xref: /openbmc/linux/mm/khugepaged.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/ksm.h>
23 
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27 #include "mm_slot.h"
28 
29 enum scan_result {
30 	SCAN_FAIL,
31 	SCAN_SUCCEED,
32 	SCAN_PMD_NULL,
33 	SCAN_PMD_NONE,
34 	SCAN_PMD_MAPPED,
35 	SCAN_EXCEED_NONE_PTE,
36 	SCAN_EXCEED_SWAP_PTE,
37 	SCAN_EXCEED_SHARED_PTE,
38 	SCAN_PTE_NON_PRESENT,
39 	SCAN_PTE_UFFD_WP,
40 	SCAN_PTE_MAPPED_HUGEPAGE,
41 	SCAN_PAGE_RO,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 };
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66 
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69 
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81  * default collapse hugepages if there is at least one pte mapped like
82  * it would have happened if the vma was large enough during page
83  * fault.
84  *
85  * Note that these are only respected if collapse was initiated by khugepaged.
86  */
87 static unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90 
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93 
94 static struct kmem_cache *mm_slot_cache __read_mostly;
95 
96 struct collapse_control {
97 	bool is_khugepaged;
98 
99 	/* Num pages scanned per node */
100 	u32 node_load[MAX_NUMNODES];
101 
102 	/* nodemask for allocation fallback */
103 	nodemask_t alloc_nmask;
104 };
105 
106 /**
107  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
108  * @slot: hash lookup from mm to mm_slot
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 };
113 
114 /**
115  * struct khugepaged_scan - cursor for scanning
116  * @mm_head: the head of the mm list to scan
117  * @mm_slot: the current mm_slot we are scanning
118  * @address: the next address inside that to be scanned
119  *
120  * There is only the one khugepaged_scan instance of this cursor structure.
121  */
122 struct khugepaged_scan {
123 	struct list_head mm_head;
124 	struct khugepaged_mm_slot *mm_slot;
125 	unsigned long address;
126 };
127 
128 static struct khugepaged_scan khugepaged_scan = {
129 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
130 };
131 
132 #ifdef CONFIG_SYSFS
133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
134 					 struct kobj_attribute *attr,
135 					 char *buf)
136 {
137 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
138 }
139 
140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
141 					  struct kobj_attribute *attr,
142 					  const char *buf, size_t count)
143 {
144 	unsigned int msecs;
145 	int err;
146 
147 	err = kstrtouint(buf, 10, &msecs);
148 	if (err)
149 		return -EINVAL;
150 
151 	khugepaged_scan_sleep_millisecs = msecs;
152 	khugepaged_sleep_expire = 0;
153 	wake_up_interruptible(&khugepaged_wait);
154 
155 	return count;
156 }
157 static struct kobj_attribute scan_sleep_millisecs_attr =
158 	__ATTR_RW(scan_sleep_millisecs);
159 
160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
161 					  struct kobj_attribute *attr,
162 					  char *buf)
163 {
164 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
165 }
166 
167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
168 					   struct kobj_attribute *attr,
169 					   const char *buf, size_t count)
170 {
171 	unsigned int msecs;
172 	int err;
173 
174 	err = kstrtouint(buf, 10, &msecs);
175 	if (err)
176 		return -EINVAL;
177 
178 	khugepaged_alloc_sleep_millisecs = msecs;
179 	khugepaged_sleep_expire = 0;
180 	wake_up_interruptible(&khugepaged_wait);
181 
182 	return count;
183 }
184 static struct kobj_attribute alloc_sleep_millisecs_attr =
185 	__ATTR_RW(alloc_sleep_millisecs);
186 
187 static ssize_t pages_to_scan_show(struct kobject *kobj,
188 				  struct kobj_attribute *attr,
189 				  char *buf)
190 {
191 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
192 }
193 static ssize_t pages_to_scan_store(struct kobject *kobj,
194 				   struct kobj_attribute *attr,
195 				   const char *buf, size_t count)
196 {
197 	unsigned int pages;
198 	int err;
199 
200 	err = kstrtouint(buf, 10, &pages);
201 	if (err || !pages)
202 		return -EINVAL;
203 
204 	khugepaged_pages_to_scan = pages;
205 
206 	return count;
207 }
208 static struct kobj_attribute pages_to_scan_attr =
209 	__ATTR_RW(pages_to_scan);
210 
211 static ssize_t pages_collapsed_show(struct kobject *kobj,
212 				    struct kobj_attribute *attr,
213 				    char *buf)
214 {
215 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
216 }
217 static struct kobj_attribute pages_collapsed_attr =
218 	__ATTR_RO(pages_collapsed);
219 
220 static ssize_t full_scans_show(struct kobject *kobj,
221 			       struct kobj_attribute *attr,
222 			       char *buf)
223 {
224 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
225 }
226 static struct kobj_attribute full_scans_attr =
227 	__ATTR_RO(full_scans);
228 
229 static ssize_t defrag_show(struct kobject *kobj,
230 			   struct kobj_attribute *attr, char *buf)
231 {
232 	return single_hugepage_flag_show(kobj, attr, buf,
233 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
235 static ssize_t defrag_store(struct kobject *kobj,
236 			    struct kobj_attribute *attr,
237 			    const char *buf, size_t count)
238 {
239 	return single_hugepage_flag_store(kobj, attr, buf, count,
240 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
241 }
242 static struct kobj_attribute khugepaged_defrag_attr =
243 	__ATTR_RW(defrag);
244 
245 /*
246  * max_ptes_none controls if khugepaged should collapse hugepages over
247  * any unmapped ptes in turn potentially increasing the memory
248  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
249  * reduce the available free memory in the system as it
250  * runs. Increasing max_ptes_none will instead potentially reduce the
251  * free memory in the system during the khugepaged scan.
252  */
253 static ssize_t max_ptes_none_show(struct kobject *kobj,
254 				  struct kobj_attribute *attr,
255 				  char *buf)
256 {
257 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
258 }
259 static ssize_t max_ptes_none_store(struct kobject *kobj,
260 				   struct kobj_attribute *attr,
261 				   const char *buf, size_t count)
262 {
263 	int err;
264 	unsigned long max_ptes_none;
265 
266 	err = kstrtoul(buf, 10, &max_ptes_none);
267 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
268 		return -EINVAL;
269 
270 	khugepaged_max_ptes_none = max_ptes_none;
271 
272 	return count;
273 }
274 static struct kobj_attribute khugepaged_max_ptes_none_attr =
275 	__ATTR_RW(max_ptes_none);
276 
277 static ssize_t max_ptes_swap_show(struct kobject *kobj,
278 				  struct kobj_attribute *attr,
279 				  char *buf)
280 {
281 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
282 }
283 
284 static ssize_t max_ptes_swap_store(struct kobject *kobj,
285 				   struct kobj_attribute *attr,
286 				   const char *buf, size_t count)
287 {
288 	int err;
289 	unsigned long max_ptes_swap;
290 
291 	err  = kstrtoul(buf, 10, &max_ptes_swap);
292 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
293 		return -EINVAL;
294 
295 	khugepaged_max_ptes_swap = max_ptes_swap;
296 
297 	return count;
298 }
299 
300 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
301 	__ATTR_RW(max_ptes_swap);
302 
303 static ssize_t max_ptes_shared_show(struct kobject *kobj,
304 				    struct kobj_attribute *attr,
305 				    char *buf)
306 {
307 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 }
309 
310 static ssize_t max_ptes_shared_store(struct kobject *kobj,
311 				     struct kobj_attribute *attr,
312 				     const char *buf, size_t count)
313 {
314 	int err;
315 	unsigned long max_ptes_shared;
316 
317 	err  = kstrtoul(buf, 10, &max_ptes_shared);
318 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
319 		return -EINVAL;
320 
321 	khugepaged_max_ptes_shared = max_ptes_shared;
322 
323 	return count;
324 }
325 
326 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
327 	__ATTR_RW(max_ptes_shared);
328 
329 static struct attribute *khugepaged_attr[] = {
330 	&khugepaged_defrag_attr.attr,
331 	&khugepaged_max_ptes_none_attr.attr,
332 	&khugepaged_max_ptes_swap_attr.attr,
333 	&khugepaged_max_ptes_shared_attr.attr,
334 	&pages_to_scan_attr.attr,
335 	&pages_collapsed_attr.attr,
336 	&full_scans_attr.attr,
337 	&scan_sleep_millisecs_attr.attr,
338 	&alloc_sleep_millisecs_attr.attr,
339 	NULL,
340 };
341 
342 struct attribute_group khugepaged_attr_group = {
343 	.attrs = khugepaged_attr,
344 	.name = "khugepaged",
345 };
346 #endif /* CONFIG_SYSFS */
347 
348 int hugepage_madvise(struct vm_area_struct *vma,
349 		     unsigned long *vm_flags, int advice)
350 {
351 	switch (advice) {
352 	case MADV_HUGEPAGE:
353 #ifdef CONFIG_S390
354 		/*
355 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 		 * can't handle this properly after s390_enable_sie, so we simply
357 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 		 */
359 		if (mm_has_pgste(vma->vm_mm))
360 			return 0;
361 #endif
362 		*vm_flags &= ~VM_NOHUGEPAGE;
363 		*vm_flags |= VM_HUGEPAGE;
364 		/*
365 		 * If the vma become good for khugepaged to scan,
366 		 * register it here without waiting a page fault that
367 		 * may not happen any time soon.
368 		 */
369 		khugepaged_enter_vma(vma, *vm_flags);
370 		break;
371 	case MADV_NOHUGEPAGE:
372 		*vm_flags &= ~VM_HUGEPAGE;
373 		*vm_flags |= VM_NOHUGEPAGE;
374 		/*
375 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
376 		 * this vma even if we leave the mm registered in khugepaged if
377 		 * it got registered before VM_NOHUGEPAGE was set.
378 		 */
379 		break;
380 	}
381 
382 	return 0;
383 }
384 
385 int __init khugepaged_init(void)
386 {
387 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
388 					  sizeof(struct khugepaged_mm_slot),
389 					  __alignof__(struct khugepaged_mm_slot),
390 					  0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
408 {
409 	return atomic_read(&mm->mm_users) == 0;
410 }
411 
412 void __khugepaged_enter(struct mm_struct *mm)
413 {
414 	struct khugepaged_mm_slot *mm_slot;
415 	struct mm_slot *slot;
416 	int wakeup;
417 
418 	/* __khugepaged_exit() must not run from under us */
419 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
420 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
421 		return;
422 
423 	mm_slot = mm_slot_alloc(mm_slot_cache);
424 	if (!mm_slot)
425 		return;
426 
427 	slot = &mm_slot->slot;
428 
429 	spin_lock(&khugepaged_mm_lock);
430 	mm_slot_insert(mm_slots_hash, mm, slot);
431 	/*
432 	 * Insert just behind the scanning cursor, to let the area settle
433 	 * down a little.
