xref: /openbmc/linux/mm/khugepaged.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 	       scan_sleep_millisecs_store);
152 
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 					  struct kobj_attribute *attr,
155 					  char *buf)
156 {
157 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159 
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 					   struct kobj_attribute *attr,
162 					   const char *buf, size_t count)
163 {
164 	unsigned int msecs;
165 	int err;
166 
167 	err = kstrtouint(buf, 10, &msecs);
168 	if (err)
169 		return -EINVAL;
170 
171 	khugepaged_alloc_sleep_millisecs = msecs;
172 	khugepaged_sleep_expire = 0;
173 	wake_up_interruptible(&khugepaged_wait);
174 
175 	return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 	       alloc_sleep_millisecs_store);
180 
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 				  struct kobj_attribute *attr,
183 				  char *buf)
184 {
185 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 				   struct kobj_attribute *attr,
189 				   const char *buf, size_t count)
190 {
191 	unsigned int pages;
192 	int err;
193 
194 	err = kstrtouint(buf, 10, &pages);
195 	if (err || !pages)
196 		return -EINVAL;
197 
198 	khugepaged_pages_to_scan = pages;
199 
200 	return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 	       pages_to_scan_store);
205 
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 				    struct kobj_attribute *attr,
208 				    char *buf)
209 {
210 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 	__ATTR_RO(pages_collapsed);
214 
215 static ssize_t full_scans_show(struct kobject *kobj,
216 			       struct kobj_attribute *attr,
217 			       char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 	__ATTR_RO(full_scans);
223 
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 				      struct kobj_attribute *attr, char *buf)
226 {
227 	return single_hugepage_flag_show(kobj, attr, buf,
228 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 				       struct kobj_attribute *attr,
232 				       const char *buf, size_t count)
233 {
234 	return single_hugepage_flag_store(kobj, attr, buf, count,
235 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 	__ATTR(defrag, 0644, khugepaged_defrag_show,
239 	       khugepaged_defrag_store);
240 
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 					     struct kobj_attribute *attr,
251 					     char *buf)
252 {
253 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 					      struct kobj_attribute *attr,
257 					      const char *buf, size_t count)
258 {
259 	int err;
260 	unsigned long max_ptes_none;
261 
262 	err = kstrtoul(buf, 10, &max_ptes_none);
263 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 		return -EINVAL;
265 
266 	khugepaged_max_ptes_none = max_ptes_none;
267 
268 	return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 	       khugepaged_max_ptes_none_store);
273 
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 					     struct kobj_attribute *attr,
276 					     char *buf)
277 {
278 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280 
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 					      struct kobj_attribute *attr,
283 					      const char *buf, size_t count)
284 {
285 	int err;
286 	unsigned long max_ptes_swap;
287 
288 	err  = kstrtoul(buf, 10, &max_ptes_swap);
289 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 		return -EINVAL;
291 
292 	khugepaged_max_ptes_swap = max_ptes_swap;
293 
294 	return count;
295 }
296 
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 	       khugepaged_max_ptes_swap_store);
300 
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 					       struct kobj_attribute *attr,
303 					       char *buf)
304 {
305 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307 
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 					      struct kobj_attribute *attr,
310 					      const char *buf, size_t count)
311 {
312 	int err;
313 	unsigned long max_ptes_shared;
314 
315 	err  = kstrtoul(buf, 10, &max_ptes_shared);
316 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 		return -EINVAL;
318 
319 	khugepaged_max_ptes_shared = max_ptes_shared;
320 
321 	return count;
322 }
323 
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 	       khugepaged_max_ptes_shared_store);
327 
328 static struct attribute *khugepaged_attr[] = {
329 	&khugepaged_defrag_attr.attr,
330 	&khugepaged_max_ptes_none_attr.attr,
331 	&khugepaged_max_ptes_swap_attr.attr,
332 	&khugepaged_max_ptes_shared_attr.attr,
333 	&pages_to_scan_attr.attr,
334 	&pages_collapsed_attr.attr,
335 	&full_scans_attr.attr,
336 	&scan_sleep_millisecs_attr.attr,
337 	&alloc_sleep_millisecs_attr.attr,
338 	NULL,
339 };
340 
341 struct attribute_group khugepaged_attr_group = {
342 	.attrs = khugepaged_attr,
343 	.name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346 
347 int hugepage_madvise(struct vm_area_struct *vma,
348 		     unsigned long *vm_flags, int advice)
349 {
350 	switch (advice) {
351 	case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 		/*
354 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 		 * can't handle this properly after s390_enable_sie, so we simply
356 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 		 */
358 		if (mm_has_pgste(vma->vm_mm))
359 			return 0;
360 #endif
361 		*vm_flags &= ~VM_NOHUGEPAGE;
362 		*vm_flags |= VM_HUGEPAGE;
363 		/*
364 		 * If the vma become good for khugepaged to scan,
365 		 * register it here without waiting a page fault that
366 		 * may not happen any time soon.
