1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/ksm.h> 23 24 #include <asm/tlb.h> 25 #include <asm/pgalloc.h> 26 #include "internal.h" 27 #include "mm_slot.h" 28 29 enum scan_result { 30 SCAN_FAIL, 31 SCAN_SUCCEED, 32 SCAN_PMD_NULL, 33 SCAN_PMD_NONE, 34 SCAN_PMD_MAPPED, 35 SCAN_EXCEED_NONE_PTE, 36 SCAN_EXCEED_SWAP_PTE, 37 SCAN_EXCEED_SHARED_PTE, 38 SCAN_PTE_NON_PRESENT, 39 SCAN_PTE_UFFD_WP, 40 SCAN_PTE_MAPPED_HUGEPAGE, 41 SCAN_PAGE_RO, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 }; 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/huge_memory.h> 66 67 static struct task_struct *khugepaged_thread __read_mostly; 68 static DEFINE_MUTEX(khugepaged_mutex); 69 70 /* default scan 8*512 pte (or vmas) every 30 second */ 71 static unsigned int khugepaged_pages_to_scan __read_mostly; 72 static unsigned int khugepaged_pages_collapsed; 73 static unsigned int khugepaged_full_scans; 74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 75 /* during fragmentation poll the hugepage allocator once every minute */ 76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 77 static unsigned long khugepaged_sleep_expire; 78 static DEFINE_SPINLOCK(khugepaged_mm_lock); 79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 80 /* 81 * default collapse hugepages if there is at least one pte mapped like 82 * it would have happened if the vma was large enough during page 83 * fault. 84 * 85 * Note that these are only respected if collapse was initiated by khugepaged. 86 */ 87 static unsigned int khugepaged_max_ptes_none __read_mostly; 88 static unsigned int khugepaged_max_ptes_swap __read_mostly; 89 static unsigned int khugepaged_max_ptes_shared __read_mostly; 90 91 #define MM_SLOTS_HASH_BITS 10 92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 93 94 static struct kmem_cache *mm_slot_cache __read_mostly; 95 96 struct collapse_control { 97 bool is_khugepaged; 98 99 /* Num pages scanned per node */ 100 u32 node_load[MAX_NUMNODES]; 101 102 /* nodemask for allocation fallback */ 103 nodemask_t alloc_nmask; 104 }; 105 106 /** 107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 108 * @slot: hash lookup from mm to mm_slot 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 }; 113 114 /** 115 * struct khugepaged_scan - cursor for scanning 116 * @mm_head: the head of the mm list to scan 117 * @mm_slot: the current mm_slot we are scanning 118 * @address: the next address inside that to be scanned 119 * 120 * There is only the one khugepaged_scan instance of this cursor structure. 121 */ 122 struct khugepaged_scan { 123 struct list_head mm_head; 124 struct khugepaged_mm_slot *mm_slot; 125 unsigned long address; 126 }; 127 128 static struct khugepaged_scan khugepaged_scan = { 129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 130 }; 131 132 #ifdef CONFIG_SYSFS 133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 134 struct kobj_attribute *attr, 135 char *buf) 136 { 137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 138 } 139 140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 const char *buf, size_t count) 143 { 144 unsigned int msecs; 145 int err; 146 147 err = kstrtouint(buf, 10, &msecs); 148 if (err) 149 return -EINVAL; 150 151 khugepaged_scan_sleep_millisecs = msecs; 152 khugepaged_sleep_expire = 0; 153 wake_up_interruptible(&khugepaged_wait); 154 155 return count; 156 } 157 static struct kobj_attribute scan_sleep_millisecs_attr = 158 __ATTR_RW(scan_sleep_millisecs); 159 160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 char *buf) 163 { 164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 165 } 166 167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 const char *buf, size_t count) 170 { 171 unsigned int msecs; 172 int err; 173 174 err = kstrtouint(buf, 10, &msecs); 175 if (err) 176 return -EINVAL; 177 178 khugepaged_alloc_sleep_millisecs = msecs; 179 khugepaged_sleep_expire = 0; 180 wake_up_interruptible(&khugepaged_wait); 181 182 return count; 183 } 184 static struct kobj_attribute alloc_sleep_millisecs_attr = 185 __ATTR_RW(alloc_sleep_millisecs); 186 187 static ssize_t pages_to_scan_show(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 char *buf) 190 { 191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 192 } 193 static ssize_t pages_to_scan_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 unsigned int pages; 198 int err; 199 200 err = kstrtouint(buf, 10, &pages); 201 if (err || !pages) 202 return -EINVAL; 203 204 khugepaged_pages_to_scan = pages; 205 206 return count; 207 } 208 static struct kobj_attribute pages_to_scan_attr = 209 __ATTR_RW(pages_to_scan); 210 211 static ssize_t pages_collapsed_show(struct kobject *kobj, 212 struct kobj_attribute *attr, 213 char *buf) 214 { 215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 216 } 217 static struct kobj_attribute pages_collapsed_attr = 218 __ATTR_RO(pages_collapsed); 219 220 static ssize_t full_scans_show(struct kobject *kobj, 221 struct kobj_attribute *attr, 222 char *buf) 223 { 224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 225 } 226 static struct kobj_attribute full_scans_attr = 227 __ATTR_RO(full_scans); 228 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 return single_hugepage_flag_show(kobj, attr, buf, 233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 234 } 235 static ssize_t defrag_store(struct kobject *kobj, 236 struct kobj_attribute *attr, 237 const char *buf, size_t count) 238 { 239 return single_hugepage_flag_store(kobj, attr, buf, count, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static struct kobj_attribute khugepaged_defrag_attr = 243 __ATTR_RW(defrag); 244 245 /* 246 * max_ptes_none controls if khugepaged should collapse hugepages over 247 * any unmapped ptes in turn potentially increasing the memory 248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 249 * reduce the available free memory in the system as it 250 * runs. Increasing max_ptes_none will instead potentially reduce the 251 * free memory in the system during the khugepaged scan. 252 */ 253 static ssize_t max_ptes_none_show(struct kobject *kobj, 254 struct kobj_attribute *attr, 255 char *buf) 256 { 257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 258 } 259 static ssize_t max_ptes_none_store(struct kobject *kobj, 260 struct kobj_attribute *attr, 261 const char *buf, size_t count) 262 { 263 int err; 264 unsigned long max_ptes_none; 265 266 err = kstrtoul(buf, 10, &max_ptes_none); 267 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 268 return -EINVAL; 269 270 khugepaged_max_ptes_none = max_ptes_none; 271 272 return count; 273 } 274 static struct kobj_attribute khugepaged_max_ptes_none_attr = 275 __ATTR_RW(max_ptes_none); 276 277 static ssize_t max_ptes_swap_show(struct kobject *kobj, 278 struct kobj_attribute *attr, 279 char *buf) 280 { 281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 282 } 283 284 static ssize_t max_ptes_swap_store(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int err; 289 unsigned long max_ptes_swap; 290 291 err = kstrtoul(buf, 10, &max_ptes_swap); 292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 293 return -EINVAL; 294 295 khugepaged_max_ptes_swap = max_ptes_swap; 296 297 return count; 298 } 299 300 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 301 __ATTR_RW(max_ptes_swap); 302 303 static ssize_t max_ptes_shared_show(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 char *buf) 306 { 307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 308 } 309 310 static ssize_t max_ptes_shared_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 int err; 315 unsigned long max_ptes_shared; 316 317 err = kstrtoul(buf, 10, &max_ptes_shared); 318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 319 return -EINVAL; 320 321 khugepaged_max_ptes_shared = max_ptes_shared; 322 323 return count; 324 } 325 326 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 327 __ATTR_RW(max_ptes_shared); 328 329 static struct attribute *khugepaged_attr[] = { 330 &khugepaged_defrag_attr.attr, 331 &khugepaged_max_ptes_none_attr.attr, 332 &khugepaged_max_ptes_swap_attr.attr, 333 &khugepaged_max_ptes_shared_attr.attr, 334 &pages_to_scan_attr.attr, 335 &pages_collapsed_attr.attr, 336 &full_scans_attr.attr, 337 &scan_sleep_millisecs_attr.attr, 338 &alloc_sleep_millisecs_attr.attr, 339 NULL, 340 }; 341 342 struct attribute_group khugepaged_attr_group = { 343 .attrs = khugepaged_attr, 344 .name = "khugepaged", 345 }; 346 #endif /* CONFIG_SYSFS */ 347 348 int hugepage_madvise(struct vm_area_struct *vma, 349 unsigned long *vm_flags, int advice) 350 { 351 switch (advice) { 352 case MADV_HUGEPAGE: 353 #ifdef CONFIG_S390 354 /* 355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 356 * can't handle this properly after s390_enable_sie, so we simply 357 * ignore the madvise to prevent qemu from causing a SIGSEGV. 