1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_folio(struct folio *folio) 494 { 495 node_stat_mod_folio(folio, 496 NR_ISOLATED_ANON + folio_is_file_lru(folio), 497 -folio_nr_pages(folio)); 498 folio_unlock(folio); 499 folio_putback_lru(folio); 500 } 501 502 static void release_pte_page(struct page *page) 503 { 504 release_pte_folio(page_folio(page)); 505 } 506 507 static void release_pte_pages(pte_t *pte, pte_t *_pte, 508 struct list_head *compound_pagelist) 509 { 510 struct folio *folio, *tmp; 511 512 while (--_pte >= pte) { 513 pte_t pteval = *_pte; 514 unsigned long pfn; 515 516 if (pte_none(pteval)) 517 continue; 518 pfn = pte_pfn(pteval); 519 if (is_zero_pfn(pfn)) 520 continue; 521 folio = pfn_folio(pfn); 522 if (folio_test_large(folio)) 523 continue; 524 release_pte_folio(folio); 525 } 526 527 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 528 list_del(&folio->lru); 529 release_pte_folio(folio); 530 } 531 } 532 533 static bool is_refcount_suitable(struct page *page) 534 { 535 int expected_refcount; 536 537 expected_refcount = total_mapcount(page); 538 if (PageSwapCache(page)) 539 expected_refcount += compound_nr(page); 540 541 return page_count(page) == expected_refcount; 542 } 543 544 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 545 unsigned long address, 546 pte_t *pte, 547 struct collapse_control *cc, 548 struct list_head *compound_pagelist) 549 { 550 struct page *page = NULL; 551 pte_t *_pte; 552 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 553 bool writable = false; 554 555 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 556 _pte++, address += PAGE_SIZE) { 557 pte_t pteval = *_pte; 558 if (pte_none(pteval) || (pte_present(pteval) && 559 is_zero_pfn(pte_pfn(pteval)))) { 560 ++none_or_zero; 561 if (!userfaultfd_armed(vma) && 562 (!cc->is_khugepaged || 563 none_or_zero <= khugepaged_max_ptes_none)) { 564 continue; 565 } else { 566 result = SCAN_EXCEED_NONE_PTE; 567 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 568 goto out; 569 } 570 } 571 if (!pte_present(pteval)) { 572 result = SCAN_PTE_NON_PRESENT; 573 goto out; 574 } 575 if (pte_uffd_wp(pteval)) { 576 result = SCAN_PTE_UFFD_WP; 577 goto out; 578 } 579 page = vm_normal_page(vma, address, pteval); 580 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 581 result = SCAN_PAGE_NULL; 582 goto out; 583 } 584 585 VM_BUG_ON_PAGE(!PageAnon(page), page); 586 587 if (page_mapcount(page) > 1) { 588 ++shared; 589 if (cc->is_khugepaged && 590 shared > khugepaged_max_ptes_shared) { 591 result = SCAN_EXCEED_SHARED_PTE; 592 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 593 goto out; 594 } 595 } 596 597 if (PageCompound(page)) { 598 struct page *p; 599 page = compound_head(page); 600 601 /* 602 * Check if we have dealt with the compound page 603 * already 604 */ 605 list_for_each_entry(p, compound_pagelist, lru) { 606 if (page == p) 607 goto next; 608 } 609 } 610 611 /* 612 * We can do it before isolate_lru_page because the 613 * page can't be freed from under us. NOTE: PG_lock 614 * is needed to serialize against split_huge_page 615 * when invoked from the VM. 616 */ 617 if (!trylock_page(page)) { 618 result = SCAN_PAGE_LOCK; 619 goto out; 620 } 621 622 /* 623 * Check if the page has any GUP (or other external) pins. 624 * 625 * The page table that maps the page has been already unlinked 626 * from the page table tree and this process cannot get 627 * an additional pin on the page. 628 * 629 * New pins can come later if the page is shared across fork, 630 * but not from this process. The other process cannot write to 631 * the page, only trigger CoW. 632 */ 633 if (!is_refcount_suitable(page)) { 634 unlock_page(page); 635 result = SCAN_PAGE_COUNT; 636 goto out; 637 } 638 639 /* 640 * Isolate the page to avoid collapsing an hugepage 641 * currently in use by the VM. 642 */ 643 if (!isolate_lru_page(page)) { 644 unlock_page(page); 645 result = SCAN_DEL_PAGE_LRU; 646 goto out; 647 } 648 mod_node_page_state(page_pgdat(page), 649 NR_ISOLATED_ANON + page_is_file_lru(page), 650 compound_nr(page)); 651 VM_BUG_ON_PAGE(!PageLocked(page), page); 652 VM_BUG_ON_PAGE(PageLRU(page), page); 653 654 if (PageCompound(page)) 655 list_add_tail(&page->lru, compound_pagelist); 656 next: 657 /* 658 * If collapse was initiated by khugepaged, check that there is 659 * enough young pte to justify collapsing the page 660 */ 661 if (cc->is_khugepaged && 662 (pte_young(pteval) || page_is_young(page) || 663 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 664 address))) 665 referenced++; 666 667 if (pte_write(pteval)) 668 writable = true; 669 } 670 671 if (unlikely(!writable)) { 672 result = SCAN_PAGE_RO; 673 } else if (unlikely(cc->is_khugepaged && !referenced)) { 674 result = SCAN_LACK_REFERENCED_PAGE; 675 } else { 676 result = SCAN_SUCCEED; 677 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 678 referenced, writable, result); 679 return result; 680 } 681 out: 682 release_pte_pages(pte, _pte, compound_pagelist); 683 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 684 referenced, writable, result); 685 return result; 686 } 687 688 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 689 struct vm_area_struct *vma, 690 unsigned long address, 691 spinlock_t *ptl, 692 struct list_head *compound_pagelist) 693 { 694 struct page *src_page, *tmp; 695 pte_t *_pte; 696 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 697 _pte++, page++, address += PAGE_SIZE) { 698 pte_t pteval = *_pte; 699 700 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 701 clear_user_highpage(page, address); 702 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 703 if (is_zero_pfn(pte_pfn(pteval))) { 704 /* 705 * ptl mostly unnecessary. 706 */ 707 spin_lock(ptl); 708 ptep_clear(vma->vm_mm, address, _pte); 709 spin_unlock(ptl); 710 } 711 } else { 712 src_page = pte_page(pteval); 713 copy_user_highpage(page, src_page, address, vma); 714 if (!PageCompound(src_page)) 715 release_pte_page(src_page); 716 /* 717 * ptl mostly unnecessary, but preempt has to 718 * be disabled to update the per-cpu stats 719 * inside page_remove_rmap(). 720 */ 721 spin_lock(ptl); 722 ptep_clear(vma->vm_mm, address, _pte); 723 page_remove_rmap(src_page, vma, false); 724 spin_unlock(ptl); 725 free_page_and_swap_cache(src_page); 726 } 727 } 728 729 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 730 list_del(&src_page->lru); 731 mod_node_page_state(page_pgdat(src_page), 732 NR_ISOLATED_ANON + page_is_file_lru(src_page), 733 -compound_nr(src_page)); 734 unlock_page(src_page); 735 free_swap_cache(src_page); 736 putback_lru_page(src_page); 737 } 738 } 739 740 static void khugepaged_alloc_sleep(void) 741 { 742 DEFINE_WAIT(wait); 743 744 add_wait_queue(&khugepaged_wait, &wait); 745 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 746 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 747 remove_wait_queue(&khugepaged_wait, &wait); 748 } 749 750 struct collapse_control khugepaged_collapse_control = { 751 .is_khugepaged = true, 752 }; 753 754 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 755 { 756 int i; 757 758 /* 759 * If node_reclaim_mode is disabled, then no extra effort is made to 760 * allocate memory locally. 761 */ 762 if (!node_reclaim_enabled()) 763 return false; 764 765 /* If there is a count for this node already, it must be acceptable */ 766 if (cc->node_load[nid]) 767 return false; 768 769 for (i = 0; i < MAX_NUMNODES; i++) { 770 if (!cc->node_load[i]) 771 continue; 772 if (node_distance(nid, i) > node_reclaim_distance) 773 return true; 774 } 775 return false; 776 } 777 778 #define khugepaged_defrag() \ 779 (transparent_hugepage_flags & \ 780 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 781 782 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 783 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 784 { 785 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 786 } 787 788 #ifdef CONFIG_NUMA 789 static int hpage_collapse_find_target_node(struct collapse_control *cc) 790 { 791 int nid, target_node = 0, max_value = 0; 792 793 /* find first node with max normal pages hit */ 794 for (nid = 0; nid < MAX_NUMNODES; nid++) 795 if (cc->node_load[nid] > max_value) { 796 max_value = cc->node_load[nid]; 797 target_node = nid; 798 } 799 800 for_each_online_node(nid) { 801 if (max_value == cc->node_load[nid]) 802 node_set(nid, cc->alloc_nmask); 803 } 804 805 return target_node; 806 } 807 #else 808 static int hpage_collapse_find_target_node(struct collapse_control *cc) 809 { 810 return 0; 811 } 812 #endif 813 814 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 815 nodemask_t *nmask) 816 { 817 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 818 if (unlikely(!