367 		 */
368 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 				khugepaged_enter_vma_merge(vma, *vm_flags))
370 			return -ENOMEM;
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct mm_slot),
390 					  __alignof__(struct mm_slot), 0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 	if (!mm_slot_cache)	/* initialization failed */
410 		return NULL;
411 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413 
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 	kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418 
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 	struct mm_slot *mm_slot;
422 
423 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 		if (mm == mm_slot->mm)
425 			return mm_slot;
426 
427 	return NULL;
428 }
429 
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 				    struct mm_slot *mm_slot)
432 {
433 	mm_slot->mm = mm;
434 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436 
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 	return atomic_read(&mm->mm_users) == 0;
440 }
441 
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 			       unsigned long vm_flags)
444 {
445 	if (!transhuge_vma_enabled(vma, vm_flags))
446 		return false;
447 
448 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449 				vma->vm_pgoff, HPAGE_PMD_NR))
450 		return false;
451 
452 	/* Enabled via shmem mount options or sysfs settings. */
453 	if (shmem_file(vma->vm_file))
454 		return shmem_huge_enabled(vma);
455 
456 	/* THP settings require madvise. */
457 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458 		return false;
459 
460 	/* Only regular file is valid */
461 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462 	    (vm_flags & VM_EXEC)) {
463 		struct inode *inode = vma->vm_file->f_inode;
464 
465 		return !inode_is_open_for_write(inode) &&
466 			S_ISREG(inode->i_mode);
467 	}
468 
469 	if (!vma->anon_vma || vma->vm_ops)
470 		return false;
471 	if (vma_is_temporary_stack(vma))
472 		return false;
473 	return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475 
476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478 	struct mm_slot *mm_slot;
479 	int wakeup;
480 
481 	mm_slot = alloc_mm_slot();
482 	if (!mm_slot)
483 		return -ENOMEM;
484 
485 	/* __khugepaged_exit() must not run from under us */
486 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488 		free_mm_slot(mm_slot);
489 		return 0;
490 	}
491 
492 	spin_lock(&khugepaged_mm_lock);
493 	insert_to_mm_slots_hash(mm, mm_slot);
494 	/*
495 	 * Insert just behind the scanning cursor, to let the area settle
496 	 * down a little.
497 	 */
498 	wakeup = list_empty(&khugepaged_scan.mm_head);
499 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500 	spin_unlock(&khugepaged_mm_lock);
501 
502 	mmgrab(mm);
503 	if (wakeup)
504 		wake_up_interruptible(&khugepaged_wait);
505 
506 	return 0;
507 }
508 
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510 			       unsigned long vm_flags)
511 {
512 	unsigned long hstart, hend;
513 
514 	/*
515 	 * khugepaged only supports read-only files for non-shmem files.
516 	 * khugepaged does not yet work on special mappings. And
517 	 * file-private shmem THP is not supported.
518 	 */
519 	if (!hugepage_vma_check(vma, vm_flags))
520 		return 0;
521 
522 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523 	hend = vma->vm_end & HPAGE_PMD_MASK;
524 	if (hstart < hend)
525 		return khugepaged_enter(vma, vm_flags);
526 	return 0;
527 }
528 
529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531 	struct mm_slot *mm_slot;
532 	int free = 0;
533 
534 	spin_lock(&khugepaged_mm_lock);
535 	mm_slot = get_mm_slot(mm);
536 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537 		hash_del(&mm_slot->hash);
538 		list_del(&mm_slot->mm_node);
539 		free = 1;
540 	}
541 	spin_unlock(&khugepaged_mm_lock);
542 
543 	if (free) {
544 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545 		free_mm_slot(mm_slot);
546 		mmdrop(mm);
547 	} else if (mm_slot) {
548 		/*
549 		 * This is required to serialize against
550 		 * khugepaged_test_exit() (which is guaranteed to run
551 		 * under mmap sem read mode). Stop here (after we
552 		 * return all pagetables will be destroyed) until
553 		 * khugepaged has finished working on the pagetables
554 		 * under the mmap_lock.