358 */ 359 if (mm_has_pgste(vma->vm_mm)) 360 return 0; 361 #endif 362 *vm_flags &= ~VM_NOHUGEPAGE; 363 *vm_flags |= VM_HUGEPAGE; 364 /* 365 * If the vma become good for khugepaged to scan, 366 * register it here without waiting a page fault that 367 * may not happen any time soon. 368 */ 369 khugepaged_enter_vma(vma, *vm_flags); 370 break; 371 case MADV_NOHUGEPAGE: 372 *vm_flags &= ~VM_HUGEPAGE; 373 *vm_flags |= VM_NOHUGEPAGE; 374 /* 375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 376 * this vma even if we leave the mm registered in khugepaged if 377 * it got registered before VM_NOHUGEPAGE was set. 378 */ 379 break; 380 } 381 382 return 0; 383 } 384 385 int __init khugepaged_init(void) 386 { 387 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 388 sizeof(struct khugepaged_mm_slot), 389 __alignof__(struct khugepaged_mm_slot), 390 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 408 { 409 return atomic_read(&mm->mm_users) == 0; 410 } 411 412 void __khugepaged_enter(struct mm_struct *mm) 413 { 414 struct khugepaged_mm_slot *mm_slot; 415 struct mm_slot *slot; 416 int wakeup; 417 418 /* __khugepaged_exit() must not run from under us */ 419 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 420 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 421 return; 422 423 mm_slot = mm_slot_alloc(mm_slot_cache); 424 if (!mm_slot) 425 return; 426 427 slot = &mm_slot->slot; 428 429 spin_lock(&khugepaged_mm_lock); 430 mm_slot_insert(mm_slots_hash, mm, slot); 431 /* 432 * Insert just behind the scanning cursor, to let the area settle 433 * down a little. 434 */ 435 wakeup = list_empty(&khugepaged_scan.mm_head); 436 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 437 spin_unlock(&khugepaged_mm_lock); 438 439 mmgrab(mm); 440 if (wakeup) 441 wake_up_interruptible(&khugepaged_wait); 442 } 443 444 void khugepaged_enter_vma(struct vm_area_struct *vma, 445 unsigned long vm_flags) 446 { 447 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 448 hugepage_flags_enabled()) { 449 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 450 __khugepaged_enter(vma->vm_mm); 451 } 452 } 453 454 void __khugepaged_exit(struct mm_struct *mm) 455 { 456 struct khugepaged_mm_slot *mm_slot; 457 struct mm_slot *slot; 458 int free = 0; 459 460 spin_lock(&khugepaged_mm_lock); 461 slot = mm_slot_lookup(mm_slots_hash, mm); 462 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 463 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 464 hash_del(&slot->hash); 465 list_del(&slot->mm_node); 466 free = 1; 467 } 468 spin_unlock(&khugepaged_mm_lock); 469 470 if (free) { 471 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 472 mm_slot_free(mm_slot_cache, mm_slot); 473 mmdrop(mm); 474 } else if (mm_slot) { 475 /* 476 * This is required to serialize against 477 * hpage_collapse_test_exit() (which is guaranteed to run 478 * under mmap sem read mode). Stop here (after we return all 479 * pagetables will be destroyed) until khugepaged has finished 480 * working on the pagetables under the mmap_lock. 481 */ 482 mmap_write_lock(mm); 483 mmap_write_unlock(mm); 484 } 485 } 486 487 static void release_pte_folio(struct folio *folio) 488 { 489 node_stat_mod_folio(folio, 490 NR_ISOLATED_ANON + folio_is_file_lru(folio), 491 -folio_nr_pages(folio)); 492 folio_unlock(folio); 493 folio_putback_lru(folio); 494 } 495 496 static void release_pte_page(struct page *page) 497 { 498 release_pte_folio(page_folio(page)); 499 } 500 501 static void release_pte_pages(pte_t *pte, pte_t *_pte, 502 struct list_head *compound_pagelist) 503 { 504 struct folio *folio, *tmp; 505 506 while (--_pte >= pte) { 507 pte_t pteval = ptep_get(_pte); 508 unsigned long pfn; 509 510 if (pte_none(pteval)) 511 continue; 512 pfn = pte_pfn(pteval); 513 if (is_zero_pfn(pfn)) 514 continue; 515 folio = pfn_folio(pfn); 516 if (folio_test_large(folio)) 517 continue; 518 release_pte_folio(folio); 519 } 520 521 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 522 list_del(&folio->lru); 523 release_pte_folio(folio); 524 } 525 } 526 527 static bool is_refcount_suitable(struct page *page) 528 { 529 int expected_refcount; 530 531 expected_refcount = total_mapcount(page); 532 if (PageSwapCache(page)) 533 expected_refcount += compound_nr(page); 534 535 return page_count(page) == expected_refcount; 536 } 537 538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 539 unsigned long address, 540 pte_t *pte, 541 struct collapse_control *cc, 542 struct list_head *compound_pagelist) 543 { 544 struct page *page = NULL; 545 pte_t *_pte; 546 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 547 bool writable = false; 548 549 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 550 _pte++, address += PAGE_SIZE) { 551 pte_t pteval = ptep_get(_pte); 552 if (pte_none(pteval) || (pte_present(pteval) && 553 is_zero_pfn(pte_pfn(pteval)))) { 554 ++none_or_zero; 555 if (!userfaultfd_armed(vma) && 556 (!cc->is_khugepaged || 557 none_or_zero <= khugepaged_max_ptes_none)) { 558 continue; 559 } else { 560 result = SCAN_EXCEED_NONE_PTE; 561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 562 goto out; 563 } 564 } 565 if (!pte_present(pteval)) { 566 result = SCAN_PTE_NON_PRESENT; 567 goto out; 568 } 569 if (pte_uffd_wp(pteval)) { 570 result = SCAN_PTE_UFFD_WP; 571 goto out; 572 } 573 page = vm_normal_page(vma, address, pteval); 574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 575 result = SCAN_PAGE_NULL; 576 goto out; 577 } 578 579 VM_BUG_ON_PAGE(!PageAnon(page), page); 580 581 if (page_mapcount(page) > 1) { 582 ++shared; 583 if (cc->is_khugepaged && 584 shared > khugepaged_max_ptes_shared) { 585 result = SCAN_EXCEED_SHARED_PTE; 586 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 587 goto out; 588 } 589 } 590 591 if (PageCompound(page)) { 592 struct page *p; 593 page = compound_head(page); 594 595 /* 596 * Check if we have dealt with the compound page 597 * already 598 */ 599 list_for_each_entry(p, compound_pagelist, lru) { 600 if (page == p) 601 goto next; 602 } 603 } 604 605 /* 606 * We can do it before isolate_lru_page because the 607 * page can't be freed from under us. NOTE: PG_lock 608 * is needed to serialize against split_huge_page 609 * when invoked from the VM. 610 */ 611 if (!trylock_page(page)) { 612 result = SCAN_PAGE_LOCK; 613 goto out; 614 } 615 616 /* 617 * Check if the page has any GUP (or other external) pins. 618 * 619 * The page table that maps the page has been already unlinked 620 * from the page table tree and this process cannot get 621 * an additional pin on the page. 622 * 623 * New pins can come later if the page is shared across fork, 624 * but not from this process. The other process cannot write to 625 * the page, only trigger CoW. 626 */ 627 if (!is_refcount_suitable(page)) { 628 unlock_page(page); 629 result = SCAN_PAGE_COUNT; 630 goto out; 631 } 632 633 /* 634 * Isolate the page to avoid collapsing an hugepage 635 * currently in use by the VM. 636 */ 637 if (!isolate_lru_page(page)) { 638 unlock_page(page); 639 result = SCAN_DEL_PAGE_LRU; 640 goto out; 641 } 642 mod_node_page_state(page_pgdat(page), 643 NR_ISOLATED_ANON + page_is_file_lru(page), 644 compound_nr(page)); 645 VM_BUG_ON_PAGE(!PageLocked(page), page); 646 VM_BUG_ON_PAGE(PageLRU(page), page); 647 648 if (PageCompound(page)) 649 list_add_tail(&page->lru, compound_pagelist); 650 next: 651 /* 652 * If collapse was initiated by khugepaged, check that there is 653 * enough young pte to justify collapsing the page 654 */ 655 if (cc->is_khugepaged && 656 (pte_young(pteval) || page_is_young(page) || 657 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 658 address))) 659 referenced++; 660 661 if (pte_write(pteval)) 662 writable = true; 663 } 664 665 if (unlikely(!writable)) { 666 result = SCAN_PAGE_RO; 667 } else if (unlikely(cc->is_khugepaged && !referenced)) { 668 result = SCAN_LACK_REFERENCED_PAGE; 669 } else { 670 result = SCAN_SUCCEED; 671 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 672 referenced, writable, result); 673 return result; 674 } 675 out: 676 release_pte_pages(pte, _pte, compound_pagelist); 677 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 678 referenced, writable, result); 679 return result; 680 } 681 682 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 683 struct vm_area_struct *vma, 684 unsigned long address, 685 spinlock_t *ptl, 686 struct list_head *compound_pagelist) 687 { 688 struct page *src_page; 689 struct page *tmp; 690 pte_t *_pte; 691 pte_t pteval; 692 693 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 694 _pte++, address += PAGE_SIZE) { 695 pteval = ptep_get(_pte); 696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 697 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 698 if (is_zero_pfn(pte_pfn(pteval))) { 699 /* 700 * ptl mostly unnecessary. 701 */ 702 spin_lock(ptl); 703 ptep_clear(vma->vm_mm, address, _pte); 704 spin_unlock(ptl); 705 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 706 } 707 } else { 708 src_page = pte_page(pteval); 709 if (!PageCompound(src_page)) 710 release_pte_page(src_page); 711 /* 712 * ptl mostly unnecessary, but preempt has to 713 * be disabled to update the per-cpu stats 714 * inside page_remove_rmap(). 715 */ 716 spin_lock(ptl); 717 ptep_clear(vma->vm_mm, address, _pte); 718 page_remove_rmap(src_page, vma, false); 719 spin_unlock(ptl); 720 free_page_and_swap_cache(src_page); 721 } 722 } 723 724 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 725 list_del(&src_page->lru); 726 mod_node_page_state(page_pgdat(src_page), 727 NR_ISOLATED_ANON + page_is_file_lru(src_page), 728 -compound_nr(src_page)); 729 unlock_page(src_page); 730 free_swap_cache(src_page); 731 putback_lru_page(src_page); 732 } 733 } 734 735 static void __collapse_huge_page_copy_failed(pte_t *pte, 736 pmd_t *pmd, 737 pmd_t orig_pmd, 738 struct vm_area_struct *vma, 739 struct list_head *compound_pagelist) 740 { 741 spinlock_t *pmd_ptl; 742 743 /* 744 * Re-establish the PMD to point to the original page table 745 * entry. Restoring PMD needs to be done prior to releasing 746 * pages. Since pages are still isolated and locked here, 747 * acquiring anon_vma_lock_write is unnecessary. 748 */ 749 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 750 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 751 spin_unlock(pmd_ptl); 752 /* 753 * Release both raw and compound pages isolated 754 * in __collapse_huge_page_isolate. 