1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/swapops.h> 20 #include <linux/shmem_fs.h> 21 22 #include <asm/tlb.h> 23 #include <asm/pgalloc.h> 24 #include "internal.h" 25 26 enum scan_result { 27 SCAN_FAIL, 28 SCAN_SUCCEED, 29 SCAN_PMD_NULL, 30 SCAN_EXCEED_NONE_PTE, 31 SCAN_EXCEED_SWAP_PTE, 32 SCAN_EXCEED_SHARED_PTE, 33 SCAN_PTE_NON_PRESENT, 34 SCAN_PTE_UFFD_WP, 35 SCAN_PAGE_RO, 36 SCAN_LACK_REFERENCED_PAGE, 37 SCAN_PAGE_NULL, 38 SCAN_SCAN_ABORT, 39 SCAN_PAGE_COUNT, 40 SCAN_PAGE_LRU, 41 SCAN_PAGE_LOCK, 42 SCAN_PAGE_ANON, 43 SCAN_PAGE_COMPOUND, 44 SCAN_ANY_PROCESS, 45 SCAN_VMA_NULL, 46 SCAN_VMA_CHECK, 47 SCAN_ADDRESS_RANGE, 48 SCAN_SWAP_CACHE_PAGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 151 scan_sleep_millisecs_store); 152 153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 154 struct kobj_attribute *attr, 155 char *buf) 156 { 157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 158 } 159 160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 const char *buf, size_t count) 163 { 164 unsigned int msecs; 165 int err; 166 167 err = kstrtouint(buf, 10, &msecs); 168 if (err) 169 return -EINVAL; 170 171 khugepaged_alloc_sleep_millisecs = msecs; 172 khugepaged_sleep_expire = 0; 173 wake_up_interruptible(&khugepaged_wait); 174 175 return count; 176 } 177 static struct kobj_attribute alloc_sleep_millisecs_attr = 178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 179 alloc_sleep_millisecs_store); 180 181 static ssize_t pages_to_scan_show(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 char *buf) 184 { 185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 186 } 187 static ssize_t pages_to_scan_store(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 const char *buf, size_t count) 190 { 191 unsigned int pages; 192 int err; 193 194 err = kstrtouint(buf, 10, &pages); 195 if (err || !pages) 196 return -EINVAL; 197 198 khugepaged_pages_to_scan = pages; 199 200 return count; 201 } 202 static struct kobj_attribute pages_to_scan_attr = 203 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 204 pages_to_scan_store); 205 206 static ssize_t pages_collapsed_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 211 } 212 static struct kobj_attribute pages_collapsed_attr = 213 __ATTR_RO(pages_collapsed); 214 215 static ssize_t full_scans_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 220 } 221 static struct kobj_attribute full_scans_attr = 222 __ATTR_RO(full_scans); 223 224 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 225 struct kobj_attribute *attr, char *buf) 226 { 227 return single_hugepage_flag_show(kobj, attr, buf, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 231 struct kobj_attribute *attr, 232 const char *buf, size_t count) 233 { 234 return single_hugepage_flag_store(kobj, attr, buf, count, 235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 236 } 237 static struct kobj_attribute khugepaged_defrag_attr = 238 __ATTR(defrag, 0644, khugepaged_defrag_show, 239 khugepaged_defrag_store); 240 241 /* 242 * max_ptes_none controls if khugepaged should collapse hugepages over 243 * any unmapped ptes in turn potentially increasing the memory 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 245 * reduce the available free memory in the system as it 246 * runs. Increasing max_ptes_none will instead potentially reduce the 247 * free memory in the system during the khugepaged scan. 248 */ 249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 250 struct kobj_attribute *attr, 251 char *buf) 252 { 253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 254 } 255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 int err; 260 unsigned long max_ptes_none; 261 262 err = kstrtoul(buf, 10, &max_ptes_none); 263 if (err || max_ptes_none > HPAGE_PMD_NR-1) 264 return -EINVAL; 265 266 khugepaged_max_ptes_none = max_ptes_none; 267 268 return count; 269 } 270 static struct kobj_attribute khugepaged_max_ptes_none_attr = 271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 272 khugepaged_max_ptes_none_store); 273 274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 char *buf) 277 { 278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 279 } 280 281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 int err; 286 unsigned long max_ptes_swap; 287 288 err = kstrtoul(buf, 10, &max_ptes_swap); 289 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 290 return -EINVAL; 291 292 khugepaged_max_ptes_swap = max_ptes_swap; 293 294 return count; 295 } 296 297 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 299 khugepaged_max_ptes_swap_store); 300 301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 302 struct kobj_attribute *attr, 303 char *buf) 304 { 305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 306 } 307 308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 309 struct kobj_attribute *attr, 310 const char *buf, size_t count) 311 { 312 int err; 313 unsigned long max_ptes_shared; 314 315 err = kstrtoul(buf, 10, &max_ptes_shared); 316 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 317 return -EINVAL; 318 319 khugepaged_max_ptes_shared = max_ptes_shared; 320 321 return count; 322 } 323 324 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 326 khugepaged_max_ptes_shared_store); 327 328 static struct attribute *khugepaged_attr[] = { 329 &khugepaged_defrag_attr.attr, 330 &khugepaged_max_ptes_none_attr.attr, 331 &khugepaged_max_ptes_swap_attr.attr, 332 &khugepaged_max_ptes_shared_attr.attr, 333 &pages_to_scan_attr.attr, 334 &pages_collapsed_attr.attr, 335 &full_scans_attr.attr, 336 &scan_sleep_millisecs_attr.attr, 337 &alloc_sleep_millisecs_attr.attr, 338 NULL, 339 }; 340 341 struct attribute_group khugepaged_attr_group = { 342 .attrs = khugepaged_attr, 343 .name = "khugepaged", 344 }; 345 #endif /* CONFIG_SYSFS */ 346 347 int hugepage_madvise(struct vm_area_struct *vma, 348 unsigned long *vm_flags, int advice) 349 { 350 switch (advice) { 351 case MADV_HUGEPAGE: 352 #ifdef CONFIG_S390 353 /* 354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 355 * can't handle this properly after s390_enable_sie, so we simply 356 * ignore the madvise to prevent qemu from causing a SIGSEGV. 357 */ 358 if (mm_has_pgste(vma->vm_mm)) 359 return 0; 360 #endif 361 *vm_flags &= ~VM_NOHUGEPAGE; 362 *vm_flags |= VM_HUGEPAGE; 363 /* 364 * If the vma become good for khugepaged to scan, 365 * register it here without waiting a page fault that 366 * may not happen any time soon. 367 */ 368 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 369 khugepaged_enter_vma_merge(vma, *vm_flags)) 370 return -ENOMEM; 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct mm_slot), 390 __alignof__(struct mm_slot), 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline struct mm_slot *alloc_mm_slot(void) 408 { 409 if (!mm_slot_cache) /* initialization failed */ 410 return NULL; 411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 412 } 413 414 static inline void free_mm_slot(struct mm_slot *mm_slot) 415 { 416 kmem_cache_free(mm_slot_cache, mm_slot); 417 } 418 419 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 420 { 421 struct mm_slot *mm_slot; 422 423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 424 if (mm == mm_slot->mm) 425 return mm_slot; 426 427 return NULL; 428 } 429 430 static void insert_to_mm_slots_hash(struct mm_struct *mm, 431 struct mm_slot *mm_slot) 432 { 433 mm_slot->mm = mm; 434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 435 } 436 437 static inline int khugepaged_test_exit(struct mm_struct *mm) 438 { 439 return atomic_read(&mm->mm_users) == 0; 440 } 441 442 static bool hugepage_vma_check(struct vm_area_struct *vma, 443 unsigned long vm_flags) 444 { 445 if (!transhuge_vma_enabled(vma, vm_flags)) 446 return false; 447 448 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - 449 vma->vm_pgoff, HPAGE_PMD_NR)) 450 return false; 451 452 /* Enabled via shmem mount options or sysfs settings. */ 453 if (shmem_file(vma->vm_file)) 454 return shmem_huge_enabled(vma); 455 456 /* THP settings require madvise. */ 457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) 458 return false; 459 460 /* Only regular file is valid */ 461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file && 462 (vm_flags & VM_EXEC)) { 463 struct inode *inode = vma->vm_file->f_inode; 464 465 return !inode_is_open_for_write(inode) && 466 S_ISREG(inode->i_mode); 467 } 468 469 if (!vma->anon_vma || vma->vm_ops) 470 return false; 471 if (vma_is_temporary_stack(vma)) 472 return false; 473 return !