*hpage)) { 819 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 820 return false; 821 } 822 823 prep_transhuge_page(*hpage); 824 count_vm_event(THP_COLLAPSE_ALLOC); 825 return true; 826 } 827 828 /* 829 * If mmap_lock temporarily dropped, revalidate vma 830 * before taking mmap_lock. 831 * Returns enum scan_result value. 832 */ 833 834 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 835 bool expect_anon, 836 struct vm_area_struct **vmap, 837 struct collapse_control *cc) 838 { 839 struct vm_area_struct *vma; 840 841 if (unlikely(hpage_collapse_test_exit(mm))) 842 return SCAN_ANY_PROCESS; 843 844 *vmap = vma = find_vma(mm, address); 845 if (!vma) 846 return SCAN_VMA_NULL; 847 848 if (!transhuge_vma_suitable(vma, address)) 849 return SCAN_ADDRESS_RANGE; 850 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 851 cc->is_khugepaged)) 852 return SCAN_VMA_CHECK; 853 /* 854 * Anon VMA expected, the address may be unmapped then 855 * remapped to file after khugepaged reaquired the mmap_lock. 856 * 857 * hugepage_vma_check may return true for qualified file 858 * vmas. 859 */ 860 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 861 return SCAN_PAGE_ANON; 862 return SCAN_SUCCEED; 863 } 864 865 /* 866 * See pmd_trans_unstable() for how the result may change out from 867 * underneath us, even if we hold mmap_lock in read. 868 */ 869 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 870 unsigned long address, 871 pmd_t **pmd) 872 { 873 pmd_t pmde; 874 875 *pmd = mm_find_pmd(mm, address); 876 if (!*pmd) 877 return SCAN_PMD_NULL; 878 879 pmde = pmdp_get_lockless(*pmd); 880 881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 883 barrier(); 884 #endif 885 if (pmd_none(pmde)) 886 return SCAN_PMD_NONE; 887 if (!pmd_present(pmde)) 888 return SCAN_PMD_NULL; 889 if (pmd_trans_huge(pmde)) 890 return SCAN_PMD_MAPPED; 891 if (pmd_devmap(pmde)) 892 return SCAN_PMD_NULL; 893 if (pmd_bad(pmde)) 894 return SCAN_PMD_NULL; 895 return SCAN_SUCCEED; 896 } 897 898 static int check_pmd_still_valid(struct mm_struct *mm, 899 unsigned long address, 900 pmd_t *pmd) 901 { 902 pmd_t *new_pmd; 903 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 904 905 if (result != SCAN_SUCCEED) 906 return result; 907 if (new_pmd != pmd) 908 return SCAN_FAIL; 909 return SCAN_SUCCEED; 910 } 911 912 /* 913 * Bring missing pages in from swap, to complete THP collapse. 914 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 915 * 916 * Called and returns without pte mapped or spinlocks held. 917 * Note that if false is returned, mmap_lock will be released. 918 */ 919 920 static int __collapse_huge_page_swapin(struct mm_struct *mm, 921 struct vm_area_struct *vma, 922 unsigned long haddr, pmd_t *pmd, 923 int referenced) 924 { 925 int swapped_in = 0; 926 vm_fault_t ret = 0; 927 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 928 929 for (address = haddr; address < end; address += PAGE_SIZE) { 930 struct vm_fault vmf = { 931 .vma = vma, 932 .address = address, 933 .pgoff = linear_page_index(vma, haddr), 934 .flags = FAULT_FLAG_ALLOW_RETRY, 935 .pmd = pmd, 936 }; 937 938 vmf.pte = pte_offset_map(pmd, address); 939 vmf.orig_pte = *vmf.pte; 940 if (!is_swap_pte(vmf.orig_pte)) { 941 pte_unmap(vmf.pte); 942 continue; 943 } 944 ret = do_swap_page(&vmf); 945 946 /* 947 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 948 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 949 * we do not retry here and swap entry will remain in pagetable 950 * resulting in later failure. 951 */ 952 if (ret & VM_FAULT_RETRY) { 953 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 954 /* Likely, but not guaranteed, that page lock failed */ 955 return SCAN_PAGE_LOCK; 956 } 957 if (ret & VM_FAULT_ERROR) { 958 mmap_read_unlock(mm); 959 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 960 return SCAN_FAIL; 961 } 962 swapped_in++; 963 } 964 965 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 966 if (swapped_in) 967 lru_add_drain(); 968 969 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 970 return SCAN_SUCCEED; 971 } 972 973 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 974 struct collapse_control *cc) 975 { 976 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 977 GFP_TRANSHUGE); 978 int node = hpage_collapse_find_target_node(cc); 979 980 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 981 return SCAN_ALLOC_HUGE_PAGE_FAIL; 982 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 983 return SCAN_CGROUP_CHARGE_FAIL; 984 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 985 return SCAN_SUCCEED; 986 } 987 988 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 989 int referenced, int unmapped, 990 struct collapse_control *cc) 991 { 992 LIST_HEAD(compound_pagelist); 993 pmd_t *pmd, _pmd; 994 pte_t *pte; 995 pgtable_t pgtable; 996 struct page *hpage; 997 spinlock_t *pmd_ptl, *pte_ptl; 998 int result = SCAN_FAIL; 999 struct vm_area_struct *vma; 1000 struct mmu_notifier_range range; 1001 1002 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1003 1004 /* 1005 * Before allocating the hugepage, release the mmap_lock read lock. 1006 * The allocation can take potentially a long time if it involves 1007 * sync compaction, and we do not need to hold the mmap_lock during 1008 * that. We will recheck the vma after taking it again in write mode. 1009 */ 1010 mmap_read_unlock(mm); 1011 1012 result = alloc_charge_hpage(&hpage, mm, cc); 1013 if (result != SCAN_SUCCEED) 1014 goto out_nolock; 1015 1016 mmap_read_lock(mm); 1017 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1018 if (result != SCAN_SUCCEED) { 1019 mmap_read_unlock(mm); 1020 goto out_nolock; 1021 } 1022 1023 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1024 if (result != SCAN_SUCCEED) { 1025 mmap_read_unlock(mm); 1026 goto out_nolock; 1027 } 1028 1029 if (unmapped) { 1030 /* 1031 * __collapse_huge_page_swapin will return with mmap_lock 1032 * released when it fails. So we jump out_nolock directly in 1033 * that case. Continuing to collapse causes inconsistency. 1034 */ 1035 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1036 referenced); 1037 if (result != SCAN_SUCCEED) 1038 goto out_nolock; 1039 } 1040 1041 mmap_read_unlock(mm); 1042 /* 1043 * Prevent all access to pagetables with the exception of 1044 * gup_fast later handled by the ptep_clear_flush and the VM 1045 * handled by the anon_vma lock + PG_lock. 1046 */ 1047 mmap_write_lock(mm); 1048 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1049 if (result != SCAN_SUCCEED) 1050 goto out_up_write; 1051 /* check if the pmd is still valid */ 1052 result = check_pmd_still_valid(mm, address, pmd); 1053 if (result != SCAN_SUCCEED) 1054 goto out_up_write; 1055 1056 anon_vma_lock_write(vma->anon_vma); 1057 1058 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1059 address + HPAGE_PMD_SIZE); 1060 mmu_notifier_invalidate_range_start(&range); 1061 1062 pte = pte_offset_map(pmd, address); 1063 pte_ptl = pte_lockptr(mm, pmd); 1064 1065 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1066 /* 1067 * This removes any huge TLB entry from the CPU so we won't allow 1068 * huge and small TLB entries for the same virtual address to 1069 * avoid the risk of CPU bugs in that area. 1070 * 1071 * Parallel fast GUP is fine since fast GUP will back off when 1072 * it detects PMD is changed. 