755 */ 756 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 757 } 758 759 /* 760 * __collapse_huge_page_copy - attempts to copy memory contents from raw 761 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 762 * otherwise restores the original page table and releases isolated raw pages. 763 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 764 * 765 * @pte: starting of the PTEs to copy from 766 * @page: the new hugepage to copy contents to 767 * @pmd: pointer to the new hugepage's PMD 768 * @orig_pmd: the original raw pages' PMD 769 * @vma: the original raw pages' virtual memory area 770 * @address: starting address to copy 771 * @ptl: lock on raw pages' PTEs 772 * @compound_pagelist: list that stores compound pages 773 */ 774 static int __collapse_huge_page_copy(pte_t *pte, 775 struct page *page, 776 pmd_t *pmd, 777 pmd_t orig_pmd, 778 struct vm_area_struct *vma, 779 unsigned long address, 780 spinlock_t *ptl, 781 struct list_head *compound_pagelist) 782 { 783 struct page *src_page; 784 pte_t *_pte; 785 pte_t pteval; 786 unsigned long _address; 787 int result = SCAN_SUCCEED; 788 789 /* 790 * Copying pages' contents is subject to memory poison at any iteration. 791 */ 792 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 793 _pte++, page++, _address += PAGE_SIZE) { 794 pteval = ptep_get(_pte); 795 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 796 clear_user_highpage(page, _address); 797 continue; 798 } 799 src_page = pte_page(pteval); 800 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 801 result = SCAN_COPY_MC; 802 break; 803 } 804 } 805 806 if (likely(result == SCAN_SUCCEED)) 807 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 808 compound_pagelist); 809 else 810 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 811 compound_pagelist); 812 813 return result; 814 } 815 816 static void khugepaged_alloc_sleep(void) 817 { 818 DEFINE_WAIT(wait); 819 820 add_wait_queue(&khugepaged_wait, &wait); 821 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 822 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 823 remove_wait_queue(&khugepaged_wait, &wait); 824 } 825 826 struct collapse_control khugepaged_collapse_control = { 827 .is_khugepaged = true, 828 }; 829 830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 831 { 832 int i; 833 834 /* 835 * If node_reclaim_mode is disabled, then no extra effort is made to 836 * allocate memory locally. 837 */ 838 if (!node_reclaim_enabled()) 839 return false; 840 841 /* If there is a count for this node already, it must be acceptable */ 842 if (cc->node_load[nid]) 843 return false; 844 845 for (i = 0; i < MAX_NUMNODES; i++) { 846 if (!cc->node_load[i]) 847 continue; 848 if (node_distance(nid, i) > node_reclaim_distance) 849 return true; 850 } 851 return false; 852 } 853 854 #define khugepaged_defrag() \ 855 (transparent_hugepage_flags & \ 856 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 857 858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 860 { 861 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 862 } 863 864 #ifdef CONFIG_NUMA 865 static int hpage_collapse_find_target_node(struct collapse_control *cc) 866 { 867 int nid, target_node = 0, max_value = 0; 868 869 /* find first node with max normal pages hit */ 870 for (nid = 0; nid < MAX_NUMNODES; nid++) 871 if (cc->node_load[nid] > max_value) { 872 max_value = cc->node_load[nid]; 873 target_node = nid; 874 } 875 876 for_each_online_node(nid) { 877 if (max_value == cc->node_load[nid]) 878 node_set(nid, cc->alloc_nmask); 879 } 880 881 return target_node; 882 } 883 #else 884 static int hpage_collapse_find_target_node(struct collapse_control *cc) 885 { 886 return 0; 887 } 888 #endif 889 890 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 891 nodemask_t *nmask) 892 { 893 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 894 if (unlikely(!*hpage)) { 895 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 896 return false; 897 } 898 899 prep_transhuge_page(*hpage); 900 count_vm_event(THP_COLLAPSE_ALLOC); 901 return true; 902 } 903 904 /* 905 * If mmap_lock temporarily dropped, revalidate vma 906 * before taking mmap_lock. 907 * Returns enum scan_result value. 908 */ 909 910 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 911 bool expect_anon, 912 struct vm_area_struct **vmap, 913 struct collapse_control *cc) 914 { 915 struct vm_area_struct *vma; 916 917 if (unlikely(hpage_collapse_test_exit(mm))) 918 return SCAN_ANY_PROCESS; 919 920 *vmap = vma = find_vma(mm, address); 921 if (!vma) 922 return SCAN_VMA_NULL; 923 924 if (!transhuge_vma_suitable(vma, address)) 925 return SCAN_ADDRESS_RANGE; 926 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 927 cc->is_khugepaged)) 928 return SCAN_VMA_CHECK; 929 /* 930 * Anon VMA expected, the address may be unmapped then 931 * remapped to file after khugepaged reaquired the mmap_lock. 932 * 933 * hugepage_vma_check may return true for qualified file 934 * vmas. 935 */ 936 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 937 return SCAN_PAGE_ANON; 938 return SCAN_SUCCEED; 939 } 940 941 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 942 unsigned long address, 943 pmd_t **pmd) 944 { 945 pmd_t pmde; 946 947 *pmd = mm_find_pmd(mm, address); 948 if (!*pmd) 949 return SCAN_PMD_NULL; 950 951 pmde = pmdp_get_lockless(*pmd); 952 if (pmd_none(pmde)) 953 return SCAN_PMD_NONE; 954 if (!pmd_present(pmde)) 955 return SCAN_PMD_NULL; 956 if (pmd_trans_huge(pmde)) 957 return SCAN_PMD_MAPPED; 958 if (pmd_devmap(pmde)) 959 return SCAN_PMD_NULL; 960 if (pmd_bad(pmde)) 961 return SCAN_PMD_NULL; 962 return SCAN_SUCCEED; 963 } 964 965 static int check_pmd_still_valid(struct mm_struct *mm, 966 unsigned long address, 967 pmd_t *pmd) 968 { 969 pmd_t *new_pmd; 970 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 971 972 if (result != SCAN_SUCCEED) 973 return result; 974 if (new_pmd != pmd) 975 return SCAN_FAIL; 976 return SCAN_SUCCEED; 977 } 978 979 /* 980 * Bring missing pages in from swap, to complete THP collapse. 981 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 982 * 983 * Called and returns without pte mapped or spinlocks held. 984 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 985 */ 986 static int __collapse_huge_page_swapin(struct mm_struct *mm, 987 struct vm_area_struct *vma, 988 unsigned long haddr, pmd_t *pmd, 989 int referenced) 990 { 991 int swapped_in = 0; 992 vm_fault_t ret = 0; 993 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 994 int result; 995 pte_t *pte = NULL; 996 spinlock_t *ptl; 997 998 for (address = haddr; address < end; address += PAGE_SIZE) { 999 struct vm_fault vmf = { 1000 .vma = vma, 1001 .address = address, 1002 .pgoff = linear_page_index(vma, address), 1003 .flags = FAULT_FLAG_ALLOW_RETRY, 1004 .pmd = pmd, 1005 }; 1006 1007 if (!pte++) { 1008 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1009 if (!pte) { 1010 mmap_read_unlock(mm); 1011 result = SCAN_PMD_NULL; 1012 goto out; 1013 } 1014 } 1015 1016 vmf.orig_pte = ptep_get_lockless(pte); 1017 if (!is_swap_pte(vmf.orig_pte)) 1018 continue; 1019 1020 vmf.pte = pte; 1021 vmf.ptl = ptl; 1022 ret = do_swap_page(&vmf); 1023 /* Which unmaps pte (after perhaps re-checking the entry) */ 1024 pte = NULL; 1025 1026 /* 1027 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1028 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1029 * we do not retry here and swap entry will remain in pagetable 1030 * resulting in later failure. 1031 */ 1032 if (ret & VM_FAULT_RETRY) { 1033 /* Likely, but not guaranteed, that page lock failed */ 1034 result = SCAN_PAGE_LOCK; 1035 goto out; 1036 } 1037 if (ret & VM_FAULT_ERROR) { 1038 mmap_read_unlock(mm); 1039 result = SCAN_FAIL; 1040 goto out; 1041 } 1042 swapped_in++; 1043 } 1044 1045 if (pte) 1046 pte_unmap(pte); 1047 1048 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1049 if (swapped_in) 1050 lru_add_drain(); 1051 1052 result = SCAN_SUCCEED; 1053 out: 1054 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1055 return result; 1056 } 1057 1058 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1059 struct collapse_control *cc) 1060 { 1061 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1062 GFP_TRANSHUGE); 1063 int node = hpage_collapse_find_target_node(cc); 1064 struct folio *folio; 1065 1066 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 1067 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1068 1069 folio = page_folio(*hpage); 1070 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1071 folio_put(folio); 1072 *hpage = NULL; 1073 return SCAN_CGROUP_CHARGE_FAIL; 1074 } 1075 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 1076 1077 return SCAN_SUCCEED; 1078 } 1079 1080 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1081 int referenced, int unmapped, 1082 struct collapse_control *cc) 1083 { 1084 LIST_HEAD(compound_pagelist); 1085 pmd_t *pmd, _pmd; 1086 pte_t *pte; 1087 pgtable_t pgtable; 1088 struct page *hpage; 1089 spinlock_t *pmd_ptl, *pte_ptl; 1090 int result = SCAN_FAIL; 1091 struct vm_area_struct *vma; 1092 struct mmu_notifier_range range; 1093 1094 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1095 1096 /* 1097 * Before allocating the hugepage, release the mmap_lock read lock. 1098 * The allocation can take potentially a long time if it involves 1099 * sync compaction, and we do not need to hold the mmap_lock during 1100 * that. We will recheck the vma after taking it again in write mode. 1101 */ 1102 mmap_read_unlock(mm); 1103 1104 result = alloc_charge_hpage(&hpage, mm, cc); 1105 if (result != SCAN_SUCCEED) 1106 goto out_nolock; 1107 1108 mmap_read_lock(mm); 1109 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1110 if (result != SCAN_SUCCEED) { 1111 mmap_read_unlock(mm); 1112 goto out_nolock; 1113 } 1114 1115 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1116 if (result != SCAN_SUCCEED) { 1117 mmap_read_unlock(mm); 1118 goto out_nolock; 1119 } 1120 1121 if (unmapped) { 1122 /* 1123 * __collapse_huge_page_swapin will return with mmap_lock 1124 * released when it fails. So we jump out_nolock directly in 1125 * that case. Continuing to collapse causes inconsistency. 