555 		 */
556 		mmap_write_lock(mm);
557 		mmap_write_unlock(mm);
558 	}
559 }
560 
561 static void release_pte_page(struct page *page)
562 {
563 	mod_node_page_state(page_pgdat(page),
564 			NR_ISOLATED_ANON + page_is_file_lru(page),
565 			-compound_nr(page));
566 	unlock_page(page);
567 	putback_lru_page(page);
568 }
569 
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571 		struct list_head *compound_pagelist)
572 {
573 	struct page *page, *tmp;
574 
575 	while (--_pte >= pte) {
576 		pte_t pteval = *_pte;
577 
578 		page = pte_page(pteval);
579 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580 				!PageCompound(page))
581 			release_pte_page(page);
582 	}
583 
584 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585 		list_del(&page->lru);
586 		release_pte_page(page);
587 	}
588 }
589 
590 static bool is_refcount_suitable(struct page *page)
591 {
592 	int expected_refcount;
593 
594 	expected_refcount = total_mapcount(page);
595 	if (PageSwapCache(page))
596 		expected_refcount += compound_nr(page);
597 
598 	return page_count(page) == expected_refcount;
599 }
600 
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602 					unsigned long address,
603 					pte_t *pte,
604 					struct list_head *compound_pagelist)
605 {
606 	struct page *page = NULL;
607 	pte_t *_pte;
608 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609 	bool writable = false;
610 
611 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612 	     _pte++, address += PAGE_SIZE) {
613 		pte_t pteval = *_pte;
614 		if (pte_none(pteval) || (pte_present(pteval) &&
615 				is_zero_pfn(pte_pfn(pteval)))) {
616 			if (!userfaultfd_armed(vma) &&
617 			    ++none_or_zero <= khugepaged_max_ptes_none) {
618 				continue;
619 			} else {
620 				result = SCAN_EXCEED_NONE_PTE;
621 				goto out;
622 			}
623 		}
624 		if (!pte_present(pteval)) {
625 			result = SCAN_PTE_NON_PRESENT;
626 			goto out;
627 		}
628 		page = vm_normal_page(vma, address, pteval);
629 		if (unlikely(!page)) {
630 			result = SCAN_PAGE_NULL;
631 			goto out;
632 		}
633 
634 		VM_BUG_ON_PAGE(!PageAnon(page), page);
635 
636 		if (page_mapcount(page) > 1 &&
637 				++shared > khugepaged_max_ptes_shared) {
638 			result = SCAN_EXCEED_SHARED_PTE;
639 			goto out;
640 		}
641 
642 		if (PageCompound(page)) {
643 			struct page *p;
644 			page = compound_head(page);
645 
646 			/*
647 			 * Check if we have dealt with the compound page
648 			 * already
649 			 */
650 			list_for_each_entry(p, compound_pagelist, lru) {
651 				if (page == p)
652 					goto next;
653 			}
654 		}
655 
656 		/*
657 		 * We can do it before isolate_lru_page because the
658 		 * page can't be freed from under us. NOTE: PG_lock
659 		 * is needed to serialize against split_huge_page
660 		 * when invoked from the VM.
661 		 */
662 		if (!trylock_page(page)) {
663 			result = SCAN_PAGE_LOCK;
664 			goto out;
665 		}
666 
667 		/*
668 		 * Check if the page has any GUP (or other external) pins.
669 		 *
670 		 * The page table that maps the page has been already unlinked
671 		 * from the page table tree and this process cannot get
672 		 * an additional pin on the page.
673 		 *
674 		 * New pins can come later if the page is shared across fork,
675 		 * but not from this process. The other process cannot write to
676 		 * the page, only trigger CoW.
677 		 */
678 		if (!is_refcount_suitable(page)) {
679 			unlock_page(page);
680 			result = SCAN_PAGE_COUNT;
681 			goto out;
682 		}
683 		if (!pte_write(pteval) && PageSwapCache(page) &&
684 				!reuse_swap_page(page, NULL)) {
685 			/*
686 			 * Page is in the swap cache and cannot be re-used.
687 			 * It cannot be collapsed into a THP.
688 			 */
689 			unlock_page(page);
690 			result = SCAN_SWAP_CACHE_PAGE;
691 			goto out;
692 		}
693 
694 		/*
695 		 * Isolate the page to avoid collapsing an hugepage
696 		 * currently in use by the VM.
697 		 */
698 		if (isolate_lru_page(page)) {
699 			unlock_page(page);
700 			result = SCAN_DEL_PAGE_LRU;
701 			goto out;
702 		}
703 		mod_node_page_state(page_pgdat(page),
704 				NR_ISOLATED_ANON + page_is_file_lru(page),
705 				compound_nr(page));
706 		VM_BUG_ON_PAGE(!PageLocked(page), page);
707 		VM_BUG_ON_PAGE(PageLRU(page), page);
708 
709 		if (PageCompound(page))
710 			list_add_tail(&page->lru, compound_pagelist);
711 next:
712 		/* There should be enough young pte to collapse the page */
713 		if (pte_young(pteval) ||
714 		    page_is_young(page) || PageReferenced(page) ||
715 		    mmu_notifier_test_young(vma->vm_mm, address))
716 			referenced++;
717 
718 		if (pte_write(pteval))
719 			writable = true;
720 	}
721 
722 	if (unlikely(!writable)) {
723 		result = SCAN_PAGE_RO;
724 	} else if (unlikely(!referenced)) {
725 		result = SCAN_LACK_REFERENCED_PAGE;
726 	} else {
727 		result = SCAN_SUCCEED;
728 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
729 						    referenced, writable, result);
730 		return 1;
731 	}
732 out:
733 	release_pte_pages(pte, _pte, compound_pagelist);
734 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
735 					    referenced, writable, result);
736 	return 0;
737 }
738 
739 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
740 				      struct vm_area_struct *vma,
741 				      unsigned long address,
742 				      spinlock_t *ptl,
743 				      struct list_head *compound_pagelist)
744 {
745 	struct page *src_page, *tmp;
746 	pte_t *_pte;
747 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
748 				_pte++, page++, address += PAGE_SIZE) {
749 		pte_t pteval = *_pte;
750 
751 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
752 			clear_user_highpage(page, address);
753 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
754 			if (is_zero_pfn(pte_pfn(pteval))) {
755 				/*
756 				 * ptl mostly unnecessary.
757 				 */
758 				spin_lock(ptl);
759 				/*
760 				 * paravirt calls inside pte_clear here are
761 				 * superfluous.