434 	 */
435 	wakeup = list_empty(&khugepaged_scan.mm_head);
436 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
437 	spin_unlock(&khugepaged_mm_lock);
438 
439 	mmgrab(mm);
440 	if (wakeup)
441 		wake_up_interruptible(&khugepaged_wait);
442 }
443 
444 void khugepaged_enter_vma(struct vm_area_struct *vma,
445 			  unsigned long vm_flags)
446 {
447 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
448 	    hugepage_flags_enabled()) {
449 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
450 			__khugepaged_enter(vma->vm_mm);
451 	}
452 }
453 
454 void __khugepaged_exit(struct mm_struct *mm)
455 {
456 	struct khugepaged_mm_slot *mm_slot;
457 	struct mm_slot *slot;
458 	int free = 0;
459 
460 	spin_lock(&khugepaged_mm_lock);
461 	slot = mm_slot_lookup(mm_slots_hash, mm);
462 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
463 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
464 		hash_del(&slot->hash);
465 		list_del(&slot->mm_node);
466 		free = 1;
467 	}
468 	spin_unlock(&khugepaged_mm_lock);
469 
470 	if (free) {
471 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
472 		mm_slot_free(mm_slot_cache, mm_slot);
473 		mmdrop(mm);
474 	} else if (mm_slot) {
475 		/*
476 		 * This is required to serialize against
477 		 * hpage_collapse_test_exit() (which is guaranteed to run
478 		 * under mmap sem read mode). Stop here (after we return all
479 		 * pagetables will be destroyed) until khugepaged has finished
480 		 * working on the pagetables under the mmap_lock.
481 		 */
482 		mmap_write_lock(mm);
483 		mmap_write_unlock(mm);
484 	}
485 }
486 
487 static void release_pte_folio(struct folio *folio)
488 {
489 	node_stat_mod_folio(folio,
490 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
491 			-folio_nr_pages(folio));
492 	folio_unlock(folio);
493 	folio_putback_lru(folio);
494 }
495 
496 static void release_pte_page(struct page *page)
497 {
498 	release_pte_folio(page_folio(page));
499 }
500 
501 static void release_pte_pages(pte_t *pte, pte_t *_pte,
502 		struct list_head *compound_pagelist)
503 {
504 	struct folio *folio, *tmp;
505 
506 	while (--_pte >= pte) {
507 		pte_t pteval = ptep_get(_pte);
508 		unsigned long pfn;
509 
510 		if (pte_none(pteval))
511 			continue;
512 		pfn = pte_pfn(pteval);
513 		if (is_zero_pfn(pfn))
514 			continue;
515 		folio = pfn_folio(pfn);
516 		if (folio_test_large(folio))
517 			continue;
518 		release_pte_folio(folio);
519 	}
520 
521 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
522 		list_del(&folio->lru);
523 		release_pte_folio(folio);
524 	}
525 }
526 
527 static bool is_refcount_suitable(struct page *page)
528 {
529 	int expected_refcount;
530 
531 	expected_refcount = total_mapcount(page);
532 	if (PageSwapCache(page))
533 		expected_refcount += compound_nr(page);
534 
535 	return page_count(page) == expected_refcount;
536 }
537 
538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539 					unsigned long address,
540 					pte_t *pte,
541 					struct collapse_control *cc,
542 					struct list_head *compound_pagelist)
543 {
544 	struct page *page = NULL;
545 	pte_t *_pte;
546 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547 	bool writable = false;
548 
549 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
550 	     _pte++, address += PAGE_SIZE) {
551 		pte_t pteval = ptep_get(_pte);
552 		if (pte_none(pteval) || (pte_present(pteval) &&
553 				is_zero_pfn(pte_pfn(pteval)))) {
554 			++none_or_zero;
555 			if (!userfaultfd_armed(vma) &&
556 			    (!cc->is_khugepaged ||
557 			     none_or_zero <= khugepaged_max_ptes_none)) {
558 				continue;
559 			} else {
560 				result = SCAN_EXCEED_NONE_PTE;
561 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
562 				goto out;
563 			}
564 		}
565 		if (!pte_present(pteval)) {
566 			result = SCAN_PTE_NON_PRESENT;
567 			goto out;
568 		}
569 		if (pte_uffd_wp(pteval)) {
570 			result = SCAN_PTE_UFFD_WP;
571 			goto out;
572 		}
573 		page = vm_normal_page(vma, address, pteval);
574 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575 			result = SCAN_PAGE_NULL;
576 			goto out;
577 		}
578 
579 		VM_BUG_ON_PAGE(!PageAnon(page), page);
580 
581 		if (page_mapcount(page) > 1) {
582 			++shared;
583 			if (cc->is_khugepaged &&
584 			    shared > khugepaged_max_ptes_shared) {
585 				result = SCAN_EXCEED_SHARED_PTE;
586 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
587 				goto out;
588 			}
589 		}
590 
591 		if (PageCompound(page)) {
592 			struct page *p;
593 			page = compound_head(page);
594 
595 			/*
596 			 * Check if we have dealt with the compound page
597 			 * already
598 			 */
599 			list_for_each_entry(p, compound_pagelist, lru) {
600 				if (page == p)
601 					goto next;
602 			}
603 		}
604 
605 		/*
606 		 * We can do it before isolate_lru_page because the
607 		 * page can't be freed from under us. NOTE: PG_lock
608 		 * is needed to serialize against split_huge_page
609 		 * when invoked from the VM.
610 		 */
611 		if (!trylock_page(page)) {
612 			result = SCAN_PAGE_LOCK;
613 			goto out;
614 		}
615 
616 		/*
617 		 * Check if the page has any GUP (or other external) pins.
618 		 *
619 		 * The page table that maps the page has been already unlinked
620 		 * from the page table tree and this process cannot get
621 		 * an additional pin on the page.
622 		 *
623 		 * New pins can come later if the page is shared across fork,
624 		 * but not from this process. The other process cannot write to
625 		 * the page, only trigger CoW.
626 		 */
627 		if (!is_refcount_suitable(page)) {
628 			unlock_page(page);
629 			result = SCAN_PAGE_COUNT;
630 			goto out;
631 		}
632 
633 		/*
634 		 * Isolate the page to avoid collapsing an hugepage
635 		 * currently in use by the VM.
636 		 */
637 		if (!isolate_lru_page(page)) {
638 			unlock_page(page);
639 			result = SCAN_DEL_PAGE_LRU;
640 			goto out;
641 		}
642 		mod_node_page_state(page_pgdat(page),
643 				NR_ISOLATED_ANON + page_is_file_lru(page),
644 				compound_nr(page));
645 		VM_BUG_ON_PAGE(!PageLocked(page), page);
646 		VM_BUG_ON_PAGE(PageLRU(page), page);
647 
648 		if (PageCompound(page))
649 			list_add_tail(&page->lru, compound_pagelist);
650 next:
651 		/*
652 		 * If collapse was initiated by khugepaged, check that there is
653 		 * enough young pte to justify collapsing the page
654 		 */
655 		if (cc->is_khugepaged &&
656 		    (pte_young(pteval) || page_is_young(page) ||
657 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
658 								     address)))
659 			referenced++;
660 
661 		if (pte_write(pteval))
662 			writable = true;
663 	}
664 
665 	if (unlikely(!writable)) {
666 		result = SCAN_PAGE_RO;
667 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
668 		result = SCAN_LACK_REFERENCED_PAGE;
669 	} else {
670 		result = SCAN_SUCCEED;
671 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
672 						    referenced, writable, result);
673 		return result;
674 	}
675 out:
676 	release_pte_pages(pte, _pte, compound_pagelist);
677 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
678 					    referenced, writable, result);
679 	return result;
680 }
681 
682 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
683 						struct vm_area_struct *vma,
684 						unsigned long address,
685 						spinlock_t *ptl,
686 						struct list_head *compound_pagelist)
687 {
688 	struct page *src_page;
689 	struct page *tmp;
690 	pte_t *_pte;
691 	pte_t pteval;
692 
693 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
694 	     _pte++, address += PAGE_SIZE) {
695 		pteval = ptep_get(_pte);
696 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
698 			if (is_zero_pfn(pte_pfn(pteval))) {
699 				/*
700 				 * ptl mostly unnecessary.
701 				 */
702 				spin_lock(ptl);
703 				ptep_clear(vma->vm_mm, address, _pte);
704 				spin_unlock(ptl);
705 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
706 			}
707 		} else {
708 			src_page = pte_page(pteval);
709 			if (!PageCompound(src_page))
710 				release_pte_page(src_page);
711 			/*
712 			 * ptl mostly unnecessary, but preempt has to
713 			 * be disabled to update the per-cpu stats
714 			 * inside page_remove_rmap().
715 			 */
716 			spin_lock(ptl);
717 			ptep_clear(vma->vm_mm, address, _pte);
718 			page_remove_rmap(src_page, vma, false);
719 			spin_unlock(ptl);
720 			free_page_and_swap_cache(src_page);
721 		}
722 	}
723 
724 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
725 		list_del(&src_page->lru);
726 		mod_node_page_state(page_pgdat(src_page),
727 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
728 				    -compound_nr(src_page));
729 		unlock_page(src_page);
730 		free_swap_cache(src_page);
731 		putback_lru_page(src_page);
732 	}
733 }
734 
735 static void __collapse_huge_page_copy_failed(pte_t *pte,
736 					     pmd_t *pmd,
737 					     pmd_t orig_pmd,
738 					     struct vm_area_struct *vma,
739 					     struct list_head *compound_pagelist)
740 {
741 	spinlock_t *pmd_ptl;
742 
743 	/*
744 	 * Re-establish the PMD to point to the original page table
745 	 * entry. Restoring PMD needs to be done prior to releasing
746 	 * pages. Since pages are still isolated and locked here,
747 	 * acquiring anon_vma_lock_write is unnecessary.
748 	 */
749 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
750 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
751 	spin_unlock(pmd_ptl);
752 	/*
753 	 * Release both raw and compound pages isolated
754 	 * in __collapse_huge_page_isolate.
755 	 */
756 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
757 }
758 
759 /*
760  * __collapse_huge_page_copy - attempts to copy memory contents from raw
761  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
762  * otherwise restores the original page table and releases isolated raw pages.
763  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
764  *
765  * @pte: starting of the PTEs to copy from
766  * @page: the new hugepage to copy contents to
767  * @pmd: pointer to the new hugepage's PMD
768  * @orig_pmd: the original raw pages' PMD
769  * @vma: the original raw pages' virtual memory area
770  * @address: starting address to copy
771  * @ptl: lock on raw pages' PTEs
772  * @compound_pagelist: list that stores compound pages
773  */
774 static int __collapse_huge_page_copy(pte_t *pte,
775 				     struct page *page,
776 				     pmd_t *pmd,
777 				     pmd_t orig_pmd,
778 				     struct vm_area_struct *vma,
779 				     unsigned long address,
780 				     spinlock_t *ptl,
781 				     struct list_head *compound_pagelist)
782 {
783 	struct page *src_page;
784 	pte_t *_pte;
785 	pte_t pteval;
786 	unsigned long _address;
787 	int result = SCAN_SUCCEED;
788 
789 	/*
790 	 * Copying pages' contents is subject to memory poison at any iteration.