(vm_flags & VM_NO_KHUGEPAGED); 474 } 475 476 int __khugepaged_enter(struct mm_struct *mm) 477 { 478 struct mm_slot *mm_slot; 479 int wakeup; 480 481 mm_slot = alloc_mm_slot(); 482 if (!mm_slot) 483 return -ENOMEM; 484 485 /* __khugepaged_exit() must not run from under us */ 486 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 487 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 488 free_mm_slot(mm_slot); 489 return 0; 490 } 491 492 spin_lock(&khugepaged_mm_lock); 493 insert_to_mm_slots_hash(mm, mm_slot); 494 /* 495 * Insert just behind the scanning cursor, to let the area settle 496 * down a little. 497 */ 498 wakeup = list_empty(&khugepaged_scan.mm_head); 499 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 500 spin_unlock(&khugepaged_mm_lock); 501 502 mmgrab(mm); 503 if (wakeup) 504 wake_up_interruptible(&khugepaged_wait); 505 506 return 0; 507 } 508 509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 510 unsigned long vm_flags) 511 { 512 unsigned long hstart, hend; 513 514 /* 515 * khugepaged only supports read-only files for non-shmem files. 516 * khugepaged does not yet work on special mappings. And 517 * file-private shmem THP is not supported. 518 */ 519 if (!hugepage_vma_check(vma, vm_flags)) 520 return 0; 521 522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 523 hend = vma->vm_end & HPAGE_PMD_MASK; 524 if (hstart < hend) 525 return khugepaged_enter(vma, vm_flags); 526 return 0; 527 } 528 529 void __khugepaged_exit(struct mm_struct *mm) 530 { 531 struct mm_slot *mm_slot; 532 int free = 0; 533 534 spin_lock(&khugepaged_mm_lock); 535 mm_slot = get_mm_slot(mm); 536 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 537 hash_del(&mm_slot->hash); 538 list_del(&mm_slot->mm_node); 539 free = 1; 540 } 541 spin_unlock(&khugepaged_mm_lock); 542 543 if (free) { 544 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 545 free_mm_slot(mm_slot); 546 mmdrop(mm); 547 } else if (mm_slot) { 548 /* 549 * This is required to serialize against 550 * khugepaged_test_exit() (which is guaranteed to run 551 * under mmap sem read mode). Stop here (after we 552 * return all pagetables will be destroyed) until 553 * khugepaged has finished working on the pagetables 554 * under the mmap_lock. 555 */ 556 mmap_write_lock(mm); 557 mmap_write_unlock(mm); 558 } 559 } 560 561 static void release_pte_page(struct page *page) 562 { 563 mod_node_page_state(page_pgdat(page), 564 NR_ISOLATED_ANON + page_is_file_lru(page), 565 -compound_nr(page)); 566 unlock_page(page); 567 putback_lru_page(page); 568 } 569 570 static void release_pte_pages(pte_t *pte, pte_t *_pte, 571 struct list_head *compound_pagelist) 572 { 573 struct page *page, *tmp; 574 575 while (--_pte >= pte) { 576 pte_t pteval = *_pte; 577 578 page = pte_page(pteval); 579 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 580 !PageCompound(page)) 581 release_pte_page(page); 582 } 583 584 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 585 list_del(&page->lru); 586 release_pte_page(page); 587 } 588 } 589 590 static bool is_refcount_suitable(struct page *page) 591 { 592 int expected_refcount; 593 594 expected_refcount = total_mapcount(page); 595 if (PageSwapCache(page)) 596 expected_refcount += compound_nr(page); 597 598 return page_count(page) == expected_refcount; 599 } 600 601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 602 unsigned long address, 603 pte_t *pte, 604 struct list_head *compound_pagelist) 605 { 606 struct page *page = NULL; 607 pte_t *_pte; 608 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 609 bool writable = false; 610 611 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 612 _pte++, address += PAGE_SIZE) { 613 pte_t pteval = *_pte; 614 if (pte_none(pteval) || (pte_present(pteval) && 615 is_zero_pfn(pte_pfn(pteval)))) { 616 if (!userfaultfd_armed(vma) && 617 ++none_or_zero <= khugepaged_max_ptes_none) { 618 continue; 619 } else { 620 result = SCAN_EXCEED_NONE_PTE; 621 goto out; 622 } 623 } 624 if (!pte_present(pteval)) { 625 result = SCAN_PTE_NON_PRESENT; 626 goto out; 627 } 628 page = vm_normal_page(vma, address, pteval); 629 if (unlikely(!page)) { 630 result = SCAN_PAGE_NULL; 631 goto out; 632 } 633 634 VM_BUG_ON_PAGE(!PageAnon(page), page); 635 636 if (page_mapcount(page) > 1 && 637 ++shared > khugepaged_max_ptes_shared) { 638 result = SCAN_EXCEED_SHARED_PTE; 639 goto out; 640 } 641 642 if (PageCompound(page)) { 643 struct page *p; 644 page = compound_head(page); 645 646 /* 647 * Check if we have dealt with the compound page 648 * already 649 */ 650 list_for_each_entry(p, compound_pagelist, lru) { 651 if (page == p) 652 goto next; 653 } 654 } 655 656 /* 657 * We can do it before isolate_lru_page because the 658 * page can't be freed from under us. NOTE: PG_lock 659 * is needed to serialize against split_huge_page 660 * when invoked from the VM. 661 */ 662 if (!trylock_page(page)) { 663 result = SCAN_PAGE_LOCK; 664 goto out; 665 } 666 667 /* 668 * Check if the page has any GUP (or other external) pins. 669 * 670 * The page table that maps the page has been already unlinked 671 * from the page table tree and this process cannot get 672 * an additional pin on the page. 673 * 674 * New pins can come later if the page is shared across fork, 675 * but not from this process. The other process cannot write to 676 * the page, only trigger CoW. 677 */ 678 if (!is_refcount_suitable(page)) { 679 unlock_page(page); 680 result = SCAN_PAGE_COUNT; 681 goto out; 682 } 683 if (!pte_write(pteval) && PageSwapCache(page) && 684 !reuse_swap_page(page, NULL)) { 685 /* 686 * Page is in the swap cache and cannot be re-used. 687 * It cannot be collapsed into a THP. 688 */ 689 unlock_page(page); 690 result = SCAN_SWAP_CACHE_PAGE; 691 goto out; 692 } 693 694 /* 695 * Isolate the page to avoid collapsing an hugepage 696 * currently in use by the VM. 697 */ 698 if (isolate_lru_page(page)) { 699 unlock_page(page); 700 result = SCAN_DEL_PAGE_LRU; 701 goto out; 702 } 703 mod_node_page_state(page_pgdat(page), 704 NR_ISOLATED_ANON + page_is_file_lru(page), 705 compound_nr(page)); 706 VM_BUG_ON_PAGE(!PageLocked(page), page); 707 VM_BUG_ON_PAGE(PageLRU(page), page); 708 709 if (PageCompound(page)) 710 list_add_tail(&page->lru, compound_pagelist); 711 next: 712 /* There should be enough young pte to collapse the page */ 713 if (pte_young(pteval) || 714 page_is_young(page) || PageReferenced(page) || 715 mmu_notifier_test_young(vma->vm_mm, address)) 716 referenced++; 717 718 if (pte_write(pteval)) 719 writable = true; 720 } 721 722 if (unlikely(!writable)) { 723 result = SCAN_PAGE_RO; 724 } else if (unlikely(!referenced)) { 725 result = SCAN_LACK_REFERENCED_PAGE; 726 } else { 727 result = SCAN_SUCCEED; 728 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 729 referenced, writable, result); 730 return 1; 731 } 732 out: 733 release_pte_pages(pte, _pte, compound_pagelist); 734 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 735 referenced, writable, result); 736 return 0; 737 } 738 739 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 740 struct vm_area_struct *vma, 741 unsigned long address, 742 spinlock_t *ptl, 743 struct list_head *compound_pagelist) 744 { 745 struct page *src_page, *tmp; 746 pte_t *_pte; 747 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 748 _pte++, page++, address += PAGE_SIZE) { 749 pte_t pteval = *_pte; 750 751 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 752 clear_user_highpage(page, address); 753 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 754 if (is_zero_pfn(pte_pfn(pteval))) { 755 /* 756 * ptl mostly unnecessary. 