xref: /openbmc/linux/mm/khugepaged.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 
27 enum scan_result {
28 	SCAN_FAIL,
29 	SCAN_SUCCEED,
30 	SCAN_PMD_NULL,
31 	SCAN_PMD_MAPPED,
32 	SCAN_EXCEED_NONE_PTE,
33 	SCAN_EXCEED_SWAP_PTE,
34 	SCAN_EXCEED_SHARED_PTE,
35 	SCAN_PTE_NON_PRESENT,
36 	SCAN_PTE_UFFD_WP,
37 	SCAN_PAGE_RO,
38 	SCAN_LACK_REFERENCED_PAGE,
39 	SCAN_PAGE_NULL,
40 	SCAN_SCAN_ABORT,
41 	SCAN_PAGE_COUNT,
42 	SCAN_PAGE_LRU,
43 	SCAN_PAGE_LOCK,
44 	SCAN_PAGE_ANON,
45 	SCAN_PAGE_COMPOUND,
46 	SCAN_ANY_PROCESS,
47 	SCAN_VMA_NULL,
48 	SCAN_VMA_CHECK,
49 	SCAN_ADDRESS_RANGE,
50 	SCAN_DEL_PAGE_LRU,
51 	SCAN_ALLOC_HUGE_PAGE_FAIL,
52 	SCAN_CGROUP_CHARGE_FAIL,
53 	SCAN_TRUNCATED,
54 	SCAN_PAGE_HAS_PRIVATE,
55 };
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/huge_memory.h>
59 
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 
63 /* default scan 8*512 pte (or vmas) every 30 second */
64 static unsigned int khugepaged_pages_to_scan __read_mostly;
65 static unsigned int khugepaged_pages_collapsed;
66 static unsigned int khugepaged_full_scans;
67 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
68 /* during fragmentation poll the hugepage allocator once every minute */
69 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
70 static unsigned long khugepaged_sleep_expire;
71 static DEFINE_SPINLOCK(khugepaged_mm_lock);
72 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
73 /*
74  * default collapse hugepages if there is at least one pte mapped like
75  * it would have happened if the vma was large enough during page
76  * fault.
77  *
78  * Note that these are only respected if collapse was initiated by khugepaged.
79  */
80 static unsigned int khugepaged_max_ptes_none __read_mostly;
81 static unsigned int khugepaged_max_ptes_swap __read_mostly;
82 static unsigned int khugepaged_max_ptes_shared __read_mostly;
83 
84 #define MM_SLOTS_HASH_BITS 10
85 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
86 
87 static struct kmem_cache *mm_slot_cache __read_mostly;
88 
89 #define MAX_PTE_MAPPED_THP 8
90 
91 struct collapse_control {
92 	bool is_khugepaged;
93 
94 	/* Num pages scanned per node */
95 	u32 node_load[MAX_NUMNODES];
96 
97 	/* Last target selected in hpage_collapse_find_target_node() */
98 	int last_target_node;
99 };
100 
101 /**
102  * struct mm_slot - hash lookup from mm to mm_slot
103  * @hash: hash collision list
104  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
105  * @mm: the mm that this information is valid for
106  * @nr_pte_mapped_thp: number of pte mapped THP
107  * @pte_mapped_thp: address array corresponding pte mapped THP
108  */
109 struct mm_slot {
110 	struct hlist_node hash;
111 	struct list_head mm_node;
112 	struct mm_struct *mm;
113 
114 	/* pte-mapped THP in this mm */
115 	int nr_pte_mapped_thp;
116 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
117 };
118 
119 /**
120  * struct khugepaged_scan - cursor for scanning
121  * @mm_head: the head of the mm list to scan
122  * @mm_slot: the current mm_slot we are scanning
123  * @address: the next address inside that to be scanned
124  *
125  * There is only the one khugepaged_scan instance of this cursor structure.
126  */
127 struct khugepaged_scan {
128 	struct list_head mm_head;
129 	struct mm_slot *mm_slot;
130 	unsigned long address;
131 };
132 
133 static struct khugepaged_scan khugepaged_scan = {
134 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135 };
136 
137 #ifdef CONFIG_SYSFS
138 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
139 					 struct kobj_attribute *attr,
140 					 char *buf)
141 {
142 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
143 }
144 
145 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
146 					  struct kobj_attribute *attr,
147 					  const char *buf, size_t count)
148 {
149 	unsigned int msecs;
150 	int err;
151 
152 	err = kstrtouint(buf, 10, &msecs);
153 	if (err)
154 		return -EINVAL;
155 
156 	khugepaged_scan_sleep_millisecs = msecs;
157 	khugepaged_sleep_expire = 0;
158 	wake_up_interruptible(&khugepaged_wait);
159 
160 	return count;
161 }
162 static struct kobj_attribute scan_sleep_millisecs_attr =
163 	__ATTR_RW(scan_sleep_millisecs);
164 
165 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
166 					  struct kobj_attribute *attr,
167 					  char *buf)
168 {
169 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
170 }
171 
172 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
173 					   struct kobj_attribute *attr,
174 					   const char *buf, size_t count)
175 {
176 	unsigned int msecs;
177 	int err;
178 
179 	err = kstrtouint(buf, 10, &msecs);
180 	if (err)
181 		return -EINVAL;
182 
183 	khugepaged_alloc_sleep_millisecs = msecs;
184 	khugepaged_sleep_expire = 0;
185 	wake_up_interruptible(&khugepaged_wait);
186 
187 	return count;
188 }
189 static struct kobj_attribute alloc_sleep_millisecs_attr =
190 	__ATTR_RW(alloc_sleep_millisecs);
191 
192 static ssize_t pages_to_scan_show(struct kobject *kobj,
193 				  struct kobj_attribute *attr,
194 				  char *buf)
195 {
196 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
197 }
198 static ssize_t pages_to_scan_store(struct kobject *kobj,
199 				   struct kobj_attribute *attr,
200 				   const char *buf, size_t count)
201 {
202 	unsigned int pages;
203 	int err;
204 
205 	err = kstrtouint(buf, 10, &pages);
206 	if (err || !pages)
207 		return -EINVAL;
208 
209 	khugepaged_pages_to_scan = pages;
210 
211 	return count;
212 }
213 static struct kobj_attribute pages_to_scan_attr =
214 	__ATTR_RW(pages_to_scan);
215 
216 static ssize_t pages_collapsed_show(struct kobject *kobj,
217 				    struct kobj_attribute *attr,
218 				    char *buf)
219 {
220 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
221 }
222 static struct kobj_attribute pages_collapsed_attr =
223 	__ATTR_RO(pages_collapsed);
224 
225 static ssize_t full_scans_show(struct kobject *kobj,
226 			       struct kobj_attribute *attr,
227 			       char *buf)
228 {
229 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
230 }
231 static struct kobj_attribute full_scans_attr =
232 	__ATTR_RO(full_scans);
233 
234 static ssize_t defrag_show(struct kobject *kobj,
235 			   struct kobj_attribute *attr, char *buf)
236 {
237 	return single_hugepage_flag_show(kobj, attr, buf,
238 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
239 }
240 static ssize_t defrag_store(struct kobject *kobj,
241 			    struct kobj_attribute *attr,
242 			    const char *buf, size_t count)
243 {
244 	return single_hugepage_flag_store(kobj, attr, buf, count,
245 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
246 }
247 static struct kobj_attribute khugepaged_defrag_attr =
248 	__ATTR_RW(defrag);
249 
250 /*
251  * max_ptes_none controls if khugepaged should collapse hugepages over
252  * any unmapped ptes in turn potentially increasing the memory
253  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
254  * reduce the available free memory in the system as it
255  * runs. Increasing max_ptes_none will instead potentially reduce the
256  * free memory in the system during the khugepaged scan.
257  */
258 static ssize_t max_ptes_none_show(struct kobject *kobj,
259 				  struct kobj_attribute *attr,
260 				  char *buf)
261 {
262 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
263 }
264 static ssize_t max_ptes_none_store(struct kobject *kobj,
265 				   struct kobj_attribute *attr,
266 				   const char *buf, size_t count)
267 {
268 	int err;
269 	unsigned long max_ptes_none;
270 
271 	err = kstrtoul(buf, 10, &max_ptes_none);
272 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
273 		return -EINVAL;
274 
275 	khugepaged_max_ptes_none = max_ptes_none;
276 
277 	return count;
278 }
279 static struct kobj_attribute khugepaged_max_ptes_none_attr =
280 	__ATTR_RW(max_ptes_none);
281 
282 static ssize_t max_ptes_swap_show(struct kobject *kobj,
283 				  struct kobj_attribute *attr,
284 				  char *buf)
285 {
286 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
287 }
288 
289 static ssize_t max_ptes_swap_store(struct kobject *kobj,
290 				   struct kobj_attribute *attr,
291 				   const char *buf, size_t count)
292 {
293 	int err;
294 	unsigned long max_ptes_swap;
295 
296 	err  = kstrtoul(buf, 10, &max_ptes_swap);
297 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
298 		return -EINVAL;
299 
300 	khugepaged_max_ptes_swap = max_ptes_swap;
301 
302 	return count;
303 }
304 
305 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
306 	__ATTR_RW(max_ptes_swap);
307 
308 static ssize_t max_ptes_shared_show(struct kobject *kobj,
309 				    struct kobj_attribute *attr,
310 				    char *buf)
311 {
312 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
313 }
314 
315 static ssize_t max_ptes_shared_store(struct kobject *kobj,
316 				     struct kobj_attribute *attr,
317 				     const char *buf, size_t count)
318 {
319 	int err;
320 	unsigned long max_ptes_shared;
321 
322 	err  = kstrtoul(buf, 10, &max_ptes_shared);
323 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
324 		return -EINVAL;
325 
326 	khugepaged_max_ptes_shared = max_ptes_shared;
327 
328 	return count;
329 }
330 
331 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
332 	__ATTR_RW(max_ptes_shared);
333 
334 static struct attribute *khugepaged_attr[] = {
335 	&khugepaged_defrag_attr.attr,
336 	&khugepaged_max_ptes_none_attr.attr,
337 	&khugepaged_max_ptes_swap_attr.attr,
338 	&khugepaged_max_ptes_shared_attr.attr,
339 	&pages_to_scan_attr.attr,
340 	&pages_collapsed_attr.attr,
341 	&full_scans_attr.attr,
342 	&scan_sleep_millisecs_attr.attr,
343 	&alloc_sleep_millisecs_attr.attr,
344 	NULL,
345 };
346 
347 struct attribute_group khugepaged_attr_group = {
348 	.attrs = khugepaged_attr,
349 	.name = "khugepaged",
350 };
351 #endif /* CONFIG_SYSFS */
352 
353 int hugepage_madvise(struct vm_area_struct *vma,
354 		     unsigned long *vm_flags, int advice)
355 {
356 	switch (advice) {
357 	case MADV_HUGEPAGE:
358 #ifdef CONFIG_S390
359 		/*
360 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
361 		 * can't handle this properly after s390_enable_sie, so we simply
362 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
363 		 */
364 		if (mm_has_pgste(vma->vm_mm))
365 			return 0;
366 #endif
367 		*vm_flags &= ~VM_NOHUGEPAGE;
368 		*vm_flags |= VM_HUGEPAGE;
369 		/*
370 		 * If the vma become good for khugepaged to scan,
371 		 * register it here without waiting a page fault that
372 		 * may not happen any time soon.