791 	 */
792 	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
793 	     _pte++, page++, _address += PAGE_SIZE) {
794 		pteval = ptep_get(_pte);
795 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
796 			clear_user_highpage(page, _address);
797 			continue;
798 		}
799 		src_page = pte_page(pteval);
800 		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
801 			result = SCAN_COPY_MC;
802 			break;
803 		}
804 	}
805 
806 	if (likely(result == SCAN_SUCCEED))
807 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
808 						    compound_pagelist);
809 	else
810 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
811 						 compound_pagelist);
812 
813 	return result;
814 }
815 
816 static void khugepaged_alloc_sleep(void)
817 {
818 	DEFINE_WAIT(wait);
819 
820 	add_wait_queue(&khugepaged_wait, &wait);
821 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
822 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
823 	remove_wait_queue(&khugepaged_wait, &wait);
824 }
825 
826 struct collapse_control khugepaged_collapse_control = {
827 	.is_khugepaged = true,
828 };
829 
830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
831 {
832 	int i;
833 
834 	/*
835 	 * If node_reclaim_mode is disabled, then no extra effort is made to
836 	 * allocate memory locally.
837 	 */
838 	if (!node_reclaim_enabled())
839 		return false;
840 
841 	/* If there is a count for this node already, it must be acceptable */
842 	if (cc->node_load[nid])
843 		return false;
844 
845 	for (i = 0; i < MAX_NUMNODES; i++) {
846 		if (!cc->node_load[i])
847 			continue;
848 		if (node_distance(nid, i) > node_reclaim_distance)
849 			return true;
850 	}
851 	return false;
852 }
853 
854 #define khugepaged_defrag()					\
855 	(transparent_hugepage_flags &				\
856 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
857 
858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
860 {
861 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
862 }
863 
864 #ifdef CONFIG_NUMA
865 static int hpage_collapse_find_target_node(struct collapse_control *cc)
866 {
867 	int nid, target_node = 0, max_value = 0;
868 
869 	/* find first node with max normal pages hit */
870 	for (nid = 0; nid < MAX_NUMNODES; nid++)
871 		if (cc->node_load[nid] > max_value) {
872 			max_value = cc->node_load[nid];
873 			target_node = nid;
874 		}
875 
876 	for_each_online_node(nid) {
877 		if (max_value == cc->node_load[nid])
878 			node_set(nid, cc->alloc_nmask);
879 	}
880 
881 	return target_node;
882 }
883 #else
884 static int hpage_collapse_find_target_node(struct collapse_control *cc)
885 {
886 	return 0;
887 }
888 #endif
889 
890 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
891 				      nodemask_t *nmask)
892 {
893 	*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
894 	if (unlikely(!*hpage)) {
895 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
896 		return false;
897 	}
898 
899 	prep_transhuge_page(*hpage);
900 	count_vm_event(THP_COLLAPSE_ALLOC);
901 	return true;
902 }
903 
904 /*
905  * If mmap_lock temporarily dropped, revalidate vma
906  * before taking mmap_lock.
907  * Returns enum scan_result value.
908  */
909 
910 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
911 				   bool expect_anon,
912 				   struct vm_area_struct **vmap,
913 				   struct collapse_control *cc)
914 {
915 	struct vm_area_struct *vma;
916 
917 	if (unlikely(hpage_collapse_test_exit(mm)))
918 		return SCAN_ANY_PROCESS;
919 
920 	*vmap = vma = find_vma(mm, address);
921 	if (!vma)
922 		return SCAN_VMA_NULL;
923 
924 	if (!transhuge_vma_suitable(vma, address))
925 		return SCAN_ADDRESS_RANGE;
926 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
927 				cc->is_khugepaged))
928 		return SCAN_VMA_CHECK;
929 	/*
930 	 * Anon VMA expected, the address may be unmapped then
931 	 * remapped to file after khugepaged reaquired the mmap_lock.
932 	 *
933 	 * hugepage_vma_check may return true for qualified file
934 	 * vmas.
935 	 */
936 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
937 		return SCAN_PAGE_ANON;
938 	return SCAN_SUCCEED;
939 }
940 
941 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
942 				   unsigned long address,
943 				   pmd_t **pmd)
944 {
945 	pmd_t pmde;
946 
947 	*pmd = mm_find_pmd(mm, address);
948 	if (!*pmd)
949 		return SCAN_PMD_NULL;
950 
951 	pmde = pmdp_get_lockless(*pmd);
952 	if (pmd_none(pmde))
953 		return SCAN_PMD_NONE;
954 	if (!pmd_present(pmde))
955 		return SCAN_PMD_NULL;
956 	if (pmd_trans_huge(pmde))
957 		return SCAN_PMD_MAPPED;
958 	if (pmd_devmap(pmde))
959 		return SCAN_PMD_NULL;
960 	if (pmd_bad(pmde))
961 		return SCAN_PMD_NULL;
962 	return SCAN_SUCCEED;
963 }
964 
965 static int check_pmd_still_valid(struct mm_struct *mm,
966 				 unsigned long address,
967 				 pmd_t *pmd)
968 {
969 	pmd_t *new_pmd;
970 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
971 
972 	if (result != SCAN_SUCCEED)
973 		return result;
974 	if (new_pmd != pmd)
975 		return SCAN_FAIL;
976 	return SCAN_SUCCEED;
977 }
978 
979 /*
980  * Bring missing pages in from swap, to complete THP collapse.
981  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
982  *
983  * Called and returns without pte mapped or spinlocks held.
984  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
985  */
986 static int __collapse_huge_page_swapin(struct mm_struct *mm,
987 				       struct vm_area_struct *vma,
988 				       unsigned long haddr, pmd_t *pmd,
989 				       int referenced)
990 {
991 	int swapped_in = 0;
992 	vm_fault_t ret = 0;
993 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
994 	int result;
995 	pte_t *pte = NULL;
996 	spinlock_t *ptl;
997 
998 	for (address = haddr; address < end; address += PAGE_SIZE) {
999 		struct vm_fault vmf = {
1000 			.vma = vma,
1001 			.address = address,
1002 			.pgoff = linear_page_index(vma, address),
1003 			.flags = FAULT_FLAG_ALLOW_RETRY,
1004 			.pmd = pmd,
1005 		};
1006 
1007 		if (!pte++) {
1008 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1009 			if (!pte) {
1010 				mmap_read_unlock(mm);
1011 				result = SCAN_PMD_NULL;
1012 				goto out;
1013 			}
1014 		}
1015 
1016 		vmf.orig_pte = ptep_get_lockless(pte);
1017 		if (!is_swap_pte(vmf.orig_pte))
1018 			continue;
1019 
1020 		vmf.pte = pte;
1021 		vmf.ptl = ptl;
1022 		ret = do_swap_page(&vmf);
1023 		/* Which unmaps pte (after perhaps re-checking the entry) */
1024 		pte = NULL;
1025 
1026 		/*
1027 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1028 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1029 		 * we do not retry here and swap entry will remain in pagetable
1030 		 * resulting in later failure.
1031 		 */
1032 		if (ret & VM_FAULT_RETRY) {
1033 			/* Likely, but not guaranteed, that page lock failed */
1034 			result = SCAN_PAGE_LOCK;
1035 			goto out;
1036 		}
1037 		if (ret & VM_FAULT_ERROR) {
1038 			mmap_read_unlock(mm);
1039 			result = SCAN_FAIL;
1040 			goto out;
1041 		}
1042 		swapped_in++;
1043 	}
1044 
1045 	if (pte)
1046 		pte_unmap(pte);
1047 
1048 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1049 	if (swapped_in)
1050 		lru_add_drain();
1051 
1052 	result = SCAN_SUCCEED;
1053 out:
1054 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1055 	return result;
1056 }
1057 
1058 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1059 			      struct collapse_control *cc)
1060 {
1061 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1062 		     GFP_TRANSHUGE);
1063 	int node = hpage_collapse_find_target_node(cc);
1064 	struct folio *folio;
1065 
1066 	if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
1067 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1068 
1069 	folio = page_folio(*hpage);
1070 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1071 		folio_put(folio);
1072 		*hpage = NULL;
1073 		return SCAN_CGROUP_CHARGE_FAIL;
1074 	}
1075 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
1076 
1077 	return SCAN_SUCCEED;
1078 }
1079 
1080 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1081 			      int referenced, int unmapped,
1082 			      struct collapse_control *cc)
1083 {
1084 	LIST_HEAD(compound_pagelist);
1085 	pmd_t *pmd, _pmd;
1086 	pte_t *pte;
1087 	pgtable_t pgtable;
1088 	struct page *hpage;
1089 	spinlock_t *pmd_ptl, *pte_ptl;
1090 	int result = SCAN_FAIL;
1091 	struct vm_area_struct *vma;
1092 	struct mmu_notifier_range range;
1093 
1094 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1095 
1096 	/*
1097 	 * Before allocating the hugepage, release the mmap_lock read lock.
1098 	 * The allocation can take potentially a long time if it involves
1099 	 * sync compaction, and we do not need to hold the mmap_lock during
1100 	 * that. We will recheck the vma after taking it again in write mode.
1101 	 */
1102 	mmap_read_unlock(mm);
1103 
1104 	result = alloc_charge_hpage(&hpage, mm, cc);
1105 	if (result != SCAN_SUCCEED)
1106 		goto out_nolock;
1107 
1108 	mmap_read_lock(mm);
1109 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1110 	if (result != SCAN_SUCCEED) {
1111 		mmap_read_unlock(mm);
1112 		goto out_nolock;
1113 	}
1114 
1115 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1116 	if (result != SCAN_SUCCEED) {
1117 		mmap_read_unlock(mm);
1118 		goto out_nolock;
1119 	}
1120 
1121 	if (unmapped) {
1122 		/*
1123 		 * __collapse_huge_page_swapin will return with mmap_lock
1124 		 * released when it fails. So we jump out_nolock directly in
1125 		 * that case.  Continuing to collapse causes inconsistency.
1126 		 */
1127 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1128 						     referenced);
1129 		if (result != SCAN_SUCCEED)
1130 			goto out_nolock;
1131 	}
1132 
1133 	mmap_read_unlock(mm);
1134 	/*
1135 	 * Prevent all access to pagetables with the exception of
1136 	 * gup_fast later handled by the ptep_clear_flush and the VM
1137 	 * handled by the anon_vma lock + PG_lock.
