1318 		}
1319 		if (PageLocked(page)) {
1320 			result = SCAN_PAGE_LOCK;
1321 			goto out_unmap;
1322 		}
1323 		if (!PageAnon(page)) {
1324 			result = SCAN_PAGE_ANON;
1325 			goto out_unmap;
1326 		}
1327 
1328 		/*
1329 		 * Check if the page has any GUP (or other external) pins.
1330 		 *
1331 		 * Here the check is racy it may see totmal_mapcount > refcount
1332 		 * in some cases.
1333 		 * For example, one process with one forked child process.
1334 		 * The parent has the PMD split due to MADV_DONTNEED, then
1335 		 * the child is trying unmap the whole PMD, but khugepaged
1336 		 * may be scanning the parent between the child has
1337 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1338 		 * khugepaged may see total_mapcount > refcount.
1339 		 *
1340 		 * But such case is ephemeral we could always retry collapse
1341 		 * later.  However it may report false positive if the page
1342 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1343 		 * will be done again later the risk seems low.
1344 		 */
1345 		if (!is_refcount_suitable(page)) {
1346 			result = SCAN_PAGE_COUNT;
1347 			goto out_unmap;
1348 		}
1349 		if (pte_young(pteval) ||
1350 		    page_is_young(page) || PageReferenced(page) ||
1351 		    mmu_notifier_test_young(vma->vm_mm, address))
1352 			referenced++;
1353 	}
1354 	if (!writable) {
1355 		result = SCAN_PAGE_RO;
1356 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1357 		result = SCAN_LACK_REFERENCED_PAGE;
1358 	} else {
1359 		result = SCAN_SUCCEED;
1360 		ret = 1;
1361 	}
1362 out_unmap:
1363 	pte_unmap_unlock(pte, ptl);
1364 	if (ret) {
1365 		node = khugepaged_find_target_node();
1366 		/* collapse_huge_page will return with the mmap_lock released */
1367 		collapse_huge_page(mm, address, hpage, node,
1368 				referenced, unmapped);
1369 	}
1370 out:
1371 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1372 				     none_or_zero, result, unmapped);
1373 	return ret;
1374 }
1375 
1376 static void collect_mm_slot(struct mm_slot *mm_slot)
1377 {
1378 	struct mm_struct *mm = mm_slot->mm;
1379 
1380 	lockdep_assert_held(&khugepaged_mm_lock);
1381 
1382 	if (khugepaged_test_exit(mm)) {
1383 		/* free mm_slot */
1384 		hash_del(&mm_slot->hash);
1385 		list_del(&mm_slot->mm_node);
1386 
1387 		/*
1388 		 * Not strictly needed because the mm exited already.
1389 		 *
1390 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1391 		 */
1392 
1393 		/* khugepaged_mm_lock actually not necessary for the below */
1394 		free_mm_slot(mm_slot);
1395 		mmdrop(mm);
1396 	}
1397 }
1398 
1399 #ifdef CONFIG_SHMEM
1400 /*
1401  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1402  * khugepaged should try to collapse the page table.
1403  */
1404 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1405 					 unsigned long addr)
1406 {
1407 	struct mm_slot *mm_slot;
1408 
1409 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1410 
1411 	spin_lock(&khugepaged_mm_lock);
1412 	mm_slot = get_mm_slot(mm);
1413 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1414 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1415 	spin_unlock(&khugepaged_mm_lock);
1416 	return 0;
1417 }
1418 
1419 /**
1420  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1421  * address haddr.
1422  *
1423  * @mm: process address space where collapse happens
1424  * @addr: THP collapse address
1425  *
1426  * This function checks whether all the PTEs in the PMD are pointing to the
1427  * right THP. If so, retract the page table so the THP can refault in with
1428  * as pmd-mapped.