1073 */ 1074 _pmd = pmdp_collapse_flush(vma, address, pmd); 1075 spin_unlock(pmd_ptl); 1076 mmu_notifier_invalidate_range_end(&range); 1077 tlb_remove_table_sync_one(); 1078 1079 spin_lock(pte_ptl); 1080 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1081 &compound_pagelist); 1082 spin_unlock(pte_ptl); 1083 1084 if (unlikely(result != SCAN_SUCCEED)) { 1085 pte_unmap(pte); 1086 spin_lock(pmd_ptl); 1087 BUG_ON(!pmd_none(*pmd)); 1088 /* 1089 * We can only use set_pmd_at when establishing 1090 * hugepmds and never for establishing regular pmds that 1091 * points to regular pagetables. Use pmd_populate for that 1092 */ 1093 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1094 spin_unlock(pmd_ptl); 1095 anon_vma_unlock_write(vma->anon_vma); 1096 goto out_up_write; 1097 } 1098 1099 /* 1100 * All pages are isolated and locked so anon_vma rmap 1101 * can't run anymore. 1102 */ 1103 anon_vma_unlock_write(vma->anon_vma); 1104 1105 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1106 &compound_pagelist); 1107 pte_unmap(pte); 1108 /* 1109 * spin_lock() below is not the equivalent of smp_wmb(), but 1110 * the smp_wmb() inside __SetPageUptodate() can be reused to 1111 * avoid the copy_huge_page writes to become visible after 1112 * the set_pmd_at() write. 1113 */ 1114 __SetPageUptodate(hpage); 1115 pgtable = pmd_pgtable(_pmd); 1116 1117 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1118 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1119 1120 spin_lock(pmd_ptl); 1121 BUG_ON(!pmd_none(*pmd)); 1122 page_add_new_anon_rmap(hpage, vma, address); 1123 lru_cache_add_inactive_or_unevictable(hpage, vma); 1124 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1125 set_pmd_at(mm, address, pmd, _pmd); 1126 update_mmu_cache_pmd(vma, address, pmd); 1127 spin_unlock(pmd_ptl); 1128 1129 hpage = NULL; 1130 1131 result = SCAN_SUCCEED; 1132 out_up_write: 1133 mmap_write_unlock(mm); 1134 out_nolock: 1135 if (hpage) { 1136 mem_cgroup_uncharge(page_folio(hpage)); 1137 put_page(hpage); 1138 } 1139 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1140 return result; 1141 } 1142 1143 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1144 struct vm_area_struct *vma, 1145 unsigned long address, bool *mmap_locked, 1146 struct collapse_control *cc) 1147 { 1148 pmd_t *pmd; 1149 pte_t *pte, *_pte; 1150 int result = SCAN_FAIL, referenced = 0; 1151 int none_or_zero = 0, shared = 0; 1152 struct page *page = NULL; 1153 unsigned long _address; 1154 spinlock_t *ptl; 1155 int node = NUMA_NO_NODE, unmapped = 0; 1156 bool writable = false; 1157 1158 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1159 1160 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1161 if (result != SCAN_SUCCEED) 1162 goto out; 1163 1164 memset(cc->node_load, 0, sizeof(cc->node_load)); 1165 nodes_clear(cc->alloc_nmask); 1166 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1167 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1168 _pte++, _address += PAGE_SIZE) { 1169 pte_t pteval = *_pte; 1170 if (is_swap_pte(pteval)) { 1171 ++unmapped; 1172 if (!cc->is_khugepaged || 1173 unmapped <= khugepaged_max_ptes_swap) { 1174 /* 1175 * Always be strict with uffd-wp 1176 * enabled swap entries. Please see 1177 * comment below for pte_uffd_wp(). 1178 */ 1179 if (pte_swp_uffd_wp(pteval)) { 1180 result = SCAN_PTE_UFFD_WP; 1181 goto out_unmap; 1182 } 1183 continue; 1184 } else { 1185 result = SCAN_EXCEED_SWAP_PTE; 1186 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1187 goto out_unmap; 1188 } 1189 } 1190 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1191 ++none_or_zero; 1192 if (!userfaultfd_armed(vma) && 1193 (!cc->is_khugepaged || 1194 none_or_zero <= khugepaged_max_ptes_none)) { 1195 continue; 1196 } else { 1197 result = SCAN_EXCEED_NONE_PTE; 1198 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1199 goto out_unmap; 1200 } 1201 } 1202 if (pte_uffd_wp(pteval)) { 1203 /* 1204 * Don't collapse the page if any of the small 1205 * PTEs are armed with uffd write protection. 1206 * Here we can also mark the new huge pmd as 1207 * write protected if any of the small ones is 1208 * marked but that could bring unknown 1209 * userfault messages that falls outside of 1210 * the registered range. So, just be simple. 1211 */ 1212 result = SCAN_PTE_UFFD_WP; 1213 goto out_unmap; 1214 } 1215 if (pte_write(pteval)) 1216 writable = true; 1217 1218 page = vm_normal_page(vma, _address, pteval); 1219 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1220 result = SCAN_PAGE_NULL; 1221 goto out_unmap; 1222 } 1223 1224 if (page_mapcount(page) > 1) { 1225 ++shared; 1226 if (cc->is_khugepaged && 1227 shared > khugepaged_max_ptes_shared) { 1228 result = SCAN_EXCEED_SHARED_PTE; 1229 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1230 goto out_unmap; 1231 } 1232 } 1233 1234 page = compound_head(page); 1235 1236 /* 1237 * Record which node the original page is from and save this 1238 * information to cc->node_load[]. 1239 * Khugepaged will allocate hugepage from the node has the max 1240 * hit record. 1241 */ 1242 node = page_to_nid(page); 1243 if (hpage_collapse_scan_abort(node, cc)) { 1244 result = SCAN_SCAN_ABORT; 1245 goto out_unmap; 1246 } 1247 cc->node_load[node]++; 1248 if (!PageLRU(page)) { 1249 result = SCAN_PAGE_LRU; 1250 goto out_unmap; 1251 } 1252 if (PageLocked(page)) { 1253 result = SCAN_PAGE_LOCK; 1254 goto out_unmap; 1255 } 1256 if (!PageAnon(page)) { 1257 result = SCAN_PAGE_ANON; 1258 goto out_unmap; 1259 } 1260 1261 /* 1262 * Check if the page has any GUP (or other external) pins. 1263 * 1264 * Here the check may be racy: 1265 * it may see total_mapcount > refcount in some cases? 1266 * But such case is ephemeral we could always retry collapse 1267 * later. However it may report false positive if the page 1268 * has excessive GUP pins (i.e. 512). Anyway the same check 1269 * will be done again later the risk seems low. 1270 */ 1271 if (!is_refcount_suitable(page)) { 1272 result = SCAN_PAGE_COUNT; 1273 goto out_unmap; 1274 } 1275 1276 /* 1277 * If collapse was initiated by khugepaged, check that there is 1278 * enough young pte to justify collapsing the page 1279 */ 1280 if (cc->is_khugepaged && 1281 (pte_young(pteval) || page_is_young(page) || 1282 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1283 address))) 1284 referenced++; 1285 } 1286 if (!writable) { 1287 result = SCAN_PAGE_RO; 1288 } else if (cc->is_khugepaged && 1289 (!referenced || 1290 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1291 result = SCAN_LACK_REFERENCED_PAGE; 1292 } else { 1293 result = SCAN_SUCCEED; 1294 } 1295 out_unmap: 1296 pte_unmap_unlock(pte, ptl); 1297 if (result == SCAN_SUCCEED) { 1298 result = collapse_huge_page(mm, address, referenced, 1299 unmapped, cc); 1300 /* collapse_huge_page will return with the mmap_lock released */ 1301 *mmap_locked = false; 1302 } 1303 out: 1304 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1305 none_or_zero, result, unmapped); 1306 return result; 1307 } 1308 1309 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1310 { 1311 struct mm_slot *slot = &mm_slot->slot; 1312 struct mm_struct *mm = slot->mm; 1313 1314 lockdep_assert_held(&khugepaged_mm_lock); 1315 1316 if (hpage_collapse_test_exit(mm)) { 1317 /* free mm_slot */ 1318 hash_del(&slot->hash); 1319 list_del(&slot->mm_node); 1320 1321 /* 1322 * Not strictly needed because the mm exited already. 1323 * 1324 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1325 */ 1326 1327 /* khugepaged_mm_lock actually not necessary for the below */ 1328 mm_slot_free(mm_slot_cache, mm_slot); 1329 mmdrop(mm); 1330 } 1331 } 1332 1333 #ifdef CONFIG_SHMEM 1334 /* 1335 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1336 * khugepaged should try to collapse the page table. 1337 * 1338 * Note that following race exists: 1339 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1340 * emptying the A's ->pte_mapped_thp[] array. 1341 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1342 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1343 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1344 * ->pte-mapped_thp[] array. 