1126 */ 1127 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1128 referenced); 1129 if (result != SCAN_SUCCEED) 1130 goto out_nolock; 1131 } 1132 1133 mmap_read_unlock(mm); 1134 /* 1135 * Prevent all access to pagetables with the exception of 1136 * gup_fast later handled by the ptep_clear_flush and the VM 1137 * handled by the anon_vma lock + PG_lock. 1138 */ 1139 mmap_write_lock(mm); 1140 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1141 if (result != SCAN_SUCCEED) 1142 goto out_up_write; 1143 /* check if the pmd is still valid */ 1144 result = check_pmd_still_valid(mm, address, pmd); 1145 if (result != SCAN_SUCCEED) 1146 goto out_up_write; 1147 1148 vma_start_write(vma); 1149 anon_vma_lock_write(vma->anon_vma); 1150 1151 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1152 address + HPAGE_PMD_SIZE); 1153 mmu_notifier_invalidate_range_start(&range); 1154 1155 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1156 /* 1157 * This removes any huge TLB entry from the CPU so we won't allow 1158 * huge and small TLB entries for the same virtual address to 1159 * avoid the risk of CPU bugs in that area. 1160 * 1161 * Parallel fast GUP is fine since fast GUP will back off when 1162 * it detects PMD is changed. 1163 */ 1164 _pmd = pmdp_collapse_flush(vma, address, pmd); 1165 spin_unlock(pmd_ptl); 1166 mmu_notifier_invalidate_range_end(&range); 1167 tlb_remove_table_sync_one(); 1168 1169 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1170 if (pte) { 1171 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1172 &compound_pagelist); 1173 spin_unlock(pte_ptl); 1174 } else { 1175 result = SCAN_PMD_NULL; 1176 } 1177 1178 if (unlikely(result != SCAN_SUCCEED)) { 1179 if (pte) 1180 pte_unmap(pte); 1181 spin_lock(pmd_ptl); 1182 BUG_ON(!pmd_none(*pmd)); 1183 /* 1184 * We can only use set_pmd_at when establishing 1185 * hugepmds and never for establishing regular pmds that 1186 * points to regular pagetables. Use pmd_populate for that 1187 */ 1188 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1189 spin_unlock(pmd_ptl); 1190 anon_vma_unlock_write(vma->anon_vma); 1191 goto out_up_write; 1192 } 1193 1194 /* 1195 * All pages are isolated and locked so anon_vma rmap 1196 * can't run anymore. 1197 */ 1198 anon_vma_unlock_write(vma->anon_vma); 1199 1200 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1201 vma, address, pte_ptl, 1202 &compound_pagelist); 1203 pte_unmap(pte); 1204 if (unlikely(result != SCAN_SUCCEED)) 1205 goto out_up_write; 1206 1207 /* 1208 * spin_lock() below is not the equivalent of smp_wmb(), but 1209 * the smp_wmb() inside __SetPageUptodate() can be reused to 1210 * avoid the copy_huge_page writes to become visible after 1211 * the set_pmd_at() write. 1212 */ 1213 __SetPageUptodate(hpage); 1214 pgtable = pmd_pgtable(_pmd); 1215 1216 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1217 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1218 1219 spin_lock(pmd_ptl); 1220 BUG_ON(!pmd_none(*pmd)); 1221 page_add_new_anon_rmap(hpage, vma, address); 1222 lru_cache_add_inactive_or_unevictable(hpage, vma); 1223 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1224 set_pmd_at(mm, address, pmd, _pmd); 1225 update_mmu_cache_pmd(vma, address, pmd); 1226 spin_unlock(pmd_ptl); 1227 1228 hpage = NULL; 1229 1230 result = SCAN_SUCCEED; 1231 out_up_write: 1232 mmap_write_unlock(mm); 1233 out_nolock: 1234 if (hpage) 1235 put_page(hpage); 1236 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1237 return result; 1238 } 1239 1240 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1241 struct vm_area_struct *vma, 1242 unsigned long address, bool *mmap_locked, 1243 struct collapse_control *cc) 1244 { 1245 pmd_t *pmd; 1246 pte_t *pte, *_pte; 1247 int result = SCAN_FAIL, referenced = 0; 1248 int none_or_zero = 0, shared = 0; 1249 struct page *page = NULL; 1250 unsigned long _address; 1251 spinlock_t *ptl; 1252 int node = NUMA_NO_NODE, unmapped = 0; 1253 bool writable = false; 1254 1255 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1256 1257 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1258 if (result != SCAN_SUCCEED) 1259 goto out; 1260 1261 memset(cc->node_load, 0, sizeof(cc->node_load)); 1262 nodes_clear(cc->alloc_nmask); 1263 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1264 if (!pte) { 1265 result = SCAN_PMD_NULL; 1266 goto out; 1267 } 1268 1269 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1270 _pte++, _address += PAGE_SIZE) { 1271 pte_t pteval = ptep_get(_pte); 1272 if (is_swap_pte(pteval)) { 1273 ++unmapped; 1274 if (!cc->is_khugepaged || 1275 unmapped <= khugepaged_max_ptes_swap) { 1276 /* 1277 * Always be strict with uffd-wp 1278 * enabled swap entries. Please see 1279 * comment below for pte_uffd_wp(). 1280 */ 1281 if (pte_swp_uffd_wp_any(pteval)) { 1282 result = SCAN_PTE_UFFD_WP; 1283 goto out_unmap; 1284 } 1285 continue; 1286 } else { 1287 result = SCAN_EXCEED_SWAP_PTE; 1288 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1289 goto out_unmap; 1290 } 1291 } 1292 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1293 ++none_or_zero; 1294 if (!userfaultfd_armed(vma) && 1295 (!cc->is_khugepaged || 1296 none_or_zero <= khugepaged_max_ptes_none)) { 1297 continue; 1298 } else { 1299 result = SCAN_EXCEED_NONE_PTE; 1300 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1301 goto out_unmap; 1302 } 1303 } 1304 if (pte_uffd_wp(pteval)) { 1305 /* 1306 * Don't collapse the page if any of the small 1307 * PTEs are armed with uffd write protection. 1308 * Here we can also mark the new huge pmd as 1309 * write protected if any of the small ones is 1310 * marked but that could bring unknown 1311 * userfault messages that falls outside of 1312 * the registered range. So, just be simple. 1313 */ 1314 result = SCAN_PTE_UFFD_WP; 1315 goto out_unmap; 1316 } 1317 if (pte_write(pteval)) 1318 writable = true; 1319 1320 page = vm_normal_page(vma, _address, pteval); 1321 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1322 result = SCAN_PAGE_NULL; 1323 goto out_unmap; 1324 } 1325 1326 if (page_mapcount(page) > 1) { 1327 ++shared; 1328 if (cc->is_khugepaged && 1329 shared > khugepaged_max_ptes_shared) { 1330 result = SCAN_EXCEED_SHARED_PTE; 1331 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1332 goto out_unmap; 1333 } 1334 } 1335 1336 page = compound_head(page); 1337 1338 /* 1339 * Record which node the original page is from and save this 1340 * information to cc->node_load[]. 1341 * Khugepaged will allocate hugepage from the node has the max 1342 * hit record. 1343 */ 1344 node = page_to_nid(page); 1345 if (hpage_collapse_scan_abort(node, cc)) { 1346 result = SCAN_SCAN_ABORT; 1347 goto out_unmap; 1348 } 1349 cc->node_load[node]++; 1350 if (!PageLRU(page)) { 1351 result = SCAN_PAGE_LRU; 1352 goto out_unmap; 1353 } 1354 if (PageLocked(page)) { 1355 result = SCAN_PAGE_LOCK; 1356 goto out_unmap; 1357 } 1358 if (!PageAnon(page)) { 1359 result = SCAN_PAGE_ANON; 1360 goto out_unmap; 1361 } 1362 1363 /* 1364 * Check if the page has any GUP (or other external) pins. 1365 * 1366 * Here the check may be racy: 1367 * it may see total_mapcount > refcount in some cases? 1368 * But such case is ephemeral we could always retry collapse 1369 * later. However it may report false positive if the page 1370 * has excessive GUP pins (i.e. 512). Anyway the same check 1371 * will be done again later the risk seems low. 1372 */ 1373 if (!is_refcount_suitable(page)) { 1374 result = SCAN_PAGE_COUNT; 1375 goto out_unmap; 1376 } 1377 1378 /* 1379 * If collapse was initiated by khugepaged, check that there is 1380 * enough young pte to justify collapsing the page 1381 */ 1382 if (cc->is_khugepaged && 1383 (pte_young(pteval) || page_is_young(page) || 1384 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1385 address))) 1386 referenced++; 1387 } 1388 if (!writable) { 1389 result = SCAN_PAGE_RO; 1390 } else if (cc->is_khugepaged && 1391 (!referenced || 1392 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1393 result = SCAN_LACK_REFERENCED_PAGE; 1394 } else { 1395 result = SCAN_SUCCEED; 1396 } 1397 out_unmap: 1398 pte_unmap_unlock(pte, ptl); 1399 if (result == SCAN_SUCCEED) { 1400 result = collapse_huge_page(mm, address, referenced, 1401 unmapped, cc); 1402 /* collapse_huge_page will return with the mmap_lock released */ 1403 *mmap_locked = false; 1404 } 1405 out: 1406 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1407 none_or_zero, result, unmapped); 1408 return result; 1409 } 1410 1411 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1412 { 1413 struct mm_slot *slot = &mm_slot->slot; 1414 struct mm_struct *mm = slot->mm; 1415 1416 lockdep_assert_held(&khugepaged_mm_lock); 1417 1418 if (hpage_collapse_test_exit(mm)) { 1419 /* free mm_slot */ 1420 hash_del(&slot->hash); 1421 list_del(&slot->mm_node); 1422 1423 /* 1424 * Not strictly needed because the mm exited already. 