373 		 */
374 		khugepaged_enter_vma(vma, *vm_flags);
375 		break;
376 	case MADV_NOHUGEPAGE:
377 		*vm_flags &= ~VM_HUGEPAGE;
378 		*vm_flags |= VM_NOHUGEPAGE;
379 		/*
380 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
381 		 * this vma even if we leave the mm registered in khugepaged if
382 		 * it got registered before VM_NOHUGEPAGE was set.
383 		 */
384 		break;
385 	}
386 
387 	return 0;
388 }
389 
390 int __init khugepaged_init(void)
391 {
392 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
393 					  sizeof(struct mm_slot),
394 					  __alignof__(struct mm_slot), 0, NULL);
395 	if (!mm_slot_cache)
396 		return -ENOMEM;
397 
398 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 
403 	return 0;
404 }
405 
406 void __init khugepaged_destroy(void)
407 {
408 	kmem_cache_destroy(mm_slot_cache);
409 }
410 
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413 	if (!mm_slot_cache)	/* initialization failed */
414 		return NULL;
415 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417 
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420 	kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422 
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425 	struct mm_slot *mm_slot;
426 
427 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
428 		if (mm == mm_slot->mm)
429 			return mm_slot;
430 
431 	return NULL;
432 }
433 
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 				    struct mm_slot *mm_slot)
436 {
437 	mm_slot->mm = mm;
438 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
439 }
440 
441 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
442 {
443 	return atomic_read(&mm->mm_users) == 0;
444 }
445 
446 void __khugepaged_enter(struct mm_struct *mm)
447 {
448 	struct mm_slot *mm_slot;
449 	int wakeup;
450 
451 	mm_slot = alloc_mm_slot();
452 	if (!mm_slot)
453 		return;
454 
455 	/* __khugepaged_exit() must not run from under us */
456 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
457 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
458 		free_mm_slot(mm_slot);
459 		return;
460 	}
461 
462 	spin_lock(&khugepaged_mm_lock);
463 	insert_to_mm_slots_hash(mm, mm_slot);
464 	/*
465 	 * Insert just behind the scanning cursor, to let the area settle
466 	 * down a little.
467 	 */
468 	wakeup = list_empty(&khugepaged_scan.mm_head);
469 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
470 	spin_unlock(&khugepaged_mm_lock);
471 
472 	mmgrab(mm);
473 	if (wakeup)
474 		wake_up_interruptible(&khugepaged_wait);
475 }
476 
477 void khugepaged_enter_vma(struct vm_area_struct *vma,
478 			  unsigned long vm_flags)
479 {
480 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
481 	    hugepage_flags_enabled()) {
482 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
483 			__khugepaged_enter(vma->vm_mm);
484 	}
485 }
486 
487 void __khugepaged_exit(struct mm_struct *mm)
488 {
489 	struct mm_slot *mm_slot;
490 	int free = 0;
491 
492 	spin_lock(&khugepaged_mm_lock);
493 	mm_slot = get_mm_slot(mm);
494 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
495 		hash_del(&mm_slot->hash);
496 		list_del(&mm_slot->mm_node);
497 		free = 1;
498 	}
499 	spin_unlock(&khugepaged_mm_lock);
500 
501 	if (free) {
502 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
503 		free_mm_slot(mm_slot);
504 		mmdrop(mm);
505 	} else if (mm_slot) {
506 		/*
507 		 * This is required to serialize against
508 		 * hpage_collapse_test_exit() (which is guaranteed to run
509 		 * under mmap sem read mode). Stop here (after we return all
510 		 * pagetables will be destroyed) until khugepaged has finished
511 		 * working on the pagetables under the mmap_lock.
512 		 */
513 		mmap_write_lock(mm);
514 		mmap_write_unlock(mm);
515 	}
516 }
517 
518 static void release_pte_page(struct page *page)
519 {
520 	mod_node_page_state(page_pgdat(page),
521 			NR_ISOLATED_ANON + page_is_file_lru(page),
522 			-compound_nr(page));
523 	unlock_page(page);
524 	putback_lru_page(page);
525 }
526 
527 static void release_pte_pages(pte_t *pte, pte_t *_pte,
528 		struct list_head *compound_pagelist)
529 {
530 	struct page *page, *tmp;
531 
532 	while (--_pte >= pte) {
533 		pte_t pteval = *_pte;
534 
535 		page = pte_page(pteval);
536 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
537 				!PageCompound(page))
538 			release_pte_page(page);
539 	}
540 
541 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
542 		list_del(&page->lru);
543 		release_pte_page(page);
544 	}
545 }
546 
547 static bool is_refcount_suitable(struct page *page)
548 {
549 	int expected_refcount;
550 
551 	expected_refcount = total_mapcount(page);
552 	if (PageSwapCache(page))
553 		expected_refcount += compound_nr(page);
554 
555 	return page_count(page) == expected_refcount;
556 }
557 
558 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
559 					unsigned long address,
560 					pte_t *pte,
561 					struct collapse_control *cc,
562 					struct list_head *compound_pagelist)
563 {
564 	struct page *page = NULL;
565 	pte_t *_pte;
566 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
567 	bool writable = false;
568 
569 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
570 	     _pte++, address += PAGE_SIZE) {
571 		pte_t pteval = *_pte;
572 		if (pte_none(pteval) || (pte_present(pteval) &&
573 				is_zero_pfn(pte_pfn(pteval)))) {
574 			++none_or_zero;
575 			if (!userfaultfd_armed(vma) &&
576 			    (!cc->is_khugepaged ||
577 			     none_or_zero <= khugepaged_max_ptes_none)) {
578 				continue;
579 			} else {
580 				result = SCAN_EXCEED_NONE_PTE;
581 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
582 				goto out;
583 			}
584 		}
585 		if (!pte_present(pteval)) {
586 			result = SCAN_PTE_NON_PRESENT;
587 			goto out;
588 		}
589 		page = vm_normal_page(vma, address, pteval);
590 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
591 			result = SCAN_PAGE_NULL;
592 			goto out;
593 		}
594 
595 		VM_BUG_ON_PAGE(!PageAnon(page), page);
596 
597 		if (page_mapcount(page) > 1) {
598 			++shared;
599 			if (cc->is_khugepaged &&
600 			    shared > khugepaged_max_ptes_shared) {
601 				result = SCAN_EXCEED_SHARED_PTE;
602 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
603 				goto out;
604 			}
605 		}
606 
607 		if (PageCompound(page)) {
608 			struct page *p;
609 			page = compound_head(page);
610 
611 			/*
612 			 * Check if we have dealt with the compound page
613 			 * already
614 			 */
615 			list_for_each_entry(p, compound_pagelist, lru) {
616 				if (page == p)
617 					goto next;
618 			}
619 		}
620 
621 		/*
622 		 * We can do it before isolate_lru_page because the
623 		 * page can't be freed from under us. NOTE: PG_lock
624 		 * is needed to serialize against split_huge_page
625 		 * when invoked from the VM.
626 		 */
627 		if (!trylock_page(page)) {
628 			result = SCAN_PAGE_LOCK;
629 			goto out;
630 		}
631 
632 		/*
633 		 * Check if the page has any GUP (or other external) pins.
634 		 *
635 		 * The page table that maps the page has been already unlinked
636 		 * from the page table tree and this process cannot get
637 		 * an additional pin on the page.
638 		 *
639 		 * New pins can come later if the page is shared across fork,
640 		 * but not from this process. The other process cannot write to
641 		 * the page, only trigger CoW.
642 		 */
643 		if (!is_refcount_suitable(page)) {
644 			unlock_page(page);
645 			result = SCAN_PAGE_COUNT;
646 			goto out;
647 		}
648 
649 		/*
650 		 * Isolate the page to avoid collapsing an hugepage
651 		 * currently in use by the VM.