1138 	 */
1139 	mmap_write_lock(mm);
1140 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1141 	if (result != SCAN_SUCCEED)
1142 		goto out_up_write;
1143 	/* check if the pmd is still valid */
1144 	result = check_pmd_still_valid(mm, address, pmd);
1145 	if (result != SCAN_SUCCEED)
1146 		goto out_up_write;
1147 
1148 	vma_start_write(vma);
1149 	anon_vma_lock_write(vma->anon_vma);
1150 
1151 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1152 				address + HPAGE_PMD_SIZE);
1153 	mmu_notifier_invalidate_range_start(&range);
1154 
1155 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1156 	/*
1157 	 * This removes any huge TLB entry from the CPU so we won't allow
1158 	 * huge and small TLB entries for the same virtual address to
1159 	 * avoid the risk of CPU bugs in that area.
1160 	 *
1161 	 * Parallel fast GUP is fine since fast GUP will back off when
1162 	 * it detects PMD is changed.
1163 	 */
1164 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1165 	spin_unlock(pmd_ptl);
1166 	mmu_notifier_invalidate_range_end(&range);
1167 	tlb_remove_table_sync_one();
1168 
1169 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1170 	if (pte) {
1171 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1172 						      &compound_pagelist);
1173 		spin_unlock(pte_ptl);
1174 	} else {
1175 		result = SCAN_PMD_NULL;
1176 	}
1177 
1178 	if (unlikely(result != SCAN_SUCCEED)) {
1179 		if (pte)
1180 			pte_unmap(pte);
1181 		spin_lock(pmd_ptl);
1182 		BUG_ON(!pmd_none(*pmd));
1183 		/*
1184 		 * We can only use set_pmd_at when establishing
1185 		 * hugepmds and never for establishing regular pmds that
1186 		 * points to regular pagetables. Use pmd_populate for that
1187 		 */
1188 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1189 		spin_unlock(pmd_ptl);
1190 		anon_vma_unlock_write(vma->anon_vma);
1191 		goto out_up_write;
1192 	}
1193 
1194 	/*
1195 	 * All pages are isolated and locked so anon_vma rmap
1196 	 * can't run anymore.
1197 	 */
1198 	anon_vma_unlock_write(vma->anon_vma);
1199 
1200 	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1201 					   vma, address, pte_ptl,
1202 					   &compound_pagelist);
1203 	pte_unmap(pte);
1204 	if (unlikely(result != SCAN_SUCCEED))
1205 		goto out_up_write;
1206 
1207 	/*
1208 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1209 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1210 	 * avoid the copy_huge_page writes to become visible after
1211 	 * the set_pmd_at() write.
1212 	 */
1213 	__SetPageUptodate(hpage);
1214 	pgtable = pmd_pgtable(_pmd);
1215 
1216 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1217 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1218 
1219 	spin_lock(pmd_ptl);
1220 	BUG_ON(!pmd_none(*pmd));
1221 	page_add_new_anon_rmap(hpage, vma, address);
1222 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1223 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1224 	set_pmd_at(mm, address, pmd, _pmd);
1225 	update_mmu_cache_pmd(vma, address, pmd);
1226 	spin_unlock(pmd_ptl);
1227 
1228 	hpage = NULL;
1229 
1230 	result = SCAN_SUCCEED;
1231 out_up_write:
1232 	mmap_write_unlock(mm);
1233 out_nolock:
1234 	if (hpage)
1235 		put_page(hpage);
1236 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1237 	return result;
1238 }
1239 
1240 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1241 				   struct vm_area_struct *vma,
1242 				   unsigned long address, bool *mmap_locked,
1243 				   struct collapse_control *cc)
1244 {
1245 	pmd_t *pmd;
1246 	pte_t *pte, *_pte;
1247 	int result = SCAN_FAIL, referenced = 0;
1248 	int none_or_zero = 0, shared = 0;
1249 	struct page *page = NULL;
1250 	unsigned long _address;
1251 	spinlock_t *ptl;
1252 	int node = NUMA_NO_NODE, unmapped = 0;
1253 	bool writable = false;
1254 
1255 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1256 
1257 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1258 	if (result != SCAN_SUCCEED)
1259 		goto out;
1260 
1261 	memset(cc->node_load, 0, sizeof(cc->node_load));
1262 	nodes_clear(cc->alloc_nmask);
1263 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1264 	if (!pte) {
1265 		result = SCAN_PMD_NULL;
1266 		goto out;
1267 	}
1268 
1269 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1270 	     _pte++, _address += PAGE_SIZE) {
1271 		pte_t pteval = ptep_get(_pte);
1272 		if (is_swap_pte(pteval)) {
1273 			++unmapped;
1274 			if (!cc->is_khugepaged ||
1275 			    unmapped <= khugepaged_max_ptes_swap) {
1276 				/*
1277 				 * Always be strict with uffd-wp
1278 				 * enabled swap entries.  Please see
1279 				 * comment below for pte_uffd_wp().
1280 				 */
1281 				if (pte_swp_uffd_wp_any(pteval)) {
1282 					result = SCAN_PTE_UFFD_WP;
1283 					goto out_unmap;
1284 				}
1285 				continue;
1286 			} else {
1287 				result = SCAN_EXCEED_SWAP_PTE;
1288 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1289 				goto out_unmap;
1290 			}
1291 		}
1292 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1293 			++none_or_zero;
1294 			if (!userfaultfd_armed(vma) &&
1295 			    (!cc->is_khugepaged ||
1296 			     none_or_zero <= khugepaged_max_ptes_none)) {
1297 				continue;
1298 			} else {
1299 				result = SCAN_EXCEED_NONE_PTE;
1300 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1301 				goto out_unmap;
1302 			}
1303 		}
1304 		if (pte_uffd_wp(pteval)) {
1305 			/*
1306 			 * Don't collapse the page if any of the small
1307 			 * PTEs are armed with uffd write protection.
1308 			 * Here we can also mark the new huge pmd as
1309 			 * write protected if any of the small ones is
1310 			 * marked but that could bring unknown
1311 			 * userfault messages that falls outside of
1312 			 * the registered range.  So, just be simple.
1313 			 */
1314 			result = SCAN_PTE_UFFD_WP;
1315 			goto out_unmap;
1316 		}
1317 		if (pte_write(pteval))
1318 			writable = true;
1319 
1320 		page = vm_normal_page(vma, _address, pteval);
1321 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1322 			result = SCAN_PAGE_NULL;
1323 			goto out_unmap;
1324 		}
1325 
1326 		if (page_mapcount(page) > 1) {
1327 			++shared;
1328 			if (cc->is_khugepaged &&
1329 			    shared > khugepaged_max_ptes_shared) {
1330 				result = SCAN_EXCEED_SHARED_PTE;
1331 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1332 				goto out_unmap;
1333 			}
1334 		}
1335 
1336 		page = compound_head(page);
1337 
1338 		/*
1339 		 * Record which node the original page is from and save this
1340 		 * information to cc->node_load[].
1341 		 * Khugepaged will allocate hugepage from the node has the max
1342 		 * hit record.
1343 		 */
1344 		node = page_to_nid(page);
1345 		if (hpage_collapse_scan_abort(node, cc)) {
1346 			result = SCAN_SCAN_ABORT;
1347 			goto out_unmap;
1348 		}
1349 		cc->node_load[node]++;
1350 		if (!PageLRU(page)) {
1351 			result = SCAN_PAGE_LRU;
1352 			goto out_unmap;
1353 		}
1354 		if (PageLocked(page)) {
1355 			result = SCAN_PAGE_LOCK;
1356 			goto out_unmap;
1357 		}
1358 		if (!PageAnon(page)) {
1359 			result = SCAN_PAGE_ANON;
1360 			goto out_unmap;
1361 		}
1362 
1363 		/*
1364 		 * Check if the page has any GUP (or other external) pins.
1365 		 *
1366 		 * Here the check may be racy:
1367 		 * it may see total_mapcount > refcount in some cases?
1368 		 * But such case is ephemeral we could always retry collapse
1369 		 * later.  However it may report false positive if the page
1370 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1371 		 * will be done again later the risk seems low.
1372 		 */
1373 		if (!is_refcount_suitable(page)) {
1374 			result = SCAN_PAGE_COUNT;
1375 			goto out_unmap;
1376 		}
1377 
1378 		/*
1379 		 * If collapse was initiated by khugepaged, check that there is
1380 		 * enough young pte to justify collapsing the page
1381 		 */
1382 		if (cc->is_khugepaged &&
1383 		    (pte_young(pteval) || page_is_young(page) ||
1384 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1385 								     address)))
1386 			referenced++;
1387 	}
1388 	if (!writable) {
1389 		result = SCAN_PAGE_RO;
1390 	} else if (cc->is_khugepaged &&
1391 		   (!referenced ||
1392 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1393 		result = SCAN_LACK_REFERENCED_PAGE;
1394 	} else {
1395 		result = SCAN_SUCCEED;
1396 	}
1397 out_unmap:
1398 	pte_unmap_unlock(pte, ptl);
1399 	if (result == SCAN_SUCCEED) {
1400 		result = collapse_huge_page(mm, address, referenced,
1401 					    unmapped, cc);
1402 		/* collapse_huge_page will return with the mmap_lock released */
1403 		*mmap_locked = false;
1404 	}
1405 out:
1406 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1407 				     none_or_zero, result, unmapped);
1408 	return result;
1409 }
1410 
1411 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1412 {
1413 	struct mm_slot *slot = &mm_slot->slot;
1414 	struct mm_struct *mm = slot->mm;
1415 
1416 	lockdep_assert_held(&khugepaged_mm_lock);
1417 
1418 	if (hpage_collapse_test_exit(mm)) {
1419 		/* free mm_slot */
1420 		hash_del(&slot->hash);
1421 		list_del(&slot->mm_node);
1422 
1423 		/*
1424 		 * Not strictly needed because the mm exited already.
1425 		 *
1426 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1427 		 */
1428 
1429 		/* khugepaged_mm_lock actually not necessary for the below */
1430 		mm_slot_free(mm_slot_cache, mm_slot);
1431 		mmdrop(mm);
1432 	}
1433 }
1434 
1435 #ifdef CONFIG_SHMEM
1436 /* hpage must be locked, and mmap_lock must be held */
1437 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1438 			pmd_t *pmdp, struct page *hpage)
1439 {
1440 	struct vm_fault vmf = {
1441 		.vma = vma,
1442 		.address = addr,
1443 		.flags = 0,
1444 		.pmd = pmdp,
1445 	};
1446 
1447 	VM_BUG_ON(!PageTransHuge(hpage));
1448 	mmap_assert_locked(vma->vm_mm);
1449 
1450 	if (do_set_pmd(&vmf, hpage))
1451 		return SCAN_FAIL;
1452 
1453 	get_page(hpage);
1454 	return SCAN_SUCCEED;
1455 }
1456 
1457 /**
1458  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1459  * address haddr.