1425 * 1426 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1427 */ 1428 1429 /* khugepaged_mm_lock actually not necessary for the below */ 1430 mm_slot_free(mm_slot_cache, mm_slot); 1431 mmdrop(mm); 1432 } 1433 } 1434 1435 #ifdef CONFIG_SHMEM 1436 /* hpage must be locked, and mmap_lock must be held */ 1437 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1438 pmd_t *pmdp, struct page *hpage) 1439 { 1440 struct vm_fault vmf = { 1441 .vma = vma, 1442 .address = addr, 1443 .flags = 0, 1444 .pmd = pmdp, 1445 }; 1446 1447 VM_BUG_ON(!PageTransHuge(hpage)); 1448 mmap_assert_locked(vma->vm_mm); 1449 1450 if (do_set_pmd(&vmf, hpage)) 1451 return SCAN_FAIL; 1452 1453 get_page(hpage); 1454 return SCAN_SUCCEED; 1455 } 1456 1457 /** 1458 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1459 * address haddr. 1460 * 1461 * @mm: process address space where collapse happens 1462 * @addr: THP collapse address 1463 * @install_pmd: If a huge PMD should be installed 1464 * 1465 * This function checks whether all the PTEs in the PMD are pointing to the 1466 * right THP. If so, retract the page table so the THP can refault in with 1467 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1468 */ 1469 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1470 bool install_pmd) 1471 { 1472 struct mmu_notifier_range range; 1473 bool notified = false; 1474 unsigned long haddr = addr & HPAGE_PMD_MASK; 1475 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1476 struct page *hpage; 1477 pte_t *start_pte, *pte; 1478 pmd_t *pmd, pgt_pmd; 1479 spinlock_t *pml, *ptl; 1480 int nr_ptes = 0, result = SCAN_FAIL; 1481 int i; 1482 1483 mmap_assert_locked(mm); 1484 1485 /* First check VMA found, in case page tables are being torn down */ 1486 if (!vma || !vma->vm_file || 1487 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1488 return SCAN_VMA_CHECK; 1489 1490 /* Fast check before locking page if already PMD-mapped */ 1491 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1492 if (result == SCAN_PMD_MAPPED) 1493 return result; 1494 1495 /* 1496 * If we are here, we've succeeded in replacing all the native pages 1497 * in the page cache with a single hugepage. If a mm were to fault-in 1498 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1499 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1500 * analogously elide sysfs THP settings here. 1501 */ 1502 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1503 return SCAN_VMA_CHECK; 1504 1505 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1506 if (userfaultfd_wp(vma)) 1507 return SCAN_PTE_UFFD_WP; 1508 1509 hpage = find_lock_page(vma->vm_file->f_mapping, 1510 linear_page_index(vma, haddr)); 1511 if (!hpage) 1512 return SCAN_PAGE_NULL; 1513 1514 if (!PageHead(hpage)) { 1515 result = SCAN_FAIL; 1516 goto drop_hpage; 1517 } 1518 1519 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1520 result = SCAN_PAGE_COMPOUND; 1521 goto drop_hpage; 1522 } 1523 1524 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1525 switch (result) { 1526 case SCAN_SUCCEED: 1527 break; 1528 case SCAN_PMD_NONE: 1529 /* 1530 * All pte entries have been removed and pmd cleared. 1531 * Skip all the pte checks and just update the pmd mapping. 1532 */ 1533 goto maybe_install_pmd; 1534 default: 1535 goto drop_hpage; 1536 } 1537 1538 result = SCAN_FAIL; 1539 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1540 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1541 goto drop_hpage; 1542 1543 /* step 1: check all mapped PTEs are to the right huge page */ 1544 for (i = 0, addr = haddr, pte = start_pte; 1545 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1546 struct page *page; 1547 pte_t ptent = ptep_get(pte); 1548 1549 /* empty pte, skip */ 1550 if (pte_none(ptent)) 1551 continue; 1552 1553 /* page swapped out, abort */ 1554 if (!pte_present(ptent)) { 1555 result = SCAN_PTE_NON_PRESENT; 1556 goto abort; 1557 } 1558 1559 page = vm_normal_page(vma, addr, ptent); 1560 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1561 page = NULL; 1562 /* 1563 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1564 * page table, but the new page will not be a subpage of hpage. 1565 */ 1566 if (hpage + i != page) 1567 goto abort; 1568 } 1569 1570 pte_unmap_unlock(start_pte, ptl); 1571 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1572 haddr, haddr + HPAGE_PMD_SIZE); 1573 mmu_notifier_invalidate_range_start(&range); 1574 notified = true; 1575 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1576 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1577 goto abort; 1578 1579 /* step 2: clear page table and adjust rmap */ 1580 for (i = 0, addr = haddr, pte = start_pte; 1581 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1582 struct page *page; 1583 pte_t ptent = ptep_get(pte); 1584 1585 if (pte_none(ptent)) 1586 continue; 1587 /* 1588 * We dropped ptl after the first scan, to do the mmu_notifier: 1589 * page lock stops more PTEs of the hpage being faulted in, but 1590 * does not stop write faults COWing anon copies from existing 1591 * PTEs; and does not stop those being swapped out or migrated. 1592 */ 1593 if (!pte_present(ptent)) { 1594 result = SCAN_PTE_NON_PRESENT; 1595 goto abort; 1596 } 1597 page = vm_normal_page(vma, addr, ptent); 1598 if (hpage + i != page) 1599 goto abort; 1600 1601 /* 1602 * Must clear entry, or a racing truncate may re-remove it. 1603 * TLB flush can be left until pmdp_collapse_flush() does it. 1604 * PTE dirty? Shmem page is already dirty; file is read-only. 1605 */ 1606 ptep_clear(mm, addr, pte); 1607 page_remove_rmap(page, vma, false); 1608 nr_ptes++; 1609 } 1610 1611 pte_unmap_unlock(start_pte, ptl); 1612 1613 /* step 3: set proper refcount and mm_counters. */ 1614 if (nr_ptes) { 1615 page_ref_sub(hpage, nr_ptes); 1616 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes); 1617 } 1618 1619 /* step 4: remove page table */ 1620 1621 /* Huge page lock is still held, so page table must remain empty */ 1622 pml = pmd_lock(mm, pmd); 1623 if (ptl != pml) 1624 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1625 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1626 pmdp_get_lockless_sync(); 1627 if (ptl != pml) 1628 spin_unlock(ptl); 1629 spin_unlock(pml); 1630 1631 mmu_notifier_invalidate_range_end(&range); 1632 1633 mm_dec_nr_ptes(mm); 1634 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1635 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1636 1637 maybe_install_pmd: 1638 /* step 5: install pmd entry */ 1639 result = install_pmd 1640 ? set_huge_pmd(vma, haddr, pmd, hpage) 1641 : SCAN_SUCCEED; 1642 goto drop_hpage; 1643 abort: 1644 if (nr_ptes) { 1645 flush_tlb_mm(mm); 1646 page_ref_sub(hpage, nr_ptes); 1647 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes); 1648 } 1649 if (start_pte) 1650 pte_unmap_unlock(start_pte, ptl); 1651 if (notified) 1652 mmu_notifier_invalidate_range_end(&range); 1653 drop_hpage: 1654 unlock_page(hpage); 1655 put_page(hpage); 1656 return result; 1657 } 1658 1659 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1660 { 1661 struct vm_area_struct *vma; 1662 1663 i_mmap_lock_read(mapping); 1664 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1665 struct mmu_notifier_range range; 1666 struct mm_struct *mm; 1667 unsigned long addr; 1668 pmd_t *pmd, pgt_pmd; 1669 spinlock_t *pml; 1670 spinlock_t *ptl; 1671 bool skipped_uffd = false; 1672 1673 /* 1674 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1675 * got written to. These VMAs are likely not worth removing 1676 * page tables from, as PMD-mapping is likely to be split later. 1677 */ 1678 if (READ_ONCE(vma->anon_vma)) 1679 continue; 1680 1681 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1682 if (addr & ~HPAGE_PMD_MASK || 1683 vma->vm_end < addr + HPAGE_PMD_SIZE) 1684 continue; 1685 1686 mm = vma->vm_mm; 1687 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1688 continue; 1689 1690 if (hpage_collapse_test_exit(mm)) 1691 continue; 1692 /* 1693 * When a vma is registered with uffd-wp, we cannot recycle 1694 * the page table because there may be pte markers installed. 1695 * Other vmas can still have the same file mapped hugely, but 1696 * skip this one: it will always be mapped in small page size 1697 * for uffd-wp registered ranges. 1698 */ 1699 if (userfaultfd_wp(vma)) 1700 continue; 1701 1702 /* PTEs were notified when unmapped; but now for the PMD? */ 1703 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1704 addr, addr + HPAGE_PMD_SIZE); 1705 mmu_notifier_invalidate_range_start(&range); 1706 1707 pml = pmd_lock(mm, pmd); 1708 ptl = pte_lockptr(mm, pmd); 1709 if (ptl != pml) 1710 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1711 1712 /* 1713 * Huge page lock is still held, so normally the page table 1714 * must remain empty; and we have already skipped anon_vma 1715 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1716 * held, it is still possible for a racing userfaultfd_ioctl() 1717 * to have inserted ptes or markers. Now that we hold ptlock, 1718 * repeating the anon_vma check protects from one category, 1719 * and repeating the userfaultfd_wp() check from another. 