762 				 */
763 				pte_clear(vma->vm_mm, address, _pte);
764 				spin_unlock(ptl);
765 			}
766 		} else {
767 			src_page = pte_page(pteval);
768 			copy_user_highpage(page, src_page, address, vma);
769 			if (!PageCompound(src_page))
770 				release_pte_page(src_page);
771 			/*
772 			 * ptl mostly unnecessary, but preempt has to
773 			 * be disabled to update the per-cpu stats
774 			 * inside page_remove_rmap().
775 			 */
776 			spin_lock(ptl);
777 			/*
778 			 * paravirt calls inside pte_clear here are
779 			 * superfluous.
780 			 */
781 			pte_clear(vma->vm_mm, address, _pte);
782 			page_remove_rmap(src_page, false);
783 			spin_unlock(ptl);
784 			free_page_and_swap_cache(src_page);
785 		}
786 	}
787 
788 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
789 		list_del(&src_page->lru);
790 		release_pte_page(src_page);
791 	}
792 }
793 
794 static void khugepaged_alloc_sleep(void)
795 {
796 	DEFINE_WAIT(wait);
797 
798 	add_wait_queue(&khugepaged_wait, &wait);
799 	freezable_schedule_timeout_interruptible(
800 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
801 	remove_wait_queue(&khugepaged_wait, &wait);
802 }
803 
804 static int khugepaged_node_load[MAX_NUMNODES];
805 
806 static bool khugepaged_scan_abort(int nid)
807 {
808 	int i;
809 
810 	/*
811 	 * If node_reclaim_mode is disabled, then no extra effort is made to
812 	 * allocate memory locally.
813 	 */
814 	if (!node_reclaim_enabled())
815 		return false;
816 
817 	/* If there is a count for this node already, it must be acceptable */
818 	if (khugepaged_node_load[nid])
819 		return false;
820 
821 	for (i = 0; i < MAX_NUMNODES; i++) {
822 		if (!khugepaged_node_load[i])
823 			continue;
824 		if (node_distance(nid, i) > node_reclaim_distance)
825 			return true;
826 	}
827 	return false;
828 }
829 
830 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
831 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
832 {
833 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
834 }
835 
836 #ifdef CONFIG_NUMA
837 static int khugepaged_find_target_node(void)
838 {
839 	static int last_khugepaged_target_node = NUMA_NO_NODE;
840 	int nid, target_node = 0, max_value = 0;
841 
842 	/* find first node with max normal pages hit */
843 	for (nid = 0; nid < MAX_NUMNODES; nid++)
844 		if (khugepaged_node_load[nid] > max_value) {
845 			max_value = khugepaged_node_load[nid];
846 			target_node = nid;
847 		}
848 
849 	/* do some balance if several nodes have the same hit record */
850 	if (target_node <= last_khugepaged_target_node)
851 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
852 				nid++)
853 			if (max_value == khugepaged_node_load[nid]) {
854 				target_node = nid;
855 				break;
856 			}
857 
858 	last_khugepaged_target_node = target_node;
859 	return target_node;
860 }
861 
862 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
863 {
864 	if (IS_ERR(*hpage)) {
865 		if (!*wait)
866 			return false;
867 
868 		*wait = false;
869 		*hpage = NULL;
870 		khugepaged_alloc_sleep();
871 	} else if (*hpage) {
872 		put_page(*hpage);
873 		*hpage = NULL;
874 	}
875 
876 	return true;
877 }
878 
879 static struct page *
880 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
881 {
882 	VM_BUG_ON_PAGE(*hpage, *hpage);
883 
884 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
885 	if (unlikely(!*hpage)) {
886 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
887 		*hpage = ERR_PTR(-ENOMEM);
888 		return NULL;
889 	}
890 
891 	prep_transhuge_page(*hpage);
892 	count_vm_event(THP_COLLAPSE_ALLOC);
893 	return *hpage;
894 }
895 #else
896 static int khugepaged_find_target_node(void)
897 {
898 	return 0;
899 }
900 
901 static inline struct page *alloc_khugepaged_hugepage(void)
902 {
903 	struct page *page;
904 
905 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
906 			   HPAGE_PMD_ORDER);
907 	if (page)
908 		prep_transhuge_page(page);
909 	return page;
910 }
911 
912 static struct page *khugepaged_alloc_hugepage(bool *wait)
913 {
914 	struct page *hpage;
915 
916 	do {
917 		hpage = alloc_khugepaged_hugepage();
918 		if (!hpage) {
919 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
920 			if (!*wait)
921 				return NULL;
922 
923 			*wait = false;
924 			khugepaged_alloc_sleep();
925 		} else
926 			count_vm_event(THP_COLLAPSE_ALLOC);
927 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
928 
929 	return hpage;
930 }
931 
932 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
933 {
934 	/*
935 	 * If the hpage allocated earlier was briefly exposed in page cache
936 	 * before collapse_file() failed, it is possible that racing lookups
937 	 * have not yet completed, and would then be unpleasantly surprised by
938 	 * finding the hpage reused for the same mapping at a different offset.
939 	 * Just release the previous allocation if there is any danger of that.