1345 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1346 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1347 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1348 * Thus, it's possible the same address is added multiple times for the same 1349 * mm_struct. Should this happen, we'll simply attempt 1350 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1351 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1352 * attempts will return quickly (without grabbing any additional locks) when 1353 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1354 * check, and since this is a rare occurrence, the cost of preventing this 1355 * "multiple-add" is thought to be more expensive than just handling it, should 1356 * it occur. 1357 */ 1358 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1359 unsigned long addr) 1360 { 1361 struct khugepaged_mm_slot *mm_slot; 1362 struct mm_slot *slot; 1363 bool ret = false; 1364 1365 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1366 1367 spin_lock(&khugepaged_mm_lock); 1368 slot = mm_slot_lookup(mm_slots_hash, mm); 1369 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1370 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1371 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1372 ret = true; 1373 } 1374 spin_unlock(&khugepaged_mm_lock); 1375 return ret; 1376 } 1377 1378 /* hpage must be locked, and mmap_lock must be held in write */ 1379 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1380 pmd_t *pmdp, struct page *hpage) 1381 { 1382 struct vm_fault vmf = { 1383 .vma = vma, 1384 .address = addr, 1385 .flags = 0, 1386 .pmd = pmdp, 1387 }; 1388 1389 VM_BUG_ON(!PageTransHuge(hpage)); 1390 mmap_assert_write_locked(vma->vm_mm); 1391 1392 if (do_set_pmd(&vmf, hpage)) 1393 return SCAN_FAIL; 1394 1395 get_page(hpage); 1396 return SCAN_SUCCEED; 1397 } 1398 1399 /* 1400 * A note about locking: 1401 * Trying to take the page table spinlocks would be useless here because those 1402 * are only used to synchronize: 1403 * 1404 * - modifying terminal entries (ones that point to a data page, not to another 1405 * page table) 1406 * - installing *new* non-terminal entries 1407 * 1408 * Instead, we need roughly the same kind of protection as free_pgtables() or 1409 * mm_take_all_locks() (but only for a single VMA): 1410 * The mmap lock together with this VMA's rmap locks covers all paths towards 1411 * the page table entries we're messing with here, except for hardware page 1412 * table walks and lockless_pages_from_mm(). 1413 */ 1414 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1415 unsigned long addr, pmd_t *pmdp) 1416 { 1417 pmd_t pmd; 1418 struct mmu_notifier_range range; 1419 1420 mmap_assert_write_locked(mm); 1421 if (vma->vm_file) 1422 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1423 /* 1424 * All anon_vmas attached to the VMA have the same root and are 1425 * therefore locked by the same lock. 1426 */ 1427 if (vma->anon_vma) 1428 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1429 1430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1431 addr + HPAGE_PMD_SIZE); 1432 mmu_notifier_invalidate_range_start(&range); 1433 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1434 tlb_remove_table_sync_one(); 1435 mmu_notifier_invalidate_range_end(&range); 1436 mm_dec_nr_ptes(mm); 1437 page_table_check_pte_clear_range(mm, addr, pmd); 1438 pte_free(mm, pmd_pgtable(pmd)); 1439 } 1440 1441 /** 1442 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1443 * address haddr. 1444 * 1445 * @mm: process address space where collapse happens 1446 * @addr: THP collapse address 1447 * @install_pmd: If a huge PMD should be installed 1448 * 1449 * This function checks whether all the PTEs in the PMD are pointing to the 1450 * right THP. If so, retract the page table so the THP can refault in with 1451 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1452 */ 1453 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1454 bool install_pmd) 1455 { 1456 unsigned long haddr = addr & HPAGE_PMD_MASK; 1457 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1458 struct page *hpage; 1459 pte_t *start_pte, *pte; 1460 pmd_t *pmd; 1461 spinlock_t *ptl; 1462 int count = 0, result = SCAN_FAIL; 1463 int i; 1464 1465 mmap_assert_write_locked(mm); 1466 1467 /* Fast check before locking page if already PMD-mapped */ 1468 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1469 if (result == SCAN_PMD_MAPPED) 1470 return result; 1471 1472 if (!vma || !vma->vm_file || 1473 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1474 return SCAN_VMA_CHECK; 1475 1476 /* 1477 * If we are here, we've succeeded in replacing all the native pages 1478 * in the page cache with a single hugepage. If a mm were to fault-in 1479 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1480 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1481 * analogously elide sysfs THP settings here. 1482 */ 1483 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1484 return SCAN_VMA_CHECK; 1485 1486 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1487 if (userfaultfd_wp(vma)) 1488 return SCAN_PTE_UFFD_WP; 1489 1490 hpage = find_lock_page(vma->vm_file->f_mapping, 1491 linear_page_index(vma, haddr)); 1492 if (!hpage) 1493 return SCAN_PAGE_NULL; 1494 1495 if (!PageHead(hpage)) { 1496 result = SCAN_FAIL; 1497 goto drop_hpage; 1498 } 1499 1500 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1501 result = SCAN_PAGE_COMPOUND; 1502 goto drop_hpage; 1503 } 1504 1505 switch (result) { 1506 case SCAN_SUCCEED: 1507 break; 1508 case SCAN_PMD_NONE: 1509 /* 1510 * In MADV_COLLAPSE path, possible race with khugepaged where 1511 * all pte entries have been removed and pmd cleared. If so, 1512 * skip all the pte checks and just update the pmd mapping. 1513 */ 1514 goto maybe_install_pmd; 1515 default: 1516 goto drop_hpage; 1517 } 1518 1519 /* 1520 * We need to lock the mapping so that from here on, only GUP-fast and 1521 * hardware page walks can access the parts of the page tables that 1522 * we're operating on. 1523 * See collapse_and_free_pmd(). 1524 */ 1525 i_mmap_lock_write(vma->vm_file->f_mapping); 1526 1527 /* 1528 * This spinlock should be unnecessary: Nobody else should be accessing 1529 * the page tables under spinlock protection here, only 1530 * lockless_pages_from_mm() and the hardware page walker can access page 1531 * tables while all the high-level locks are held in write mode. 1532 */ 1533 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1534 result = SCAN_FAIL; 1535 1536 /* step 1: check all mapped PTEs are to the right huge page */ 1537 for (i = 0, addr = haddr, pte = start_pte; 1538 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1539 struct page *page; 1540 1541 /* empty pte, skip */ 1542 if (pte_none(*pte)) 1543 continue; 1544 1545 /* page swapped out, abort */ 1546 if (!pte_present(*pte)) { 1547 result = SCAN_PTE_NON_PRESENT; 1548 goto abort; 1549 } 1550 1551 page = vm_normal_page(vma, addr, *pte); 1552 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1553 page = NULL; 1554 /* 1555 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1556 * page table, but the new page will not be a subpage of hpage. 