1429  */
1430 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1431 {
1432 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1433 	struct vm_area_struct *vma = find_vma(mm, haddr);
1434 	struct page *hpage;
1435 	pte_t *start_pte, *pte;
1436 	pmd_t *pmd, _pmd;
1437 	spinlock_t *ptl;
1438 	int count = 0;
1439 	int i;
1440 
1441 	if (!vma || !vma->vm_file ||
1442 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1443 		return;
1444 
1445 	/*
1446 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1447 	 * collapsed by this mm. But we can still collapse if the page is
1448 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1449 	 * will not fail the vma for missing VM_HUGEPAGE
1450 	 */
1451 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1452 		return;
1453 
1454 	hpage = find_lock_page(vma->vm_file->f_mapping,
1455 			       linear_page_index(vma, haddr));
1456 	if (!hpage)
1457 		return;
1458 
1459 	if (!PageHead(hpage))
1460 		goto drop_hpage;
1461 
1462 	pmd = mm_find_pmd(mm, haddr);
1463 	if (!pmd)
1464 		goto drop_hpage;
1465 
1466 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1467 
1468 	/* step 1: check all mapped PTEs are to the right huge page */
1469 	for (i = 0, addr = haddr, pte = start_pte;
1470 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1471 		struct page *page;
1472 
1473 		/* empty pte, skip */
1474 		if (pte_none(*pte))
1475 			continue;
1476 
1477 		/* page swapped out, abort */
1478 		if (!pte_present(*pte))
1479 			goto abort;
1480 
1481 		page = vm_normal_page(vma, addr, *pte);
1482 
1483 		/*
1484 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1485 		 * page table, but the new page will not be a subpage of hpage.
1486 		 */
1487 		if (hpage + i != page)
1488 			goto abort;
1489 		count++;
1490 	}
1491 
1492 	/* step 2: adjust rmap */
1493 	for (i = 0, addr = haddr, pte = start_pte;
1494 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1495 		struct page *page;
1496 
1497 		if (pte_none(*pte))
1498 			continue;
1499 		page = vm_normal_page(vma, addr, *pte);
1500 		page_remove_rmap(page, false);
1501 	}
1502 
1503 	pte_unmap_unlock(start_pte, ptl);
1504 
1505 	/* step 3: set proper refcount and mm_counters. */
1506 	if (count) {
1507 		page_ref_sub(hpage, count);
1508 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1509 	}
1510 
1511 	/* step 4: collapse pmd */
1512 	ptl = pmd_lock(vma->vm_mm, pmd);
1513 	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1514 	spin_unlock(ptl);
1515 	mm_dec_nr_ptes(mm);
1516 	pte_free(mm, pmd_pgtable(_pmd));
1517 
1518 drop_hpage:
1519 	unlock_page(hpage);
1520 	put_page(hpage);
1521 	return;
1522 
1523 abort:
1524 	pte_unmap_unlock(start_pte, ptl);
1525 	goto drop_hpage;
1526 }
1527 
1528 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1529 {
1530 	struct mm_struct *mm = mm_slot->mm;
1531 	int i;
1532 
1533 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1534 		return;
1535 
1536 	if (!mmap_write_trylock(mm))
1537 		return;
1538 
1539 	if (unlikely(khugepaged_test_exit(mm)))
1540 		goto out;
1541 
1542 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1543 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1544 
1545 out:
1546 	mm_slot->nr_pte_mapped_thp = 0;
1547 	mmap_write_unlock(mm);
1548 }
1549 
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1551 {
1552 	struct vm_area_struct *vma;
1553 	struct mm_struct *mm;
1554 	unsigned long addr;
1555 	pmd_t *pmd, _pmd;
1556 
1557 	i_mmap_lock_write(mapping);
1558 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1559 		/*
1560 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 		 * got written to. These VMAs are likely not worth investing
1562 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563 		 * later.
1564 		 *
1565 		 * Not that vma->anon_vma check is racy: it can be set up after
1566 		 * the check but before we took mmap_lock by the fault path.
1567 		 * But page lock would prevent establishing any new ptes of the
1568 		 * page, so we are safe.
1569 		 *
1570 		 * An alternative would be drop the check, but check that page
1571 		 * table is clear before calling pmdp_collapse_flush() under
1572 		 * ptl. It has higher chance to recover THP for the VMA, but
1573 		 * has higher cost too.
1574 		 */
1575 		if (vma->anon_vma)
1576 			continue;
1577 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578 		if (addr & ~HPAGE_PMD_MASK)
1579 			continue;
1580 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581 			continue;
1582 		mm = vma->vm_mm;
1583 		pmd = mm_find_pmd(mm, addr);
1584 		if (!pmd)
1585 			continue;
1586 		/*
1587 		 * We need exclusive mmap_lock to retract page table.
1588 		 *
1589 		 * We use trylock due to lock inversion: we need to acquire
1590 		 * mmap_lock while holding page lock. Fault path does it in
1591 		 * reverse order. Trylock is a way to avoid deadlock.