1460  *
1461  * @mm: process address space where collapse happens
1462  * @addr: THP collapse address
1463  * @install_pmd: If a huge PMD should be installed
1464  *
1465  * This function checks whether all the PTEs in the PMD are pointing to the
1466  * right THP. If so, retract the page table so the THP can refault in with
1467  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1468  */
1469 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1470 			    bool install_pmd)
1471 {
1472 	struct mmu_notifier_range range;
1473 	bool notified = false;
1474 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1475 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1476 	struct page *hpage;
1477 	pte_t *start_pte, *pte;
1478 	pmd_t *pmd, pgt_pmd;
1479 	spinlock_t *pml, *ptl;
1480 	int nr_ptes = 0, result = SCAN_FAIL;
1481 	int i;
1482 
1483 	mmap_assert_locked(mm);
1484 
1485 	/* First check VMA found, in case page tables are being torn down */
1486 	if (!vma || !vma->vm_file ||
1487 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1488 		return SCAN_VMA_CHECK;
1489 
1490 	/* Fast check before locking page if already PMD-mapped */
1491 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1492 	if (result == SCAN_PMD_MAPPED)
1493 		return result;
1494 
1495 	/*
1496 	 * If we are here, we've succeeded in replacing all the native pages
1497 	 * in the page cache with a single hugepage. If a mm were to fault-in
1498 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1499 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1500 	 * analogously elide sysfs THP settings here.
1501 	 */
1502 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1503 		return SCAN_VMA_CHECK;
1504 
1505 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1506 	if (userfaultfd_wp(vma))
1507 		return SCAN_PTE_UFFD_WP;
1508 
1509 	hpage = find_lock_page(vma->vm_file->f_mapping,
1510 			       linear_page_index(vma, haddr));
1511 	if (!hpage)
1512 		return SCAN_PAGE_NULL;
1513 
1514 	if (!PageHead(hpage)) {
1515 		result = SCAN_FAIL;
1516 		goto drop_hpage;
1517 	}
1518 
1519 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1520 		result = SCAN_PAGE_COMPOUND;
1521 		goto drop_hpage;
1522 	}
1523 
1524 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1525 	switch (result) {
1526 	case SCAN_SUCCEED:
1527 		break;
1528 	case SCAN_PMD_NONE:
1529 		/*
1530 		 * All pte entries have been removed and pmd cleared.
1531 		 * Skip all the pte checks and just update the pmd mapping.
1532 		 */
1533 		goto maybe_install_pmd;
1534 	default:
1535 		goto drop_hpage;
1536 	}
1537 
1538 	result = SCAN_FAIL;
1539 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1540 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1541 		goto drop_hpage;
1542 
1543 	/* step 1: check all mapped PTEs are to the right huge page */
1544 	for (i = 0, addr = haddr, pte = start_pte;
1545 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1546 		struct page *page;
1547 		pte_t ptent = ptep_get(pte);
1548 
1549 		/* empty pte, skip */
1550 		if (pte_none(ptent))
1551 			continue;
1552 
1553 		/* page swapped out, abort */
1554 		if (!pte_present(ptent)) {
1555 			result = SCAN_PTE_NON_PRESENT;
1556 			goto abort;
1557 		}
1558 
1559 		page = vm_normal_page(vma, addr, ptent);
1560 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1561 			page = NULL;
1562 		/*
1563 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1564 		 * page table, but the new page will not be a subpage of hpage.
1565 		 */
1566 		if (hpage + i != page)
1567 			goto abort;
1568 	}
1569 
1570 	pte_unmap_unlock(start_pte, ptl);
1571 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1572 				haddr, haddr + HPAGE_PMD_SIZE);
1573 	mmu_notifier_invalidate_range_start(&range);
1574 	notified = true;
1575 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1576 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1577 		goto abort;
1578 
1579 	/* step 2: clear page table and adjust rmap */
1580 	for (i = 0, addr = haddr, pte = start_pte;
1581 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1582 		struct page *page;
1583 		pte_t ptent = ptep_get(pte);
1584 
1585 		if (pte_none(ptent))
1586 			continue;
1587 		/*
1588 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1589 		 * page lock stops more PTEs of the hpage being faulted in, but
1590 		 * does not stop write faults COWing anon copies from existing
1591 		 * PTEs; and does not stop those being swapped out or migrated.
1592 		 */
1593 		if (!pte_present(ptent)) {
1594 			result = SCAN_PTE_NON_PRESENT;
1595 			goto abort;
1596 		}
1597 		page = vm_normal_page(vma, addr, ptent);
1598 		if (hpage + i != page)
1599 			goto abort;
1600 
1601 		/*
1602 		 * Must clear entry, or a racing truncate may re-remove it.
1603 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1604 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1605 		 */
1606 		ptep_clear(mm, addr, pte);
1607 		page_remove_rmap(page, vma, false);
1608 		nr_ptes++;
1609 	}
1610 
1611 	pte_unmap_unlock(start_pte, ptl);
1612 
1613 	/* step 3: set proper refcount and mm_counters. */
1614 	if (nr_ptes) {
1615 		page_ref_sub(hpage, nr_ptes);
1616 		add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1617 	}
1618 
1619 	/* step 4: remove page table */
1620 
1621 	/* Huge page lock is still held, so page table must remain empty */
1622 	pml = pmd_lock(mm, pmd);
1623 	if (ptl != pml)
1624 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1625 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1626 	pmdp_get_lockless_sync();
1627 	if (ptl != pml)
1628 		spin_unlock(ptl);
1629 	spin_unlock(pml);
1630 
1631 	mmu_notifier_invalidate_range_end(&range);
1632 
1633 	mm_dec_nr_ptes(mm);
1634 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1635 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1636 
1637 maybe_install_pmd:
1638 	/* step 5: install pmd entry */
1639 	result = install_pmd
1640 			? set_huge_pmd(vma, haddr, pmd, hpage)
1641 			: SCAN_SUCCEED;
1642 	goto drop_hpage;
1643 abort:
1644 	if (nr_ptes) {
1645 		flush_tlb_mm(mm);
1646 		page_ref_sub(hpage, nr_ptes);
1647 		add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1648 	}
1649 	if (start_pte)
1650 		pte_unmap_unlock(start_pte, ptl);
1651 	if (notified)
1652 		mmu_notifier_invalidate_range_end(&range);
1653 drop_hpage:
1654 	unlock_page(hpage);
1655 	put_page(hpage);
1656 	return result;
1657 }
1658 
1659 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1660 {
1661 	struct vm_area_struct *vma;
1662 
1663 	i_mmap_lock_read(mapping);
1664 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1665 		struct mmu_notifier_range range;
1666 		struct mm_struct *mm;
1667 		unsigned long addr;
1668 		pmd_t *pmd, pgt_pmd;
1669 		spinlock_t *pml;
1670 		spinlock_t *ptl;
1671 		bool skipped_uffd = false;
1672 
1673 		/*
1674 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1675 		 * got written to. These VMAs are likely not worth removing
1676 		 * page tables from, as PMD-mapping is likely to be split later.
1677 		 */
1678 		if (READ_ONCE(vma->anon_vma))
1679 			continue;
1680 
1681 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1682 		if (addr & ~HPAGE_PMD_MASK ||
1683 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1684 			continue;
1685 
1686 		mm = vma->vm_mm;
1687 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1688 			continue;
1689 
1690 		if (hpage_collapse_test_exit(mm))
1691 			continue;
1692 		/*
1693 		 * When a vma is registered with uffd-wp, we cannot recycle
1694 		 * the page table because there may be pte markers installed.
1695 		 * Other vmas can still have the same file mapped hugely, but
1696 		 * skip this one: it will always be mapped in small page size
1697 		 * for uffd-wp registered ranges.
1698 		 */
1699 		if (userfaultfd_wp(vma))
1700 			continue;
1701 
1702 		/* PTEs were notified when unmapped; but now for the PMD? */
1703 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1704 					addr, addr + HPAGE_PMD_SIZE);
1705 		mmu_notifier_invalidate_range_start(&range);
1706 
1707 		pml = pmd_lock(mm, pmd);
1708 		ptl = pte_lockptr(mm, pmd);
1709 		if (ptl != pml)
1710 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1711 
1712 		/*
1713 		 * Huge page lock is still held, so normally the page table
1714 		 * must remain empty; and we have already skipped anon_vma
1715 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1716 		 * held, it is still possible for a racing userfaultfd_ioctl()
1717 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1718 		 * repeating the anon_vma check protects from one category,
1719 		 * and repeating the userfaultfd_wp() check from another.
1720 		 */
1721 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1722 			skipped_uffd = true;
1723 		} else {
1724 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1725 			pmdp_get_lockless_sync();
1726 		}
1727 
1728 		if (ptl != pml)
1729 			spin_unlock(ptl);
1730 		spin_unlock(pml);
1731 
1732 		mmu_notifier_invalidate_range_end(&range);
1733 
1734 		if (!skipped_uffd) {
1735 			mm_dec_nr_ptes(mm);
1736 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1737 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1738 		}
1739 	}
1740 	i_mmap_unlock_read(mapping);
1741 }
1742 
1743 /**
1744  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1745  *
1746  * @mm: process address space where collapse happens
1747  * @addr: virtual collapse start address
1748  * @file: file that collapse on
1749  * @start: collapse start address
1750  * @cc: collapse context and scratchpad
1751  *
1752  * Basic scheme is simple, details are more complex:
1753  *  - allocate and lock a new huge page;
1754  *  - scan page cache, locking old pages
1755  *    + swap/gup in pages if necessary;
1756  *  - copy data to new page
1757  *  - handle shmem holes
1758  *    + re-validate that holes weren't filled by someone else
1759  *    + check for userfaultfd
1760  *  - finalize updates to the page cache;
1761  *  - if replacing succeeds:
1762  *    + unlock huge page;
1763  *    + free old pages;
1764  *  - if replacing failed;
1765  *    + unlock old pages
1766  *    + unlock and free huge page;
1767  */
1768 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1769 			 struct file *file, pgoff_t start,
1770 			 struct collapse_control *cc)
1771 {
1772 	struct address_space *mapping = file->f_mapping;
1773 	struct page *hpage;
1774 	struct page *page;
1775 	struct page *tmp;
1776 	struct folio *folio;
1777 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1778 	LIST_HEAD(pagelist);
1779 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1780 	int nr_none = 0, result = SCAN_SUCCEED;
1781 	bool is_shmem = shmem_file(file);
1782 	int nr = 0;
1783 
1784 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1785 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1786 
1787 	result = alloc_charge_hpage(&hpage, mm, cc);
1788 	if (result != SCAN_SUCCEED)
1789 		goto out;
1790 
1791 	__SetPageLocked(hpage);
1792 	if (is_shmem)
1793 		__SetPageSwapBacked(hpage);
1794 	hpage->index = start;
1795 	hpage->mapping = mapping;
1796 
1797 	/*
1798 	 * Ensure we have slots for all the pages in the range.  This is
1799 	 * almost certainly a no-op because most of the pages must be present
1800 	 */
1801 	do {
1802 		xas_lock_irq(&xas);
1803 		xas_create_range(&xas);
1804 		if (!xas_error(&xas))
1805 			break;
1806 		xas_unlock_irq(&xas);
1807 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1808 			result = SCAN_FAIL;
1809 			goto rollback;
1810 		}
1811 	} while (1);
1812 
1813 	for (index = start; index < end; index++) {
1814 		xas_set(&xas, index);
1815 		page = xas_load(&xas);
1816 
1817 		VM_BUG_ON(index != xas.xa_index);
1818 		if (is_shmem) {
1819 			if (!page) {
1820 				/*
1821 				 * Stop if extent has been truncated or
1822 				 * hole-punched, and is now completely
1823 				 * empty.