652 		 */
653 		if (isolate_lru_page(page)) {
654 			unlock_page(page);
655 			result = SCAN_DEL_PAGE_LRU;
656 			goto out;
657 		}
658 		mod_node_page_state(page_pgdat(page),
659 				NR_ISOLATED_ANON + page_is_file_lru(page),
660 				compound_nr(page));
661 		VM_BUG_ON_PAGE(!PageLocked(page), page);
662 		VM_BUG_ON_PAGE(PageLRU(page), page);
663 
664 		if (PageCompound(page))
665 			list_add_tail(&page->lru, compound_pagelist);
666 next:
667 		/*
668 		 * If collapse was initiated by khugepaged, check that there is
669 		 * enough young pte to justify collapsing the page
670 		 */
671 		if (cc->is_khugepaged &&
672 		    (pte_young(pteval) || page_is_young(page) ||
673 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
674 								     address)))
675 			referenced++;
676 
677 		if (pte_write(pteval))
678 			writable = true;
679 	}
680 
681 	if (unlikely(!writable)) {
682 		result = SCAN_PAGE_RO;
683 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
684 		result = SCAN_LACK_REFERENCED_PAGE;
685 	} else {
686 		result = SCAN_SUCCEED;
687 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
688 						    referenced, writable, result);
689 		return result;
690 	}
691 out:
692 	release_pte_pages(pte, _pte, compound_pagelist);
693 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
694 					    referenced, writable, result);
695 	return result;
696 }
697 
698 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
699 				      struct vm_area_struct *vma,
700 				      unsigned long address,
701 				      spinlock_t *ptl,
702 				      struct list_head *compound_pagelist)
703 {
704 	struct page *src_page, *tmp;
705 	pte_t *_pte;
706 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
707 				_pte++, page++, address += PAGE_SIZE) {
708 		pte_t pteval = *_pte;
709 
710 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
711 			clear_user_highpage(page, address);
712 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
713 			if (is_zero_pfn(pte_pfn(pteval))) {
714 				/*
715 				 * ptl mostly unnecessary.
716 				 */
717 				spin_lock(ptl);
718 				ptep_clear(vma->vm_mm, address, _pte);
719 				spin_unlock(ptl);
720 			}
721 		} else {
722 			src_page = pte_page(pteval);
723 			copy_user_highpage(page, src_page, address, vma);
724 			if (!PageCompound(src_page))
725 				release_pte_page(src_page);
726 			/*
727 			 * ptl mostly unnecessary, but preempt has to
728 			 * be disabled to update the per-cpu stats
729 			 * inside page_remove_rmap().
730 			 */
731 			spin_lock(ptl);
732 			ptep_clear(vma->vm_mm, address, _pte);
733 			page_remove_rmap(src_page, vma, false);
734 			spin_unlock(ptl);
735 			free_page_and_swap_cache(src_page);
736 		}
737 	}
738 
739 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
740 		list_del(&src_page->lru);
741 		mod_node_page_state(page_pgdat(src_page),
742 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
743 				    -compound_nr(src_page));
744 		unlock_page(src_page);
745 		free_swap_cache(src_page);
746 		putback_lru_page(src_page);
747 	}
748 }
749 
750 static void khugepaged_alloc_sleep(void)
751 {
752 	DEFINE_WAIT(wait);
753 
754 	add_wait_queue(&khugepaged_wait, &wait);
755 	freezable_schedule_timeout_interruptible(
756 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
757 	remove_wait_queue(&khugepaged_wait, &wait);
758 }
759 
760 struct collapse_control khugepaged_collapse_control = {
761 	.is_khugepaged = true,
762 	.last_target_node = NUMA_NO_NODE,
763 };
764 
765 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
766 {
767 	int i;
768 
769 	/*
770 	 * If node_reclaim_mode is disabled, then no extra effort is made to
771 	 * allocate memory locally.
772 	 */
773 	if (!node_reclaim_enabled())
774 		return false;
775 
776 	/* If there is a count for this node already, it must be acceptable */
777 	if (cc->node_load[nid])
778 		return false;
779 
780 	for (i = 0; i < MAX_NUMNODES; i++) {
781 		if (!cc->node_load[i])
782 			continue;
783 		if (node_distance(nid, i) > node_reclaim_distance)
784 			return true;
785 	}
786 	return false;
787 }
788 
789 #define khugepaged_defrag()					\
790 	(transparent_hugepage_flags &				\
791 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
792 
793 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
794 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
795 {
796 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
797 }
798 
799 #ifdef CONFIG_NUMA
800 static int hpage_collapse_find_target_node(struct collapse_control *cc)
801 {
802 	int nid, target_node = 0, max_value = 0;
803 
804 	/* find first node with max normal pages hit */
805 	for (nid = 0; nid < MAX_NUMNODES; nid++)
806 		if (cc->node_load[nid] > max_value) {
807 			max_value = cc->node_load[nid];
808 			target_node = nid;
809 		}
810 
811 	/* do some balance if several nodes have the same hit record */
812 	if (target_node <= cc->last_target_node)
813 		for (nid = cc->last_target_node + 1; nid < MAX_NUMNODES;
814 		     nid++)
815 			if (max_value == cc->node_load[nid]) {
816 				target_node = nid;
817 				break;
818 			}
819 
820 	cc->last_target_node = target_node;
821 	return target_node;
822 }
823 #else
824 static int hpage_collapse_find_target_node(struct collapse_control *cc)
825 {
826 	return 0;
827 }
828 #endif
829 
830 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node)
831 {
832 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
833 	if (unlikely(!*hpage)) {
834 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
835 		return false;
836 	}
837 
838 	prep_transhuge_page(*hpage);
839 	count_vm_event(THP_COLLAPSE_ALLOC);
840 	return true;
841 }
842 
843 /*
844  * If mmap_lock temporarily dropped, revalidate vma
845  * before taking mmap_lock.
846  * Returns enum scan_result value.
847  */
848 
849 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
850 				   struct vm_area_struct **vmap,
851 				   struct collapse_control *cc)
852 {
853 	struct vm_area_struct *vma;
854 
855 	if (unlikely(hpage_collapse_test_exit(mm)))
856 		return SCAN_ANY_PROCESS;
857 
858 	*vmap = vma = find_vma(mm, address);
859 	if (!vma)
860 		return SCAN_VMA_NULL;
861 
862 	if (!transhuge_vma_suitable(vma, address))
863 		return SCAN_ADDRESS_RANGE;
864 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
865 				cc->is_khugepaged))
866 		return SCAN_VMA_CHECK;
867 	/*
868 	 * Anon VMA expected, the address may be unmapped then
869 	 * remapped to file after khugepaged reaquired the mmap_lock.
870 	 *
871 	 * hugepage_vma_check may return true for qualified file
872 	 * vmas.
873 	 */
874 	if (!vma->anon_vma || !vma_is_anonymous(vma))
875 		return SCAN_VMA_CHECK;
876 	return SCAN_SUCCEED;
877 }
878 
879 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
880 				   unsigned long address,
881 				   pmd_t **pmd)
882 {
883 	pmd_t pmde;
884 
885 	*pmd = mm_find_pmd(mm, address);
886 	if (!*pmd)
887 		return SCAN_PMD_NULL;
888 
889 	pmde = pmd_read_atomic(*pmd);
890 
891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
892 	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
893 	barrier();
894 #endif
895 	if (!pmd_present(pmde))
896 		return SCAN_PMD_NULL;
897 	if (pmd_trans_huge(pmde))
898 		return SCAN_PMD_MAPPED;
899 	if (pmd_bad(pmde))
900 		return SCAN_PMD_NULL;
901 	return SCAN_SUCCEED;
902 }
903 
904 static int check_pmd_still_valid(struct mm_struct *mm,
905 				 unsigned long address,
906 				 pmd_t *pmd)
907 {
908 	pmd_t *new_pmd;
909 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
910 
911 	if (result != SCAN_SUCCEED)
912 		return result;
913 	if (new_pmd != pmd)
914 		return SCAN_FAIL;
915 	return SCAN_SUCCEED;
916 }
917 
918 /*
919  * Bring missing pages in from swap, to complete THP collapse.
920  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
921  *
922  * Called and returns without pte mapped or spinlocks held.
923  * Note that if false is returned, mmap_lock will be released.
924  */
925 
926 static int __collapse_huge_page_swapin(struct mm_struct *mm,
927 				       struct vm_area_struct *vma,
928 				       unsigned long haddr, pmd_t *pmd,
929 				       int referenced)
930 {
931 	int swapped_in = 0;
932 	vm_fault_t ret = 0;
933 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
934 
935 	for (address = haddr; address < end; address += PAGE_SIZE) {
936 		struct vm_fault vmf = {
937 			.vma = vma,
938 			.address = address,
939 			.pgoff = linear_page_index(vma, haddr),
940 			.flags = FAULT_FLAG_ALLOW_RETRY,
941 			.pmd = pmd,
942 		};
943 
944 		vmf.pte = pte_offset_map(pmd, address);
945 		vmf.orig_pte = *vmf.pte;
946 		if (!is_swap_pte(vmf.orig_pte)) {
947 			pte_unmap(vmf.pte);
948 			continue;
949 		}
950 		ret = do_swap_page(&vmf);
951 
952 		/*
953 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
954 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
955 		 * we do not retry here and swap entry will remain in pagetable
956 		 * resulting in later failure.
957 		 */
958 		if (ret & VM_FAULT_RETRY) {
959 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
960 			/* Likely, but not guaranteed, that page lock failed */
961 			return SCAN_PAGE_LOCK;
962 		}
963 		if (ret & VM_FAULT_ERROR) {
964 			mmap_read_unlock(mm);
965 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
966 			return SCAN_FAIL;
967 		}
968 		swapped_in++;
969 	}
970 
971 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
972 	if (swapped_in)
973 		lru_add_drain();
974 
975 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
976 	return SCAN_SUCCEED;
977 }
978 
979 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
980 			      struct collapse_control *cc)
981 {
982 	/* Only allocate from the target node */
983 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
984 		     GFP_TRANSHUGE) | __GFP_THISNODE;
985 	int node = hpage_collapse_find_target_node(cc);
986 
987 	if (!hpage_collapse_alloc_page(hpage, gfp, node))
988 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
989 	if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
990 		return SCAN_CGROUP_CHARGE_FAIL;
991 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
992 	return SCAN_SUCCEED;
993 }
994 
995 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
996 			      int referenced, int unmapped,
997 			      struct collapse_control *cc)
998 {
999 	LIST_HEAD(compound_pagelist);
1000 	pmd_t *pmd, _pmd;
1001 	pte_t *pte;
1002 	pgtable_t pgtable;
1003 	struct page *hpage;
1004 	spinlock_t *pmd_ptl, *pte_ptl;
1005 	int result = SCAN_FAIL;
1006 	struct vm_area_struct *vma;
1007 	struct mmu_notifier_range range;
1008 
1009 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1010 
1011 	/*
1012 	 * Before allocating the hugepage, release the mmap_lock read lock.