1592 		 */
1593 		if (mmap_write_trylock(mm)) {
1594 			if (!khugepaged_test_exit(mm)) {
1595 				spinlock_t *ptl = pmd_lock(mm, pmd);
1596 				/* assume page table is clear */
1597 				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1598 				spin_unlock(ptl);
1599 				mm_dec_nr_ptes(mm);
1600 				pte_free(mm, pmd_pgtable(_pmd));
1601 			}
1602 			mmap_write_unlock(mm);
1603 		} else {
1604 			/* Try again later */
1605 			khugepaged_add_pte_mapped_thp(mm, addr);
1606 		}
1607 	}
1608 	i_mmap_unlock_write(mapping);
1609 }
1610 
1611 /**
1612  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1613  *
1614  * @mm: process address space where collapse happens
1615  * @file: file that collapse on
1616  * @start: collapse start address
1617  * @hpage: new allocated huge page for collapse
1618  * @node: appointed node the new huge page allocate from
1619  *
1620  * Basic scheme is simple, details are more complex:
1621  *  - allocate and lock a new huge page;
1622  *  - scan page cache replacing old pages with the new one
1623  *    + swap/gup in pages if necessary;
1624  *    + fill in gaps;
1625  *    + keep old pages around in case rollback is required;
1626  *  - if replacing succeeds:
1627  *    + copy data over;
1628  *    + free old pages;
1629  *    + unlock huge page;
1630  *  - if replacing failed;
1631  *    + put all pages back and unfreeze them;
1632  *    + restore gaps in the page cache;
1633  *    + unlock and free huge page;
1634  */
1635 static void collapse_file(struct mm_struct *mm,
1636 		struct file *file, pgoff_t start,
1637 		struct page **hpage, int node)
1638 {
1639 	struct address_space *mapping = file->f_mapping;
1640 	gfp_t gfp;
1641 	struct page *new_page;
1642 	pgoff_t index, end = start + HPAGE_PMD_NR;
1643 	LIST_HEAD(pagelist);
1644 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645 	int nr_none = 0, result = SCAN_SUCCEED;
1646 	bool is_shmem = shmem_file(file);
1647 	int nr;
1648 
1649 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1650 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1651 
1652 	/* Only allocate from the target node */
1653 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1654 
1655 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1656 	if (!new_page) {
1657 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1658 		goto out;
1659 	}
1660 
1661 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1662 		result = SCAN_CGROUP_CHARGE_FAIL;
1663 		goto out;
1664 	}
1665 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1666 
1667 	/* This will be less messy when we use multi-index entries */
1668 	do {
1669 		xas_lock_irq(&xas);
1670 		xas_create_range(&xas);
1671 		if (!xas_error(&xas))
1672 			break;
1673 		xas_unlock_irq(&xas);
1674 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1675 			result = SCAN_FAIL;
1676 			goto out;
1677 		}
1678 	} while (1);
1679 
1680 	__SetPageLocked(new_page);
1681 	if (is_shmem)
1682 		__SetPageSwapBacked(new_page);
1683 	new_page->index = start;
1684 	new_page->mapping = mapping;
1685 
1686 	/*
1687 	 * At this point the new_page is locked and not up-to-date.
1688 	 * It's safe to insert it into the page cache, because nobody would
1689 	 * be able to map it or use it in another way until we unlock it.
1690 	 */
1691 
1692 	xas_set(&xas, start);
1693 	for (index = start; index < end; index++) {
1694 		struct page *page = xas_next(&xas);
1695 
1696 		VM_BUG_ON(index != xas.xa_index);
1697 		if (is_shmem) {
1698 			if (!page) {
1699 				/*
1700 				 * Stop if extent has been truncated or
1701 				 * hole-punched, and is now completely
1702 				 * empty.