1824 				 */
1825 				if (index == start) {
1826 					if (!xas_next_entry(&xas, end - 1)) {
1827 						result = SCAN_TRUNCATED;
1828 						goto xa_locked;
1829 					}
1830 				}
1831 				if (!shmem_charge(mapping->host, 1)) {
1832 					result = SCAN_FAIL;
1833 					goto xa_locked;
1834 				}
1835 				nr_none++;
1836 				continue;
1837 			}
1838 
1839 			if (xa_is_value(page) || !PageUptodate(page)) {
1840 				xas_unlock_irq(&xas);
1841 				/* swap in or instantiate fallocated page */
1842 				if (shmem_get_folio(mapping->host, index,
1843 						&folio, SGP_NOALLOC)) {
1844 					result = SCAN_FAIL;
1845 					goto xa_unlocked;
1846 				}
1847 				/* drain lru cache to help isolate_lru_page() */
1848 				lru_add_drain();
1849 				page = folio_file_page(folio, index);
1850 			} else if (trylock_page(page)) {
1851 				get_page(page);
1852 				xas_unlock_irq(&xas);
1853 			} else {
1854 				result = SCAN_PAGE_LOCK;
1855 				goto xa_locked;
1856 			}
1857 		} else {	/* !is_shmem */
1858 			if (!page || xa_is_value(page)) {
1859 				xas_unlock_irq(&xas);
1860 				page_cache_sync_readahead(mapping, &file->f_ra,
1861 							  file, index,
1862 							  end - index);
1863 				/* drain lru cache to help isolate_lru_page() */
1864 				lru_add_drain();
1865 				page = find_lock_page(mapping, index);
1866 				if (unlikely(page == NULL)) {
1867 					result = SCAN_FAIL;
1868 					goto xa_unlocked;
1869 				}
1870 			} else if (PageDirty(page)) {
1871 				/*
1872 				 * khugepaged only works on read-only fd,
1873 				 * so this page is dirty because it hasn't
1874 				 * been flushed since first write. There
1875 				 * won't be new dirty pages.
1876 				 *
1877 				 * Trigger async flush here and hope the
1878 				 * writeback is done when khugepaged
1879 				 * revisits this page.
1880 				 *
1881 				 * This is a one-off situation. We are not
1882 				 * forcing writeback in loop.
1883 				 */
1884 				xas_unlock_irq(&xas);
1885 				filemap_flush(mapping);
1886 				result = SCAN_FAIL;
1887 				goto xa_unlocked;
1888 			} else if (PageWriteback(page)) {
1889 				xas_unlock_irq(&xas);
1890 				result = SCAN_FAIL;
1891 				goto xa_unlocked;
1892 			} else if (trylock_page(page)) {
1893 				get_page(page);
1894 				xas_unlock_irq(&xas);
1895 			} else {
1896 				result = SCAN_PAGE_LOCK;
1897 				goto xa_locked;
1898 			}
1899 		}
1900 
1901 		/*
1902 		 * The page must be locked, so we can drop the i_pages lock
1903 		 * without racing with truncate.
1904 		 */
1905 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1906 
1907 		/* make sure the page is up to date */
1908 		if (unlikely(!PageUptodate(page))) {
1909 			result = SCAN_FAIL;
1910 			goto out_unlock;
1911 		}
1912 
1913 		/*
1914 		 * If file was truncated then extended, or hole-punched, before
1915 		 * we locked the first page, then a THP might be there already.
1916 		 * This will be discovered on the first iteration.
1917 		 */
1918 		if (PageTransCompound(page)) {
1919 			struct page *head = compound_head(page);
1920 
1921 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1922 					head->index == start
1923 					/* Maybe PMD-mapped */
1924 					? SCAN_PTE_MAPPED_HUGEPAGE
1925 					: SCAN_PAGE_COMPOUND;
1926 			goto out_unlock;
1927 		}
1928 
1929 		folio = page_folio(page);
1930 
1931 		if (folio_mapping(folio) != mapping) {
1932 			result = SCAN_TRUNCATED;
1933 			goto out_unlock;
1934 		}
1935 
1936 		if (!is_shmem && (folio_test_dirty(folio) ||
1937 				  folio_test_writeback(folio))) {
1938 			/*
1939 			 * khugepaged only works on read-only fd, so this
1940 			 * page is dirty because it hasn't been flushed
1941 			 * since first write.
1942 			 */
1943 			result = SCAN_FAIL;
1944 			goto out_unlock;
1945 		}
1946 
1947 		if (!folio_isolate_lru(folio)) {
1948 			result = SCAN_DEL_PAGE_LRU;
1949 			goto out_unlock;
1950 		}
1951 
1952 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1953 			result = SCAN_PAGE_HAS_PRIVATE;
1954 			folio_putback_lru(folio);
1955 			goto out_unlock;
1956 		}
1957 
1958 		if (folio_mapped(folio))
1959 			try_to_unmap(folio,
1960 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1961 
1962 		xas_lock_irq(&xas);
1963 
1964 		VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1965 
1966 		/*
1967 		 * We control three references to the page:
1968 		 *  - we hold a pin on it;
1969 		 *  - one reference from page cache;
1970 		 *  - one from isolate_lru_page;
1971 		 * If those are the only references, then any new usage of the
1972 		 * page will have to fetch it from the page cache. That requires
1973 		 * locking the page to handle truncate, so any new usage will be
1974 		 * blocked until we unlock page after collapse/during rollback.
1975 		 */
1976 		if (page_count(page) != 3) {
1977 			result = SCAN_PAGE_COUNT;
1978 			xas_unlock_irq(&xas);
1979 			putback_lru_page(page);
1980 			goto out_unlock;
1981 		}
1982 
1983 		/*
1984 		 * Accumulate the pages that are being collapsed.
1985 		 */
1986 		list_add_tail(&page->lru, &pagelist);
1987 		continue;
1988 out_unlock:
1989 		unlock_page(page);
1990 		put_page(page);
1991 		goto xa_unlocked;
1992 	}
1993 
1994 	if (!is_shmem) {
1995 		filemap_nr_thps_inc(mapping);
1996 		/*
1997 		 * Paired with smp_mb() in do_dentry_open() to ensure
1998 		 * i_writecount is up to date and the update to nr_thps is
1999 		 * visible. Ensures the page cache will be truncated if the
2000 		 * file is opened writable.
2001 		 */
2002 		smp_mb();
2003 		if (inode_is_open_for_write(mapping->host)) {
2004 			result = SCAN_FAIL;
2005 			filemap_nr_thps_dec(mapping);
2006 		}
2007 	}
2008 
2009 xa_locked:
2010 	xas_unlock_irq(&xas);
2011 xa_unlocked:
2012 
2013 	/*
2014 	 * If collapse is successful, flush must be done now before copying.
2015 	 * If collapse is unsuccessful, does flush actually need to be done?
2016 	 * Do it anyway, to clear the state.
2017 	 */
2018 	try_to_unmap_flush();
2019 
2020 	if (result != SCAN_SUCCEED)
2021 		goto rollback;
2022 
2023 	/*
2024 	 * The old pages are locked, so they won't change anymore.
2025 	 */
2026 	index = start;
2027 	list_for_each_entry(page, &pagelist, lru) {
2028 		while (index < page->index) {
2029 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2030 			index++;
2031 		}
2032 		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2033 			result = SCAN_COPY_MC;
2034 			goto rollback;
2035 		}
2036 		index++;
2037 	}
2038 	while (index < end) {
2039 		clear_highpage(hpage + (index % HPAGE_PMD_NR));
2040 		index++;
2041 	}
2042 
2043 	if (nr_none) {
2044 		struct vm_area_struct *vma;
2045 		int nr_none_check = 0;
2046 
2047 		i_mmap_lock_read(mapping);
2048 		xas_lock_irq(&xas);
2049 
2050 		xas_set(&xas, start);
2051 		for (index = start; index < end; index++) {
2052 			if (!xas_next(&xas)) {
2053 				xas_store(&xas, XA_RETRY_ENTRY);
2054 				if (xas_error(&xas)) {
2055 					result = SCAN_STORE_FAILED;
2056 					goto immap_locked;
2057 				}
2058 				nr_none_check++;
2059 			}
2060 		}
2061 
2062 		if (nr_none != nr_none_check) {
2063 			result = SCAN_PAGE_FILLED;
2064 			goto immap_locked;
2065 		}
2066 
2067 		/*
2068 		 * If userspace observed a missing page in a VMA with a MODE_MISSING
2069 		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2070 		 * page. If so, we need to roll back to avoid suppressing such an
2071 		 * event. Since wp/minor userfaultfds don't give userspace any
2072 		 * guarantees that the kernel doesn't fill a missing page with a zero
2073 		 * page, so they don't matter here.
2074 		 *
2075 		 * Any userfaultfds registered after this point will not be able to
2076 		 * observe any missing pages due to the previously inserted retry
2077 		 * entries.
2078 		 */
2079 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2080 			if (userfaultfd_missing(vma)) {
2081 				result = SCAN_EXCEED_NONE_PTE;
2082 				goto immap_locked;
2083 			}
2084 		}
2085 
2086 immap_locked:
2087 		i_mmap_unlock_read(mapping);
2088 		if (result != SCAN_SUCCEED) {
2089 			xas_set(&xas, start);
2090 			for (index = start; index < end; index++) {
2091 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2092 					xas_store(&xas, NULL);
2093 			}
2094 
2095 			xas_unlock_irq(&xas);
2096 			goto rollback;
2097 		}
2098 	} else {
2099 		xas_lock_irq(&xas);
2100 	}
2101 
2102 	nr = thp_nr_pages(hpage);
2103 	if (is_shmem)
2104 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
2105 	else
2106 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
2107 
2108 	if (nr_none) {
2109 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2110 		/* nr_none is always 0 for non-shmem. */
2111 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2112 	}
2113 
2114 	/*
2115 	 * Mark hpage as uptodate before inserting it into the page cache so
2116 	 * that it isn't mistaken for an fallocated but unwritten page.