757 */ 758 spin_lock(ptl); 759 /* 760 * paravirt calls inside pte_clear here are 761 * superfluous. 762 */ 763 pte_clear(vma->vm_mm, address, _pte); 764 spin_unlock(ptl); 765 } 766 } else { 767 src_page = pte_page(pteval); 768 copy_user_highpage(page, src_page, address, vma); 769 if (!PageCompound(src_page)) 770 release_pte_page(src_page); 771 /* 772 * ptl mostly unnecessary, but preempt has to 773 * be disabled to update the per-cpu stats 774 * inside page_remove_rmap(). 775 */ 776 spin_lock(ptl); 777 /* 778 * paravirt calls inside pte_clear here are 779 * superfluous. 780 */ 781 pte_clear(vma->vm_mm, address, _pte); 782 page_remove_rmap(src_page, false); 783 spin_unlock(ptl); 784 free_page_and_swap_cache(src_page); 785 } 786 } 787 788 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 789 list_del(&src_page->lru); 790 release_pte_page(src_page); 791 } 792 } 793 794 static void khugepaged_alloc_sleep(void) 795 { 796 DEFINE_WAIT(wait); 797 798 add_wait_queue(&khugepaged_wait, &wait); 799 freezable_schedule_timeout_interruptible( 800 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 801 remove_wait_queue(&khugepaged_wait, &wait); 802 } 803 804 static int khugepaged_node_load[MAX_NUMNODES]; 805 806 static bool khugepaged_scan_abort(int nid) 807 { 808 int i; 809 810 /* 811 * If node_reclaim_mode is disabled, then no extra effort is made to 812 * allocate memory locally. 813 */ 814 if (!node_reclaim_enabled()) 815 return false; 816 817 /* If there is a count for this node already, it must be acceptable */ 818 if (khugepaged_node_load[nid]) 819 return false; 820 821 for (i = 0; i < MAX_NUMNODES; i++) { 822 if (!khugepaged_node_load[i]) 823 continue; 824 if (node_distance(nid, i) > node_reclaim_distance) 825 return true; 826 } 827 return false; 828 } 829 830 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 831 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 832 { 833 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 834 } 835 836 #ifdef CONFIG_NUMA 837 static int khugepaged_find_target_node(void) 838 { 839 static int last_khugepaged_target_node = NUMA_NO_NODE; 840 int nid, target_node = 0, max_value = 0; 841 842 /* find first node with max normal pages hit */ 843 for (nid = 0; nid < MAX_NUMNODES; nid++) 844 if (khugepaged_node_load[nid] > max_value) { 845 max_value = khugepaged_node_load[nid]; 846 target_node = nid; 847 } 848 849 /* do some balance if several nodes have the same hit record */ 850 if (target_node <= last_khugepaged_target_node) 851 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 852 nid++) 853 if (max_value == khugepaged_node_load[nid]) { 854 target_node = nid; 855 break; 856 } 857 858 last_khugepaged_target_node = target_node; 859 return target_node; 860 } 861 862 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 863 { 864 if (IS_ERR(*hpage)) { 865 if (!*wait) 866 return false; 867 868 *wait = false; 869 *hpage = NULL; 870 khugepaged_alloc_sleep(); 871 } else if (*hpage) { 872 put_page(*hpage); 873 *hpage = NULL; 874 } 875 876 return true; 877 } 878 879 static struct page * 880 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 881 { 882 VM_BUG_ON_PAGE(*hpage, *hpage); 883 884 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 885 if (unlikely(!*hpage)) { 886 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 887 *hpage = ERR_PTR(-ENOMEM); 888 return NULL; 889 } 890 891 prep_transhuge_page(*hpage); 892 count_vm_event(THP_COLLAPSE_ALLOC); 893 return *hpage; 894 } 895 #else 896 static int khugepaged_find_target_node(void) 897 { 898 return 0; 899 } 900 901 static inline struct page *alloc_khugepaged_hugepage(void) 902 { 903 struct page *page; 904 905 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 906 HPAGE_PMD_ORDER); 907 if (page) 908 prep_transhuge_page(page); 909 return page; 910 } 911 912 static struct page *khugepaged_alloc_hugepage(bool *wait) 913 { 914 struct page *hpage; 915 916 do { 917 hpage = alloc_khugepaged_hugepage(); 918 if (!hpage) { 919 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 920 if (!*wait) 921 return NULL; 922 923 *wait = false; 924 khugepaged_alloc_sleep(); 925 } else 926 count_vm_event(THP_COLLAPSE_ALLOC); 927 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 928 929 return hpage; 930 } 931 932 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 933 { 934 /* 935 * If the hpage allocated earlier was briefly exposed in page cache 936 * before collapse_file() failed, it is possible that racing lookups 937 * have not yet completed, and would then be unpleasantly surprised by 938 * finding the hpage reused for the same mapping at a different offset. 939 * Just release the previous allocation if there is any danger of that. 940 */ 941 if (*hpage && page_count(*hpage) > 1) { 942 put_page(*hpage); 943 *hpage = NULL; 944 } 945 946 if (!*hpage) 947 *hpage = khugepaged_alloc_hugepage(wait); 948 949 if (unlikely(!*hpage)) 950 return false; 951 952 return true; 953 } 954 955 static struct page * 956 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 957 { 958 VM_BUG_ON(!*hpage); 959 960 return *hpage; 961 } 962 #endif 963 964 /* 965 * If mmap_lock temporarily dropped, revalidate vma 966 * before taking mmap_lock. 967 * Return 0 if succeeds, otherwise return none-zero 968 * value (scan code). 969 */ 970 971 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 972 struct vm_area_struct **vmap) 973 { 974 struct vm_area_struct *vma; 975 unsigned long hstart, hend; 976 977 if (unlikely(khugepaged_test_exit(mm))) 978 return SCAN_ANY_PROCESS; 979 980 *vmap = vma = find_vma(mm, address); 981 if (!vma) 982 return SCAN_VMA_NULL; 983 984 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 985 hend = vma->vm_end & HPAGE_PMD_MASK; 986 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 987 return SCAN_ADDRESS_RANGE; 988 if (!hugepage_vma_check(vma, vma->vm_flags)) 989 return SCAN_VMA_CHECK; 990 /* Anon VMA expected */ 991 if (!vma->anon_vma || vma->vm_ops) 992 return SCAN_VMA_CHECK; 993 return 0; 994 } 995 996 /* 997 * Bring missing pages in from swap, to complete THP collapse. 998 * Only done if khugepaged_scan_pmd believes it is worthwhile. 999 * 1000 * Called and returns without pte mapped or spinlocks held, 1001 * but with mmap_lock held to protect against vma changes. 