1557 */ 1558 if (hpage + i != page) 1559 goto abort; 1560 count++; 1561 } 1562 1563 /* step 2: adjust rmap */ 1564 for (i = 0, addr = haddr, pte = start_pte; 1565 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1566 struct page *page; 1567 1568 if (pte_none(*pte)) 1569 continue; 1570 page = vm_normal_page(vma, addr, *pte); 1571 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1572 goto abort; 1573 page_remove_rmap(page, vma, false); 1574 } 1575 1576 pte_unmap_unlock(start_pte, ptl); 1577 1578 /* step 3: set proper refcount and mm_counters. */ 1579 if (count) { 1580 page_ref_sub(hpage, count); 1581 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1582 } 1583 1584 /* step 4: remove pte entries */ 1585 /* we make no change to anon, but protect concurrent anon page lookup */ 1586 if (vma->anon_vma) 1587 anon_vma_lock_write(vma->anon_vma); 1588 1589 collapse_and_free_pmd(mm, vma, haddr, pmd); 1590 1591 if (vma->anon_vma) 1592 anon_vma_unlock_write(vma->anon_vma); 1593 i_mmap_unlock_write(vma->vm_file->f_mapping); 1594 1595 maybe_install_pmd: 1596 /* step 5: install pmd entry */ 1597 result = install_pmd 1598 ? set_huge_pmd(vma, haddr, pmd, hpage) 1599 : SCAN_SUCCEED; 1600 1601 drop_hpage: 1602 unlock_page(hpage); 1603 put_page(hpage); 1604 return result; 1605 1606 abort: 1607 pte_unmap_unlock(start_pte, ptl); 1608 i_mmap_unlock_write(vma->vm_file->f_mapping); 1609 goto drop_hpage; 1610 } 1611 1612 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1613 { 1614 struct mm_slot *slot = &mm_slot->slot; 1615 struct mm_struct *mm = slot->mm; 1616 int i; 1617 1618 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1619 return; 1620 1621 if (!mmap_write_trylock(mm)) 1622 return; 1623 1624 if (unlikely(hpage_collapse_test_exit(mm))) 1625 goto out; 1626 1627 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1628 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1629 1630 out: 1631 mm_slot->nr_pte_mapped_thp = 0; 1632 mmap_write_unlock(mm); 1633 } 1634 1635 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1636 struct mm_struct *target_mm, 1637 unsigned long target_addr, struct page *hpage, 1638 struct collapse_control *cc) 1639 { 1640 struct vm_area_struct *vma; 1641 int target_result = SCAN_FAIL; 1642 1643 i_mmap_lock_write(mapping); 1644 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1645 int result = SCAN_FAIL; 1646 struct mm_struct *mm = NULL; 1647 unsigned long addr = 0; 1648 pmd_t *pmd; 1649 bool is_target = false; 1650 1651 /* 1652 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1653 * got written to. These VMAs are likely not worth investing 1654 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1655 * later. 1656 * 1657 * Note that vma->anon_vma check is racy: it can be set up after 1658 * the check but before we took mmap_lock by the fault path. 1659 * But page lock would prevent establishing any new ptes of the 1660 * page, so we are safe. 1661 * 1662 * An alternative would be drop the check, but check that page 1663 * table is clear before calling pmdp_collapse_flush() under 1664 * ptl. It has higher chance to recover THP for the VMA, but 1665 * has higher cost too. It would also probably require locking 1666 * the anon_vma. 1667 */ 1668 if (READ_ONCE(vma->anon_vma)) { 1669 result = SCAN_PAGE_ANON; 1670 goto next; 1671 } 1672 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1673 if (addr & ~HPAGE_PMD_MASK || 1674 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1675 result = SCAN_VMA_CHECK; 1676 goto next; 1677 } 1678 mm = vma->vm_mm; 1679 is_target = mm == target_mm && addr == target_addr; 1680 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1681 if (result != SCAN_SUCCEED) 1682 goto next; 1683 /* 1684 * We need exclusive mmap_lock to retract page table. 1685 * 1686 * We use trylock due to lock inversion: we need to acquire 1687 * mmap_lock while holding page lock. Fault path does it in 1688 * reverse order. Trylock is a way to avoid deadlock. 1689 * 1690 * Also, it's not MADV_COLLAPSE's job to collapse other 1691 * mappings - let khugepaged take care of them later. 1692 */ 1693 result = SCAN_PTE_MAPPED_HUGEPAGE; 1694 if ((cc->is_khugepaged || is_target) && 1695 mmap_write_trylock(mm)) { 1696 /* 1697 * Re-check whether we have an ->anon_vma, because 1698 * collapse_and_free_pmd() requires that either no 1699 * ->anon_vma exists or the anon_vma is locked. 1700 * We already checked ->anon_vma above, but that check 1701 * is racy because ->anon_vma can be populated under the 1702 * mmap lock in read mode. 1703 */ 1704 if (vma->anon_vma) { 1705 result = SCAN_PAGE_ANON; 1706 goto unlock_next; 1707 } 1708 /* 1709 * When a vma is registered with uffd-wp, we can't 1710 * recycle the pmd pgtable because there can be pte 1711 * markers installed. Skip it only, so the rest mm/vma 1712 * can still have the same file mapped hugely, however 1713 * it'll always mapped in small page size for uffd-wp 1714 * registered ranges. 1715 */ 1716 if (hpage_collapse_test_exit(mm)) { 1717 result = SCAN_ANY_PROCESS; 1718 goto unlock_next; 1719 } 1720 if (userfaultfd_wp(vma)) { 1721 result = SCAN_PTE_UFFD_WP; 1722 goto unlock_next; 1723 } 1724 collapse_and_free_pmd(mm, vma, addr, pmd); 1725 if (!cc->is_khugepaged && is_target) 1726 result = set_huge_pmd(vma, addr, pmd, hpage); 1727 else 1728 result = SCAN_SUCCEED; 1729 1730 unlock_next: 1731 mmap_write_unlock(mm); 1732 goto next; 1733 } 1734 /* 1735 * Calling context will handle target mm/addr. Otherwise, let 1736 * khugepaged try again later. 1737 */ 1738 if (!is_target) { 1739 khugepaged_add_pte_mapped_thp(mm, addr); 1740 continue; 1741 } 1742 next: 1743 if (is_target) 1744 target_result = result; 1745 } 1746 i_mmap_unlock_write(mapping); 1747 return target_result; 1748 } 1749 1750 /** 1751 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1752 * 1753 * @mm: process address space where collapse happens 1754 * @addr: virtual collapse start address 1755 * @file: file that collapse on 1756 * @start: collapse start address 1757 * @cc: collapse context and scratchpad 1758 * 1759 * Basic scheme is simple, details are more complex: 1760 * - allocate and lock a new huge page; 1761 * - scan page cache replacing old pages with the new one 1762 * + swap/gup in pages if necessary; 1763 * + fill in gaps; 1764 * + keep old pages around in case rollback is required; 1765 * - if replacing succeeds: 1766 * + copy data over; 1767 * + free old pages; 1768 * + unlock huge page; 1769 * - if replacing failed; 1770 * + put all pages back and unfreeze them; 1771 * + restore gaps in the page cache; 1772 * + unlock and free huge page; 1773 */ 1774 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1775 struct file *file, pgoff_t start, 1776 struct collapse_control *cc) 1777 { 1778 struct address_space *mapping = file->f_mapping; 1779 struct page *hpage; 1780 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1781 LIST_HEAD(pagelist); 1782 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1783 int nr_none = 0, result = SCAN_SUCCEED; 1784 bool is_shmem = shmem_file(file); 1785 int nr = 0; 1786 1787 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1788 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1789 1790 result = alloc_charge_hpage(&hpage, mm, cc); 1791 if (result != SCAN_SUCCEED) 1792 goto out; 1793 1794 /* 1795 * Ensure we have slots for all the pages in the range. This is 1796 * almost certainly a no-op because most of the pages must be present 1797 */ 1798 do { 1799 xas_lock_irq(&xas); 1800 xas_create_range(&xas); 1801 if (!xas_error(&xas)) 1802 break; 1803 xas_unlock_irq(&xas); 1804 if (!xas_nomem(&xas, GFP_KERNEL)) { 1805 result = SCAN_FAIL; 1806 goto out; 1807 } 1808 } while (1); 1809 1810 __SetPageLocked(hpage); 1811 if (is_shmem) 1812 __SetPageSwapBacked(hpage); 1813 hpage->index = start; 1814 hpage->mapping = mapping; 1815 1816 /* 1817 * At this point the hpage is locked and not up-to-date. 1818 * It's safe to insert it into the page cache, because nobody would 1819 * be able to map it or use it in another way until we unlock it. 1820 */ 1821 1822 xas_set(&xas, start); 1823 for (index = start; index < end; index++) { 1824 struct page *page = xas_next(&xas); 1825 struct folio *folio; 1826 1827 VM_BUG_ON(index != xas.xa_index); 1828 if (is_shmem) { 1829 if (!page) { 1830 /* 1831 * Stop if extent has been truncated or 1832 * hole-punched, and is now completely 1833 * empty. 