1720 */ 1721 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1722 skipped_uffd = true; 1723 } else { 1724 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1725 pmdp_get_lockless_sync(); 1726 } 1727 1728 if (ptl != pml) 1729 spin_unlock(ptl); 1730 spin_unlock(pml); 1731 1732 mmu_notifier_invalidate_range_end(&range); 1733 1734 if (!skipped_uffd) { 1735 mm_dec_nr_ptes(mm); 1736 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1737 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1738 } 1739 } 1740 i_mmap_unlock_read(mapping); 1741 } 1742 1743 /** 1744 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1745 * 1746 * @mm: process address space where collapse happens 1747 * @addr: virtual collapse start address 1748 * @file: file that collapse on 1749 * @start: collapse start address 1750 * @cc: collapse context and scratchpad 1751 * 1752 * Basic scheme is simple, details are more complex: 1753 * - allocate and lock a new huge page; 1754 * - scan page cache, locking old pages 1755 * + swap/gup in pages if necessary; 1756 * - copy data to new page 1757 * - handle shmem holes 1758 * + re-validate that holes weren't filled by someone else 1759 * + check for userfaultfd 1760 * - finalize updates to the page cache; 1761 * - if replacing succeeds: 1762 * + unlock huge page; 1763 * + free old pages; 1764 * - if replacing failed; 1765 * + unlock old pages 1766 * + unlock and free huge page; 1767 */ 1768 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1769 struct file *file, pgoff_t start, 1770 struct collapse_control *cc) 1771 { 1772 struct address_space *mapping = file->f_mapping; 1773 struct page *hpage; 1774 struct page *page; 1775 struct page *tmp; 1776 struct folio *folio; 1777 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1778 LIST_HEAD(pagelist); 1779 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1780 int nr_none = 0, result = SCAN_SUCCEED; 1781 bool is_shmem = shmem_file(file); 1782 int nr = 0; 1783 1784 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1785 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1786 1787 result = alloc_charge_hpage(&hpage, mm, cc); 1788 if (result != SCAN_SUCCEED) 1789 goto out; 1790 1791 __SetPageLocked(hpage); 1792 if (is_shmem) 1793 __SetPageSwapBacked(hpage); 1794 hpage->index = start; 1795 hpage->mapping = mapping; 1796 1797 /* 1798 * Ensure we have slots for all the pages in the range. This is 1799 * almost certainly a no-op because most of the pages must be present 1800 */ 1801 do { 1802 xas_lock_irq(&xas); 1803 xas_create_range(&xas); 1804 if (!xas_error(&xas)) 1805 break; 1806 xas_unlock_irq(&xas); 1807 if (!xas_nomem(&xas, GFP_KERNEL)) { 1808 result = SCAN_FAIL; 1809 goto rollback; 1810 } 1811 } while (1); 1812 1813 for (index = start; index < end; index++) { 1814 xas_set(&xas, index); 1815 page = xas_load(&xas); 1816 1817 VM_BUG_ON(index != xas.xa_index); 1818 if (is_shmem) { 1819 if (!page) { 1820 /* 1821 * Stop if extent has been truncated or 1822 * hole-punched, and is now completely 1823 * empty. 1824 */ 1825 if (index == start) { 1826 if (!xas_next_entry(&xas, end - 1)) { 1827 result = SCAN_TRUNCATED; 1828 goto xa_locked; 1829 } 1830 } 1831 if (!shmem_charge(mapping->host, 1)) { 1832 result = SCAN_FAIL; 1833 goto xa_locked; 1834 } 1835 nr_none++; 1836 continue; 1837 } 1838 1839 if (xa_is_value(page) || !PageUptodate(page)) { 1840 xas_unlock_irq(&xas); 1841 /* swap in or instantiate fallocated page */ 1842 if (shmem_get_folio(mapping->host, index, 1843 &folio, SGP_NOALLOC)) { 1844 result = SCAN_FAIL; 1845 goto xa_unlocked; 1846 } 1847 /* drain lru cache to help isolate_lru_page() */ 1848 lru_add_drain(); 1849 page = folio_file_page(folio, index); 1850 } else if (trylock_page(page)) { 1851 get_page(page); 1852 xas_unlock_irq(&xas); 1853 } else { 1854 result = SCAN_PAGE_LOCK; 1855 goto xa_locked; 1856 } 1857 } else { /* !is_shmem */ 1858 if (!page || xa_is_value(page)) { 1859 xas_unlock_irq(&xas); 1860 page_cache_sync_readahead(mapping, &file->f_ra, 1861 file, index, 1862 end - index); 1863 /* drain lru cache to help isolate_lru_page() */ 1864 lru_add_drain(); 1865 page = find_lock_page(mapping, index); 1866 if (unlikely(page == NULL)) { 1867 result = SCAN_FAIL; 1868 goto xa_unlocked; 1869 } 1870 } else if (PageDirty(page)) { 1871 /* 1872 * khugepaged only works on read-only fd, 1873 * so this page is dirty because it hasn't 1874 * been flushed since first write. There 1875 * won't be new dirty pages. 1876 * 1877 * Trigger async flush here and hope the 1878 * writeback is done when khugepaged 1879 * revisits this page. 1880 * 1881 * This is a one-off situation. We are not 1882 * forcing writeback in loop. 1883 */ 1884 xas_unlock_irq(&xas); 1885 filemap_flush(mapping); 1886 result = SCAN_FAIL; 1887 goto xa_unlocked; 1888 } else if (PageWriteback(page)) { 1889 xas_unlock_irq(&xas); 1890 result = SCAN_FAIL; 1891 goto xa_unlocked; 1892 } else if (trylock_page(page)) { 1893 get_page(page); 1894 xas_unlock_irq(&xas); 1895 } else { 1896 result = SCAN_PAGE_LOCK; 1897 goto xa_locked; 1898 } 1899 } 1900 1901 /* 1902 * The page must be locked, so we can drop the i_pages lock 1903 * without racing with truncate. 1904 */ 1905 VM_BUG_ON_PAGE(!PageLocked(page), page); 1906 1907 /* make sure the page is up to date */ 1908 if (unlikely(!PageUptodate(page))) { 1909 result = SCAN_FAIL; 1910 goto out_unlock; 1911 } 1912 1913 /* 1914 * If file was truncated then extended, or hole-punched, before 1915 * we locked the first page, then a THP might be there already. 1916 * This will be discovered on the first iteration. 1917 */ 1918 if (PageTransCompound(page)) { 1919 struct page *head = compound_head(page); 1920 1921 result = compound_order(head) == HPAGE_PMD_ORDER && 1922 head->index == start 1923 /* Maybe PMD-mapped */ 1924 ? SCAN_PTE_MAPPED_HUGEPAGE 1925 : SCAN_PAGE_COMPOUND; 1926 goto out_unlock; 1927 } 1928 1929 folio = page_folio(page); 1930 1931 if (folio_mapping(folio) != mapping) { 1932 result = SCAN_TRUNCATED; 1933 goto out_unlock; 1934 } 1935 1936 if (!is_shmem && (folio_test_dirty(folio) || 1937 folio_test_writeback(folio))) { 1938 /* 1939 * khugepaged only works on read-only fd, so this 1940 * page is dirty because it hasn't been flushed 1941 * since first write. 1942 */ 1943 result = SCAN_FAIL; 1944 goto out_unlock; 1945 } 1946 1947 if (!folio_isolate_lru(folio)) { 1948 result = SCAN_DEL_PAGE_LRU; 1949 goto out_unlock; 1950 } 1951 1952 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1953 result = SCAN_PAGE_HAS_PRIVATE; 1954 folio_putback_lru(folio); 1955 goto out_unlock; 1956 } 1957 1958 if (folio_mapped(folio)) 1959 try_to_unmap(folio, 1960 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1961 1962 xas_lock_irq(&xas); 1963 1964 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page); 1965 1966 /* 1967 * We control three references to the page: 1968 * - we hold a pin on it; 1969 * - one reference from page cache; 1970 * - one from isolate_lru_page; 1971 * If those are the only references, then any new usage of the 1972 * page will have to fetch it from the page cache. That requires 1973 * locking the page to handle truncate, so any new usage will be 1974 * blocked until we unlock page after collapse/during rollback. 1975 */ 1976 if (page_count(page) != 3) { 1977 result = SCAN_PAGE_COUNT; 1978 xas_unlock_irq(&xas); 1979 putback_lru_page(page); 1980 goto out_unlock; 1981 } 1982 1983 /* 1984 * Accumulate the pages that are being collapsed. 1985 */ 1986 list_add_tail(&page->lru, &pagelist); 1987 continue; 1988 out_unlock: 1989 unlock_page(page); 1990 put_page(page); 1991 goto xa_unlocked; 1992 } 1993 1994 if (!is_shmem) { 1995 filemap_nr_thps_inc(mapping); 1996 /* 1997 * Paired with smp_mb() in do_dentry_open() to ensure 1998 * i_writecount is up to date and the update to nr_thps is 1999 * visible. Ensures the page cache will be truncated if the 2000 * file is opened writable. 2001 */ 2002 smp_mb(); 2003 if (inode_is_open_for_write(mapping->host)) { 2004 result = SCAN_FAIL; 2005 filemap_nr_thps_dec(mapping); 2006 } 2007 } 2008 2009 xa_locked: 2010 xas_unlock_irq(&xas); 2011 xa_unlocked: 2012 2013 /* 2014 * If collapse is successful, flush must be done now before copying. 2015 * If collapse is unsuccessful, does flush actually need to be done? 2016 * Do it anyway, to clear the state. 2017 */ 2018 try_to_unmap_flush(); 2019 2020 if (result != SCAN_SUCCEED) 2021 goto rollback; 2022 2023 /* 2024 * The old pages are locked, so they won't change anymore. 2025 */ 2026 index = start; 2027 list_for_each_entry(page, &pagelist, lru) { 2028 while (index < page->index) { 2029 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2030 index++; 2031 } 2032 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2033 result = SCAN_COPY_MC; 2034 goto rollback; 2035 } 2036 index++; 2037 } 2038 while (index < end) { 2039 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2040 index++; 2041 } 2042 2043 if (nr_none) { 2044 struct vm_area_struct *vma; 2045 int nr_none_check = 0; 2046 2047 i_mmap_lock_read(mapping); 2048 xas_lock_irq(&xas); 2049 2050 xas_set(&xas, start); 2051 for (index = start; index < end; index++) { 2052 if (!xas_next(&xas)) { 2053 xas_store(&xas, XA_RETRY_ENTRY); 2054 if (xas_error(&xas)) { 2055 result = SCAN_STORE_FAILED; 2056 goto immap_locked; 2057 } 2058 nr_none_check++; 2059 } 2060 } 2061 2062 if (nr_none != nr_none_check) { 2063 result = SCAN_PAGE_FILLED; 2064 goto immap_locked; 2065 } 2066 2067 /* 2068 * If userspace observed a missing page in a VMA with a MODE_MISSING 2069 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2070 * page. If so, we need to roll back to avoid suppressing such an 2071 * event. Since wp/minor userfaultfds don't give userspace any 2072 * guarantees that the kernel doesn't fill a missing page with a zero 2073 * page, so they don't matter here. 2074 * 2075 * Any userfaultfds registered after this point will not be able to 2076 * observe any missing pages due to the previously inserted retry 2077 * entries. 