1002 */ 1003 1004 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 1005 struct vm_area_struct *vma, 1006 unsigned long haddr, pmd_t *pmd, 1007 int referenced) 1008 { 1009 int swapped_in = 0; 1010 vm_fault_t ret = 0; 1011 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1012 1013 for (address = haddr; address < end; address += PAGE_SIZE) { 1014 struct vm_fault vmf = { 1015 .vma = vma, 1016 .address = address, 1017 .pgoff = linear_page_index(vma, haddr), 1018 .flags = FAULT_FLAG_ALLOW_RETRY, 1019 .pmd = pmd, 1020 }; 1021 1022 vmf.pte = pte_offset_map(pmd, address); 1023 vmf.orig_pte = *vmf.pte; 1024 if (!is_swap_pte(vmf.orig_pte)) { 1025 pte_unmap(vmf.pte); 1026 continue; 1027 } 1028 swapped_in++; 1029 ret = do_swap_page(&vmf); 1030 1031 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1032 if (ret & VM_FAULT_RETRY) { 1033 mmap_read_lock(mm); 1034 if (hugepage_vma_revalidate(mm, haddr, &vma)) { 1035 /* vma is no longer available, don't continue to swapin */ 1036 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1037 return false; 1038 } 1039 /* check if the pmd is still valid */ 1040 if (mm_find_pmd(mm, haddr) != pmd) { 1041 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1042 return false; 1043 } 1044 } 1045 if (ret & VM_FAULT_ERROR) { 1046 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1047 return false; 1048 } 1049 } 1050 1051 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1052 if (swapped_in) 1053 lru_add_drain(); 1054 1055 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1056 return true; 1057 } 1058 1059 static void collapse_huge_page(struct mm_struct *mm, 1060 unsigned long address, 1061 struct page **hpage, 1062 int node, int referenced, int unmapped) 1063 { 1064 LIST_HEAD(compound_pagelist); 1065 pmd_t *pmd, _pmd; 1066 pte_t *pte; 1067 pgtable_t pgtable; 1068 struct page *new_page; 1069 spinlock_t *pmd_ptl, *pte_ptl; 1070 int isolated = 0, result = 0; 1071 struct vm_area_struct *vma; 1072 struct mmu_notifier_range range; 1073 gfp_t gfp; 1074 1075 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1076 1077 /* Only allocate from the target node */ 1078 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1079 1080 /* 1081 * Before allocating the hugepage, release the mmap_lock read lock. 1082 * The allocation can take potentially a long time if it involves 1083 * sync compaction, and we do not need to hold the mmap_lock during 1084 * that. We will recheck the vma after taking it again in write mode. 1085 */ 1086 mmap_read_unlock(mm); 1087 new_page = khugepaged_alloc_page(hpage, gfp, node); 1088 if (!new_page) { 1089 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1090 goto out_nolock; 1091 } 1092 1093 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1094 result = SCAN_CGROUP_CHARGE_FAIL; 1095 goto out_nolock; 1096 } 1097 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1098 1099 mmap_read_lock(mm); 1100 result = hugepage_vma_revalidate(mm, address, &vma); 1101 if (result) { 1102 mmap_read_unlock(mm); 1103 goto out_nolock; 1104 } 1105 1106 pmd = mm_find_pmd(mm, address); 1107 if (!pmd) { 1108 result = SCAN_PMD_NULL; 1109 mmap_read_unlock(mm); 1110 goto out_nolock; 1111 } 1112 1113 /* 1114 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1115 * If it fails, we release mmap_lock and jump out_nolock. 1116 * Continuing to collapse causes inconsistency. 1117 */ 1118 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1119 pmd, referenced)) { 1120 mmap_read_unlock(mm); 1121 goto out_nolock; 1122 } 1123 1124 mmap_read_unlock(mm); 1125 /* 1126 * Prevent all access to pagetables with the exception of 1127 * gup_fast later handled by the ptep_clear_flush and the VM 1128 * handled by the anon_vma lock + PG_lock. 1129 */ 1130 mmap_write_lock(mm); 1131 result = hugepage_vma_revalidate(mm, address, &vma); 1132 if (result) 1133 goto out_up_write; 1134 /* check if the pmd is still valid */ 1135 if (mm_find_pmd(mm, address) != pmd) 1136 goto out_up_write; 1137 1138 anon_vma_lock_write(vma->anon_vma); 1139 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1141 address, address + HPAGE_PMD_SIZE); 1142 mmu_notifier_invalidate_range_start(&range); 1143 1144 pte = pte_offset_map(pmd, address); 1145 pte_ptl = pte_lockptr(mm, pmd); 1146 1147 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1148 /* 1149 * After this gup_fast can't run anymore. This also removes 1150 * any huge TLB entry from the CPU so we won't allow 1151 * huge and small TLB entries for the same virtual address 1152 * to avoid the risk of CPU bugs in that area. 1153 */ 1154 _pmd = pmdp_collapse_flush(vma, address, pmd); 1155 spin_unlock(pmd_ptl); 1156 mmu_notifier_invalidate_range_end(&range); 1157 1158 spin_lock(pte_ptl); 1159 isolated = __collapse_huge_page_isolate(vma, address, pte, 1160 &compound_pagelist); 1161 spin_unlock(pte_ptl); 1162 1163 if (unlikely(!isolated)) { 1164 pte_unmap(pte); 1165 spin_lock(pmd_ptl); 1166 BUG_ON(!pmd_none(*pmd)); 1167 /* 1168 * We can only use set_pmd_at when establishing 1169 * hugepmds and never for establishing regular pmds that 1170 * points to regular pagetables. Use pmd_populate for that 1171 */ 1172 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1173 spin_unlock(pmd_ptl); 1174 anon_vma_unlock_write(vma->anon_vma); 1175 result = SCAN_FAIL; 1176 goto out_up_write; 1177 } 1178 1179 /* 1180 * All pages are isolated and locked so anon_vma rmap 1181 * can't run anymore. 1182 */ 1183 anon_vma_unlock_write(vma->anon_vma); 1184 1185 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1186 &compound_pagelist); 1187 pte_unmap(pte); 1188 /* 1189 * spin_lock() below is not the equivalent of smp_wmb(), but 1190 * the smp_wmb() inside __SetPageUptodate() can be reused to 1191 * avoid the copy_huge_page writes to become visible after 1192 * the set_pmd_at() write. 1193 */ 1194 __SetPageUptodate(new_page); 1195 pgtable = pmd_pgtable(_pmd); 1196 1197 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1198 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1199 1200 spin_lock(pmd_ptl); 1201 BUG_ON(!pmd_none(*pmd)); 1202 page_add_new_anon_rmap(new_page, vma, address, true); 1203 lru_cache_add_inactive_or_unevictable(new_page, vma); 1204 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1205 set_pmd_at(mm, address, pmd, _pmd); 1206 update_mmu_cache_pmd(vma, address, pmd); 1207 spin_unlock(pmd_ptl); 1208 1209 *hpage = NULL; 1210 1211 khugepaged_pages_collapsed++; 1212 result = SCAN_SUCCEED; 1213 out_up_write: 1214 mmap_write_unlock(mm); 1215 out_nolock: 1216 if (!IS_ERR_OR_NULL(*hpage)) 1217 mem_cgroup_uncharge(*hpage); 1218 trace_mm_collapse_huge_page(mm, isolated, result); 1219 return; 1220 } 1221 1222 static int khugepaged_scan_pmd(struct mm_struct *mm, 1223 struct vm_area_struct *vma, 1224 unsigned long address, 1225 struct page **hpage) 1226 { 1227 pmd_t *pmd; 1228 pte_t *pte, *_pte; 1229 int ret = 0, result = 0, referenced = 0; 1230 int none_or_zero = 0, shared = 0; 1231 struct page *page = NULL; 1232 unsigned long _address; 1233 spinlock_t *ptl; 1234 int node = NUMA_NO_NODE, unmapped = 0; 1235 bool writable = false; 1236 1237 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1238 1239 pmd = mm_find_pmd(mm, address); 1240 if (!pmd) { 1241 result = SCAN_PMD_NULL; 1242 goto out; 1243 } 1244 1245 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1246 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1247 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1248 _pte++, _address += PAGE_SIZE) { 1249 pte_t pteval = *_pte; 1250 if (is_swap_pte(pteval)) { 1251 if (++unmapped <= khugepaged_max_ptes_swap) { 1252 /* 1253 * Always be strict with uffd-wp 1254 * enabled swap entries. Please see 1255 * comment below for pte_uffd_wp(). 1256 */ 1257 if (pte_swp_uffd_wp(pteval)) { 1258 result = SCAN_PTE_UFFD_WP; 1259 goto out_unmap; 1260 } 1261 continue; 1262 } else { 1263 result = SCAN_EXCEED_SWAP_PTE; 1264 goto out_unmap; 1265 } 1266 } 1267 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1268 if (!userfaultfd_armed(vma) && 1269 ++none_or_zero <= khugepaged_max_ptes_none) { 1270 continue; 1271 } else { 1272 result = SCAN_EXCEED_NONE_PTE; 1273 goto out_unmap; 1274 } 1275 } 1276 if (pte_uffd_wp(pteval)) { 1277 /* 1278 * Don't collapse the page if any of the small 1279 * PTEs are armed with uffd write protection. 