1703 				 */
1704 				if (index == start) {
1705 					if (!xas_next_entry(&xas, end - 1)) {
1706 						result = SCAN_TRUNCATED;
1707 						goto xa_locked;
1708 					}
1709 					xas_set(&xas, index);
1710 				}
1711 				if (!shmem_charge(mapping->host, 1)) {
1712 					result = SCAN_FAIL;
1713 					goto xa_locked;
1714 				}
1715 				xas_store(&xas, new_page);
1716 				nr_none++;
1717 				continue;
1718 			}
1719 
1720 			if (xa_is_value(page) || !PageUptodate(page)) {
1721 				xas_unlock_irq(&xas);
1722 				/* swap in or instantiate fallocated page */
1723 				if (shmem_getpage(mapping->host, index, &page,
1724 						  SGP_NOALLOC)) {
1725 					result = SCAN_FAIL;
1726 					goto xa_unlocked;
1727 				}
1728 			} else if (trylock_page(page)) {
1729 				get_page(page);
1730 				xas_unlock_irq(&xas);
1731 			} else {
1732 				result = SCAN_PAGE_LOCK;
1733 				goto xa_locked;
1734 			}
1735 		} else {	/* !is_shmem */
1736 			if (!page || xa_is_value(page)) {
1737 				xas_unlock_irq(&xas);
1738 				page_cache_sync_readahead(mapping, &file->f_ra,
1739 							  file, index,
1740 							  end - index);
1741 				/* drain pagevecs to help isolate_lru_page() */
1742 				lru_add_drain();
1743 				page = find_lock_page(mapping, index);
1744 				if (unlikely(page == NULL)) {
1745 					result = SCAN_FAIL;
1746 					goto xa_unlocked;
1747 				}
1748 			} else if (PageDirty(page)) {
1749 				/*
1750 				 * khugepaged only works on read-only fd,
1751 				 * so this page is dirty because it hasn't
1752 				 * been flushed since first write. There
1753 				 * won't be new dirty pages.
1754 				 *
1755 				 * Trigger async flush here and hope the
1756 				 * writeback is done when khugepaged
1757 				 * revisits this page.
1758 				 *
1759 				 * This is a one-off situation. We are not
1760 				 * forcing writeback in loop.
1761 				 */
1762 				xas_unlock_irq(&xas);
1763 				filemap_flush(mapping);
1764 				result = SCAN_FAIL;
1765 				goto xa_unlocked;
1766 			} else if (trylock_page(page)) {
1767 				get_page(page);
1768 				xas_unlock_irq(&xas);
1769 			} else {
1770 				result = SCAN_PAGE_LOCK;
1771 				goto xa_locked;
1772 			}
1773 		}
1774 
1775 		/*
1776 		 * The page must be locked, so we can drop the i_pages lock
1777 		 * without racing with truncate.
1778 		 */
1779 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1780 
1781 		/* make sure the page is up to date */
1782 		if (unlikely(!PageUptodate(page))) {
1783 			result = SCAN_FAIL;
1784 			goto out_unlock;
1785 		}
1786 
1787 		/*
1788 		 * If file was truncated then extended, or hole-punched, before
1789 		 * we locked the first page, then a THP might be there already.
1790 		 */
1791 		if (PageTransCompound(page)) {
1792 			result = SCAN_PAGE_COMPOUND;
1793 			goto out_unlock;
1794 		}
1795 
1796 		if (page_mapping(page) != mapping) {
1797 			result = SCAN_TRUNCATED;
1798 			goto out_unlock;
1799 		}
1800 
1801 		if (!is_shmem && PageDirty(page)) {
1802 			/*
1803 			 * khugepaged only works on read-only fd, so this
1804 			 * page is dirty because it hasn't been flushed
1805 			 * since first write.
1806 			 */
1807 			result = SCAN_FAIL;
1808 			goto out_unlock;
1809 		}
1810 
1811 		if (isolate_lru_page(page)) {
1812 			result = SCAN_DEL_PAGE_LRU;
1813 			goto out_unlock;
1814 		}
1815 
1816 		if (page_has_private(page) &&
1817 		    !try_to_release_page(page, GFP_KERNEL)) {
1818 			result = SCAN_PAGE_HAS_PRIVATE;
1819 			putback_lru_page(page);
1820 			goto out_unlock;
1821 		}
1822 
1823 		if (page_mapped(page))
1824 			unmap_mapping_pages(mapping, index, 1, false);
1825 
1826 		xas_lock_irq(&xas);
1827 		xas_set(&xas, index);
1828 
1829 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1830 		VM_BUG_ON_PAGE(page_mapped(page), page);
1831 
1832 		/*
1833 		 * The page is expected to have page_count() == 3:
1834 		 *  - we hold a pin on it;
1835 		 *  - one reference from page cache;
1836 		 *  - one from isolate_lru_page;
1837 		 */
1838 		if (!page_ref_freeze(page, 3)) {
1839 			result = SCAN_PAGE_COUNT;
1840 			xas_unlock_irq(&xas);
1841 			putback_lru_page(page);
1842 			goto out_unlock;
1843 		}
1844 
1845 		/*
1846 		 * Add the page to the list to be able to undo the collapse if
1847 		 * something go wrong.