940 	 */
941 	if (*hpage && page_count(*hpage) > 1) {
942 		put_page(*hpage);
943 		*hpage = NULL;
944 	}
945 
946 	if (!*hpage)
947 		*hpage = khugepaged_alloc_hugepage(wait);
948 
949 	if (unlikely(!*hpage))
950 		return false;
951 
952 	return true;
953 }
954 
955 static struct page *
956 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
957 {
958 	VM_BUG_ON(!*hpage);
959 
960 	return  *hpage;
961 }
962 #endif
963 
964 /*
965  * If mmap_lock temporarily dropped, revalidate vma
966  * before taking mmap_lock.
967  * Return 0 if succeeds, otherwise return none-zero
968  * value (scan code).
969  */
970 
971 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
972 		struct vm_area_struct **vmap)
973 {
974 	struct vm_area_struct *vma;
975 	unsigned long hstart, hend;
976 
977 	if (unlikely(khugepaged_test_exit(mm)))
978 		return SCAN_ANY_PROCESS;
979 
980 	*vmap = vma = find_vma(mm, address);
981 	if (!vma)
982 		return SCAN_VMA_NULL;
983 
984 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
985 	hend = vma->vm_end & HPAGE_PMD_MASK;
986 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
987 		return SCAN_ADDRESS_RANGE;
988 	if (!hugepage_vma_check(vma, vma->vm_flags))
989 		return SCAN_VMA_CHECK;
990 	/* Anon VMA expected */
991 	if (!vma->anon_vma || vma->vm_ops)
992 		return SCAN_VMA_CHECK;
993 	return 0;
994 }
995 
996 /*
997  * Bring missing pages in from swap, to complete THP collapse.
998  * Only done if khugepaged_scan_pmd believes it is worthwhile.
999  *
1000  * Called and returns without pte mapped or spinlocks held,
1001  * but with mmap_lock held to protect against vma changes.
1002  */
1003 
1004 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1005 					struct vm_area_struct *vma,
1006 					unsigned long haddr, pmd_t *pmd,
1007 					int referenced)
1008 {
1009 	int swapped_in = 0;
1010 	vm_fault_t ret = 0;
1011 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1012 
1013 	for (address = haddr; address < end; address += PAGE_SIZE) {
1014 		struct vm_fault vmf = {
1015 			.vma = vma,
1016 			.address = address,
1017 			.pgoff = linear_page_index(vma, haddr),
1018 			.flags = FAULT_FLAG_ALLOW_RETRY,
1019 			.pmd = pmd,
1020 		};
1021 
1022 		vmf.pte = pte_offset_map(pmd, address);
1023 		vmf.orig_pte = *vmf.pte;
1024 		if (!is_swap_pte(vmf.orig_pte)) {
1025 			pte_unmap(vmf.pte);
1026 			continue;
1027 		}
1028 		swapped_in++;
1029 		ret = do_swap_page(&vmf);
1030 
1031 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1032 		if (ret & VM_FAULT_RETRY) {
1033 			mmap_read_lock(mm);
1034 			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1035 				/* vma is no longer available, don't continue to swapin */
1036 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037 				return false;
1038 			}
1039 			/* check if the pmd is still valid */
1040 			if (mm_find_pmd(mm, haddr) != pmd) {
1041 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042 				return false;
1043 			}
1044 		}
1045 		if (ret & VM_FAULT_ERROR) {
1046 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1047 			return false;
1048 		}
1049 	}
1050 
1051 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1052 	if (swapped_in)
1053 		lru_add_drain();
1054 
1055 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1056 	return true;
1057 }
1058 
1059 static void collapse_huge_page(struct mm_struct *mm,
1060 				   unsigned long address,
1061 				   struct page **hpage,
1062 				   int node, int referenced, int unmapped)
1063 {
1064 	LIST_HEAD(compound_pagelist);
1065 	pmd_t *pmd, _pmd;
1066 	pte_t *pte;
1067 	pgtable_t pgtable;
1068 	struct page *new_page;
1069 	spinlock_t *pmd_ptl, *pte_ptl;
1070 	int isolated = 0, result = 0;
1071 	struct vm_area_struct *vma;
1072 	struct mmu_notifier_range range;
1073 	gfp_t gfp;
1074 
1075 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1076 
1077 	/* Only allocate from the target node */
1078 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1079 
1080 	/*
1081 	 * Before allocating the hugepage, release the mmap_lock read lock.
1082 	 * The allocation can take potentially a long time if it involves
1083 	 * sync compaction, and we do not need to hold the mmap_lock during
1084 	 * that. We will recheck the vma after taking it again in write mode.
1085 	 */
1086 	mmap_read_unlock(mm);
1087 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1088 	if (!new_page) {
1089 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1090 		goto out_nolock;
1091 	}
1092 
1093 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1094 		result = SCAN_CGROUP_CHARGE_FAIL;
1095 		goto out_nolock;
1096 	}
1097 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1098 
1099 	mmap_read_lock(mm);
1100 	result = hugepage_vma_revalidate(mm, address, &vma);
1101 	if (result) {
1102 		mmap_read_unlock(mm);
1103 		goto out_nolock;
1104 	}
1105 
1106 	pmd = mm_find_pmd(mm, address);
1107 	if (!pmd) {
1108 		result = SCAN_PMD_NULL;
1109 		mmap_read_unlock(mm);
1110 		goto out_nolock;
1111 	}
1112 
1113 	/*
1114 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1115 	 * If it fails, we release mmap_lock and jump out_nolock.