1280 * Here we can also mark the new huge pmd as 1281 * write protected if any of the small ones is 1282 * marked but that could bring unknown 1283 * userfault messages that falls outside of 1284 * the registered range. So, just be simple. 1285 */ 1286 result = SCAN_PTE_UFFD_WP; 1287 goto out_unmap; 1288 } 1289 if (pte_write(pteval)) 1290 writable = true; 1291 1292 page = vm_normal_page(vma, _address, pteval); 1293 if (unlikely(!page)) { 1294 result = SCAN_PAGE_NULL; 1295 goto out_unmap; 1296 } 1297 1298 if (page_mapcount(page) > 1 && 1299 ++shared > khugepaged_max_ptes_shared) { 1300 result = SCAN_EXCEED_SHARED_PTE; 1301 goto out_unmap; 1302 } 1303 1304 page = compound_head(page); 1305 1306 /* 1307 * Record which node the original page is from and save this 1308 * information to khugepaged_node_load[]. 1309 * Khupaged will allocate hugepage from the node has the max 1310 * hit record. 1311 */ 1312 node = page_to_nid(page); 1313 if (khugepaged_scan_abort(node)) { 1314 result = SCAN_SCAN_ABORT; 1315 goto out_unmap; 1316 } 1317 khugepaged_node_load[node]++; 1318 if (!PageLRU(page)) { 1319 result = SCAN_PAGE_LRU; 1320 goto out_unmap; 1321 } 1322 if (PageLocked(page)) { 1323 result = SCAN_PAGE_LOCK; 1324 goto out_unmap; 1325 } 1326 if (!PageAnon(page)) { 1327 result = SCAN_PAGE_ANON; 1328 goto out_unmap; 1329 } 1330 1331 /* 1332 * Check if the page has any GUP (or other external) pins. 1333 * 1334 * Here the check is racy it may see totmal_mapcount > refcount 1335 * in some cases. 1336 * For example, one process with one forked child process. 1337 * The parent has the PMD split due to MADV_DONTNEED, then 1338 * the child is trying unmap the whole PMD, but khugepaged 1339 * may be scanning the parent between the child has 1340 * PageDoubleMap flag cleared and dec the mapcount. So 1341 * khugepaged may see total_mapcount > refcount. 1342 * 1343 * But such case is ephemeral we could always retry collapse 1344 * later. However it may report false positive if the page 1345 * has excessive GUP pins (i.e. 512). Anyway the same check 1346 * will be done again later the risk seems low. 1347 */ 1348 if (!is_refcount_suitable(page)) { 1349 result = SCAN_PAGE_COUNT; 1350 goto out_unmap; 1351 } 1352 if (pte_young(pteval) || 1353 page_is_young(page) || PageReferenced(page) || 1354 mmu_notifier_test_young(vma->vm_mm, address)) 1355 referenced++; 1356 } 1357 if (!writable) { 1358 result = SCAN_PAGE_RO; 1359 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1360 result = SCAN_LACK_REFERENCED_PAGE; 1361 } else { 1362 result = SCAN_SUCCEED; 1363 ret = 1; 1364 } 1365 out_unmap: 1366 pte_unmap_unlock(pte, ptl); 1367 if (ret) { 1368 node = khugepaged_find_target_node(); 1369 /* collapse_huge_page will return with the mmap_lock released */ 1370 collapse_huge_page(mm, address, hpage, node, 1371 referenced, unmapped); 1372 } 1373 out: 1374 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1375 none_or_zero, result, unmapped); 1376 return ret; 1377 } 1378 1379 static void collect_mm_slot(struct mm_slot *mm_slot) 1380 { 1381 struct mm_struct *mm = mm_slot->mm; 1382 1383 lockdep_assert_held(&khugepaged_mm_lock); 1384 1385 if (khugepaged_test_exit(mm)) { 1386 /* free mm_slot */ 1387 hash_del(&mm_slot->hash); 1388 list_del(&mm_slot->mm_node); 1389 1390 /* 1391 * Not strictly needed because the mm exited already. 1392 * 1393 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1394 */ 1395 1396 /* khugepaged_mm_lock actually not necessary for the below */ 1397 free_mm_slot(mm_slot); 1398 mmdrop(mm); 1399 } 1400 } 1401 1402 #ifdef CONFIG_SHMEM 1403 /* 1404 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1405 * khugepaged should try to collapse the page table. 1406 */ 1407 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1408 unsigned long addr) 1409 { 1410 struct mm_slot *mm_slot; 1411 1412 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1413 1414 spin_lock(&khugepaged_mm_lock); 1415 mm_slot = get_mm_slot(mm); 1416 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1417 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1418 spin_unlock(&khugepaged_mm_lock); 1419 return 0; 1420 } 1421 1422 /** 1423 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1424 * address haddr. 1425 * 1426 * @mm: process address space where collapse happens 1427 * @addr: THP collapse address 1428 * 1429 * This function checks whether all the PTEs in the PMD are pointing to the 1430 * right THP. If so, retract the page table so the THP can refault in with 1431 * as pmd-mapped. 1432 */ 1433 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1434 { 1435 unsigned long haddr = addr & HPAGE_PMD_MASK; 1436 struct vm_area_struct *vma = find_vma(mm, haddr); 1437 struct page *hpage; 1438 pte_t *start_pte, *pte; 1439 pmd_t *pmd, _pmd; 1440 spinlock_t *ptl; 1441 int count = 0; 1442 int i; 1443 1444 if (!vma || !vma->vm_file || 1445 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1446 return; 1447 1448 /* 1449 * This vm_flags may not have VM_HUGEPAGE if the page was not 1450 * collapsed by this mm. But we can still collapse if the page is 1451 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1452 * will not fail the vma for missing VM_HUGEPAGE 1453 */ 1454 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1455 return; 1456 1457 hpage = find_lock_page(vma->vm_file->f_mapping, 1458 linear_page_index(vma, haddr)); 1459 if (!hpage) 1460 return; 1461 1462 if (!PageHead(hpage)) 1463 goto drop_hpage; 1464 1465 pmd = mm_find_pmd(mm, haddr); 1466 if (!pmd) 1467 goto drop_hpage; 1468 1469 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1470 1471 /* step 1: check all mapped PTEs are to the right huge page */ 1472 for (i = 0, addr = haddr, pte = start_pte; 1473 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1474 struct page *page; 1475 1476 /* empty pte, skip */ 1477 if (pte_none(*pte)) 1478 continue; 1479 1480 /* page swapped out, abort */ 1481 if (!pte_present(*pte)) 1482 goto abort; 1483 1484 page = vm_normal_page(vma, addr, *pte); 1485 1486 /* 1487 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1488 * page table, but the new page will not be a subpage of hpage. 1489 */ 1490 if (hpage + i != page) 1491 goto abort; 1492 count++; 1493 } 1494 1495 /* step 2: adjust rmap */ 1496 for (i = 0, addr = haddr, pte = start_pte; 1497 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1498 struct page *page; 1499 1500 if (pte_none(*pte)) 1501 continue; 1502 page = vm_normal_page(vma, addr, *pte); 1503 page_remove_rmap(page, false); 1504 } 1505 1506 pte_unmap_unlock(start_pte, ptl); 1507 1508 /* step 3: set proper refcount and mm_counters. */ 1509 if (count) { 1510 page_ref_sub(hpage, count); 1511 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1512 } 1513 1514 /* step 4: collapse pmd */ 1515 ptl = pmd_lock(vma->vm_mm, pmd); 1516 _pmd = pmdp_collapse_flush(vma, haddr, pmd); 1517 spin_unlock(ptl); 1518 mm_dec_nr_ptes(mm); 1519 pte_free(mm, pmd_pgtable(_pmd)); 1520 1521 drop_hpage: 1522 unlock_page(hpage); 1523 put_page(hpage); 1524 return; 1525 1526 abort: 1527 pte_unmap_unlock(start_pte, ptl); 1528 goto drop_hpage; 1529 } 1530 1531 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1532 { 1533 struct mm_struct *mm = mm_slot->mm; 1534 int i; 1535 1536 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1537 return; 1538 1539 if (!mmap_write_trylock(mm)) 1540 return; 1541 1542 if (unlikely(khugepaged_test_exit(mm))) 1543 goto out; 1544 1545 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1546 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1547 1548 out: 1549 mm_slot->nr_pte_mapped_thp = 0; 1550 mmap_write_unlock(mm); 1551 } 1552 1553 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1554 { 1555 struct vm_area_struct *vma; 1556 struct mm_struct *mm; 1557 unsigned long addr; 1558 pmd_t *pmd, _pmd; 1559 1560 i_mmap_lock_write(mapping); 1561 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1562 /* 1563 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1564 * got written to. These VMAs are likely not worth investing 1565 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1566 * later. 