1848 		 */
1849 		list_add_tail(&page->lru, &pagelist);
1850 
1851 		/* Finally, replace with the new page. */
1852 		xas_store(&xas, new_page);
1853 		continue;
1854 out_unlock:
1855 		unlock_page(page);
1856 		put_page(page);
1857 		goto xa_unlocked;
1858 	}
1859 	nr = thp_nr_pages(new_page);
1860 
1861 	if (is_shmem)
1862 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1863 	else {
1864 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1865 		filemap_nr_thps_inc(mapping);
1866 		/*
1867 		 * Paired with smp_mb() in do_dentry_open() to ensure
1868 		 * i_writecount is up to date and the update to nr_thps is
1869 		 * visible. Ensures the page cache will be truncated if the
1870 		 * file is opened writable.
1871 		 */
1872 		smp_mb();
1873 		if (inode_is_open_for_write(mapping->host)) {
1874 			result = SCAN_FAIL;
1875 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1876 			filemap_nr_thps_dec(mapping);
1877 			goto xa_locked;
1878 		}
1879 	}
1880 
1881 	if (nr_none) {
1882 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1883 		if (is_shmem)
1884 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1885 	}
1886 
1887 xa_locked:
1888 	xas_unlock_irq(&xas);
1889 xa_unlocked:
1890 
1891 	if (result == SCAN_SUCCEED) {
1892 		struct page *page, *tmp;
1893 
1894 		/*
1895 		 * Replacing old pages with new one has succeeded, now we
1896 		 * need to copy the content and free the old pages.
1897 		 */
1898 		index = start;
1899 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1900 			while (index < page->index) {
1901 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1902 				index++;
1903 			}
1904 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1905 					page);
1906 			list_del(&page->lru);
1907 			page->mapping = NULL;
1908 			page_ref_unfreeze(page, 1);
1909 			ClearPageActive(page);
1910 			ClearPageUnevictable(page);
1911 			unlock_page(page);
1912 			put_page(page);
1913 			index++;
1914 		}
1915 		while (index < end) {
1916 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1917 			index++;
1918 		}
1919 
1920 		SetPageUptodate(new_page);
1921 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1922 		if (is_shmem)
1923 			set_page_dirty(new_page);
1924 		lru_cache_add(new_page);
1925 
1926 		/*
1927 		 * Remove pte page tables, so we can re-fault the page as huge.
1928 		 */
1929 		retract_page_tables(mapping, start);
1930 		*hpage = NULL;
1931 
1932 		khugepaged_pages_collapsed++;
1933 	} else {
1934 		struct page *page;
1935 
1936 		/* Something went wrong: roll back page cache changes */
1937 		xas_lock_irq(&xas);
1938 		mapping->nrpages -= nr_none;
1939 
1940 		if (is_shmem)
1941 			shmem_uncharge(mapping->host, nr_none);
1942 
1943 		xas_set(&xas, start);
1944 		xas_for_each(&xas, page, end - 1) {
1945 			page = list_first_entry_or_null(&pagelist,
1946 					struct page, lru);
1947 			if (!page || xas.xa_index < page->index) {
1948 				if (!nr_none)
1949 					break;
1950 				nr_none--;
1951 				/* Put holes back where they were */
1952 				xas_store(&xas, NULL);
1953 				continue;
1954 			}
1955 
1956 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1957 
1958 			/* Unfreeze the page. */
1959 			list_del(&page->lru);
1960 			page_ref_unfreeze(page, 2);
1961 			xas_store(&xas, page);
1962 			xas_pause(&xas);
1963 			xas_unlock_irq(&xas);
1964 			unlock_page(page);
1965 			putback_lru_page(page);
1966 			xas_lock_irq(&xas);