1116 	 * Continuing to collapse causes inconsistency.
1117 	 */
1118 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1119 						     pmd, referenced)) {
1120 		mmap_read_unlock(mm);
1121 		goto out_nolock;
1122 	}
1123 
1124 	mmap_read_unlock(mm);
1125 	/*
1126 	 * Prevent all access to pagetables with the exception of
1127 	 * gup_fast later handled by the ptep_clear_flush and the VM
1128 	 * handled by the anon_vma lock + PG_lock.
1129 	 */
1130 	mmap_write_lock(mm);
1131 	result = hugepage_vma_revalidate(mm, address, &vma);
1132 	if (result)
1133 		goto out_up_write;
1134 	/* check if the pmd is still valid */
1135 	if (mm_find_pmd(mm, address) != pmd)
1136 		goto out_up_write;
1137 
1138 	anon_vma_lock_write(vma->anon_vma);
1139 
1140 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1141 				address, address + HPAGE_PMD_SIZE);
1142 	mmu_notifier_invalidate_range_start(&range);
1143 
1144 	pte = pte_offset_map(pmd, address);
1145 	pte_ptl = pte_lockptr(mm, pmd);
1146 
1147 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1148 	/*
1149 	 * After this gup_fast can't run anymore. This also removes
1150 	 * any huge TLB entry from the CPU so we won't allow
1151 	 * huge and small TLB entries for the same virtual address
1152 	 * to avoid the risk of CPU bugs in that area.
1153 	 */
1154 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1155 	spin_unlock(pmd_ptl);
1156 	mmu_notifier_invalidate_range_end(&range);
1157 
1158 	spin_lock(pte_ptl);
1159 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1160 			&compound_pagelist);
1161 	spin_unlock(pte_ptl);
1162 
1163 	if (unlikely(!isolated)) {
1164 		pte_unmap(pte);
1165 		spin_lock(pmd_ptl);
1166 		BUG_ON(!pmd_none(*pmd));
1167 		/*
1168 		 * We can only use set_pmd_at when establishing
1169 		 * hugepmds and never for establishing regular pmds that
1170 		 * points to regular pagetables. Use pmd_populate for that
1171 		 */
1172 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1173 		spin_unlock(pmd_ptl);
1174 		anon_vma_unlock_write(vma->anon_vma);
1175 		result = SCAN_FAIL;
1176 		goto out_up_write;
1177 	}
1178 
1179 	/*
1180 	 * All pages are isolated and locked so anon_vma rmap
1181 	 * can't run anymore.
1182 	 */
1183 	anon_vma_unlock_write(vma->anon_vma);
1184 
1185 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1186 			&compound_pagelist);
1187 	pte_unmap(pte);
1188 	/*
1189 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1190 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1191 	 * avoid the copy_huge_page writes to become visible after
1192 	 * the set_pmd_at() write.
1193 	 */
1194 	__SetPageUptodate(new_page);
1195 	pgtable = pmd_pgtable(_pmd);
1196 
1197 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1198 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1199 
1200 	spin_lock(pmd_ptl);
1201 	BUG_ON(!pmd_none(*pmd));
1202 	page_add_new_anon_rmap(new_page, vma, address, true);
1203 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1204 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1205 	set_pmd_at(mm, address, pmd, _pmd);
1206 	update_mmu_cache_pmd(vma, address, pmd);
1207 	spin_unlock(pmd_ptl);
1208 
1209 	*hpage = NULL;
1210 
1211 	khugepaged_pages_collapsed++;
1212 	result = SCAN_SUCCEED;
1213 out_up_write:
1214 	mmap_write_unlock(mm);
1215 out_nolock:
1216 	if (!IS_ERR_OR_NULL(*hpage))
1217 		mem_cgroup_uncharge(page_folio(*hpage));
1218 	trace_mm_collapse_huge_page(mm, isolated, result);
1219 	return;
1220 }
1221 
1222 static int khugepaged_scan_pmd(struct mm_struct *mm,
1223 			       struct vm_area_struct *vma,
1224 			       unsigned long address,
1225 			       struct page **hpage)
1226 {
1227 	pmd_t *pmd;
1228 	pte_t *pte, *_pte;
1229 	int ret = 0, result = 0, referenced = 0;
1230 	int none_or_zero = 0, shared = 0;
1231 	struct page *page = NULL;
1232 	unsigned long _address;
1233 	spinlock_t *ptl;
1234 	int node = NUMA_NO_NODE, unmapped = 0;
1235 	bool writable = false;
1236 
1237 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1238 
1239 	pmd = mm_find_pmd(mm, address);
1240 	if (!pmd) {
1241 		result = SCAN_PMD_NULL;
1242 		goto out;
1243 	}
1244 
1245 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1246 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1247 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1248 	     _pte++, _address += PAGE_SIZE) {
1249 		pte_t pteval = *_pte;
1250 		if (is_swap_pte(pteval)) {
1251 			if (++unmapped <= khugepaged_max_ptes_swap) {
1252 				/*
1253 				 * Always be strict with uffd-wp
1254 				 * enabled swap entries.  Please see
1255 				 * comment below for pte_uffd_wp().