1834 */ 1835 if (index == start) { 1836 if (!xas_next_entry(&xas, end - 1)) { 1837 result = SCAN_TRUNCATED; 1838 goto xa_locked; 1839 } 1840 xas_set(&xas, index); 1841 } 1842 if (!shmem_charge(mapping->host, 1)) { 1843 result = SCAN_FAIL; 1844 goto xa_locked; 1845 } 1846 xas_store(&xas, hpage); 1847 nr_none++; 1848 continue; 1849 } 1850 1851 if (xa_is_value(page) || !PageUptodate(page)) { 1852 xas_unlock_irq(&xas); 1853 /* swap in or instantiate fallocated page */ 1854 if (shmem_get_folio(mapping->host, index, 1855 &folio, SGP_NOALLOC)) { 1856 result = SCAN_FAIL; 1857 goto xa_unlocked; 1858 } 1859 page = folio_file_page(folio, index); 1860 } else if (trylock_page(page)) { 1861 get_page(page); 1862 xas_unlock_irq(&xas); 1863 } else { 1864 result = SCAN_PAGE_LOCK; 1865 goto xa_locked; 1866 } 1867 } else { /* !is_shmem */ 1868 if (!page || xa_is_value(page)) { 1869 xas_unlock_irq(&xas); 1870 page_cache_sync_readahead(mapping, &file->f_ra, 1871 file, index, 1872 end - index); 1873 /* drain pagevecs to help isolate_lru_page() */ 1874 lru_add_drain(); 1875 page = find_lock_page(mapping, index); 1876 if (unlikely(page == NULL)) { 1877 result = SCAN_FAIL; 1878 goto xa_unlocked; 1879 } 1880 } else if (PageDirty(page)) { 1881 /* 1882 * khugepaged only works on read-only fd, 1883 * so this page is dirty because it hasn't 1884 * been flushed since first write. There 1885 * won't be new dirty pages. 1886 * 1887 * Trigger async flush here and hope the 1888 * writeback is done when khugepaged 1889 * revisits this page. 1890 * 1891 * This is a one-off situation. We are not 1892 * forcing writeback in loop. 1893 */ 1894 xas_unlock_irq(&xas); 1895 filemap_flush(mapping); 1896 result = SCAN_FAIL; 1897 goto xa_unlocked; 1898 } else if (PageWriteback(page)) { 1899 xas_unlock_irq(&xas); 1900 result = SCAN_FAIL; 1901 goto xa_unlocked; 1902 } else if (trylock_page(page)) { 1903 get_page(page); 1904 xas_unlock_irq(&xas); 1905 } else { 1906 result = SCAN_PAGE_LOCK; 1907 goto xa_locked; 1908 } 1909 } 1910 1911 /* 1912 * The page must be locked, so we can drop the i_pages lock 1913 * without racing with truncate. 1914 */ 1915 VM_BUG_ON_PAGE(!PageLocked(page), page); 1916 1917 /* make sure the page is up to date */ 1918 if (unlikely(!PageUptodate(page))) { 1919 result = SCAN_FAIL; 1920 goto out_unlock; 1921 } 1922 1923 /* 1924 * If file was truncated then extended, or hole-punched, before 1925 * we locked the first page, then a THP might be there already. 1926 * This will be discovered on the first iteration. 1927 */ 1928 if (PageTransCompound(page)) { 1929 struct page *head = compound_head(page); 1930 1931 result = compound_order(head) == HPAGE_PMD_ORDER && 1932 head->index == start 1933 /* Maybe PMD-mapped */ 1934 ? SCAN_PTE_MAPPED_HUGEPAGE 1935 : SCAN_PAGE_COMPOUND; 1936 goto out_unlock; 1937 } 1938 1939 folio = page_folio(page); 1940 1941 if (folio_mapping(folio) != mapping) { 1942 result = SCAN_TRUNCATED; 1943 goto out_unlock; 1944 } 1945 1946 if (!is_shmem && (folio_test_dirty(folio) || 1947 folio_test_writeback(folio))) { 1948 /* 1949 * khugepaged only works on read-only fd, so this 1950 * page is dirty because it hasn't been flushed 1951 * since first write. 1952 */ 1953 result = SCAN_FAIL; 1954 goto out_unlock; 1955 } 1956 1957 if (!folio_isolate_lru(folio)) { 1958 result = SCAN_DEL_PAGE_LRU; 1959 goto out_unlock; 1960 } 1961 1962 if (folio_has_private(folio) && 1963 !filemap_release_folio(folio, GFP_KERNEL)) { 1964 result = SCAN_PAGE_HAS_PRIVATE; 1965 folio_putback_lru(folio); 1966 goto out_unlock; 1967 } 1968 1969 if (folio_mapped(folio)) 1970 try_to_unmap(folio, 1971 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1972 1973 xas_lock_irq(&xas); 1974 xas_set(&xas, index); 1975 1976 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1977 1978 /* 1979 * The page is expected to have page_count() == 3: 1980 * - we hold a pin on it; 1981 * - one reference from page cache; 1982 * - one from isolate_lru_page; 1983 */ 1984 if (!page_ref_freeze(page, 3)) { 1985 result = SCAN_PAGE_COUNT; 1986 xas_unlock_irq(&xas); 1987 putback_lru_page(page); 1988 goto out_unlock; 1989 } 1990 1991 /* 1992 * Add the page to the list to be able to undo the collapse if 1993 * something go wrong. 1994 */ 1995 list_add_tail(&page->lru, &pagelist); 1996 1997 /* Finally, replace with the new page. */ 1998 xas_store(&xas, hpage); 1999 continue; 2000 out_unlock: 2001 unlock_page(page); 2002 put_page(page); 2003 goto xa_unlocked; 2004 } 2005 nr = thp_nr_pages(hpage); 2006 2007 if (is_shmem) 2008 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2009 else { 2010 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2011 filemap_nr_thps_inc(mapping); 2012 /* 2013 * Paired with smp_mb() in do_dentry_open() to ensure 2014 * i_writecount is up to date and the update to nr_thps is 2015 * visible. Ensures the page cache will be truncated if the 2016 * file is opened writable. 2017 */ 2018 smp_mb(); 2019 if (inode_is_open_for_write(mapping->host)) { 2020 result = SCAN_FAIL; 2021 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 2022 filemap_nr_thps_dec(mapping); 2023 goto xa_locked; 2024 } 2025 } 2026 2027 if (nr_none) { 2028 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2029 /* nr_none is always 0 for non-shmem. */ 2030 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2031 } 2032 2033 /* Join all the small entries into a single multi-index entry */ 2034 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2035 xas_store(&xas, hpage); 2036 xa_locked: 2037 xas_unlock_irq(&xas); 2038 xa_unlocked: 2039 2040 /* 2041 * If collapse is successful, flush must be done now before copying. 2042 * If collapse is unsuccessful, does flush actually need to be done? 2043 * Do it anyway, to clear the state. 2044 */ 2045 try_to_unmap_flush(); 2046 2047 if (result == SCAN_SUCCEED) { 2048 struct page *page, *tmp; 2049 struct folio *folio; 2050 2051 /* 2052 * Replacing old pages with new one has succeeded, now we 2053 * need to copy the content and free the old pages. 2054 */ 2055 index = start; 2056 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2057 while (index < page->index) { 2058 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2059 index++; 2060 } 2061 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2062 page); 2063 list_del(&page->lru); 2064 page->mapping = NULL; 2065 page_ref_unfreeze(page, 1); 2066 ClearPageActive(page); 2067 ClearPageUnevictable(page); 2068 unlock_page(page); 2069 put_page(page); 2070 index++; 2071 } 2072 while (index < end) { 2073 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2074 index++; 2075 } 2076 2077 folio = page_folio(hpage); 2078 folio_mark_uptodate(folio); 2079 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2080 2081 if (is_shmem) 2082 folio_mark_dirty(folio); 2083 folio_add_lru(folio); 2084 2085 /* 2086 * Remove pte page tables, so we can re-fault the page as huge. 2087 */ 2088 result = retract_page_tables(mapping, start, mm, addr, hpage, 2089 cc); 2090 unlock_page(hpage); 2091 hpage = NULL; 2092 } else { 2093 struct page *page; 2094 2095 /* Something went wrong: roll back page cache changes */ 2096 xas_lock_irq(&xas); 2097 if (nr_none) { 2098 mapping->nrpages -= nr_none; 2099 shmem_uncharge(mapping->host, nr_none); 2100 } 2101 2102 xas_set(&xas, start); 2103 xas_for_each(&xas, page, end - 1) { 2104 page = list_first_entry_or_null(&pagelist, 2105 struct page, lru); 2106 if (!page || xas.xa_index < page->index) { 2107 if (!nr_none) 2108 break; 2109 nr_none--; 2110 /* Put holes back where they were */ 2111 xas_store(&xas, NULL); 2112 continue; 2113 } 2114 2115 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2116 2117 /* Unfreeze the page. */ 2118 list_del(&page->lru); 2119 page_ref_unfreeze(page, 2); 2120 xas_store(&xas, page); 2121 xas_pause(&xas); 2122 xas_unlock_irq(&xas); 2123 unlock_page(page); 2124 putback_lru_page(page); 2125 xas_lock_irq(&xas); 2126 } 2127 VM_BUG_ON(nr_none); 2128 xas_unlock_irq(&xas); 2129 2130 hpage->mapping = NULL; 2131 } 2132 2133 if (hpage) 2134 unlock_page(hpage); 2135 out: 2136 VM_BUG_ON(!list_empty(&pagelist)); 2137 if (hpage) { 2138 mem_cgroup_uncharge(page_folio(hpage)); 2139 put_page(hpage); 2140 } 2141 2142 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2143 return result; 2144 } 2145 2146 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2147 struct file *file, pgoff_t start, 2148 struct collapse_control *cc) 2149 { 2150 struct page *page = NULL; 2151 struct address_space *mapping = file->f_mapping; 2152 XA_STATE(xas, &mapping->i_pages, start); 2153 int present, swap; 2154 int node = NUMA_NO_NODE; 2155 int result = SCAN_SUCCEED; 2156 2157 present = 0; 2158 swap = 0; 2159 memset(cc->node_load, 0, sizeof(cc->node_load)); 2160 nodes_clear(cc->alloc_nmask); 2161 rcu_read_lock(); 2162 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2163 if (xas_retry(&xas, page)) 2164 continue; 2165 2166 if (xa_is_value(page)) { 2167 ++swap; 2168 if (cc->is_khugepaged && 2169 swap > khugepaged_max_ptes_swap) { 2170 result = SCAN_EXCEED_SWAP_PTE; 2171 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2172 break; 2173 } 2174 continue; 2175 } 2176 2177 /* 2178 * TODO: khugepaged should compact smaller compound pages 2179 * into a PMD sized page 2180 */ 2181 if (PageTransCompound(page)) { 2182 struct page *head = compound_head(page); 2183 2184 result = compound_order(head) == HPAGE_PMD_ORDER && 2185 head->index == start 2186 /* Maybe PMD-mapped */ 2187 ? SCAN_PTE_MAPPED_HUGEPAGE 2188 : SCAN_PAGE_COMPOUND; 2189 /* 2190 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2191 * by the caller won't touch the page cache, and so 2192 * it's safe to skip LRU and refcount checks before 2193 * returning. 