1013 	 * The allocation can take potentially a long time if it involves
1014 	 * sync compaction, and we do not need to hold the mmap_lock during
1015 	 * that. We will recheck the vma after taking it again in write mode.
1016 	 */
1017 	mmap_read_unlock(mm);
1018 
1019 	result = alloc_charge_hpage(&hpage, mm, cc);
1020 	if (result != SCAN_SUCCEED)
1021 		goto out_nolock;
1022 
1023 	mmap_read_lock(mm);
1024 	result = hugepage_vma_revalidate(mm, address, &vma, cc);
1025 	if (result != SCAN_SUCCEED) {
1026 		mmap_read_unlock(mm);
1027 		goto out_nolock;
1028 	}
1029 
1030 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1031 	if (result != SCAN_SUCCEED) {
1032 		mmap_read_unlock(mm);
1033 		goto out_nolock;
1034 	}
1035 
1036 	if (unmapped) {
1037 		/*
1038 		 * __collapse_huge_page_swapin will return with mmap_lock
1039 		 * released when it fails. So we jump out_nolock directly in
1040 		 * that case.  Continuing to collapse causes inconsistency.
1041 		 */
1042 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1043 						     referenced);
1044 		if (result != SCAN_SUCCEED)
1045 			goto out_nolock;
1046 	}
1047 
1048 	mmap_read_unlock(mm);
1049 	/*
1050 	 * Prevent all access to pagetables with the exception of
1051 	 * gup_fast later handled by the ptep_clear_flush and the VM
1052 	 * handled by the anon_vma lock + PG_lock.
1053 	 */
1054 	mmap_write_lock(mm);
1055 	result = hugepage_vma_revalidate(mm, address, &vma, cc);
1056 	if (result != SCAN_SUCCEED)
1057 		goto out_up_write;
1058 	/* check if the pmd is still valid */
1059 	result = check_pmd_still_valid(mm, address, pmd);
1060 	if (result != SCAN_SUCCEED)
1061 		goto out_up_write;
1062 
1063 	anon_vma_lock_write(vma->anon_vma);
1064 
1065 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1066 				address, address + HPAGE_PMD_SIZE);
1067 	mmu_notifier_invalidate_range_start(&range);
1068 
1069 	pte = pte_offset_map(pmd, address);
1070 	pte_ptl = pte_lockptr(mm, pmd);
1071 
1072 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1073 	/*
1074 	 * This removes any huge TLB entry from the CPU so we won't allow
1075 	 * huge and small TLB entries for the same virtual address to
1076 	 * avoid the risk of CPU bugs in that area.
1077 	 *
1078 	 * Parallel fast GUP is fine since fast GUP will back off when
1079 	 * it detects PMD is changed.
1080 	 */
1081 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1082 	spin_unlock(pmd_ptl);
1083 	mmu_notifier_invalidate_range_end(&range);
1084 
1085 	spin_lock(pte_ptl);
1086 	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1087 					       &compound_pagelist);
1088 	spin_unlock(pte_ptl);
1089 
1090 	if (unlikely(result != SCAN_SUCCEED)) {
1091 		pte_unmap(pte);
1092 		spin_lock(pmd_ptl);
1093 		BUG_ON(!pmd_none(*pmd));
1094 		/*
1095 		 * We can only use set_pmd_at when establishing
1096 		 * hugepmds and never for establishing regular pmds that
1097 		 * points to regular pagetables. Use pmd_populate for that
1098 		 */
1099 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1100 		spin_unlock(pmd_ptl);
1101 		anon_vma_unlock_write(vma->anon_vma);
1102 		goto out_up_write;
1103 	}
1104 
1105 	/*
1106 	 * All pages are isolated and locked so anon_vma rmap
1107 	 * can't run anymore.
1108 	 */
1109 	anon_vma_unlock_write(vma->anon_vma);
1110 
1111 	__collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1112 				  &compound_pagelist);
1113 	pte_unmap(pte);
1114 	/*
1115 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1116 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1117 	 * avoid the copy_huge_page writes to become visible after
1118 	 * the set_pmd_at() write.
1119 	 */
1120 	__SetPageUptodate(hpage);
1121 	pgtable = pmd_pgtable(_pmd);
1122 
1123 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1124 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1125 
1126 	spin_lock(pmd_ptl);
1127 	BUG_ON(!pmd_none(*pmd));
1128 	page_add_new_anon_rmap(hpage, vma, address);
1129 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1130 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1131 	set_pmd_at(mm, address, pmd, _pmd);
1132 	update_mmu_cache_pmd(vma, address, pmd);
1133 	spin_unlock(pmd_ptl);
1134 
1135 	hpage = NULL;
1136 
1137 	result = SCAN_SUCCEED;
1138 out_up_write:
1139 	mmap_write_unlock(mm);
1140 out_nolock:
1141 	if (hpage) {
1142 		mem_cgroup_uncharge(page_folio(hpage));
1143 		put_page(hpage);
1144 	}
1145 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1146 	return result;
1147 }
1148 
1149 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1150 				   struct vm_area_struct *vma,
1151 				   unsigned long address, bool *mmap_locked,
1152 				   struct collapse_control *cc)
1153 {
1154 	pmd_t *pmd;
1155 	pte_t *pte, *_pte;
1156 	int result = SCAN_FAIL, referenced = 0;
1157 	int none_or_zero = 0, shared = 0;
1158 	struct page *page = NULL;
1159 	unsigned long _address;
1160 	spinlock_t *ptl;
1161 	int node = NUMA_NO_NODE, unmapped = 0;
1162 	bool writable = false;
1163 
1164 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1165 
1166 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1167 	if (result != SCAN_SUCCEED)
1168 		goto out;
1169 
1170 	memset(cc->node_load, 0, sizeof(cc->node_load));
1171 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1172 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1173 	     _pte++, _address += PAGE_SIZE) {
1174 		pte_t pteval = *_pte;
1175 		if (is_swap_pte(pteval)) {
1176 			++unmapped;
1177 			if (!cc->is_khugepaged ||
1178 			    unmapped <= khugepaged_max_ptes_swap) {
1179 				/*
1180 				 * Always be strict with uffd-wp
1181 				 * enabled swap entries.  Please see
1182 				 * comment below for pte_uffd_wp().
1183 				 */
1184 				if (pte_swp_uffd_wp(pteval)) {
1185 					result = SCAN_PTE_UFFD_WP;
1186 					goto out_unmap;
1187 				}
1188 				continue;
1189 			} else {
1190 				result = SCAN_EXCEED_SWAP_PTE;
1191 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1192 				goto out_unmap;
1193 			}
1194 		}
1195 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1196 			++none_or_zero;
1197 			if (!userfaultfd_armed(vma) &&
1198 			    (!cc->is_khugepaged ||
1199 			     none_or_zero <= khugepaged_max_ptes_none)) {
1200 				continue;
1201 			} else {
1202 				result = SCAN_EXCEED_NONE_PTE;
1203 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1204 				goto out_unmap;
1205 			}
1206 		}
1207 		if (pte_uffd_wp(pteval)) {
1208 			/*
1209 			 * Don't collapse the page if any of the small
1210 			 * PTEs are armed with uffd write protection.
1211 			 * Here we can also mark the new huge pmd as
1212 			 * write protected if any of the small ones is
1213 			 * marked but that could bring unknown
1214 			 * userfault messages that falls outside of
1215 			 * the registered range.  So, just be simple.
1216 			 */
1217 			result = SCAN_PTE_UFFD_WP;
1218 			goto out_unmap;
1219 		}
1220 		if (pte_write(pteval))
1221 			writable = true;
1222 
1223 		page = vm_normal_page(vma, _address, pteval);
1224 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1225 			result = SCAN_PAGE_NULL;
1226 			goto out_unmap;
1227 		}
1228 
1229 		if (page_mapcount(page) > 1) {
1230 			++shared;
1231 			if (cc->is_khugepaged &&
1232 			    shared > khugepaged_max_ptes_shared) {
1233 				result = SCAN_EXCEED_SHARED_PTE;
1234 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1235 				goto out_unmap;
1236 			}
1237 		}
1238 
1239 		page = compound_head(page);
1240 
1241 		/*
1242 		 * Record which node the original page is from and save this
1243 		 * information to cc->node_load[].
1244 		 * Khugepaged will allocate hugepage from the node has the max
1245 		 * hit record.
1246 		 */
1247 		node = page_to_nid(page);
1248 		if (hpage_collapse_scan_abort(node, cc)) {
1249 			result = SCAN_SCAN_ABORT;
1250 			goto out_unmap;
1251 		}
1252 		cc->node_load[node]++;
1253 		if (!PageLRU(page)) {
1254 			result = SCAN_PAGE_LRU;
1255 			goto out_unmap;
1256 		}
1257 		if (PageLocked(page)) {
1258 			result = SCAN_PAGE_LOCK;
1259 			goto out_unmap;
1260 		}
1261 		if (!PageAnon(page)) {
1262 			result = SCAN_PAGE_ANON;
1263 			goto out_unmap;
1264 		}
1265 
1266 		/*
1267 		 * Check if the page has any GUP (or other external) pins.
1268 		 *
1269 		 * Here the check is racy it may see total_mapcount > refcount
1270 		 * in some cases.
1271 		 * For example, one process with one forked child process.
1272 		 * The parent has the PMD split due to MADV_DONTNEED, then
1273 		 * the child is trying unmap the whole PMD, but khugepaged
1274 		 * may be scanning the parent between the child has
1275 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1276 		 * khugepaged may see total_mapcount > refcount.
1277 		 *
1278 		 * But such case is ephemeral we could always retry collapse
1279 		 * later.  However it may report false positive if the page
1280 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1281 		 * will be done again later the risk seems low.