1567 * 1568 * Not that vma->anon_vma check is racy: it can be set up after 1569 * the check but before we took mmap_lock by the fault path. 1570 * But page lock would prevent establishing any new ptes of the 1571 * page, so we are safe. 1572 * 1573 * An alternative would be drop the check, but check that page 1574 * table is clear before calling pmdp_collapse_flush() under 1575 * ptl. It has higher chance to recover THP for the VMA, but 1576 * has higher cost too. 1577 */ 1578 if (vma->anon_vma) 1579 continue; 1580 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1581 if (addr & ~HPAGE_PMD_MASK) 1582 continue; 1583 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1584 continue; 1585 mm = vma->vm_mm; 1586 pmd = mm_find_pmd(mm, addr); 1587 if (!pmd) 1588 continue; 1589 /* 1590 * We need exclusive mmap_lock to retract page table. 1591 * 1592 * We use trylock due to lock inversion: we need to acquire 1593 * mmap_lock while holding page lock. Fault path does it in 1594 * reverse order. Trylock is a way to avoid deadlock. 1595 */ 1596 if (mmap_write_trylock(mm)) { 1597 if (!khugepaged_test_exit(mm)) { 1598 spinlock_t *ptl = pmd_lock(mm, pmd); 1599 /* assume page table is clear */ 1600 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1601 spin_unlock(ptl); 1602 mm_dec_nr_ptes(mm); 1603 pte_free(mm, pmd_pgtable(_pmd)); 1604 } 1605 mmap_write_unlock(mm); 1606 } else { 1607 /* Try again later */ 1608 khugepaged_add_pte_mapped_thp(mm, addr); 1609 } 1610 } 1611 i_mmap_unlock_write(mapping); 1612 } 1613 1614 /** 1615 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1616 * 1617 * @mm: process address space where collapse happens 1618 * @file: file that collapse on 1619 * @start: collapse start address 1620 * @hpage: new allocated huge page for collapse 1621 * @node: appointed node the new huge page allocate from 1622 * 1623 * Basic scheme is simple, details are more complex: 1624 * - allocate and lock a new huge page; 1625 * - scan page cache replacing old pages with the new one 1626 * + swap/gup in pages if necessary; 1627 * + fill in gaps; 1628 * + keep old pages around in case rollback is required; 1629 * - if replacing succeeds: 1630 * + copy data over; 1631 * + free old pages; 1632 * + unlock huge page; 1633 * - if replacing failed; 1634 * + put all pages back and unfreeze them; 1635 * + restore gaps in the page cache; 1636 * + unlock and free huge page; 1637 */ 1638 static void collapse_file(struct mm_struct *mm, 1639 struct file *file, pgoff_t start, 1640 struct page **hpage, int node) 1641 { 1642 struct address_space *mapping = file->f_mapping; 1643 gfp_t gfp; 1644 struct page *new_page; 1645 pgoff_t index, end = start + HPAGE_PMD_NR; 1646 LIST_HEAD(pagelist); 1647 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1648 int nr_none = 0, result = SCAN_SUCCEED; 1649 bool is_shmem = shmem_file(file); 1650 int nr; 1651 1652 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1653 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1654 1655 /* Only allocate from the target node */ 1656 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1657 1658 new_page = khugepaged_alloc_page(hpage, gfp, node); 1659 if (!new_page) { 1660 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1661 goto out; 1662 } 1663 1664 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1665 result = SCAN_CGROUP_CHARGE_FAIL; 1666 goto out; 1667 } 1668 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1669 1670 /* This will be less messy when we use multi-index entries */ 1671 do { 1672 xas_lock_irq(&xas); 1673 xas_create_range(&xas); 1674 if (!xas_error(&xas)) 1675 break; 1676 xas_unlock_irq(&xas); 1677 if (!xas_nomem(&xas, GFP_KERNEL)) { 1678 result = SCAN_FAIL; 1679 goto out; 1680 } 1681 } while (1); 1682 1683 __SetPageLocked(new_page); 1684 if (is_shmem) 1685 __SetPageSwapBacked(new_page); 1686 new_page->index = start; 1687 new_page->mapping = mapping; 1688 1689 /* 1690 * At this point the new_page is locked and not up-to-date. 1691 * It's safe to insert it into the page cache, because nobody would 1692 * be able to map it or use it in another way until we unlock it. 1693 */ 1694 1695 xas_set(&xas, start); 1696 for (index = start; index < end; index++) { 1697 struct page *page = xas_next(&xas); 1698 1699 VM_BUG_ON(index != xas.xa_index); 1700 if (is_shmem) { 1701 if (!page) { 1702 /* 1703 * Stop if extent has been truncated or 1704 * hole-punched, and is now completely 1705 * empty. 1706 */ 1707 if (index == start) { 1708 if (!xas_next_entry(&xas, end - 1)) { 1709 result = SCAN_TRUNCATED; 1710 goto xa_locked; 1711 } 1712 xas_set(&xas, index); 1713 } 1714 if (!shmem_charge(mapping->host, 1)) { 1715 result = SCAN_FAIL; 1716 goto xa_locked; 1717 } 1718 xas_store(&xas, new_page); 1719 nr_none++; 1720 continue; 1721 } 1722 1723 if (xa_is_value(page) || !PageUptodate(page)) { 1724 xas_unlock_irq(&xas); 1725 /* swap in or instantiate fallocated page */ 1726 if (shmem_getpage(mapping->host, index, &page, 1727 SGP_NOALLOC)) { 1728 result = SCAN_FAIL; 1729 goto xa_unlocked; 1730 } 1731 } else if (trylock_page(page)) { 1732 get_page(page); 1733 xas_unlock_irq(&xas); 1734 } else { 1735 result = SCAN_PAGE_LOCK; 1736 goto xa_locked; 1737 } 1738 } else { /* !is_shmem */ 1739 if (!page || xa_is_value(page)) { 1740 xas_unlock_irq(&xas); 1741 page_cache_sync_readahead(mapping, &file->f_ra, 1742 file, index, 1743 end - index); 1744 /* drain pagevecs to help isolate_lru_page() */ 1745 lru_add_drain(); 1746 page = find_lock_page(mapping, index); 1747 if (unlikely(page == NULL)) { 1748 result = SCAN_FAIL; 1749 goto xa_unlocked; 1750 } 1751 } else if (PageDirty(page)) { 1752 /* 1753 * khugepaged only works on read-only fd, 1754 * so this page is dirty because it hasn't 1755 * been flushed since first write. There 1756 * won't be new dirty pages. 1757 * 1758 * Trigger async flush here and hope the 1759 * writeback is done when khugepaged 1760 * revisits this page. 1761 * 1762 * This is a one-off situation. We are not 1763 * forcing writeback in loop. 1764 */ 1765 xas_unlock_irq(&xas); 1766 filemap_flush(mapping); 1767 result = SCAN_FAIL; 1768 goto xa_unlocked; 1769 } else if (PageWriteback(page)) { 1770 xas_unlock_irq(&xas); 1771 result = SCAN_FAIL; 1772 goto xa_unlocked; 1773 } else if (trylock_page(page)) { 1774 get_page(page); 1775 xas_unlock_irq(&xas); 1776 } else { 1777 result = SCAN_PAGE_LOCK; 1778 goto xa_locked; 1779 } 1780 } 1781 1782 /* 1783 * The page must be locked, so we can drop the i_pages lock 1784 * without racing with truncate. 1785 */ 1786 VM_BUG_ON_PAGE(!PageLocked(page), page); 1787 1788 /* make sure the page is up to date */ 1789 if (unlikely(!PageUptodate(page))) { 1790 result = SCAN_FAIL; 1791 goto out_unlock; 1792 } 1793 1794 /* 1795 * If file was truncated then extended, or hole-punched, before 1796 * we locked the first page, then a THP might be there already. 