1256 				 */
1257 				if (pte_swp_uffd_wp(pteval)) {
1258 					result = SCAN_PTE_UFFD_WP;
1259 					goto out_unmap;
1260 				}
1261 				continue;
1262 			} else {
1263 				result = SCAN_EXCEED_SWAP_PTE;
1264 				goto out_unmap;
1265 			}
1266 		}
1267 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1268 			if (!userfaultfd_armed(vma) &&
1269 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1270 				continue;
1271 			} else {
1272 				result = SCAN_EXCEED_NONE_PTE;
1273 				goto out_unmap;
1274 			}
1275 		}
1276 		if (pte_uffd_wp(pteval)) {
1277 			/*
1278 			 * Don't collapse the page if any of the small
1279 			 * PTEs are armed with uffd write protection.
1280 			 * Here we can also mark the new huge pmd as
1281 			 * write protected if any of the small ones is
1282 			 * marked but that could bring unknown
1283 			 * userfault messages that falls outside of
1284 			 * the registered range.  So, just be simple.
1285 			 */
1286 			result = SCAN_PTE_UFFD_WP;
1287 			goto out_unmap;
1288 		}
1289 		if (pte_write(pteval))
1290 			writable = true;
1291 
1292 		page = vm_normal_page(vma, _address, pteval);
1293 		if (unlikely(!page)) {
1294 			result = SCAN_PAGE_NULL;
1295 			goto out_unmap;
1296 		}
1297 
1298 		if (page_mapcount(page) > 1 &&
1299 				++shared > khugepaged_max_ptes_shared) {
1300 			result = SCAN_EXCEED_SHARED_PTE;
1301 			goto out_unmap;
1302 		}
1303 
1304 		page = compound_head(page);
1305 
1306 		/*
1307 		 * Record which node the original page is from and save this
1308 		 * information to khugepaged_node_load[].
1309 		 * Khupaged will allocate hugepage from the node has the max
1310 		 * hit record.
1311 		 */
1312 		node = page_to_nid(page);
1313 		if (khugepaged_scan_abort(node)) {
1314 			result = SCAN_SCAN_ABORT;
1315 			goto out_unmap;
1316 		}
1317 		khugepaged_node_load[node]++;
1318 		if (!PageLRU(page)) {
1319 			result = SCAN_PAGE_LRU;
1320 			goto out_unmap;
1321 		}
1322 		if (PageLocked(page)) {
1323 			result = SCAN_PAGE_LOCK;
1324 			goto out_unmap;
1325 		}
1326 		if (!PageAnon(page)) {
1327 			result = SCAN_PAGE_ANON;
1328 			goto out_unmap;
1329 		}
1330 
1331 		/*
1332 		 * Check if the page has any GUP (or other external) pins.
1333 		 *
1334 		 * Here the check is racy it may see totmal_mapcount > refcount
1335 		 * in some cases.
1336 		 * For example, one process with one forked child process.
1337 		 * The parent has the PMD split due to MADV_DONTNEED, then
1338 		 * the child is trying unmap the whole PMD, but khugepaged
1339 		 * may be scanning the parent between the child has
1340 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1341 		 * khugepaged may see total_mapcount > refcount.
1342 		 *
1343 		 * But such case is ephemeral we could always retry collapse
1344 		 * later.  However it may report false positive if the page
1345 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1346 		 * will be done again later the risk seems low.
1347 		 */
1348 		if (!is_refcount_suitable(page)) {
1349 			result = SCAN_PAGE_COUNT;
1350 			goto out_unmap;
1351 		}
1352 		if (pte_young(pteval) ||
1353 		    page_is_young(page) || PageReferenced(page) ||
1354 		    mmu_notifier_test_young(vma->vm_mm, address))
1355 			referenced++;
1356 	}
1357 	if (!writable) {
1358 		result = SCAN_PAGE_RO;
1359 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1360 		result = SCAN_LACK_REFERENCED_PAGE;
1361 	} else {
1362 		result = SCAN_SUCCEED;
1363 		ret = 1;
1364 	}
1365 out_unmap:
1366 	pte_unmap_unlock(pte, ptl);
1367 	if (ret) {
1368 		node = khugepaged_find_target_node();
1369 		/* collapse_huge_page will return with the mmap_lock released */
1370 		collapse_huge_page(mm, address, hpage, node,
1371 				referenced, unmapped);
1372 	}
1373 out:
1374 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1375 				     none_or_zero, result, unmapped);
1376 	return ret;
1377 }
1378 
1379 static void collect_mm_slot(struct mm_slot *mm_slot)
1380 {
1381 	struct mm_struct *mm = mm_slot->mm;
1382 
1383 	lockdep_assert_held(&khugepaged_mm_lock);
1384 
1385 	if (khugepaged_test_exit(mm)) {
1386 		/* free mm_slot */
1387 		hash_del(&mm_slot->hash);
1388 		list_del(&mm_slot->mm_node);
1389 
1390 		/*
1391 		 * Not strictly needed because the mm exited already.