2078 */ 2079 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2080 if (userfaultfd_missing(vma)) { 2081 result = SCAN_EXCEED_NONE_PTE; 2082 goto immap_locked; 2083 } 2084 } 2085 2086 immap_locked: 2087 i_mmap_unlock_read(mapping); 2088 if (result != SCAN_SUCCEED) { 2089 xas_set(&xas, start); 2090 for (index = start; index < end; index++) { 2091 if (xas_next(&xas) == XA_RETRY_ENTRY) 2092 xas_store(&xas, NULL); 2093 } 2094 2095 xas_unlock_irq(&xas); 2096 goto rollback; 2097 } 2098 } else { 2099 xas_lock_irq(&xas); 2100 } 2101 2102 nr = thp_nr_pages(hpage); 2103 if (is_shmem) 2104 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2105 else 2106 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2107 2108 if (nr_none) { 2109 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2110 /* nr_none is always 0 for non-shmem. */ 2111 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2112 } 2113 2114 /* 2115 * Mark hpage as uptodate before inserting it into the page cache so 2116 * that it isn't mistaken for an fallocated but unwritten page. 2117 */ 2118 folio = page_folio(hpage); 2119 folio_mark_uptodate(folio); 2120 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2121 2122 if (is_shmem) 2123 folio_mark_dirty(folio); 2124 folio_add_lru(folio); 2125 2126 /* Join all the small entries into a single multi-index entry. */ 2127 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2128 xas_store(&xas, hpage); 2129 WARN_ON_ONCE(xas_error(&xas)); 2130 xas_unlock_irq(&xas); 2131 2132 /* 2133 * Remove pte page tables, so we can re-fault the page as huge. 2134 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2135 */ 2136 retract_page_tables(mapping, start); 2137 if (cc && !cc->is_khugepaged) 2138 result = SCAN_PTE_MAPPED_HUGEPAGE; 2139 unlock_page(hpage); 2140 2141 /* 2142 * The collapse has succeeded, so free the old pages. 2143 */ 2144 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2145 list_del(&page->lru); 2146 page->mapping = NULL; 2147 ClearPageActive(page); 2148 ClearPageUnevictable(page); 2149 unlock_page(page); 2150 folio_put_refs(page_folio(page), 3); 2151 } 2152 2153 goto out; 2154 2155 rollback: 2156 /* Something went wrong: roll back page cache changes */ 2157 if (nr_none) { 2158 xas_lock_irq(&xas); 2159 mapping->nrpages -= nr_none; 2160 shmem_uncharge(mapping->host, nr_none); 2161 xas_unlock_irq(&xas); 2162 } 2163 2164 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2165 list_del(&page->lru); 2166 unlock_page(page); 2167 putback_lru_page(page); 2168 put_page(page); 2169 } 2170 /* 2171 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2172 * file only. This undo is not needed unless failure is 2173 * due to SCAN_COPY_MC. 2174 */ 2175 if (!is_shmem && result == SCAN_COPY_MC) { 2176 filemap_nr_thps_dec(mapping); 2177 /* 2178 * Paired with smp_mb() in do_dentry_open() to 2179 * ensure the update to nr_thps is visible. 2180 */ 2181 smp_mb(); 2182 } 2183 2184 hpage->mapping = NULL; 2185 2186 unlock_page(hpage); 2187 put_page(hpage); 2188 out: 2189 VM_BUG_ON(!list_empty(&pagelist)); 2190 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2191 return result; 2192 } 2193 2194 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2195 struct file *file, pgoff_t start, 2196 struct collapse_control *cc) 2197 { 2198 struct page *page = NULL; 2199 struct address_space *mapping = file->f_mapping; 2200 XA_STATE(xas, &mapping->i_pages, start); 2201 int present, swap; 2202 int node = NUMA_NO_NODE; 2203 int result = SCAN_SUCCEED; 2204 2205 present = 0; 2206 swap = 0; 2207 memset(cc->node_load, 0, sizeof(cc->node_load)); 2208 nodes_clear(cc->alloc_nmask); 2209 rcu_read_lock(); 2210 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2211 if (xas_retry(&xas, page)) 2212 continue; 2213 2214 if (xa_is_value(page)) { 2215 ++swap; 2216 if (cc->is_khugepaged && 2217 swap > khugepaged_max_ptes_swap) { 2218 result = SCAN_EXCEED_SWAP_PTE; 2219 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2220 break; 2221 } 2222 continue; 2223 } 2224 2225 /* 2226 * TODO: khugepaged should compact smaller compound pages 2227 * into a PMD sized page 2228 */ 2229 if (PageTransCompound(page)) { 2230 struct page *head = compound_head(page); 2231 2232 result = compound_order(head) == HPAGE_PMD_ORDER && 2233 head->index == start 2234 /* Maybe PMD-mapped */ 2235 ? SCAN_PTE_MAPPED_HUGEPAGE 2236 : SCAN_PAGE_COMPOUND; 2237 /* 2238 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2239 * by the caller won't touch the page cache, and so 2240 * it's safe to skip LRU and refcount checks before 2241 * returning. 2242 */ 2243 break; 2244 } 2245 2246 node = page_to_nid(page); 2247 if (hpage_collapse_scan_abort(node, cc)) { 2248 result = SCAN_SCAN_ABORT; 2249 break; 2250 } 2251 cc->node_load[node]++; 2252 2253 if (!PageLRU(page)) { 2254 result = SCAN_PAGE_LRU; 2255 break; 2256 } 2257 2258 if (page_count(page) != 2259 1 + page_mapcount(page) + page_has_private(page)) { 2260 result = SCAN_PAGE_COUNT; 2261 break; 2262 } 2263 2264 /* 2265 * We probably should check if the page is referenced here, but 2266 * nobody would transfer pte_young() to PageReferenced() for us. 2267 * And rmap walk here is just too costly... 2268 */ 2269 2270 present++; 2271 2272 if (need_resched()) { 2273 xas_pause(&xas); 2274 cond_resched_rcu(); 2275 } 2276 } 2277 rcu_read_unlock(); 2278 2279 if (result == SCAN_SUCCEED) { 2280 if (cc->is_khugepaged && 2281 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2282 result = SCAN_EXCEED_NONE_PTE; 2283 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2284 } else { 2285 result = collapse_file(mm, addr, file, start, cc); 2286 } 2287 } 2288 2289 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2290 return result; 2291 } 2292 #else 2293 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2294 struct file *file, pgoff_t start, 2295 struct collapse_control *cc) 2296 { 2297 BUILD_BUG(); 2298 } 2299 #endif 2300 2301 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2302 struct collapse_control *cc) 2303 __releases(&khugepaged_mm_lock) 2304 __acquires(&khugepaged_mm_lock) 2305 { 2306 struct vma_iterator vmi; 2307 struct khugepaged_mm_slot *mm_slot; 2308 struct mm_slot *slot; 2309 struct mm_struct *mm; 2310 struct vm_area_struct *vma; 2311 int progress = 0; 2312 2313 VM_BUG_ON(!pages); 2314 lockdep_assert_held(&khugepaged_mm_lock); 2315 *result = SCAN_FAIL; 2316 2317 if (khugepaged_scan.mm_slot) { 2318 mm_slot = khugepaged_scan.mm_slot; 2319 slot = &mm_slot->slot; 2320 } else { 2321 slot = list_entry(khugepaged_scan.mm_head.next, 2322 struct mm_slot, mm_node); 2323 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2324 khugepaged_scan.address = 0; 2325 khugepaged_scan.mm_slot = mm_slot; 2326 } 2327 spin_unlock(&khugepaged_mm_lock); 2328 2329 mm = slot->mm; 2330 /* 2331 * Don't wait for semaphore (to avoid long wait times). Just move to 2332 * the next mm on the list. 2333 */ 2334 vma = NULL; 2335 if (unlikely(!mmap_read_trylock(mm))) 2336 goto breakouterloop_mmap_lock; 2337 2338 progress++; 2339 if (unlikely(hpage_collapse_test_exit(mm))) 2340 goto breakouterloop; 2341 2342 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2343 for_each_vma(vmi, vma) { 2344 unsigned long hstart, hend; 2345 2346 cond_resched(); 2347 if (unlikely(hpage_collapse_test_exit(mm))) { 2348 progress++; 2349 break; 2350 } 2351 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2352 skip: 2353 progress++; 2354 continue; 2355 } 2356 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2357 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2358 if (khugepaged_scan.address > hend) 2359 goto skip; 2360 if (khugepaged_scan.address < hstart) 2361 khugepaged_scan.address = hstart; 2362 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2363 2364 while (khugepaged_scan.address < hend) { 2365 bool mmap_locked = true; 2366 2367 cond_resched(); 2368 if (unlikely(hpage_collapse_test_exit(mm))) 2369 goto breakouterloop; 2370 2371 VM_BUG_ON(khugepaged_scan.address < hstart || 2372 khugepaged_scan.address + HPAGE_PMD_SIZE > 2373 hend); 2374 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2375 struct file *file = get_file(vma->vm_file); 2376 pgoff_t pgoff = linear_page_index(vma, 2377 khugepaged_scan.address); 2378 2379 mmap_read_unlock(mm); 2380 mmap_locked = false; 2381 *result = hpage_collapse_scan_file(mm, 2382 khugepaged_scan.address, file, pgoff, cc); 2383 fput(file); 2384 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2385 mmap_read_lock(mm); 2386 if (hpage_collapse_test_exit(mm)) 2387 goto breakouterloop; 2388 *result = collapse_pte_mapped_thp(mm, 2389 khugepaged_scan.address, false); 2390 if (*result == SCAN_PMD_MAPPED) 2391 *result = SCAN_SUCCEED; 2392 mmap_read_unlock(mm); 2393 } 2394 } else { 2395 *result = hpage_collapse_scan_pmd(mm, vma, 2396 khugepaged_scan.address, &mmap_locked, cc); 2397 } 2398 2399 if (*result == SCAN_SUCCEED) 2400 ++khugepaged_pages_collapsed; 2401 2402 /* move to next address */ 2403 khugepaged_scan.address += HPAGE_PMD_SIZE; 2404 progress += HPAGE_PMD_NR; 2405 if (!mmap_locked) 2406 /* 2407 * We released mmap_lock so break loop. Note 2408 * that we drop mmap_lock before all hugepage 2409 * allocations, so if allocation fails, we are 2410 * guaranteed to break here and report the 2411 * correct result back to caller. 