1797 */ 1798 if (PageTransCompound(page)) { 1799 result = SCAN_PAGE_COMPOUND; 1800 goto out_unlock; 1801 } 1802 1803 if (page_mapping(page) != mapping) { 1804 result = SCAN_TRUNCATED; 1805 goto out_unlock; 1806 } 1807 1808 if (!is_shmem && (PageDirty(page) || 1809 PageWriteback(page))) { 1810 /* 1811 * khugepaged only works on read-only fd, so this 1812 * page is dirty because it hasn't been flushed 1813 * since first write. 1814 */ 1815 result = SCAN_FAIL; 1816 goto out_unlock; 1817 } 1818 1819 if (isolate_lru_page(page)) { 1820 result = SCAN_DEL_PAGE_LRU; 1821 goto out_unlock; 1822 } 1823 1824 if (page_has_private(page) && 1825 !try_to_release_page(page, GFP_KERNEL)) { 1826 result = SCAN_PAGE_HAS_PRIVATE; 1827 putback_lru_page(page); 1828 goto out_unlock; 1829 } 1830 1831 if (page_mapped(page)) 1832 unmap_mapping_pages(mapping, index, 1, false); 1833 1834 xas_lock_irq(&xas); 1835 xas_set(&xas, index); 1836 1837 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1838 VM_BUG_ON_PAGE(page_mapped(page), page); 1839 1840 /* 1841 * The page is expected to have page_count() == 3: 1842 * - we hold a pin on it; 1843 * - one reference from page cache; 1844 * - one from isolate_lru_page; 1845 */ 1846 if (!page_ref_freeze(page, 3)) { 1847 result = SCAN_PAGE_COUNT; 1848 xas_unlock_irq(&xas); 1849 putback_lru_page(page); 1850 goto out_unlock; 1851 } 1852 1853 /* 1854 * Add the page to the list to be able to undo the collapse if 1855 * something go wrong. 1856 */ 1857 list_add_tail(&page->lru, &pagelist); 1858 1859 /* Finally, replace with the new page. */ 1860 xas_store(&xas, new_page); 1861 continue; 1862 out_unlock: 1863 unlock_page(page); 1864 put_page(page); 1865 goto xa_unlocked; 1866 } 1867 nr = thp_nr_pages(new_page); 1868 1869 if (is_shmem) 1870 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); 1871 else { 1872 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); 1873 filemap_nr_thps_inc(mapping); 1874 /* 1875 * Paired with smp_mb() in do_dentry_open() to ensure 1876 * i_writecount is up to date and the update to nr_thps is 1877 * visible. Ensures the page cache will be truncated if the 1878 * file is opened writable. 1879 */ 1880 smp_mb(); 1881 if (inode_is_open_for_write(mapping->host)) { 1882 result = SCAN_FAIL; 1883 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); 1884 filemap_nr_thps_dec(mapping); 1885 goto xa_locked; 1886 } 1887 } 1888 1889 if (nr_none) { 1890 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1891 if (is_shmem) 1892 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1893 } 1894 1895 xa_locked: 1896 xas_unlock_irq(&xas); 1897 xa_unlocked: 1898 1899 if (result == SCAN_SUCCEED) { 1900 struct page *page, *tmp; 1901 1902 /* 1903 * Replacing old pages with new one has succeeded, now we 1904 * need to copy the content and free the old pages. 1905 */ 1906 index = start; 1907 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1908 while (index < page->index) { 1909 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1910 index++; 1911 } 1912 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1913 page); 1914 list_del(&page->lru); 1915 page->mapping = NULL; 1916 page_ref_unfreeze(page, 1); 1917 ClearPageActive(page); 1918 ClearPageUnevictable(page); 1919 unlock_page(page); 1920 put_page(page); 1921 index++; 1922 } 1923 while (index < end) { 1924 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1925 index++; 1926 } 1927 1928 SetPageUptodate(new_page); 1929 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1930 if (is_shmem) 1931 set_page_dirty(new_page); 1932 lru_cache_add(new_page); 1933 1934 /* 1935 * Remove pte page tables, so we can re-fault the page as huge. 1936 */ 1937 retract_page_tables(mapping, start); 1938 *hpage = NULL; 1939 1940 khugepaged_pages_collapsed++; 1941 } else { 1942 struct page *page; 1943 1944 /* Something went wrong: roll back page cache changes */ 1945 xas_lock_irq(&xas); 1946 mapping->nrpages -= nr_none; 1947 1948 if (is_shmem) 1949 shmem_uncharge(mapping->host, nr_none); 1950 1951 xas_set(&xas, start); 1952 xas_for_each(&xas, page, end - 1) { 1953 page = list_first_entry_or_null(&pagelist, 1954 struct page, lru); 1955 if (!page || xas.xa_index < page->index) { 1956 if (!nr_none) 1957 break; 1958 nr_none--; 1959 /* Put holes back where they were */ 1960 xas_store(&xas, NULL); 1961 continue; 1962 } 1963 1964 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1965 1966 /* Unfreeze the page. */ 1967 list_del(&page->lru); 1968 page_ref_unfreeze(page, 2); 1969 xas_store(&xas, page); 1970 xas_pause(&xas); 1971 xas_unlock_irq(&xas); 1972 unlock_page(page); 1973 putback_lru_page(page); 1974 xas_lock_irq(&xas); 1975 } 1976 VM_BUG_ON(nr_none); 1977 xas_unlock_irq(&xas); 1978 1979 new_page->mapping = NULL; 1980 } 1981 1982 unlock_page(new_page); 1983 out: 1984 VM_BUG_ON(!list_empty(&pagelist)); 1985 if (!IS_ERR_OR_NULL(*hpage)) 1986 mem_cgroup_uncharge(*hpage); 1987 /* TODO: tracepoints */ 1988 } 1989 1990 static void khugepaged_scan_file(struct mm_struct *mm, 1991 struct file *file, pgoff_t start, struct page **hpage) 1992 { 1993 struct page *page = NULL; 1994 struct address_space *mapping = file->f_mapping; 1995 XA_STATE(xas, &mapping->i_pages, start); 1996 int present, swap; 1997 int node = NUMA_NO_NODE; 1998 int result = SCAN_SUCCEED; 1999 2000 present = 0; 2001 swap = 0; 2002 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2003 rcu_read_lock(); 2004 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2005 if (xas_retry(&xas, page)) 2006 continue; 2007 2008 if (xa_is_value(page)) { 2009 if (++swap > khugepaged_max_ptes_swap) { 2010 result = SCAN_EXCEED_SWAP_PTE; 2011 break; 2012 } 2013 continue; 2014 } 2015 2016 if (PageTransCompound(page)) { 2017 result = SCAN_PAGE_COMPOUND; 2018 break; 2019 } 2020 2021 node = page_to_nid(page); 2022 if (khugepaged_scan_abort(node)) { 2023 result = SCAN_SCAN_ABORT; 2024 break; 2025 } 2026 khugepaged_node_load[node]++; 2027 2028 if (!PageLRU(page)) { 2029 result = SCAN_PAGE_LRU; 2030 break; 2031 } 2032 2033 if (page_count(page) != 2034 1 + page_mapcount(page) + page_has_private(page)) { 2035 result = SCAN_PAGE_COUNT; 2036 break; 2037 } 2038 2039 /* 2040 * We probably should check if the page is referenced here, but 2041 * nobody would transfer pte_young() to PageReferenced() for us. 2042 * And rmap walk here is just too costly... 2043 */ 2044 2045 present++; 2046 2047 if (need_resched()) { 2048 xas_pause(&xas); 2049 cond_resched_rcu(); 2050 } 2051 } 2052 rcu_read_unlock(); 2053 2054 if (result == SCAN_SUCCEED) { 2055 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2056 result = SCAN_EXCEED_NONE_PTE; 2057 } else { 2058 node = khugepaged_find_target_node(); 2059 collapse_file(mm, file, start, hpage, node); 2060 } 2061 } 2062 2063 /* TODO: tracepoints */ 2064 } 2065 #else 2066 static void khugepaged_scan_file(struct mm_struct *mm, 2067 struct file *file, pgoff_t start, struct page **hpage) 2068 { 2069 BUILD_BUG(); 2070 } 2071 2072 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2073 { 2074 } 2075 #endif 2076 2077 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2078 struct page **hpage) 2079 __releases(&khugepaged_mm_lock) 2080 __acquires(&khugepaged_mm_lock) 2081 { 2082 struct mm_slot *mm_slot; 2083 struct mm_struct *mm; 2084 struct vm_area_struct *vma; 2085 int progress = 0; 2086 2087 VM_BUG_ON(!pages); 2088 lockdep_assert_held(&khugepaged_mm_lock); 2089 2090 if (khugepaged_scan.mm_slot) 2091 mm_slot = khugepaged_scan.mm_slot; 2092 else { 2093 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2094 struct mm_slot, mm_node); 2095 khugepaged_scan.address = 0; 2096 khugepaged_scan.mm_slot = mm_slot; 2097 } 2098 spin_unlock(&khugepaged_mm_lock); 2099 khugepaged_collapse_pte_mapped_thps(mm_slot); 