1967 		}
1968 		VM_BUG_ON(nr_none);
1969 		xas_unlock_irq(&xas);
1970 
1971 		new_page->mapping = NULL;
1972 	}
1973 
1974 	unlock_page(new_page);
1975 out:
1976 	VM_BUG_ON(!list_empty(&pagelist));
1977 	if (!IS_ERR_OR_NULL(*hpage))
1978 		mem_cgroup_uncharge(*hpage);
1979 	/* TODO: tracepoints */
1980 }
1981 
1982 static void khugepaged_scan_file(struct mm_struct *mm,
1983 		struct file *file, pgoff_t start, struct page **hpage)
1984 {
1985 	struct page *page = NULL;
1986 	struct address_space *mapping = file->f_mapping;
1987 	XA_STATE(xas, &mapping->i_pages, start);
1988 	int present, swap;
1989 	int node = NUMA_NO_NODE;
1990 	int result = SCAN_SUCCEED;
1991 
1992 	present = 0;
1993 	swap = 0;
1994 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1995 	rcu_read_lock();
1996 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1997 		if (xas_retry(&xas, page))
1998 			continue;
1999 
2000 		if (xa_is_value(page)) {
2001 			if (++swap > khugepaged_max_ptes_swap) {
2002 				result = SCAN_EXCEED_SWAP_PTE;
2003 				break;
2004 			}
2005 			continue;
2006 		}
2007 
2008 		if (PageTransCompound(page)) {
2009 			result = SCAN_PAGE_COMPOUND;
2010 			break;
2011 		}
2012 
2013 		node = page_to_nid(page);
2014 		if (khugepaged_scan_abort(node)) {
2015 			result = SCAN_SCAN_ABORT;
2016 			break;
2017 		}
2018 		khugepaged_node_load[node]++;
2019 
2020 		if (!PageLRU(page)) {
2021 			result = SCAN_PAGE_LRU;
2022 			break;
2023 		}
2024 
2025 		if (page_count(page) !=
2026 		    1 + page_mapcount(page) + page_has_private(page)) {
2027 			result = SCAN_PAGE_COUNT;
2028 			break;
2029 		}
2030 
2031 		/*
2032 		 * We probably should check if the page is referenced here, but
2033 		 * nobody would transfer pte_young() to PageReferenced() for us.
2034 		 * And rmap walk here is just too costly...
2035 		 */
2036 
2037 		present++;
2038 
2039 		if (need_resched()) {
2040 			xas_pause(&xas);
2041 			cond_resched_rcu();
2042 		}
2043 	}
2044 	rcu_read_unlock();
2045 
2046 	if (result == SCAN_SUCCEED) {
2047 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2048 			result = SCAN_EXCEED_NONE_PTE;
2049 		} else {
2050 			node = khugepaged_find_target_node();
2051 			collapse_file(mm, file, start, hpage, node);
2052 		}
2053 	}
2054 
2055 	/* TODO: tracepoints */
2056 }
2057 #else
2058 static void khugepaged_scan_file(struct mm_struct *mm,
2059 		struct file *file, pgoff_t start, struct page **hpage)
2060 {
2061 	BUILD_BUG();
2062 }
2063 
2064 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2065 {
2066 }
2067 #endif
2068 
2069 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2070 					    struct page **hpage)
2071 	__releases(&khugepaged_mm_lock)
2072 	__acquires(&khugepaged_mm_lock)
2073 {
2074 	struct mm_slot *mm_slot;
2075 	struct mm_struct *mm;
2076 	struct vm_area_struct *vma;
2077 	int progress = 0;
2078 
2079 	VM_BUG_ON(!pages);
2080 	lockdep_assert_held(&khugepaged_mm_lock);
2081 
2082 	if (khugepaged_scan.mm_slot)
2083 		mm_slot = khugepaged_scan.mm_slot;
2084 	else {
2085 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2086 				     struct mm_slot, mm_node);
2087 		khugepaged_scan.address = 0;
2088 		khugepaged_scan.mm_slot = mm_slot;
2089 	}
2090 	spin_unlock(&khugepaged_mm_lock);
2091 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2092 
2093 	mm = mm_slot->mm;
2094 	/*
2095 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2096 	 * the next mm on the list.