2194 */ 2195 break; 2196 } 2197 2198 node = page_to_nid(page); 2199 if (hpage_collapse_scan_abort(node, cc)) { 2200 result = SCAN_SCAN_ABORT; 2201 break; 2202 } 2203 cc->node_load[node]++; 2204 2205 if (!PageLRU(page)) { 2206 result = SCAN_PAGE_LRU; 2207 break; 2208 } 2209 2210 if (page_count(page) != 2211 1 + page_mapcount(page) + page_has_private(page)) { 2212 result = SCAN_PAGE_COUNT; 2213 break; 2214 } 2215 2216 /* 2217 * We probably should check if the page is referenced here, but 2218 * nobody would transfer pte_young() to PageReferenced() for us. 2219 * And rmap walk here is just too costly... 2220 */ 2221 2222 present++; 2223 2224 if (need_resched()) { 2225 xas_pause(&xas); 2226 cond_resched_rcu(); 2227 } 2228 } 2229 rcu_read_unlock(); 2230 2231 if (result == SCAN_SUCCEED) { 2232 if (cc->is_khugepaged && 2233 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2234 result = SCAN_EXCEED_NONE_PTE; 2235 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2236 } else { 2237 result = collapse_file(mm, addr, file, start, cc); 2238 } 2239 } 2240 2241 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2242 return result; 2243 } 2244 #else 2245 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2246 struct file *file, pgoff_t start, 2247 struct collapse_control *cc) 2248 { 2249 BUILD_BUG(); 2250 } 2251 2252 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2253 { 2254 } 2255 2256 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2257 unsigned long addr) 2258 { 2259 return false; 2260 } 2261 #endif 2262 2263 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2264 struct collapse_control *cc) 2265 __releases(&khugepaged_mm_lock) 2266 __acquires(&khugepaged_mm_lock) 2267 { 2268 struct vma_iterator vmi; 2269 struct khugepaged_mm_slot *mm_slot; 2270 struct mm_slot *slot; 2271 struct mm_struct *mm; 2272 struct vm_area_struct *vma; 2273 int progress = 0; 2274 2275 VM_BUG_ON(!pages); 2276 lockdep_assert_held(&khugepaged_mm_lock); 2277 *result = SCAN_FAIL; 2278 2279 if (khugepaged_scan.mm_slot) { 2280 mm_slot = khugepaged_scan.mm_slot; 2281 slot = &mm_slot->slot; 2282 } else { 2283 slot = list_entry(khugepaged_scan.mm_head.next, 2284 struct mm_slot, mm_node); 2285 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2286 khugepaged_scan.address = 0; 2287 khugepaged_scan.mm_slot = mm_slot; 2288 } 2289 spin_unlock(&khugepaged_mm_lock); 2290 khugepaged_collapse_pte_mapped_thps(mm_slot); 2291 2292 mm = slot->mm; 2293 /* 2294 * Don't wait for semaphore (to avoid long wait times). Just move to 2295 * the next mm on the list. 2296 */ 2297 vma = NULL; 2298 if (unlikely(!mmap_read_trylock(mm))) 2299 goto breakouterloop_mmap_lock; 2300 2301 progress++; 2302 if (unlikely(hpage_collapse_test_exit(mm))) 2303 goto breakouterloop; 2304 2305 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2306 for_each_vma(vmi, vma) { 2307 unsigned long hstart, hend; 2308 2309 cond_resched(); 2310 if (unlikely(hpage_collapse_test_exit(mm))) { 2311 progress++; 2312 break; 2313 } 2314 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2315 skip: 2316 progress++; 2317 continue; 2318 } 2319 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2320 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2321 if (khugepaged_scan.address > hend) 2322 goto skip; 2323 if (khugepaged_scan.address < hstart) 2324 khugepaged_scan.address = hstart; 2325 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2326 2327 while (khugepaged_scan.address < hend) { 2328 bool mmap_locked = true; 2329 2330 cond_resched(); 2331 if (unlikely(hpage_collapse_test_exit(mm))) 2332 goto breakouterloop; 2333 2334 VM_BUG_ON(khugepaged_scan.address < hstart || 2335 khugepaged_scan.address + HPAGE_PMD_SIZE > 2336 hend); 2337 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2338 struct file *file = get_file(vma->vm_file); 2339 pgoff_t pgoff = linear_page_index(vma, 2340 khugepaged_scan.address); 2341 2342 mmap_read_unlock(mm); 2343 *result = hpage_collapse_scan_file(mm, 2344 khugepaged_scan.address, 2345 file, pgoff, cc); 2346 mmap_locked = false; 2347 fput(file); 2348 } else { 2349 *result = hpage_collapse_scan_pmd(mm, vma, 2350 khugepaged_scan.address, 2351 &mmap_locked, 2352 cc); 2353 } 2354 switch (*result) { 2355 case SCAN_PTE_MAPPED_HUGEPAGE: { 2356 pmd_t *pmd; 2357 2358 *result = find_pmd_or_thp_or_none(mm, 2359 khugepaged_scan.address, 2360 &pmd); 2361 if (*result != SCAN_SUCCEED) 2362 break; 2363 if (!khugepaged_add_pte_mapped_thp(mm, 2364 khugepaged_scan.address)) 2365 break; 2366 } fallthrough; 2367 case SCAN_SUCCEED: 2368 ++khugepaged_pages_collapsed; 2369 break; 2370 default: 2371 break; 2372 } 2373 2374 /* move to next address */ 2375 khugepaged_scan.address += HPAGE_PMD_SIZE; 2376 progress += HPAGE_PMD_NR; 2377 if (!mmap_locked) 2378 /* 2379 * We released mmap_lock so break loop. Note 2380 * that we drop mmap_lock before all hugepage 2381 * allocations, so if allocation fails, we are 2382 * guaranteed to break here and report the 2383 * correct result back to caller. 2384 */ 2385 goto breakouterloop_mmap_lock; 2386 if (progress >= pages) 2387 goto breakouterloop; 2388 } 2389 } 2390 breakouterloop: 2391 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2392 breakouterloop_mmap_lock: 2393 2394 spin_lock(&khugepaged_mm_lock); 2395 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2396 /* 2397 * Release the current mm_slot if this mm is about to die, or 2398 * if we scanned all vmas of this mm. 2399 */ 2400 if (hpage_collapse_test_exit(mm) || !vma) { 2401 /* 2402 * Make sure that if mm_users is reaching zero while 2403 * khugepaged runs here, khugepaged_exit will find 2404 * mm_slot not pointing to the exiting mm. 2405 */ 2406 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2407 slot = list_entry(slot->mm_node.next, 2408 struct mm_slot, mm_node); 2409 khugepaged_scan.mm_slot = 2410 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2411 khugepaged_scan.address = 0; 2412 } else { 2413 khugepaged_scan.mm_slot = NULL; 2414 khugepaged_full_scans++; 2415 } 2416 2417 collect_mm_slot(mm_slot); 2418 } 2419 2420 return progress; 2421 } 2422 2423 static int khugepaged_has_work(void) 2424 { 2425 return !list_empty(&khugepaged_scan.mm_head) && 2426 hugepage_flags_enabled(); 2427 } 2428 2429 static int khugepaged_wait_event(void) 2430 { 2431 return !list_empty(&khugepaged_scan.mm_head) || 2432 kthread_should_stop(); 2433 } 2434 2435 static void khugepaged_do_scan(struct collapse_control *cc) 2436 { 2437 unsigned int progress = 0, pass_through_head = 0; 2438 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2439 bool wait = true; 2440 int result = SCAN_SUCCEED; 2441 2442 lru_add_drain_all(); 2443 2444 while (true) { 2445 cond_resched(); 2446 2447 if (unlikely(kthread_should_stop() || try_to_freeze())) 2448 break; 2449 2450 spin_lock(&khugepaged_mm_lock); 2451 if (!khugepaged_scan.mm_slot) 2452 pass_through_head++; 2453 if (khugepaged_has_work() && 2454 pass_through_head < 2) 2455 progress += khugepaged_scan_mm_slot(pages - progress, 2456 &result, cc); 