1282 		 */
1283 		if (!is_refcount_suitable(page)) {
1284 			result = SCAN_PAGE_COUNT;
1285 			goto out_unmap;
1286 		}
1287 
1288 		/*
1289 		 * If collapse was initiated by khugepaged, check that there is
1290 		 * enough young pte to justify collapsing the page
1291 		 */
1292 		if (cc->is_khugepaged &&
1293 		    (pte_young(pteval) || page_is_young(page) ||
1294 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1295 								     address)))
1296 			referenced++;
1297 	}
1298 	if (!writable) {
1299 		result = SCAN_PAGE_RO;
1300 	} else if (cc->is_khugepaged &&
1301 		   (!referenced ||
1302 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1303 		result = SCAN_LACK_REFERENCED_PAGE;
1304 	} else {
1305 		result = SCAN_SUCCEED;
1306 	}
1307 out_unmap:
1308 	pte_unmap_unlock(pte, ptl);
1309 	if (result == SCAN_SUCCEED) {
1310 		result = collapse_huge_page(mm, address, referenced,
1311 					    unmapped, cc);
1312 		/* collapse_huge_page will return with the mmap_lock released */
1313 		*mmap_locked = false;
1314 	}
1315 out:
1316 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1317 				     none_or_zero, result, unmapped);
1318 	return result;
1319 }
1320 
1321 static void collect_mm_slot(struct mm_slot *mm_slot)
1322 {
1323 	struct mm_struct *mm = mm_slot->mm;
1324 
1325 	lockdep_assert_held(&khugepaged_mm_lock);
1326 
1327 	if (hpage_collapse_test_exit(mm)) {
1328 		/* free mm_slot */
1329 		hash_del(&mm_slot->hash);
1330 		list_del(&mm_slot->mm_node);
1331 
1332 		/*
1333 		 * Not strictly needed because the mm exited already.
1334 		 *
1335 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1336 		 */
1337 
1338 		/* khugepaged_mm_lock actually not necessary for the below */
1339 		free_mm_slot(mm_slot);
1340 		mmdrop(mm);
1341 	}
1342 }
1343 
1344 #ifdef CONFIG_SHMEM
1345 /*
1346  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1347  * khugepaged should try to collapse the page table.
1348  */
1349 static void khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1350 					  unsigned long addr)
1351 {
1352 	struct mm_slot *mm_slot;
1353 
1354 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1355 
1356 	spin_lock(&khugepaged_mm_lock);
1357 	mm_slot = get_mm_slot(mm);
1358 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1359 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1360 	spin_unlock(&khugepaged_mm_lock);
1361 }
1362 
1363 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1364 				  unsigned long addr, pmd_t *pmdp)
1365 {
1366 	spinlock_t *ptl;
1367 	pmd_t pmd;
1368 
1369 	mmap_assert_write_locked(mm);
1370 	ptl = pmd_lock(vma->vm_mm, pmdp);
1371 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1372 	spin_unlock(ptl);
1373 	mm_dec_nr_ptes(mm);
1374 	page_table_check_pte_clear_range(mm, addr, pmd);
1375 	pte_free(mm, pmd_pgtable(pmd));
1376 }
1377 
1378 /**
1379  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1380  * address haddr.
1381  *
1382  * @mm: process address space where collapse happens
1383  * @addr: THP collapse address
1384  *
1385  * This function checks whether all the PTEs in the PMD are pointing to the
1386  * right THP. If so, retract the page table so the THP can refault in with
1387  * as pmd-mapped.
1388  */
1389 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1390 {
1391 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1392 	struct vm_area_struct *vma = find_vma(mm, haddr);
1393 	struct page *hpage;
1394 	pte_t *start_pte, *pte;
1395 	pmd_t *pmd;
1396 	spinlock_t *ptl;
1397 	int count = 0;
1398 	int i;
1399 
1400 	if (!vma || !vma->vm_file ||
1401 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1402 		return;
1403 
1404 	/*
1405 	 * If we are here, we've succeeded in replacing all the native pages
1406 	 * in the page cache with a single hugepage. If a mm were to fault-in
1407 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1408 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1409 	 * analogously elide sysfs THP settings here.
1410 	 */
1411 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1412 		return;
1413 
1414 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1415 	if (userfaultfd_wp(vma))
1416 		return;
1417 
1418 	hpage = find_lock_page(vma->vm_file->f_mapping,
1419 			       linear_page_index(vma, haddr));
1420 	if (!hpage)
1421 		return;
1422 
1423 	if (!PageHead(hpage))
1424 		goto drop_hpage;
1425 
1426 	if (find_pmd_or_thp_or_none(mm, haddr, &pmd) != SCAN_SUCCEED)
1427 		goto drop_hpage;
1428 
1429 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1430 
1431 	/* step 1: check all mapped PTEs are to the right huge page */
1432 	for (i = 0, addr = haddr, pte = start_pte;
1433 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1434 		struct page *page;
1435 
1436 		/* empty pte, skip */
1437 		if (pte_none(*pte))
1438 			continue;
1439 
1440 		/* page swapped out, abort */
1441 		if (!pte_present(*pte))
1442 			goto abort;
1443 
1444 		page = vm_normal_page(vma, addr, *pte);
1445 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1446 			page = NULL;
1447 		/*
1448 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1449 		 * page table, but the new page will not be a subpage of hpage.
1450 		 */
1451 		if (hpage + i != page)
1452 			goto abort;
1453 		count++;
1454 	}
1455 
1456 	/* step 2: adjust rmap */
1457 	for (i = 0, addr = haddr, pte = start_pte;
1458 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1459 		struct page *page;
1460 
1461 		if (pte_none(*pte))
1462 			continue;
1463 		page = vm_normal_page(vma, addr, *pte);
1464 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1465 			goto abort;
1466 		page_remove_rmap(page, vma, false);
1467 	}
1468 
1469 	pte_unmap_unlock(start_pte, ptl);
1470 
1471 	/* step 3: set proper refcount and mm_counters. */
1472 	if (count) {
1473 		page_ref_sub(hpage, count);
1474 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1475 	}
1476 
1477 	/* step 4: collapse pmd */
1478 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1479 drop_hpage:
1480 	unlock_page(hpage);
1481 	put_page(hpage);
1482 	return;
1483 
1484 abort:
1485 	pte_unmap_unlock(start_pte, ptl);
1486 	goto drop_hpage;
1487 }
1488 
1489 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1490 {
1491 	struct mm_struct *mm = mm_slot->mm;
1492 	int i;
1493 
1494 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1495 		return;
1496 
1497 	if (!mmap_write_trylock(mm))
1498 		return;
1499 
1500 	if (unlikely(hpage_collapse_test_exit(mm)))
1501 		goto out;
1502 
1503 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1504 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1505 
1506 out:
1507 	mm_slot->nr_pte_mapped_thp = 0;
1508 	mmap_write_unlock(mm);
1509 }
1510 
1511 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1512 {
1513 	struct vm_area_struct *vma;
1514 	struct mm_struct *mm;
1515 	unsigned long addr;
1516 	pmd_t *pmd;
1517 
1518 	i_mmap_lock_write(mapping);
1519 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1520 		/*
1521 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1522 		 * got written to. These VMAs are likely not worth investing
1523 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1524 		 * later.
1525 		 *
1526 		 * Note that vma->anon_vma check is racy: it can be set up after
1527 		 * the check but before we took mmap_lock by the fault path.
1528 		 * But page lock would prevent establishing any new ptes of the
1529 		 * page, so we are safe.
1530 		 *
1531 		 * An alternative would be drop the check, but check that page
1532 		 * table is clear before calling pmdp_collapse_flush() under
1533 		 * ptl. It has higher chance to recover THP for the VMA, but
1534 		 * has higher cost too.
1535 		 */
1536 		if (vma->anon_vma)
1537 			continue;
1538 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1539 		if (addr & ~HPAGE_PMD_MASK)
1540 			continue;
1541 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1542 			continue;
1543 		mm = vma->vm_mm;
1544 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1545 			continue;
1546 		/*
1547 		 * We need exclusive mmap_lock to retract page table.
1548 		 *
1549 		 * We use trylock due to lock inversion: we need to acquire
1550 		 * mmap_lock while holding page lock. Fault path does it in
1551 		 * reverse order. Trylock is a way to avoid deadlock.
1552 		 */
1553 		if (mmap_write_trylock(mm)) {
1554 			/*
1555 			 * When a vma is registered with uffd-wp, we can't
1556 			 * recycle the pmd pgtable because there can be pte
1557 			 * markers installed.  Skip it only, so the rest mm/vma
1558 			 * can still have the same file mapped hugely, however
1559 			 * it'll always mapped in small page size for uffd-wp
1560 			 * registered ranges.