2412 */ 2413 goto breakouterloop_mmap_lock; 2414 if (progress >= pages) 2415 goto breakouterloop; 2416 } 2417 } 2418 breakouterloop: 2419 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2420 breakouterloop_mmap_lock: 2421 2422 spin_lock(&khugepaged_mm_lock); 2423 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2424 /* 2425 * Release the current mm_slot if this mm is about to die, or 2426 * if we scanned all vmas of this mm. 2427 */ 2428 if (hpage_collapse_test_exit(mm) || !vma) { 2429 /* 2430 * Make sure that if mm_users is reaching zero while 2431 * khugepaged runs here, khugepaged_exit will find 2432 * mm_slot not pointing to the exiting mm. 2433 */ 2434 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2435 slot = list_entry(slot->mm_node.next, 2436 struct mm_slot, mm_node); 2437 khugepaged_scan.mm_slot = 2438 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2439 khugepaged_scan.address = 0; 2440 } else { 2441 khugepaged_scan.mm_slot = NULL; 2442 khugepaged_full_scans++; 2443 } 2444 2445 collect_mm_slot(mm_slot); 2446 } 2447 2448 return progress; 2449 } 2450 2451 static int khugepaged_has_work(void) 2452 { 2453 return !list_empty(&khugepaged_scan.mm_head) && 2454 hugepage_flags_enabled(); 2455 } 2456 2457 static int khugepaged_wait_event(void) 2458 { 2459 return !list_empty(&khugepaged_scan.mm_head) || 2460 kthread_should_stop(); 2461 } 2462 2463 static void khugepaged_do_scan(struct collapse_control *cc) 2464 { 2465 unsigned int progress = 0, pass_through_head = 0; 2466 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2467 bool wait = true; 2468 int result = SCAN_SUCCEED; 2469 2470 lru_add_drain_all(); 2471 2472 while (true) { 2473 cond_resched(); 2474 2475 if (unlikely(kthread_should_stop() || try_to_freeze())) 2476 break; 2477 2478 spin_lock(&khugepaged_mm_lock); 2479 if (!khugepaged_scan.mm_slot) 2480 pass_through_head++; 2481 if (khugepaged_has_work() && 2482 pass_through_head < 2) 2483 progress += khugepaged_scan_mm_slot(pages - progress, 2484 &result, cc); 2485 else 2486 progress = pages; 2487 spin_unlock(&khugepaged_mm_lock); 2488 2489 if (progress >= pages) 2490 break; 2491 2492 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2493 /* 2494 * If fail to allocate the first time, try to sleep for 2495 * a while. When hit again, cancel the scan. 2496 */ 2497 if (!wait) 2498 break; 2499 wait = false; 2500 khugepaged_alloc_sleep(); 2501 } 2502 } 2503 } 2504 2505 static bool khugepaged_should_wakeup(void) 2506 { 2507 return kthread_should_stop() || 2508 time_after_eq(jiffies, khugepaged_sleep_expire); 2509 } 2510 2511 static void khugepaged_wait_work(void) 2512 { 2513 if (khugepaged_has_work()) { 2514 const unsigned long scan_sleep_jiffies = 2515 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2516 2517 if (!scan_sleep_jiffies) 2518 return; 2519 2520 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2521 wait_event_freezable_timeout(khugepaged_wait, 2522 khugepaged_should_wakeup(), 2523 scan_sleep_jiffies); 2524 return; 2525 } 2526 2527 if (hugepage_flags_enabled()) 2528 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2529 } 2530 2531 static int khugepaged(void *none) 2532 { 2533 struct khugepaged_mm_slot *mm_slot; 2534 2535 set_freezable(); 2536 set_user_nice(current, MAX_NICE); 2537 2538 while (!kthread_should_stop()) { 2539 khugepaged_do_scan(&khugepaged_collapse_control); 2540 khugepaged_wait_work(); 2541 } 2542 2543 spin_lock(&khugepaged_mm_lock); 2544 mm_slot = khugepaged_scan.mm_slot; 2545 khugepaged_scan.mm_slot = NULL; 2546 if (mm_slot) 2547 collect_mm_slot(mm_slot); 2548 spin_unlock(&khugepaged_mm_lock); 2549 return 0; 2550 } 2551 2552 static void set_recommended_min_free_kbytes(void) 2553 { 2554 struct zone *zone; 2555 int nr_zones = 0; 2556 unsigned long recommended_min; 2557 2558 if (!hugepage_flags_enabled()) { 2559 calculate_min_free_kbytes(); 2560 goto update_wmarks; 2561 } 2562 2563 for_each_populated_zone(zone) { 2564 /* 2565 * We don't need to worry about fragmentation of 2566 * ZONE_MOVABLE since it only has movable pages. 2567 */ 2568 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2569 continue; 2570 2571 nr_zones++; 2572 } 2573 2574 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2575 recommended_min = pageblock_nr_pages * nr_zones * 2; 2576 2577 /* 2578 * Make sure that on average at least two pageblocks are almost free 2579 * of another type, one for a migratetype to fall back to and a 2580 * second to avoid subsequent fallbacks of other types There are 3 2581 * MIGRATE_TYPES we care about. 2582 */ 2583 recommended_min += pageblock_nr_pages * nr_zones * 2584 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2585 2586 /* don't ever allow to reserve more than 5% of the lowmem */ 2587 recommended_min = min(recommended_min, 2588 (unsigned long) nr_free_buffer_pages() / 20); 2589 recommended_min <<= (PAGE_SHIFT-10); 2590 2591 if (recommended_min > min_free_kbytes) { 2592 if (user_min_free_kbytes >= 0) 2593 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2594 min_free_kbytes, recommended_min); 2595 2596 min_free_kbytes = recommended_min; 2597 } 2598 2599 update_wmarks: 2600 setup_per_zone_wmarks(); 2601 } 2602 2603 int start_stop_khugepaged(void) 2604 { 2605 int err = 0; 2606 2607 mutex_lock(&khugepaged_mutex); 2608 if (hugepage_flags_enabled()) { 2609 if (!khugepaged_thread) 2610 khugepaged_thread = kthread_run(khugepaged, NULL, 2611 "khugepaged"); 2612 if (IS_ERR(khugepaged_thread)) { 2613 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2614 err = PTR_ERR(khugepaged_thread); 2615 khugepaged_thread = NULL; 2616 goto fail; 2617 } 2618 2619 if (!list_empty(&khugepaged_scan.mm_head)) 2620 wake_up_interruptible(&khugepaged_wait); 2621 } else if (khugepaged_thread) { 2622 kthread_stop(khugepaged_thread); 2623 khugepaged_thread = NULL; 2624 } 2625 set_recommended_min_free_kbytes(); 2626 fail: 2627 mutex_unlock(&khugepaged_mutex); 2628 return err; 2629 } 2630 2631 void khugepaged_min_free_kbytes_update(void) 2632 { 2633 mutex_lock(&khugepaged_mutex); 2634 if (hugepage_flags_enabled() && khugepaged_thread) 2635 set_recommended_min_free_kbytes(); 2636 mutex_unlock(&khugepaged_mutex); 2637 } 2638 2639 bool current_is_khugepaged(void) 2640 { 2641 return kthread_func(current) == khugepaged; 2642 } 2643 2644 static int madvise_collapse_errno(enum scan_result r) 2645 { 2646 /* 2647 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2648 * actionable feedback to caller, so they may take an appropriate 2649 * fallback measure depending on the nature of the failure. 2650 */ 2651 switch (r) { 2652 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2653 return -ENOMEM; 2654 case SCAN_CGROUP_CHARGE_FAIL: 2655 case SCAN_EXCEED_NONE_PTE: 2656 return -EBUSY; 2657 /* Resource temporary unavailable - trying again might succeed */ 2658 case SCAN_PAGE_COUNT: 2659 case SCAN_PAGE_LOCK: 2660 case SCAN_PAGE_LRU: 2661 case SCAN_DEL_PAGE_LRU: 2662 case SCAN_PAGE_FILLED: 2663 return -EAGAIN; 2664 /* 2665 * Other: Trying again likely not to succeed / error intrinsic to 2666 * specified memory range. khugepaged likely won't be able to collapse 2667 * either. 2668 */ 2669 default: 2670 return -EINVAL; 2671 } 2672 } 2673 2674 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2675 unsigned long start, unsigned long end) 2676 { 2677 struct collapse_control *cc; 2678 struct mm_struct *mm = vma->vm_mm; 2679 unsigned long hstart, hend, addr; 2680 int thps = 0, last_fail = SCAN_FAIL; 2681 bool mmap_locked = true; 2682 2683 BUG_ON(vma->vm_start > start); 2684 BUG_ON(vma->vm_end < end); 2685 2686 *prev = vma; 2687 2688 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2689 return -EINVAL; 2690 2691 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2692 if (!cc) 2693 return -ENOMEM; 2694 cc->is_khugepaged = false; 2695 2696 mmgrab(mm); 2697 lru_add_drain_all(); 2698 2699 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2700 hend = end & HPAGE_PMD_MASK; 2701 2702 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2703 int result = SCAN_FAIL; 2704 2705 if (!mmap_locked) { 2706 cond_resched(); 2707 mmap_read_lock(mm); 2708 mmap_locked = true; 2709 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2710 cc); 2711 if (result != SCAN_SUCCEED) { 2712 last_fail = result; 2713 goto out_nolock; 2714 } 2715 2716 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2717 } 2718 mmap_assert_locked(mm); 2719 memset(cc->node_load, 0, sizeof(cc->node_load)); 2720 nodes_clear(cc->alloc_nmask); 2721 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2722 struct file *file = get_file(vma->vm_file); 2723 pgoff_t pgoff = linear_page_index(vma, addr); 2724 2725 mmap_read_unlock(mm); 2726 mmap_locked = false; 2727 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2728 cc); 2729 fput(file); 2730 } else { 2731 result = hpage_collapse_scan_pmd(mm, vma, addr, 2732 &mmap_locked, cc); 2733 } 2734 if (!mmap_locked) 2735 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2736 2737 handle_result: 2738 switch (result) { 2739 case SCAN_SUCCEED: 2740 case SCAN_PMD_MAPPED: 2741 ++thps; 2742 break; 2743 case SCAN_PTE_MAPPED_HUGEPAGE: 2744 BUG_ON(mmap_locked); 2745 BUG_ON(*prev); 2746 mmap_read_lock(mm); 2747 result = collapse_pte_mapped_thp(mm, addr, true); 2748 mmap_read_unlock(mm); 2749 goto handle_result; 2750 /* Whitelisted set of results where continuing OK */ 2751 case SCAN_PMD_NULL: 2752 case SCAN_PTE_NON_PRESENT: 2753 case SCAN_PTE_UFFD_WP: 2754 case SCAN_PAGE_RO: 2755 case SCAN_LACK_REFERENCED_PAGE: 2756 case SCAN_PAGE_NULL: 2757 case SCAN_PAGE_COUNT: 2758 case SCAN_PAGE_LOCK: 2759 case SCAN_PAGE_COMPOUND: 2760 case SCAN_PAGE_LRU: 2761 case SCAN_DEL_PAGE_LRU: 2762 last_fail = result; 2763 break; 2764 default: 2765 last_fail = result; 2766 /* Other error, exit */ 2767 goto out_maybelock; 2768 } 2769 } 2770 2771 out_maybelock: 2772 /* Caller expects us to hold mmap_lock on return */ 2773 if (!mmap_locked) 2774 mmap_read_lock(mm); 2775 out_nolock: 2776 mmap_assert_locked(mm); 2777 mmdrop(mm); 2778 kfree(cc); 2779 2780 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2781 : madvise_collapse_errno(last_fail); 2782 } 2783