2097 	 */
2098 	vma = NULL;
2099 	if (unlikely(!mmap_read_trylock(mm)))
2100 		goto breakouterloop_mmap_lock;
2101 	if (likely(!khugepaged_test_exit(mm)))
2102 		vma = find_vma(mm, khugepaged_scan.address);
2103 
2104 	progress++;
2105 	for (; vma; vma = vma->vm_next) {
2106 		unsigned long hstart, hend;
2107 
2108 		cond_resched();
2109 		if (unlikely(khugepaged_test_exit(mm))) {
2110 			progress++;
2111 			break;
2112 		}
2113 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2114 skip:
2115 			progress++;
2116 			continue;
2117 		}
2118 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2119 		hend = vma->vm_end & HPAGE_PMD_MASK;
2120 		if (hstart >= hend)
2121 			goto skip;
2122 		if (khugepaged_scan.address > hend)
2123 			goto skip;
2124 		if (khugepaged_scan.address < hstart)
2125 			khugepaged_scan.address = hstart;
2126 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2127 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2128 			goto skip;
2129 
2130 		while (khugepaged_scan.address < hend) {
2131 			int ret;
2132 			cond_resched();
2133 			if (unlikely(khugepaged_test_exit(mm)))
2134 				goto breakouterloop;
2135 
2136 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2137 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2138 				  hend);
2139 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2140 				struct file *file = get_file(vma->vm_file);
2141 				pgoff_t pgoff = linear_page_index(vma,
2142 						khugepaged_scan.address);
2143 
2144 				mmap_read_unlock(mm);
2145 				ret = 1;
2146 				khugepaged_scan_file(mm, file, pgoff, hpage);
2147 				fput(file);
2148 			} else {
2149 				ret = khugepaged_scan_pmd(mm, vma,
2150 						khugepaged_scan.address,
2151 						hpage);
2152 			}
2153 			/* move to next address */
2154 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2155 			progress += HPAGE_PMD_NR;
2156 			if (ret)
2157 				/* we released mmap_lock so break loop */
2158 				goto breakouterloop_mmap_lock;
2159 			if (progress >= pages)
2160 				goto breakouterloop;
2161 		}
2162 	}
2163 breakouterloop:
2164 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2165 breakouterloop_mmap_lock:
2166 
2167 	spin_lock(&khugepaged_mm_lock);
2168 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2169 	/*
2170 	 * Release the current mm_slot if this mm is about to die, or
2171 	 * if we scanned all vmas of this mm.
2172 	 */
2173 	if (khugepaged_test_exit(mm) || !vma) {
2174 		/*
2175 		 * Make sure that if mm_users is reaching zero while
2176 		 * khugepaged runs here, khugepaged_exit will find
2177 		 * mm_slot not pointing to the exiting mm.
2178 		 */
2179 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2180 			khugepaged_scan.mm_slot = list_entry(
2181 				mm_slot->mm_node.next,
2182 				struct mm_slot, mm_node);
2183 			khugepaged_scan.address = 0;
2184 		} else {
2185 			khugepaged_scan.mm_slot = NULL;
2186 			khugepaged_full_scans++;
2187 		}
2188 
2189 		collect_mm_slot(mm_slot);
2190 	}
2191 
2192 	return progress;
2193 }
2194 
2195 static int khugepaged_has_work(void)
2196 {
2197 	return !list_empty(&khugepaged_scan.mm_head) &&
2198 		khugepaged_enabled();
2199 }
2200 
2201 static int khugepaged_wait_event(void)
2202 {
2203 	return !list_empty(&khugepaged_scan.mm_head) ||
2204 		kthread_should_stop();
2205 }
2206 
2207 static void khugepaged_do_scan(void)
2208 {
2209 	struct page *hpage = NULL;
2210 	unsigned int progress = 0, pass_through_head = 0;
2211 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2212 	bool wait = true;
2213 
2214 	lru_add_drain_all();
2215 
2216 	while (progress < pages) {
2217 		if (!khugepaged_prealloc_page(&hpage, &wait))
2218 			break;
2219 
2220 		cond_resched();
2221 
2222 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2223 			break;
2224 
2225 		spin_lock(&khugepaged_mm_lock);
2226 		if (!khugepaged_scan.mm_slot)
2227 			pass_through_head++;
2228 		if (khugepaged_has_work() &&
2229 		    pass_through_head < 2)