1561 			 */
1562 			if (!hpage_collapse_test_exit(mm) &&
1563 			    !userfaultfd_wp(vma))
1564 				collapse_and_free_pmd(mm, vma, addr, pmd);
1565 			mmap_write_unlock(mm);
1566 		} else {
1567 			/* Try again later */
1568 			khugepaged_add_pte_mapped_thp(mm, addr);
1569 		}
1570 	}
1571 	i_mmap_unlock_write(mapping);
1572 }
1573 
1574 /**
1575  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1576  *
1577  * @mm: process address space where collapse happens
1578  * @file: file that collapse on
1579  * @start: collapse start address
1580  * @cc: collapse context and scratchpad
1581  *
1582  * Basic scheme is simple, details are more complex:
1583  *  - allocate and lock a new huge page;
1584  *  - scan page cache replacing old pages with the new one
1585  *    + swap/gup in pages if necessary;
1586  *    + fill in gaps;
1587  *    + keep old pages around in case rollback is required;
1588  *  - if replacing succeeds:
1589  *    + copy data over;
1590  *    + free old pages;
1591  *    + unlock huge page;
1592  *  - if replacing failed;
1593  *    + put all pages back and unfreeze them;
1594  *    + restore gaps in the page cache;
1595  *    + unlock and free huge page;
1596  */
1597 static int collapse_file(struct mm_struct *mm, struct file *file,
1598 			 pgoff_t start, struct collapse_control *cc)
1599 {
1600 	struct address_space *mapping = file->f_mapping;
1601 	struct page *hpage;
1602 	pgoff_t index, end = start + HPAGE_PMD_NR;
1603 	LIST_HEAD(pagelist);
1604 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1605 	int nr_none = 0, result = SCAN_SUCCEED;
1606 	bool is_shmem = shmem_file(file);
1607 	int nr;
1608 
1609 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1610 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1611 
1612 	result = alloc_charge_hpage(&hpage, mm, cc);
1613 	if (result != SCAN_SUCCEED)
1614 		goto out;
1615 
1616 	/*
1617 	 * Ensure we have slots for all the pages in the range.  This is
1618 	 * almost certainly a no-op because most of the pages must be present
1619 	 */
1620 	do {
1621 		xas_lock_irq(&xas);
1622 		xas_create_range(&xas);
1623 		if (!xas_error(&xas))
1624 			break;
1625 		xas_unlock_irq(&xas);
1626 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1627 			result = SCAN_FAIL;
1628 			goto out;
1629 		}
1630 	} while (1);
1631 
1632 	__SetPageLocked(hpage);
1633 	if (is_shmem)
1634 		__SetPageSwapBacked(hpage);
1635 	hpage->index = start;
1636 	hpage->mapping = mapping;
1637 
1638 	/*
1639 	 * At this point the hpage is locked and not up-to-date.
1640 	 * It's safe to insert it into the page cache, because nobody would
1641 	 * be able to map it or use it in another way until we unlock it.
1642 	 */
1643 
1644 	xas_set(&xas, start);
1645 	for (index = start; index < end; index++) {
1646 		struct page *page = xas_next(&xas);
1647 
1648 		VM_BUG_ON(index != xas.xa_index);
1649 		if (is_shmem) {
1650 			if (!page) {
1651 				/*
1652 				 * Stop if extent has been truncated or
1653 				 * hole-punched, and is now completely
1654 				 * empty.
1655 				 */
1656 				if (index == start) {
1657 					if (!xas_next_entry(&xas, end - 1)) {
1658 						result = SCAN_TRUNCATED;
1659 						goto xa_locked;
1660 					}
1661 					xas_set(&xas, index);
1662 				}
1663 				if (!shmem_charge(mapping->host, 1)) {
1664 					result = SCAN_FAIL;
1665 					goto xa_locked;
1666 				}
1667 				xas_store(&xas, hpage);
1668 				nr_none++;
1669 				continue;
1670 			}
1671 
1672 			if (xa_is_value(page) || !PageUptodate(page)) {
1673 				xas_unlock_irq(&xas);
1674 				/* swap in or instantiate fallocated page */
1675 				if (shmem_getpage(mapping->host, index, &page,
1676 						  SGP_NOALLOC)) {
1677 					result = SCAN_FAIL;
1678 					goto xa_unlocked;
1679 				}
1680 			} else if (trylock_page(page)) {
1681 				get_page(page);
1682 				xas_unlock_irq(&xas);
1683 			} else {
1684 				result = SCAN_PAGE_LOCK;
1685 				goto xa_locked;
1686 			}
1687 		} else {	/* !is_shmem */
1688 			if (!page || xa_is_value(page)) {
1689 				xas_unlock_irq(&xas);
1690 				page_cache_sync_readahead(mapping, &file->f_ra,
1691 							  file, index,
1692 							  end - index);
1693 				/* drain pagevecs to help isolate_lru_page() */
1694 				lru_add_drain();
1695 				page = find_lock_page(mapping, index);
1696 				if (unlikely(page == NULL)) {
1697 					result = SCAN_FAIL;
1698 					goto xa_unlocked;
1699 				}
1700 			} else if (PageDirty(page)) {
1701 				/*
1702 				 * khugepaged only works on read-only fd,
1703 				 * so this page is dirty because it hasn't
1704 				 * been flushed since first write. There
1705 				 * won't be new dirty pages.
1706 				 *
1707 				 * Trigger async flush here and hope the
1708 				 * writeback is done when khugepaged
1709 				 * revisits this page.
1710 				 *
1711 				 * This is a one-off situation. We are not
1712 				 * forcing writeback in loop.
1713 				 */
1714 				xas_unlock_irq(&xas);
1715 				filemap_flush(mapping);
1716 				result = SCAN_FAIL;
1717 				goto xa_unlocked;
1718 			} else if (PageWriteback(page)) {
1719 				xas_unlock_irq(&xas);
1720 				result = SCAN_FAIL;
1721 				goto xa_unlocked;
1722 			} else if (trylock_page(page)) {
1723 				get_page(page);
1724 				xas_unlock_irq(&xas);
1725 			} else {
1726 				result = SCAN_PAGE_LOCK;
1727 				goto xa_locked;
1728 			}
1729 		}
1730 
1731 		/*
1732 		 * The page must be locked, so we can drop the i_pages lock
1733 		 * without racing with truncate.
1734 		 */
1735 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1736 
1737 		/* make sure the page is up to date */
1738 		if (unlikely(!PageUptodate(page))) {
1739 			result = SCAN_FAIL;
1740 			goto out_unlock;
1741 		}
1742 
1743 		/*
1744 		 * If file was truncated then extended, or hole-punched, before
1745 		 * we locked the first page, then a THP might be there already.
1746 		 */
1747 		if (PageTransCompound(page)) {
1748 			result = SCAN_PAGE_COMPOUND;
1749 			goto out_unlock;
1750 		}
1751 
1752 		if (page_mapping(page) != mapping) {
1753 			result = SCAN_TRUNCATED;
1754 			goto out_unlock;
1755 		}
1756 
1757 		if (!is_shmem && (PageDirty(page) ||
1758 				  PageWriteback(page))) {
1759 			/*
1760 			 * khugepaged only works on read-only fd, so this
1761 			 * page is dirty because it hasn't been flushed
1762 			 * since first write.
1763 			 */
1764 			result = SCAN_FAIL;
1765 			goto out_unlock;
1766 		}
1767 
1768 		if (isolate_lru_page(page)) {
1769 			result = SCAN_DEL_PAGE_LRU;
1770 			goto out_unlock;
1771 		}
1772 
1773 		if (page_has_private(page) &&
1774 		    !try_to_release_page(page, GFP_KERNEL)) {
1775 			result = SCAN_PAGE_HAS_PRIVATE;
1776 			putback_lru_page(page);
1777 			goto out_unlock;
1778 		}
1779 
1780 		if (page_mapped(page))
1781 			try_to_unmap(page_folio(page),
1782 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1783 
1784 		xas_lock_irq(&xas);
1785 		xas_set(&xas, index);
1786 
1787 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1788 
1789 		/*
1790 		 * The page is expected to have page_count() == 3:
1791 		 *  - we hold a pin on it;
1792 		 *  - one reference from page cache;
1793 		 *  - one from isolate_lru_page;
1794 		 */
1795 		if (!page_ref_freeze(page, 3)) {
1796 			result = SCAN_PAGE_COUNT;
1797 			xas_unlock_irq(&xas);
1798 			putback_lru_page(page);
1799 			goto out_unlock;
1800 		}
1801 
1802 		/*
1803 		 * Add the page to the list to be able to undo the collapse if
1804 		 * something go wrong.
1805 		 */
1806 		list_add_tail(&page->lru, &pagelist);
1807 
1808 		/* Finally, replace with the new page. */
1809 		xas_store(&xas, hpage);
1810 		continue;
1811 out_unlock:
1812 		unlock_page(page);
1813 		put_page(page);
1814 		goto xa_unlocked;
1815 	}
1816 	nr = thp_nr_pages(hpage);
1817 
1818 	if (is_shmem)
1819 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1820 	else {
1821 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1822 		filemap_nr_thps_inc(mapping);
1823 		/*
1824 		 * Paired with smp_mb() in do_dentry_open() to ensure
1825 		 * i_writecount is up to date and the update to nr_thps is
1826 		 * visible. Ensures the page cache will be truncated if the
1827 		 * file is opened writable.
1828 		 */
1829 		smp_mb();
1830 		if (inode_is_open_for_write(mapping->host)) {
1831 			result = SCAN_FAIL;
1832 			__mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
1833 			filemap_nr_thps_dec(mapping);
1834 			goto xa_locked;
1835 		}
1836 	}
1837 
1838 	if (nr_none) {
1839 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
1840 		/* nr_none is always 0 for non-shmem. */
1841 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
1842 	}
1843 
1844 	/* Join all the small entries into a single multi-index entry */
1845 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1846 	xas_store(&xas, hpage);
1847 xa_locked:
1848 	xas_unlock_irq(&xas);
1849 xa_unlocked:
1850 
1851 	/*
1852 	 * If collapse is successful, flush must be done now before copying.
1853 	 * If collapse is unsuccessful, does flush actually need to be done?
1854 	 * Do it anyway, to clear the state.
1855 	 */
1856 	try_to_unmap_flush();
1857 
1858 	if (result == SCAN_SUCCEED) {
1859 		struct page *page, *tmp;
1860 
1861 		/*
1862 		 * Replacing old pages with new one has succeeded, now we
1863 		 * need to copy the content and free the old pages.
1864 		 */
1865 		index = start;
1866 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1867 			while (index < page->index) {
1868 				clear_highpage(hpage + (index % HPAGE_PMD_NR));
1869 				index++;
1870 			}
1871 			copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
1872 				      page);
1873 			list_del(&page->lru);
1874 			page->mapping = NULL;
1875 			page_ref_unfreeze(page, 1);
1876 			ClearPageActive(page);
1877 			ClearPageUnevictable(page);
1878 			unlock_page(page);
1879 			put_page(page);
1880 			index++;
1881 		}
1882 		while (index < end) {
1883 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
1884 			index++;
1885 		}
1886 
1887 		SetPageUptodate(hpage);
1888 		page_ref_add(hpage, HPAGE_PMD_NR - 1);
1889 		if (is_shmem)
1890 			set_page_dirty(hpage);
1891 		lru_cache_add(hpage);
1892 
1893 		/*
1894 		 * Remove pte page tables, so we can re-fault the page as huge.