2100 2101 mm = mm_slot->mm; 2102 /* 2103 * Don't wait for semaphore (to avoid long wait times). Just move to 2104 * the next mm on the list. 2105 */ 2106 vma = NULL; 2107 if (unlikely(!mmap_read_trylock(mm))) 2108 goto breakouterloop_mmap_lock; 2109 if (likely(!khugepaged_test_exit(mm))) 2110 vma = find_vma(mm, khugepaged_scan.address); 2111 2112 progress++; 2113 for (; vma; vma = vma->vm_next) { 2114 unsigned long hstart, hend; 2115 2116 cond_resched(); 2117 if (unlikely(khugepaged_test_exit(mm))) { 2118 progress++; 2119 break; 2120 } 2121 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2122 skip: 2123 progress++; 2124 continue; 2125 } 2126 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2127 hend = vma->vm_end & HPAGE_PMD_MASK; 2128 if (hstart >= hend) 2129 goto skip; 2130 if (khugepaged_scan.address > hend) 2131 goto skip; 2132 if (khugepaged_scan.address < hstart) 2133 khugepaged_scan.address = hstart; 2134 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2135 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2136 goto skip; 2137 2138 while (khugepaged_scan.address < hend) { 2139 int ret; 2140 cond_resched(); 2141 if (unlikely(khugepaged_test_exit(mm))) 2142 goto breakouterloop; 2143 2144 VM_BUG_ON(khugepaged_scan.address < hstart || 2145 khugepaged_scan.address + HPAGE_PMD_SIZE > 2146 hend); 2147 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2148 struct file *file = get_file(vma->vm_file); 2149 pgoff_t pgoff = linear_page_index(vma, 2150 khugepaged_scan.address); 2151 2152 mmap_read_unlock(mm); 2153 ret = 1; 2154 khugepaged_scan_file(mm, file, pgoff, hpage); 2155 fput(file); 2156 } else { 2157 ret = khugepaged_scan_pmd(mm, vma, 2158 khugepaged_scan.address, 2159 hpage); 2160 } 2161 /* move to next address */ 2162 khugepaged_scan.address += HPAGE_PMD_SIZE; 2163 progress += HPAGE_PMD_NR; 2164 if (ret) 2165 /* we released mmap_lock so break loop */ 2166 goto breakouterloop_mmap_lock; 2167 if (progress >= pages) 2168 goto breakouterloop; 2169 } 2170 } 2171 breakouterloop: 2172 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2173 breakouterloop_mmap_lock: 2174 2175 spin_lock(&khugepaged_mm_lock); 2176 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2177 /* 2178 * Release the current mm_slot if this mm is about to die, or 2179 * if we scanned all vmas of this mm. 2180 */ 2181 if (khugepaged_test_exit(mm) || !vma) { 2182 /* 2183 * Make sure that if mm_users is reaching zero while 2184 * khugepaged runs here, khugepaged_exit will find 2185 * mm_slot not pointing to the exiting mm. 2186 */ 2187 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2188 khugepaged_scan.mm_slot = list_entry( 2189 mm_slot->mm_node.next, 2190 struct mm_slot, mm_node); 2191 khugepaged_scan.address = 0; 2192 } else { 2193 khugepaged_scan.mm_slot = NULL; 2194 khugepaged_full_scans++; 2195 } 2196 2197 collect_mm_slot(mm_slot); 2198 } 2199 2200 return progress; 2201 } 2202 2203 static int khugepaged_has_work(void) 2204 { 2205 return !list_empty(&khugepaged_scan.mm_head) && 2206 khugepaged_enabled(); 2207 } 2208 2209 static int khugepaged_wait_event(void) 2210 { 2211 return !list_empty(&khugepaged_scan.mm_head) || 2212 kthread_should_stop(); 2213 } 2214 2215 static void khugepaged_do_scan(void) 2216 { 2217 struct page *hpage = NULL; 2218 unsigned int progress = 0, pass_through_head = 0; 2219 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2220 bool wait = true; 2221 2222 lru_add_drain_all(); 2223 2224 while (progress < pages) { 2225 if (!khugepaged_prealloc_page(&hpage, &wait)) 2226 break; 2227 2228 cond_resched(); 2229 2230 if (unlikely(kthread_should_stop() || try_to_freeze())) 2231 break; 2232 2233 spin_lock(&khugepaged_mm_lock); 2234 if (!khugepaged_scan.mm_slot) 2235 pass_through_head++; 2236 if (khugepaged_has_work() && 2237 pass_through_head < 2) 2238 progress += khugepaged_scan_mm_slot(pages - progress, 2239 &hpage); 2240 else 2241 progress = pages; 2242 spin_unlock(&khugepaged_mm_lock); 2243 } 2244 2245 if (!IS_ERR_OR_NULL(hpage)) 2246 put_page(hpage); 2247 } 2248 2249 static bool khugepaged_should_wakeup(void) 2250 { 2251 return kthread_should_stop() || 2252 time_after_eq(jiffies, khugepaged_sleep_expire); 2253 } 2254 2255 static void khugepaged_wait_work(void) 2256 { 2257 if (khugepaged_has_work()) { 2258 const unsigned long scan_sleep_jiffies = 2259 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2260 2261 if (!scan_sleep_jiffies) 2262 return; 2263 2264 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2265 wait_event_freezable_timeout(khugepaged_wait, 2266 khugepaged_should_wakeup(), 2267 scan_sleep_jiffies); 2268 return; 2269 } 2270 2271 if (khugepaged_enabled()) 2272 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2273 } 2274 2275 static int khugepaged(void *none) 2276 { 2277 struct mm_slot *mm_slot; 2278 2279 set_freezable(); 2280 set_user_nice(current, MAX_NICE); 2281 2282 while (!kthread_should_stop()) { 2283 khugepaged_do_scan(); 2284 khugepaged_wait_work(); 2285 } 2286 2287 spin_lock(&khugepaged_mm_lock); 2288 mm_slot = khugepaged_scan.mm_slot; 2289 khugepaged_scan.mm_slot = NULL; 2290 if (mm_slot) 2291 collect_mm_slot(mm_slot); 2292 spin_unlock(&khugepaged_mm_lock); 2293 return 0; 2294 } 2295 2296 static void set_recommended_min_free_kbytes(void) 2297 { 2298 struct zone *zone; 2299 int nr_zones = 0; 2300 unsigned long recommended_min; 2301 2302 for_each_populated_zone(zone) { 2303 /* 2304 * We don't need to worry about fragmentation of 2305 * ZONE_MOVABLE since it only has movable pages. 2306 */ 2307 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2308 continue; 2309 2310 nr_zones++; 2311 } 2312 2313 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2314 recommended_min = pageblock_nr_pages * nr_zones * 2; 2315 2316 /* 2317 * Make sure that on average at least two pageblocks are almost free 2318 * of another type, one for a migratetype to fall back to and a 2319 * second to avoid subsequent fallbacks of other types There are 3 2320 * MIGRATE_TYPES we care about. 2321 */ 2322 recommended_min += pageblock_nr_pages * nr_zones * 2323 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2324 2325 /* don't ever allow to reserve more than 5% of the lowmem */ 2326 recommended_min = min(recommended_min, 2327 (unsigned long) nr_free_buffer_pages() / 20); 2328 recommended_min <<= (PAGE_SHIFT-10); 2329 2330 if (recommended_min > min_free_kbytes) { 2331 if (user_min_free_kbytes >= 0) 2332 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2333 min_free_kbytes, recommended_min); 2334 2335 min_free_kbytes = recommended_min; 2336 } 2337 setup_per_zone_wmarks(); 2338 } 2339 2340 int start_stop_khugepaged(void) 2341 { 2342 int err = 0; 2343 2344 mutex_lock(&khugepaged_mutex); 2345 if (khugepaged_enabled()) { 2346 if (!khugepaged_thread) 2347 khugepaged_thread = kthread_run(khugepaged, NULL, 2348 "khugepaged"); 2349 if (IS_ERR(khugepaged_thread)) { 2350 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2351 err = PTR_ERR(khugepaged_thread); 2352 khugepaged_thread = NULL; 2353 goto fail; 2354 } 2355 2356 if (!list_empty(&khugepaged_scan.mm_head)) 2357 wake_up_interruptible(&khugepaged_wait); 2358 2359 set_recommended_min_free_kbytes(); 2360 } else if (khugepaged_thread) { 2361 kthread_stop(khugepaged_thread); 2362 khugepaged_thread = NULL; 2363 } 2364 fail: 2365 mutex_unlock(&khugepaged_mutex); 2366 return err; 2367 } 2368 2369 void khugepaged_min_free_kbytes_update(void) 2370 { 2371 mutex_lock(&khugepaged_mutex); 2372 if (khugepaged_enabled() && khugepaged_thread) 2373 set_recommended_min_free_kbytes(); 2374 mutex_unlock(&khugepaged_mutex); 2375 } 2376