2117 	 */
2118 	folio = page_folio(hpage);
2119 	folio_mark_uptodate(folio);
2120 	folio_ref_add(folio, HPAGE_PMD_NR - 1);
2121 
2122 	if (is_shmem)
2123 		folio_mark_dirty(folio);
2124 	folio_add_lru(folio);
2125 
2126 	/* Join all the small entries into a single multi-index entry. */
2127 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2128 	xas_store(&xas, hpage);
2129 	WARN_ON_ONCE(xas_error(&xas));
2130 	xas_unlock_irq(&xas);
2131 
2132 	/*
2133 	 * Remove pte page tables, so we can re-fault the page as huge.
2134 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2135 	 */
2136 	retract_page_tables(mapping, start);
2137 	if (cc && !cc->is_khugepaged)
2138 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2139 	unlock_page(hpage);
2140 
2141 	/*
2142 	 * The collapse has succeeded, so free the old pages.
2143 	 */
2144 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2145 		list_del(&page->lru);
2146 		page->mapping = NULL;
2147 		ClearPageActive(page);
2148 		ClearPageUnevictable(page);
2149 		unlock_page(page);
2150 		folio_put_refs(page_folio(page), 3);
2151 	}
2152 
2153 	goto out;
2154 
2155 rollback:
2156 	/* Something went wrong: roll back page cache changes */
2157 	if (nr_none) {
2158 		xas_lock_irq(&xas);
2159 		mapping->nrpages -= nr_none;
2160 		shmem_uncharge(mapping->host, nr_none);
2161 		xas_unlock_irq(&xas);
2162 	}
2163 
2164 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2165 		list_del(&page->lru);
2166 		unlock_page(page);
2167 		putback_lru_page(page);
2168 		put_page(page);
2169 	}
2170 	/*
2171 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2172 	 * file only. This undo is not needed unless failure is
2173 	 * due to SCAN_COPY_MC.
2174 	 */
2175 	if (!is_shmem && result == SCAN_COPY_MC) {
2176 		filemap_nr_thps_dec(mapping);
2177 		/*
2178 		 * Paired with smp_mb() in do_dentry_open() to
2179 		 * ensure the update to nr_thps is visible.
2180 		 */
2181 		smp_mb();
2182 	}
2183 
2184 	hpage->mapping = NULL;
2185 
2186 	unlock_page(hpage);
2187 	put_page(hpage);
2188 out:
2189 	VM_BUG_ON(!list_empty(&pagelist));
2190 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2191 	return result;
2192 }
2193 
2194 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2195 				    struct file *file, pgoff_t start,
2196 				    struct collapse_control *cc)
2197 {
2198 	struct page *page = NULL;
2199 	struct address_space *mapping = file->f_mapping;
2200 	XA_STATE(xas, &mapping->i_pages, start);
2201 	int present, swap;
2202 	int node = NUMA_NO_NODE;
2203 	int result = SCAN_SUCCEED;
2204 
2205 	present = 0;
2206 	swap = 0;
2207 	memset(cc->node_load, 0, sizeof(cc->node_load));
2208 	nodes_clear(cc->alloc_nmask);
2209 	rcu_read_lock();
2210 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2211 		if (xas_retry(&xas, page))
2212 			continue;
2213 
2214 		if (xa_is_value(page)) {
2215 			++swap;
2216 			if (cc->is_khugepaged &&
2217 			    swap > khugepaged_max_ptes_swap) {
2218 				result = SCAN_EXCEED_SWAP_PTE;
2219 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2220 				break;
2221 			}
2222 			continue;
2223 		}
2224 
2225 		/*
2226 		 * TODO: khugepaged should compact smaller compound pages
2227 		 * into a PMD sized page
2228 		 */
2229 		if (PageTransCompound(page)) {
2230 			struct page *head = compound_head(page);
2231 
2232 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2233 					head->index == start
2234 					/* Maybe PMD-mapped */
2235 					? SCAN_PTE_MAPPED_HUGEPAGE
2236 					: SCAN_PAGE_COMPOUND;
2237 			/*
2238 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2239 			 * by the caller won't touch the page cache, and so
2240 			 * it's safe to skip LRU and refcount checks before
2241 			 * returning.
2242 			 */
2243 			break;
2244 		}
2245 
2246 		node = page_to_nid(page);
2247 		if (hpage_collapse_scan_abort(node, cc)) {
2248 			result = SCAN_SCAN_ABORT;
2249 			break;
2250 		}
2251 		cc->node_load[node]++;
2252 
2253 		if (!PageLRU(page)) {
2254 			result = SCAN_PAGE_LRU;
2255 			break;
2256 		}
2257 
2258 		if (page_count(page) !=
2259 		    1 + page_mapcount(page) + page_has_private(page)) {
2260 			result = SCAN_PAGE_COUNT;
2261 			break;
2262 		}
2263 
2264 		/*
2265 		 * We probably should check if the page is referenced here, but
2266 		 * nobody would transfer pte_young() to PageReferenced() for us.
2267 		 * And rmap walk here is just too costly...
2268 		 */
2269 
2270 		present++;
2271 
2272 		if (need_resched()) {
2273 			xas_pause(&xas);
2274 			cond_resched_rcu();
2275 		}
2276 	}
2277 	rcu_read_unlock();
2278 
2279 	if (result == SCAN_SUCCEED) {
2280 		if (cc->is_khugepaged &&
2281 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2282 			result = SCAN_EXCEED_NONE_PTE;
2283 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2284 		} else {
2285 			result = collapse_file(mm, addr, file, start, cc);
2286 		}
2287 	}
2288 
2289 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2290 	return result;
2291 }
2292 #else
2293 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2294 				    struct file *file, pgoff_t start,
2295 				    struct collapse_control *cc)
2296 {
2297 	BUILD_BUG();
2298 }
2299 #endif
2300 
2301 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2302 					    struct collapse_control *cc)
2303 	__releases(&khugepaged_mm_lock)
2304 	__acquires(&khugepaged_mm_lock)
2305 {
2306 	struct vma_iterator vmi;
2307 	struct khugepaged_mm_slot *mm_slot;
2308 	struct mm_slot *slot;
2309 	struct mm_struct *mm;
2310 	struct vm_area_struct *vma;
2311 	int progress = 0;
2312 
2313 	VM_BUG_ON(!pages);
2314 	lockdep_assert_held(&khugepaged_mm_lock);
2315 	*result = SCAN_FAIL;
2316 
2317 	if (khugepaged_scan.mm_slot) {
2318 		mm_slot = khugepaged_scan.mm_slot;
2319 		slot = &mm_slot->slot;
2320 	} else {
2321 		slot = list_entry(khugepaged_scan.mm_head.next,
2322 				     struct mm_slot, mm_node);
2323 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2324 		khugepaged_scan.address = 0;
2325 		khugepaged_scan.mm_slot = mm_slot;
2326 	}
2327 	spin_unlock(&khugepaged_mm_lock);
2328 
2329 	mm = slot->mm;
2330 	/*
2331 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2332 	 * the next mm on the list.
2333 	 */
2334 	vma = NULL;
2335 	if (unlikely(!mmap_read_trylock(mm)))
2336 		goto breakouterloop_mmap_lock;
2337 
2338 	progress++;
2339 	if (unlikely(hpage_collapse_test_exit(mm)))
2340 		goto breakouterloop;
2341 
2342 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2343 	for_each_vma(vmi, vma) {
2344 		unsigned long hstart, hend;
2345 
2346 		cond_resched();
2347 		if (unlikely(hpage_collapse_test_exit(mm))) {
2348 			progress++;
2349 			break;
2350 		}
2351 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2352 skip:
2353 			progress++;
2354 			continue;
2355 		}
2356 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2357 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2358 		if (khugepaged_scan.address > hend)
2359 			goto skip;
2360 		if (khugepaged_scan.address < hstart)
2361 			khugepaged_scan.address = hstart;
2362 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2363 
2364 		while (khugepaged_scan.address < hend) {
2365 			bool mmap_locked = true;
2366 
2367 			cond_resched();
2368 			if (unlikely(hpage_collapse_test_exit(mm)))
2369 				goto breakouterloop;
2370 
2371 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2372 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2373 				  hend);
2374 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2375 				struct file *file = get_file(vma->vm_file);
2376 				pgoff_t pgoff = linear_page_index(vma,
2377 						khugepaged_scan.address);
2378 
2379 				mmap_read_unlock(mm);
2380 				mmap_locked = false;
2381 				*result = hpage_collapse_scan_file(mm,
2382 					khugepaged_scan.address, file, pgoff, cc);
2383 				fput(file);
2384 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2385 					mmap_read_lock(mm);
2386 					if (hpage_collapse_test_exit(mm))
2387 						goto breakouterloop;
2388 					*result = collapse_pte_mapped_thp(mm,
2389 						khugepaged_scan.address, false);
2390 					if (*result == SCAN_PMD_MAPPED)
2391 						*result = SCAN_SUCCEED;
2392 					mmap_read_unlock(mm);
2393 				}
2394 			} else {
2395 				*result = hpage_collapse_scan_pmd(mm, vma,
2396 					khugepaged_scan.address, &mmap_locked, cc);
2397 			}
2398 
2399 			if (*result == SCAN_SUCCEED)
2400 				++khugepaged_pages_collapsed;
2401 
2402 			/* move to next address */
2403 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2404 			progress += HPAGE_PMD_NR;
2405 			if (!mmap_locked)
2406 				/*
2407 				 * We released mmap_lock so break loop.  Note
2408 				 * that we drop mmap_lock before all hugepage
2409 				 * allocations, so if allocation fails, we are
2410 				 * guaranteed to break here and report the
2411 				 * correct result back to caller.
2412 				 */
2413 				goto breakouterloop_mmap_lock;
2414 			if (progress >= pages)
2415 				goto breakouterloop;
2416 		}
2417 	}
2418 breakouterloop:
2419 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2420 breakouterloop_mmap_lock:
2421 
2422 	spin_lock(&khugepaged_mm_lock);
2423 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2424 	/*
2425 	 * Release the current mm_slot if this mm is about to die, or
2426 	 * if we scanned all vmas of this mm.
2427 	 */
2428 	if (hpage_collapse_test_exit(mm) || !vma) {
2429 		/*
2430 		 * Make sure that if mm_users is reaching zero while
2431 		 * khugepaged runs here, khugepaged_exit will find
2432 		 * mm_slot not pointing to the exiting mm.