2457 else 2458 progress = pages; 2459 spin_unlock(&khugepaged_mm_lock); 2460 2461 if (progress >= pages) 2462 break; 2463 2464 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2465 /* 2466 * If fail to allocate the first time, try to sleep for 2467 * a while. When hit again, cancel the scan. 2468 */ 2469 if (!wait) 2470 break; 2471 wait = false; 2472 khugepaged_alloc_sleep(); 2473 } 2474 } 2475 } 2476 2477 static bool khugepaged_should_wakeup(void) 2478 { 2479 return kthread_should_stop() || 2480 time_after_eq(jiffies, khugepaged_sleep_expire); 2481 } 2482 2483 static void khugepaged_wait_work(void) 2484 { 2485 if (khugepaged_has_work()) { 2486 const unsigned long scan_sleep_jiffies = 2487 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2488 2489 if (!scan_sleep_jiffies) 2490 return; 2491 2492 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2493 wait_event_freezable_timeout(khugepaged_wait, 2494 khugepaged_should_wakeup(), 2495 scan_sleep_jiffies); 2496 return; 2497 } 2498 2499 if (hugepage_flags_enabled()) 2500 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2501 } 2502 2503 static int khugepaged(void *none) 2504 { 2505 struct khugepaged_mm_slot *mm_slot; 2506 2507 set_freezable(); 2508 set_user_nice(current, MAX_NICE); 2509 2510 while (!kthread_should_stop()) { 2511 khugepaged_do_scan(&khugepaged_collapse_control); 2512 khugepaged_wait_work(); 2513 } 2514 2515 spin_lock(&khugepaged_mm_lock); 2516 mm_slot = khugepaged_scan.mm_slot; 2517 khugepaged_scan.mm_slot = NULL; 2518 if (mm_slot) 2519 collect_mm_slot(mm_slot); 2520 spin_unlock(&khugepaged_mm_lock); 2521 return 0; 2522 } 2523 2524 static void set_recommended_min_free_kbytes(void) 2525 { 2526 struct zone *zone; 2527 int nr_zones = 0; 2528 unsigned long recommended_min; 2529 2530 if (!hugepage_flags_enabled()) { 2531 calculate_min_free_kbytes(); 2532 goto update_wmarks; 2533 } 2534 2535 for_each_populated_zone(zone) { 2536 /* 2537 * We don't need to worry about fragmentation of 2538 * ZONE_MOVABLE since it only has movable pages. 2539 */ 2540 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2541 continue; 2542 2543 nr_zones++; 2544 } 2545 2546 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2547 recommended_min = pageblock_nr_pages * nr_zones * 2; 2548 2549 /* 2550 * Make sure that on average at least two pageblocks are almost free 2551 * of another type, one for a migratetype to fall back to and a 2552 * second to avoid subsequent fallbacks of other types There are 3 2553 * MIGRATE_TYPES we care about. 2554 */ 2555 recommended_min += pageblock_nr_pages * nr_zones * 2556 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2557 2558 /* don't ever allow to reserve more than 5% of the lowmem */ 2559 recommended_min = min(recommended_min, 2560 (unsigned long) nr_free_buffer_pages() / 20); 2561 recommended_min <<= (PAGE_SHIFT-10); 2562 2563 if (recommended_min > min_free_kbytes) { 2564 if (user_min_free_kbytes >= 0) 2565 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2566 min_free_kbytes, recommended_min); 2567 2568 min_free_kbytes = recommended_min; 2569 } 2570 2571 update_wmarks: 2572 setup_per_zone_wmarks(); 2573 } 2574 2575 int start_stop_khugepaged(void) 2576 { 2577 int err = 0; 2578 2579 mutex_lock(&khugepaged_mutex); 2580 if (hugepage_flags_enabled()) { 2581 if (!khugepaged_thread) 2582 khugepaged_thread = kthread_run(khugepaged, NULL, 2583 "khugepaged"); 2584 if (IS_ERR(khugepaged_thread)) { 2585 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2586 err = PTR_ERR(khugepaged_thread); 2587 khugepaged_thread = NULL; 2588 goto fail; 2589 } 2590 2591 if (!list_empty(&khugepaged_scan.mm_head)) 2592 wake_up_interruptible(&khugepaged_wait); 2593 } else if (khugepaged_thread) { 2594 kthread_stop(khugepaged_thread); 2595 khugepaged_thread = NULL; 2596 } 2597 set_recommended_min_free_kbytes(); 2598 fail: 2599 mutex_unlock(&khugepaged_mutex); 2600 return err; 2601 } 2602 2603 void khugepaged_min_free_kbytes_update(void) 2604 { 2605 mutex_lock(&khugepaged_mutex); 2606 if (hugepage_flags_enabled() && khugepaged_thread) 2607 set_recommended_min_free_kbytes(); 2608 mutex_unlock(&khugepaged_mutex); 2609 } 2610 2611 bool current_is_khugepaged(void) 2612 { 2613 return kthread_func(current) == khugepaged; 2614 } 2615 2616 static int madvise_collapse_errno(enum scan_result r) 2617 { 2618 /* 2619 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2620 * actionable feedback to caller, so they may take an appropriate 2621 * fallback measure depending on the nature of the failure. 2622 */ 2623 switch (r) { 2624 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2625 return -ENOMEM; 2626 case SCAN_CGROUP_CHARGE_FAIL: 2627 return -EBUSY; 2628 /* Resource temporary unavailable - trying again might succeed */ 2629 case SCAN_PAGE_COUNT: 2630 case SCAN_PAGE_LOCK: 2631 case SCAN_PAGE_LRU: 2632 case SCAN_DEL_PAGE_LRU: 2633 return -EAGAIN; 2634 /* 2635 * Other: Trying again likely not to succeed / error intrinsic to 2636 * specified memory range. khugepaged likely won't be able to collapse 2637 * either. 2638 */ 2639 default: 2640 return -EINVAL; 2641 } 2642 } 2643 2644 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2645 unsigned long start, unsigned long end) 2646 { 2647 struct collapse_control *cc; 2648 struct mm_struct *mm = vma->vm_mm; 2649 unsigned long hstart, hend, addr; 2650 int thps = 0, last_fail = SCAN_FAIL; 2651 bool mmap_locked = true; 2652 2653 BUG_ON(vma->vm_start > start); 2654 BUG_ON(vma->vm_end < end); 2655 2656 *prev = vma; 2657 2658 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2659 return -EINVAL; 2660 2661 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2662 if (!cc) 2663 return -ENOMEM; 2664 cc->is_khugepaged = false; 2665 2666 mmgrab(mm); 2667 lru_add_drain_all(); 2668 2669 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2670 hend = end & HPAGE_PMD_MASK; 2671 2672 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2673 int result = SCAN_FAIL; 2674 2675 if (!mmap_locked) { 2676 cond_resched(); 2677 mmap_read_lock(mm); 2678 mmap_locked = true; 2679 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2680 cc); 2681 if (result != SCAN_SUCCEED) { 2682 last_fail = result; 2683 goto out_nolock; 2684 } 2685 2686 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2687 } 2688 mmap_assert_locked(mm); 2689 memset(cc->node_load, 0, sizeof(cc->node_load)); 2690 nodes_clear(cc->alloc_nmask); 2691 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2692 struct file *file = get_file(vma->vm_file); 2693 pgoff_t pgoff = linear_page_index(vma, addr); 2694 2695 mmap_read_unlock(mm); 2696 mmap_locked = false; 2697 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2698 cc); 2699 fput(file); 2700 } else { 2701 result = hpage_collapse_scan_pmd(mm, vma, addr, 2702 &mmap_locked, cc); 2703 } 2704 if (!mmap_locked) 2705 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2706 2707 handle_result: 2708 switch (result) { 2709 case SCAN_SUCCEED: 2710 case SCAN_PMD_MAPPED: 2711 ++thps; 2712 break; 2713 case SCAN_PTE_MAPPED_HUGEPAGE: 2714 BUG_ON(mmap_locked); 2715 BUG_ON(*prev); 2716 mmap_write_lock(mm); 2717 result = collapse_pte_mapped_thp(mm, addr, true); 2718 mmap_write_unlock(mm); 2719 goto handle_result; 2720 /* Whitelisted set of results where continuing OK */ 2721 case SCAN_PMD_NULL: 2722 case SCAN_PTE_NON_PRESENT: 2723 case SCAN_PTE_UFFD_WP: 2724 case SCAN_PAGE_RO: 2725 case SCAN_LACK_REFERENCED_PAGE: 2726 case SCAN_PAGE_NULL: 2727 case SCAN_PAGE_COUNT: 2728 case SCAN_PAGE_LOCK: 2729 case SCAN_PAGE_COMPOUND: 2730 case SCAN_PAGE_LRU: 2731 case SCAN_DEL_PAGE_LRU: 2732 last_fail = result; 2733 break; 2734 default: 2735 last_fail = result; 2736 /* Other error, exit */ 2737 goto out_maybelock; 2738 } 2739 } 2740 2741 out_maybelock: 2742 /* Caller expects us to hold mmap_lock on return */ 2743 if (!mmap_locked) 2744 mmap_read_lock(mm); 2745 out_nolock: 2746 mmap_assert_locked(mm); 2747 mmdrop(mm); 2748 kfree(cc); 2749 2750 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2751 : madvise_collapse_errno(last_fail); 2752 } 2753