1895 		 */
1896 		retract_page_tables(mapping, start);
1897 		unlock_page(hpage);
1898 		hpage = NULL;
1899 	} else {
1900 		struct page *page;
1901 
1902 		/* Something went wrong: roll back page cache changes */
1903 		xas_lock_irq(&xas);
1904 		if (nr_none) {
1905 			mapping->nrpages -= nr_none;
1906 			shmem_uncharge(mapping->host, nr_none);
1907 		}
1908 
1909 		xas_set(&xas, start);
1910 		xas_for_each(&xas, page, end - 1) {
1911 			page = list_first_entry_or_null(&pagelist,
1912 					struct page, lru);
1913 			if (!page || xas.xa_index < page->index) {
1914 				if (!nr_none)
1915 					break;
1916 				nr_none--;
1917 				/* Put holes back where they were */
1918 				xas_store(&xas, NULL);
1919 				continue;
1920 			}
1921 
1922 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1923 
1924 			/* Unfreeze the page. */
1925 			list_del(&page->lru);
1926 			page_ref_unfreeze(page, 2);
1927 			xas_store(&xas, page);
1928 			xas_pause(&xas);
1929 			xas_unlock_irq(&xas);
1930 			unlock_page(page);
1931 			putback_lru_page(page);
1932 			xas_lock_irq(&xas);
1933 		}
1934 		VM_BUG_ON(nr_none);
1935 		xas_unlock_irq(&xas);
1936 
1937 		hpage->mapping = NULL;
1938 	}
1939 
1940 	if (hpage)
1941 		unlock_page(hpage);
1942 out:
1943 	VM_BUG_ON(!list_empty(&pagelist));
1944 	if (hpage) {
1945 		mem_cgroup_uncharge(page_folio(hpage));
1946 		put_page(hpage);
1947 	}
1948 	/* TODO: tracepoints */
1949 	return result;
1950 }
1951 
1952 static int khugepaged_scan_file(struct mm_struct *mm, struct file *file,
1953 				pgoff_t start, struct collapse_control *cc)
1954 {
1955 	struct page *page = NULL;
1956 	struct address_space *mapping = file->f_mapping;
1957 	XA_STATE(xas, &mapping->i_pages, start);
1958 	int present, swap;
1959 	int node = NUMA_NO_NODE;
1960 	int result = SCAN_SUCCEED;
1961 
1962 	present = 0;
1963 	swap = 0;
1964 	memset(cc->node_load, 0, sizeof(cc->node_load));
1965 	rcu_read_lock();
1966 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1967 		if (xas_retry(&xas, page))
1968 			continue;
1969 
1970 		if (xa_is_value(page)) {
1971 			++swap;
1972 			if (cc->is_khugepaged &&
1973 			    swap > khugepaged_max_ptes_swap) {
1974 				result = SCAN_EXCEED_SWAP_PTE;
1975 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1976 				break;
1977 			}
1978 			continue;
1979 		}
1980 
1981 		/*
1982 		 * XXX: khugepaged should compact smaller compound pages
1983 		 * into a PMD sized page
1984 		 */
1985 		if (PageTransCompound(page)) {
1986 			result = SCAN_PAGE_COMPOUND;
1987 			break;
1988 		}
1989 
1990 		node = page_to_nid(page);
1991 		if (hpage_collapse_scan_abort(node, cc)) {
1992 			result = SCAN_SCAN_ABORT;
1993 			break;
1994 		}
1995 		cc->node_load[node]++;
1996 
1997 		if (!PageLRU(page)) {
1998 			result = SCAN_PAGE_LRU;
1999 			break;
2000 		}
2001 
2002 		if (page_count(page) !=
2003 		    1 + page_mapcount(page) + page_has_private(page)) {
2004 			result = SCAN_PAGE_COUNT;
2005 			break;
2006 		}
2007 
2008 		/*
2009 		 * We probably should check if the page is referenced here, but
2010 		 * nobody would transfer pte_young() to PageReferenced() for us.
2011 		 * And rmap walk here is just too costly...
2012 		 */
2013 
2014 		present++;
2015 
2016 		if (need_resched()) {
2017 			xas_pause(&xas);
2018 			cond_resched_rcu();
2019 		}
2020 	}
2021 	rcu_read_unlock();
2022 
2023 	if (result == SCAN_SUCCEED) {
2024 		if (cc->is_khugepaged &&
2025 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2026 			result = SCAN_EXCEED_NONE_PTE;
2027 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2028 		} else {
2029 			result = collapse_file(mm, file, start, cc);
2030 		}
2031 	}
2032 
2033 	/* TODO: tracepoints */
2034 	return result;
2035 }
2036 #else
2037 static int khugepaged_scan_file(struct mm_struct *mm, struct file *file,
2038 				pgoff_t start, struct collapse_control *cc)
2039 {
2040 	BUILD_BUG();
2041 }
2042 
2043 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2044 {
2045 }
2046 #endif
2047 
2048 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2049 					    struct collapse_control *cc)
2050 	__releases(&khugepaged_mm_lock)
2051 	__acquires(&khugepaged_mm_lock)
2052 {
2053 	struct mm_slot *mm_slot;
2054 	struct mm_struct *mm;
2055 	struct vm_area_struct *vma;
2056 	int progress = 0;
2057 
2058 	VM_BUG_ON(!pages);
2059 	lockdep_assert_held(&khugepaged_mm_lock);
2060 	*result = SCAN_FAIL;
2061 
2062 	if (khugepaged_scan.mm_slot)
2063 		mm_slot = khugepaged_scan.mm_slot;
2064 	else {
2065 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2066 				     struct mm_slot, mm_node);
2067 		khugepaged_scan.address = 0;
2068 		khugepaged_scan.mm_slot = mm_slot;
2069 	}
2070 	spin_unlock(&khugepaged_mm_lock);
2071 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2072 
2073 	mm = mm_slot->mm;
2074 	/*
2075 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2076 	 * the next mm on the list.
2077 	 */
2078 	vma = NULL;
2079 	if (unlikely(!mmap_read_trylock(mm)))
2080 		goto breakouterloop_mmap_lock;
2081 	if (likely(!hpage_collapse_test_exit(mm)))
2082 		vma = find_vma(mm, khugepaged_scan.address);
2083 
2084 	progress++;
2085 	for (; vma; vma = vma->vm_next) {
2086 		unsigned long hstart, hend;
2087 
2088 		cond_resched();
2089 		if (unlikely(hpage_collapse_test_exit(mm))) {
2090 			progress++;
2091 			break;
2092 		}
2093 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2094 skip:
2095 			progress++;
2096 			continue;
2097 		}
2098 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2099 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2100 		if (khugepaged_scan.address > hend)
2101 			goto skip;
2102 		if (khugepaged_scan.address < hstart)
2103 			khugepaged_scan.address = hstart;
2104 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2105 
2106 		while (khugepaged_scan.address < hend) {
2107 			bool mmap_locked = true;
2108 
2109 			cond_resched();
2110 			if (unlikely(hpage_collapse_test_exit(mm)))
2111 				goto breakouterloop;
2112 
2113 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2114 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2115 				  hend);
2116 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2117 				struct file *file = get_file(vma->vm_file);
2118 				pgoff_t pgoff = linear_page_index(vma,
2119 						khugepaged_scan.address);
2120 
2121 				mmap_read_unlock(mm);
2122 				*result = khugepaged_scan_file(mm, file, pgoff,
2123 							       cc);
2124 				mmap_locked = false;
2125 				fput(file);
2126 			} else {
2127 				*result = hpage_collapse_scan_pmd(mm, vma,
2128 								  khugepaged_scan.address,
2129 								  &mmap_locked,
2130 								  cc);
2131 			}
2132 			if (*result == SCAN_SUCCEED)
2133 				++khugepaged_pages_collapsed;
2134 			/* move to next address */
2135 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2136 			progress += HPAGE_PMD_NR;
2137 			if (!mmap_locked)
2138 				/*
2139 				 * We released mmap_lock so break loop.  Note
2140 				 * that we drop mmap_lock before all hugepage
2141 				 * allocations, so if allocation fails, we are
2142 				 * guaranteed to break here and report the
2143 				 * correct result back to caller.
2144 				 */
2145 				goto breakouterloop_mmap_lock;
2146 			if (progress >= pages)
2147 				goto breakouterloop;
2148 		}
2149 	}
2150 breakouterloop:
2151 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2152 breakouterloop_mmap_lock:
2153 
2154 	spin_lock(&khugepaged_mm_lock);
2155 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2156 	/*
2157 	 * Release the current mm_slot if this mm is about to die, or
2158 	 * if we scanned all vmas of this mm.
2159 	 */
2160 	if (hpage_collapse_test_exit(mm) || !vma) {
2161 		/*
2162 		 * Make sure that if mm_users is reaching zero while
2163 		 * khugepaged runs here, khugepaged_exit will find
2164 		 * mm_slot not pointing to the exiting mm.