2433 		 */
2434 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2435 			slot = list_entry(slot->mm_node.next,
2436 					  struct mm_slot, mm_node);
2437 			khugepaged_scan.mm_slot =
2438 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2439 			khugepaged_scan.address = 0;
2440 		} else {
2441 			khugepaged_scan.mm_slot = NULL;
2442 			khugepaged_full_scans++;
2443 		}
2444 
2445 		collect_mm_slot(mm_slot);
2446 	}
2447 
2448 	return progress;
2449 }
2450 
2451 static int khugepaged_has_work(void)
2452 {
2453 	return !list_empty(&khugepaged_scan.mm_head) &&
2454 		hugepage_flags_enabled();
2455 }
2456 
2457 static int khugepaged_wait_event(void)
2458 {
2459 	return !list_empty(&khugepaged_scan.mm_head) ||
2460 		kthread_should_stop();
2461 }
2462 
2463 static void khugepaged_do_scan(struct collapse_control *cc)
2464 {
2465 	unsigned int progress = 0, pass_through_head = 0;
2466 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2467 	bool wait = true;
2468 	int result = SCAN_SUCCEED;
2469 
2470 	lru_add_drain_all();
2471 
2472 	while (true) {
2473 		cond_resched();
2474 
2475 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2476 			break;
2477 
2478 		spin_lock(&khugepaged_mm_lock);
2479 		if (!khugepaged_scan.mm_slot)
2480 			pass_through_head++;
2481 		if (khugepaged_has_work() &&
2482 		    pass_through_head < 2)
2483 			progress += khugepaged_scan_mm_slot(pages - progress,
2484 							    &result, cc);
2485 		else
2486 			progress = pages;
2487 		spin_unlock(&khugepaged_mm_lock);
2488 
2489 		if (progress >= pages)
2490 			break;
2491 
2492 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2493 			/*
2494 			 * If fail to allocate the first time, try to sleep for
2495 			 * a while.  When hit again, cancel the scan.
2496 			 */
2497 			if (!wait)
2498 				break;
2499 			wait = false;
2500 			khugepaged_alloc_sleep();
2501 		}
2502 	}
2503 }
2504 
2505 static bool khugepaged_should_wakeup(void)
2506 {
2507 	return kthread_should_stop() ||
2508 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2509 }
2510 
2511 static void khugepaged_wait_work(void)
2512 {
2513 	if (khugepaged_has_work()) {
2514 		const unsigned long scan_sleep_jiffies =
2515 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2516 
2517 		if (!scan_sleep_jiffies)
2518 			return;
2519 
2520 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2521 		wait_event_freezable_timeout(khugepaged_wait,
2522 					     khugepaged_should_wakeup(),
2523 					     scan_sleep_jiffies);
2524 		return;
2525 	}
2526 
2527 	if (hugepage_flags_enabled())
2528 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2529 }
2530 
2531 static int khugepaged(void *none)
2532 {
2533 	struct khugepaged_mm_slot *mm_slot;
2534 
2535 	set_freezable();
2536 	set_user_nice(current, MAX_NICE);
2537 
2538 	while (!kthread_should_stop()) {
2539 		khugepaged_do_scan(&khugepaged_collapse_control);
2540 		khugepaged_wait_work();
2541 	}
2542 
2543 	spin_lock(&khugepaged_mm_lock);
2544 	mm_slot = khugepaged_scan.mm_slot;
2545 	khugepaged_scan.mm_slot = NULL;
2546 	if (mm_slot)
2547 		collect_mm_slot(mm_slot);
2548 	spin_unlock(&khugepaged_mm_lock);
2549 	return 0;
2550 }
2551 
2552 static void set_recommended_min_free_kbytes(void)
2553 {
2554 	struct zone *zone;
2555 	int nr_zones = 0;
2556 	unsigned long recommended_min;
2557 
2558 	if (!hugepage_flags_enabled()) {
2559 		calculate_min_free_kbytes();
2560 		goto update_wmarks;
2561 	}
2562 
2563 	for_each_populated_zone(zone) {
2564 		/*
2565 		 * We don't need to worry about fragmentation of
2566 		 * ZONE_MOVABLE since it only has movable pages.
2567 		 */
2568 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2569 			continue;
2570 
2571 		nr_zones++;
2572 	}
2573 
2574 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2575 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2576 
2577 	/*
2578 	 * Make sure that on average at least two pageblocks are almost free
2579 	 * of another type, one for a migratetype to fall back to and a
2580 	 * second to avoid subsequent fallbacks of other types There are 3
2581 	 * MIGRATE_TYPES we care about.
2582 	 */
2583 	recommended_min += pageblock_nr_pages * nr_zones *
2584 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2585 
2586 	/* don't ever allow to reserve more than 5% of the lowmem */
2587 	recommended_min = min(recommended_min,
2588 			      (unsigned long) nr_free_buffer_pages() / 20);
2589 	recommended_min <<= (PAGE_SHIFT-10);
2590 
2591 	if (recommended_min > min_free_kbytes) {
2592 		if (user_min_free_kbytes >= 0)
2593 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2594 				min_free_kbytes, recommended_min);
2595 
2596 		min_free_kbytes = recommended_min;
2597 	}
2598 
2599 update_wmarks:
2600 	setup_per_zone_wmarks();
2601 }
2602 
2603 int start_stop_khugepaged(void)
2604 {
2605 	int err = 0;
2606 
2607 	mutex_lock(&khugepaged_mutex);
2608 	if (hugepage_flags_enabled()) {
2609 		if (!khugepaged_thread)
2610 			khugepaged_thread = kthread_run(khugepaged, NULL,
2611 							"khugepaged");
2612 		if (IS_ERR(khugepaged_thread)) {
2613 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2614 			err = PTR_ERR(khugepaged_thread);
2615 			khugepaged_thread = NULL;
2616 			goto fail;
2617 		}
2618 
2619 		if (!list_empty(&khugepaged_scan.mm_head))
2620 			wake_up_interruptible(&khugepaged_wait);
2621 	} else if (khugepaged_thread) {
2622 		kthread_stop(khugepaged_thread);
2623 		khugepaged_thread = NULL;
2624 	}
2625 	set_recommended_min_free_kbytes();
2626 fail:
2627 	mutex_unlock(&khugepaged_mutex);
2628 	return err;
2629 }
2630 
2631 void khugepaged_min_free_kbytes_update(void)
2632 {
2633 	mutex_lock(&khugepaged_mutex);
2634 	if (hugepage_flags_enabled() && khugepaged_thread)
2635 		set_recommended_min_free_kbytes();
2636 	mutex_unlock(&khugepaged_mutex);
2637 }
2638 
2639 bool current_is_khugepaged(void)
2640 {
2641 	return kthread_func(current) == khugepaged;
2642 }
2643 
2644 static int madvise_collapse_errno(enum scan_result r)
2645 {
2646 	/*
2647 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2648 	 * actionable feedback to caller, so they may take an appropriate
2649 	 * fallback measure depending on the nature of the failure.
2650 	 */
2651 	switch (r) {
2652 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2653 		return -ENOMEM;
2654 	case SCAN_CGROUP_CHARGE_FAIL:
2655 	case SCAN_EXCEED_NONE_PTE:
2656 		return -EBUSY;
2657 	/* Resource temporary unavailable - trying again might succeed */
2658 	case SCAN_PAGE_COUNT:
2659 	case SCAN_PAGE_LOCK:
2660 	case SCAN_PAGE_LRU:
2661 	case SCAN_DEL_PAGE_LRU:
2662 	case SCAN_PAGE_FILLED:
2663 		return -EAGAIN;
2664 	/*
2665 	 * Other: Trying again likely not to succeed / error intrinsic to
2666 	 * specified memory range. khugepaged likely won't be able to collapse
2667 	 * either.
2668 	 */
2669 	default:
2670 		return -EINVAL;
2671 	}
2672 }
2673 
2674 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2675 		     unsigned long start, unsigned long end)
2676 {
2677 	struct collapse_control *cc;
2678 	struct mm_struct *mm = vma->vm_mm;
2679 	unsigned long hstart, hend, addr;
2680 	int thps = 0, last_fail = SCAN_FAIL;
2681 	bool mmap_locked = true;
2682 
2683 	BUG_ON(vma->vm_start > start);
2684 	BUG_ON(vma->vm_end < end);
2685 
2686 	*prev = vma;
2687 
2688 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2689 		return -EINVAL;
2690 
2691 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2692 	if (!cc)
2693 		return -ENOMEM;
2694 	cc->is_khugepaged = false;
2695 
2696 	mmgrab(mm);
2697 	lru_add_drain_all();
2698 
2699 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2700 	hend = end & HPAGE_PMD_MASK;
2701 
2702 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2703 		int result = SCAN_FAIL;
2704 
2705 		if (!mmap_locked) {
2706 			cond_resched();
2707 			mmap_read_lock(mm);
2708 			mmap_locked = true;
2709 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2710 							 cc);
2711 			if (result  != SCAN_SUCCEED) {
2712 				last_fail = result;
2713 				goto out_nolock;
2714 			}
2715 
2716 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2717 		}
2718 		mmap_assert_locked(mm);
2719 		memset(cc->node_load, 0, sizeof(cc->node_load));
2720 		nodes_clear(cc->alloc_nmask);
2721 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2722 			struct file *file = get_file(vma->vm_file);
2723 			pgoff_t pgoff = linear_page_index(vma, addr);
2724 
2725 			mmap_read_unlock(mm);
2726 			mmap_locked = false;
2727 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2728 							  cc);
2729 			fput(file);
2730 		} else {
2731 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2732 							 &mmap_locked, cc);
2733 		}
2734 		if (!mmap_locked)
2735 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2736 
2737 handle_result:
2738 		switch (result) {
2739 		case SCAN_SUCCEED:
2740 		case SCAN_PMD_MAPPED:
2741 			++thps;
2742 			break;
2743 		case SCAN_PTE_MAPPED_HUGEPAGE:
2744 			BUG_ON(mmap_locked);
2745 			BUG_ON(*prev);
2746 			mmap_read_lock(mm);
2747 			result = collapse_pte_mapped_thp(mm, addr, true);
2748 			mmap_read_unlock(mm);
2749 			goto handle_result;
2750 		/* Whitelisted set of results where continuing OK */
2751 		case SCAN_PMD_NULL:
2752 		case SCAN_PTE_NON_PRESENT:
2753 		case SCAN_PTE_UFFD_WP:
2754 		case SCAN_PAGE_RO:
2755 		case SCAN_LACK_REFERENCED_PAGE:
2756 		case SCAN_PAGE_NULL:
2757 		case SCAN_PAGE_COUNT:
2758 		case SCAN_PAGE_LOCK:
2759 		case SCAN_PAGE_COMPOUND:
2760 		case SCAN_PAGE_LRU:
2761 		case SCAN_DEL_PAGE_LRU:
2762 			last_fail = result;
2763 			break;
2764 		default:
2765 			last_fail = result;
2766 			/* Other error, exit */
2767 			goto out_maybelock;
2768 		}
2769 	}
2770 
2771 out_maybelock:
2772 	/* Caller expects us to hold mmap_lock on return */
2773 	if (!mmap_locked)
2774 		mmap_read_lock(mm);
2775 out_nolock:
2776 	mmap_assert_locked(mm);
2777 	mmdrop(mm);
2778 	kfree(cc);
2779 
2780 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2781 			: madvise_collapse_errno(last_fail);
2782 }
2783