2230 			progress += khugepaged_scan_mm_slot(pages - progress,
2231 							    &hpage);
2232 		else
2233 			progress = pages;
2234 		spin_unlock(&khugepaged_mm_lock);
2235 	}
2236 
2237 	if (!IS_ERR_OR_NULL(hpage))
2238 		put_page(hpage);
2239 }
2240 
2241 static bool khugepaged_should_wakeup(void)
2242 {
2243 	return kthread_should_stop() ||
2244 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2245 }
2246 
2247 static void khugepaged_wait_work(void)
2248 {
2249 	if (khugepaged_has_work()) {
2250 		const unsigned long scan_sleep_jiffies =
2251 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2252 
2253 		if (!scan_sleep_jiffies)
2254 			return;
2255 
2256 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2257 		wait_event_freezable_timeout(khugepaged_wait,
2258 					     khugepaged_should_wakeup(),
2259 					     scan_sleep_jiffies);
2260 		return;
2261 	}
2262 
2263 	if (khugepaged_enabled())
2264 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2265 }
2266 
2267 static int khugepaged(void *none)
2268 {
2269 	struct mm_slot *mm_slot;
2270 
2271 	set_freezable();
2272 	set_user_nice(current, MAX_NICE);
2273 
2274 	while (!kthread_should_stop()) {
2275 		khugepaged_do_scan();
2276 		khugepaged_wait_work();
2277 	}
2278 
2279 	spin_lock(&khugepaged_mm_lock);
2280 	mm_slot = khugepaged_scan.mm_slot;
2281 	khugepaged_scan.mm_slot = NULL;
2282 	if (mm_slot)
2283 		collect_mm_slot(mm_slot);
2284 	spin_unlock(&khugepaged_mm_lock);
2285 	return 0;
2286 }
2287 
2288 static void set_recommended_min_free_kbytes(void)
2289 {
2290 	struct zone *zone;
2291 	int nr_zones = 0;
2292 	unsigned long recommended_min;
2293 
2294 	for_each_populated_zone(zone) {
2295 		/*
2296 		 * We don't need to worry about fragmentation of
2297 		 * ZONE_MOVABLE since it only has movable pages.
2298 		 */
2299 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2300 			continue;
2301 
2302 		nr_zones++;
2303 	}
2304 
2305 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2306 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2307 
2308 	/*
2309 	 * Make sure that on average at least two pageblocks are almost free
2310 	 * of another type, one for a migratetype to fall back to and a
2311 	 * second to avoid subsequent fallbacks of other types There are 3
2312 	 * MIGRATE_TYPES we care about.
2313 	 */
2314 	recommended_min += pageblock_nr_pages * nr_zones *
2315 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2316 
2317 	/* don't ever allow to reserve more than 5% of the lowmem */
2318 	recommended_min = min(recommended_min,
2319 			      (unsigned long) nr_free_buffer_pages() / 20);
2320 	recommended_min <<= (PAGE_SHIFT-10);
2321 
2322 	if (recommended_min > min_free_kbytes) {
2323 		if (user_min_free_kbytes >= 0)
2324 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2325 				min_free_kbytes, recommended_min);
2326 
2327 		min_free_kbytes = recommended_min;
2328 	}
2329 	setup_per_zone_wmarks();
2330 }
2331 
2332 int start_stop_khugepaged(void)
2333 {
2334 	int err = 0;
2335 
2336 	mutex_lock(&khugepaged_mutex);
2337 	if (khugepaged_enabled()) {
2338 		if (!khugepaged_thread)
2339 			khugepaged_thread = kthread_run(khugepaged, NULL,
2340 							"khugepaged");
2341 		if (IS_ERR(khugepaged_thread)) {
2342 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2343 			err = PTR_ERR(khugepaged_thread);
2344 			khugepaged_thread = NULL;
2345 			goto fail;
2346 		}
2347 
2348 		if (!list_empty(&khugepaged_scan.mm_head))
2349 			wake_up_interruptible(&khugepaged_wait);
2350 
2351 		set_recommended_min_free_kbytes();
2352 	} else if (khugepaged_thread) {
2353 		kthread_stop(khugepaged_thread);
2354 		khugepaged_thread = NULL;
2355 	}
2356 fail:
2357 	mutex_unlock(&khugepaged_mutex);
2358 	return err;
2359 }
2360 
2361 void khugepaged_min_free_kbytes_update(void)
2362 {
2363 	mutex_lock(&khugepaged_mutex);
2364 	if (khugepaged_enabled() && khugepaged_thread)
2365 		set_recommended_min_free_kbytes();
2366 	mutex_unlock(&khugepaged_mutex);
2367 }
2368