2165 		 */
2166 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2167 			khugepaged_scan.mm_slot = list_entry(
2168 				mm_slot->mm_node.next,
2169 				struct mm_slot, mm_node);
2170 			khugepaged_scan.address = 0;
2171 		} else {
2172 			khugepaged_scan.mm_slot = NULL;
2173 			khugepaged_full_scans++;
2174 		}
2175 
2176 		collect_mm_slot(mm_slot);
2177 	}
2178 
2179 	return progress;
2180 }
2181 
2182 static int khugepaged_has_work(void)
2183 {
2184 	return !list_empty(&khugepaged_scan.mm_head) &&
2185 		hugepage_flags_enabled();
2186 }
2187 
2188 static int khugepaged_wait_event(void)
2189 {
2190 	return !list_empty(&khugepaged_scan.mm_head) ||
2191 		kthread_should_stop();
2192 }
2193 
2194 static void khugepaged_do_scan(struct collapse_control *cc)
2195 {
2196 	unsigned int progress = 0, pass_through_head = 0;
2197 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2198 	bool wait = true;
2199 	int result = SCAN_SUCCEED;
2200 
2201 	lru_add_drain_all();
2202 
2203 	while (true) {
2204 		cond_resched();
2205 
2206 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2207 			break;
2208 
2209 		spin_lock(&khugepaged_mm_lock);
2210 		if (!khugepaged_scan.mm_slot)
2211 			pass_through_head++;
2212 		if (khugepaged_has_work() &&
2213 		    pass_through_head < 2)
2214 			progress += khugepaged_scan_mm_slot(pages - progress,
2215 							    &result, cc);
2216 		else
2217 			progress = pages;
2218 		spin_unlock(&khugepaged_mm_lock);
2219 
2220 		if (progress >= pages)
2221 			break;
2222 
2223 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2224 			/*
2225 			 * If fail to allocate the first time, try to sleep for
2226 			 * a while.  When hit again, cancel the scan.
2227 			 */
2228 			if (!wait)
2229 				break;
2230 			wait = false;
2231 			khugepaged_alloc_sleep();
2232 		}
2233 	}
2234 }
2235 
2236 static bool khugepaged_should_wakeup(void)
2237 {
2238 	return kthread_should_stop() ||
2239 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2240 }
2241 
2242 static void khugepaged_wait_work(void)
2243 {
2244 	if (khugepaged_has_work()) {
2245 		const unsigned long scan_sleep_jiffies =
2246 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2247 
2248 		if (!scan_sleep_jiffies)
2249 			return;
2250 
2251 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2252 		wait_event_freezable_timeout(khugepaged_wait,
2253 					     khugepaged_should_wakeup(),
2254 					     scan_sleep_jiffies);
2255 		return;
2256 	}
2257 
2258 	if (hugepage_flags_enabled())
2259 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2260 }
2261 
2262 static int khugepaged(void *none)
2263 {
2264 	struct mm_slot *mm_slot;
2265 
2266 	set_freezable();
2267 	set_user_nice(current, MAX_NICE);
2268 
2269 	while (!kthread_should_stop()) {
2270 		khugepaged_do_scan(&khugepaged_collapse_control);
2271 		khugepaged_wait_work();
2272 	}
2273 
2274 	spin_lock(&khugepaged_mm_lock);
2275 	mm_slot = khugepaged_scan.mm_slot;
2276 	khugepaged_scan.mm_slot = NULL;
2277 	if (mm_slot)
2278 		collect_mm_slot(mm_slot);
2279 	spin_unlock(&khugepaged_mm_lock);
2280 	return 0;
2281 }
2282 
2283 static void set_recommended_min_free_kbytes(void)
2284 {
2285 	struct zone *zone;
2286 	int nr_zones = 0;
2287 	unsigned long recommended_min;
2288 
2289 	if (!hugepage_flags_enabled()) {
2290 		calculate_min_free_kbytes();
2291 		goto update_wmarks;
2292 	}
2293 
2294 	for_each_populated_zone(zone) {
2295 		/*
2296 		 * We don't need to worry about fragmentation of
2297 		 * ZONE_MOVABLE since it only has movable pages.
2298 		 */
2299 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2300 			continue;
2301 
2302 		nr_zones++;
2303 	}
2304 
2305 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2306 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2307 
2308 	/*
2309 	 * Make sure that on average at least two pageblocks are almost free
2310 	 * of another type, one for a migratetype to fall back to and a
2311 	 * second to avoid subsequent fallbacks of other types There are 3
2312 	 * MIGRATE_TYPES we care about.
2313 	 */
2314 	recommended_min += pageblock_nr_pages * nr_zones *
2315 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2316 
2317 	/* don't ever allow to reserve more than 5% of the lowmem */
2318 	recommended_min = min(recommended_min,
2319 			      (unsigned long) nr_free_buffer_pages() / 20);
2320 	recommended_min <<= (PAGE_SHIFT-10);
2321 
2322 	if (recommended_min > min_free_kbytes) {
2323 		if (user_min_free_kbytes >= 0)
2324 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2325 				min_free_kbytes, recommended_min);
2326 
2327 		min_free_kbytes = recommended_min;
2328 	}
2329 
2330 update_wmarks:
2331 	setup_per_zone_wmarks();
2332 }
2333 
2334 int start_stop_khugepaged(void)
2335 {
2336 	int err = 0;
2337 
2338 	mutex_lock(&khugepaged_mutex);
2339 	if (hugepage_flags_enabled()) {
2340 		if (!khugepaged_thread)
2341 			khugepaged_thread = kthread_run(khugepaged, NULL,
2342 							"khugepaged");
2343 		if (IS_ERR(khugepaged_thread)) {
2344 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2345 			err = PTR_ERR(khugepaged_thread);
2346 			khugepaged_thread = NULL;
2347 			goto fail;
2348 		}
2349 
2350 		if (!list_empty(&khugepaged_scan.mm_head))
2351 			wake_up_interruptible(&khugepaged_wait);
2352 	} else if (khugepaged_thread) {
2353 		kthread_stop(khugepaged_thread);
2354 		khugepaged_thread = NULL;
2355 	}
2356 	set_recommended_min_free_kbytes();
2357 fail:
2358 	mutex_unlock(&khugepaged_mutex);
2359 	return err;
2360 }
2361 
2362 void khugepaged_min_free_kbytes_update(void)
2363 {
2364 	mutex_lock(&khugepaged_mutex);
2365 	if (hugepage_flags_enabled() && khugepaged_thread)
2366 		set_recommended_min_free_kbytes();
2367 	mutex_unlock(&khugepaged_mutex);
2368 }
2369 
2370 static int madvise_collapse_errno(enum scan_result r)
2371 {
2372 	/*
2373 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2374 	 * actionable feedback to caller, so they may take an appropriate
2375 	 * fallback measure depending on the nature of the failure.
2376 	 */
2377 	switch (r) {
2378 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2379 		return -ENOMEM;
2380 	case SCAN_CGROUP_CHARGE_FAIL:
2381 		return -EBUSY;
2382 	/* Resource temporary unavailable - trying again might succeed */
2383 	case SCAN_PAGE_LOCK:
2384 	case SCAN_PAGE_LRU:
2385 		return -EAGAIN;
2386 	/*
2387 	 * Other: Trying again likely not to succeed / error intrinsic to
2388 	 * specified memory range. khugepaged likely won't be able to collapse
2389 	 * either.
2390 	 */
2391 	default:
2392 		return -EINVAL;
2393 	}
2394 }
2395 
2396 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2397 		     unsigned long start, unsigned long end)
2398 {
2399 	struct collapse_control *cc;
2400 	struct mm_struct *mm = vma->vm_mm;
2401 	unsigned long hstart, hend, addr;
2402 	int thps = 0, last_fail = SCAN_FAIL;
2403 	bool mmap_locked = true;
2404 
2405 	BUG_ON(vma->vm_start > start);
2406 	BUG_ON(vma->vm_end < end);
2407 
2408 	*prev = vma;
2409 
2410 	/* TODO: Support file/shmem */
2411 	if (!vma->anon_vma || !vma_is_anonymous(vma))
2412 		return -EINVAL;
2413 
2414 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2415 		return -EINVAL;
2416 
2417 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2418 	if (!cc)
2419 		return -ENOMEM;
2420 	cc->is_khugepaged = false;
2421 	cc->last_target_node = NUMA_NO_NODE;
2422 
2423 	mmgrab(mm);
2424 	lru_add_drain_all();
2425 
2426 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2427 	hend = end & HPAGE_PMD_MASK;
2428 
2429 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2430 		int result = SCAN_FAIL;
2431 
2432 		if (!mmap_locked) {
2433 			cond_resched();
2434 			mmap_read_lock(mm);
2435 			mmap_locked = true;
2436 			result = hugepage_vma_revalidate(mm, addr, &vma, cc);
2437 			if (result  != SCAN_SUCCEED) {
2438 				last_fail = result;
2439 				goto out_nolock;
2440 			}
2441 
2442 			hend = vma->vm_end & HPAGE_PMD_MASK;
2443 		}
2444 		mmap_assert_locked(mm);
2445 		memset(cc->node_load, 0, sizeof(cc->node_load));
2446 		result = hpage_collapse_scan_pmd(mm, vma, addr, &mmap_locked,
2447 						 cc);
2448 		if (!mmap_locked)
2449 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2450 
2451 		switch (result) {
2452 		case SCAN_SUCCEED:
2453 		case SCAN_PMD_MAPPED:
2454 			++thps;
2455 			break;
2456 		/* Whitelisted set of results where continuing OK */
2457 		case SCAN_PMD_NULL:
2458 		case SCAN_PTE_NON_PRESENT:
2459 		case SCAN_PTE_UFFD_WP:
2460 		case SCAN_PAGE_RO:
2461 		case SCAN_LACK_REFERENCED_PAGE:
2462 		case SCAN_PAGE_NULL:
2463 		case SCAN_PAGE_COUNT:
2464 		case SCAN_PAGE_LOCK:
2465 		case SCAN_PAGE_COMPOUND:
2466 		case SCAN_PAGE_LRU:
2467 			last_fail = result;
2468 			break;
2469 		default:
2470 			last_fail = result;
2471 			/* Other error, exit */
2472 			goto out_maybelock;
2473 		}
2474 	}
2475 
2476 out_maybelock:
2477 	/* Caller expects us to hold mmap_lock on return */
2478 	if (!mmap_locked)
2479 		mmap_read_lock(mm);
2480 out_nolock:
2481 	mmap_assert_locked(mm);
2482 	mmdrop(mm);
2483 	kfree(cc);
2484 
2485 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2486 			: madvise_collapse_errno(last_fail);
2487 }
2488