1392 		 *
1393 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1394 		 */
1395 
1396 		/* khugepaged_mm_lock actually not necessary for the below */
1397 		free_mm_slot(mm_slot);
1398 		mmdrop(mm);
1399 	}
1400 }
1401 
1402 #ifdef CONFIG_SHMEM
1403 /*
1404  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1405  * khugepaged should try to collapse the page table.
1406  */
1407 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1408 					 unsigned long addr)
1409 {
1410 	struct mm_slot *mm_slot;
1411 
1412 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1413 
1414 	spin_lock(&khugepaged_mm_lock);
1415 	mm_slot = get_mm_slot(mm);
1416 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1417 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1418 	spin_unlock(&khugepaged_mm_lock);
1419 	return 0;
1420 }
1421 
1422 /**
1423  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1424  * address haddr.
1425  *
1426  * @mm: process address space where collapse happens
1427  * @addr: THP collapse address
1428  *
1429  * This function checks whether all the PTEs in the PMD are pointing to the
1430  * right THP. If so, retract the page table so the THP can refault in with
1431  * as pmd-mapped.
1432  */
1433 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1434 {
1435 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1436 	struct vm_area_struct *vma = find_vma(mm, haddr);
1437 	struct page *hpage;
1438 	pte_t *start_pte, *pte;
1439 	pmd_t *pmd, _pmd;
1440 	spinlock_t *ptl;
1441 	int count = 0;
1442 	int i;
1443 
1444 	if (!vma || !vma->vm_file ||
1445 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1446 		return;
1447 
1448 	/*
1449 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1450 	 * collapsed by this mm. But we can still collapse if the page is
1451 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1452 	 * will not fail the vma for missing VM_HUGEPAGE
1453 	 */
1454 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1455 		return;
1456 
1457 	hpage = find_lock_page(vma->vm_file->f_mapping,
1458 			       linear_page_index(vma, haddr));
1459 	if (!hpage)
1460 		return;
1461 
1462 	if (!PageHead(hpage))
1463 		goto drop_hpage;
1464 
1465 	pmd = mm_find_pmd(mm, haddr);
1466 	if (!pmd)
1467 		goto drop_hpage;
1468 
1469 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1470 
1471 	/* step 1: check all mapped PTEs are to the right huge page */
1472 	for (i = 0, addr = haddr, pte = start_pte;
1473 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1474 		struct page *page;
1475 
1476 		/* empty pte, skip */
1477 		if (pte_none(*pte))
1478 			continue;
1479 
1480 		/* page swapped out, abort */
1481 		if (!pte_present(*pte))
1482 			goto abort;
1483 
1484 		page = vm_normal_page(vma, addr, *pte);
1485 
1486 		/*
1487 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1488 		 * page table, but the new page will not be a subpage of hpage.
1489 		 */
1490 		if (hpage + i != page)
1491 			goto abort;
1492 		count++;
1493 	}
1494 
1495 	/* step 2: adjust rmap */
1496 	for (i = 0, addr = haddr, pte = start_pte;
1497 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1498 		struct page *page;
1499 
1500 		if (pte_none(*pte))
1501 			continue;
1502 		page = vm_normal_page(vma, addr, *pte);
1503 		page_remove_rmap(page, false);
1504 	}
1505 
1506 	pte_unmap_unlock(start_pte, ptl);
1507 
1508 	/* step 3: set proper refcount and mm_counters. */
1509 	if (count) {
1510 		page_ref_sub(hpage, count);
1511 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1512 	}
1513 
1514 	/* step 4: collapse pmd */
1515 	ptl = pmd_lock(vma->vm_mm, pmd);
1516 	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1517 	spin_unlock(ptl);
1518 	mm_dec_nr_ptes(mm);
1519 	pte_free(mm, pmd_pgtable(_pmd));
1520 
1521 drop_hpage:
1522 	unlock_page(hpage);
1523 	put_page(hpage);
1524 	return;
1525 
1526 abort:
1527 	pte_unmap_unlock(start_pte, ptl);
1528 	goto drop_hpage;
1529 }
1530 
1531 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1532 {
1533 	struct mm_struct *mm = mm_slot->mm;
1534 	int i;
1535 
1536 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1537 		return;
1538 
1539 	if (!mmap_write_trylock(mm))
1540 		return;
1541 
1542 	if (unlikely(khugepaged_test_exit(mm)))
1543 		goto out;
1544 
1545 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1546 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1547 
1548 out:
1549 	mm_slot->nr_pte_mapped_thp = 0;
1550 	mmap_write_unlock(mm);
1551 }
1552 
1553 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1554 {
1555 	struct vm_area_struct *vma;
1556 	struct mm_struct *mm;
1557 	unsigned long addr;
1558 	pmd_t *pmd, _pmd;
1559 
1560 	i_mmap_lock_write(mapping);
1561 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1562 		/*
1563 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1564 		 * got written to. These VMAs are likely not worth investing
1565 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1566 		 * later.
1567 		 *
1568 		 * Not that vma->anon_vma check is racy: it can be set up after
1569 		 * the check but before we took mmap_lock by the fault path.
1570 		 * But page lock would prevent establishing any new ptes of the
1571 		 * page, so we are safe.
1572 		 *
1573 		 * An alternative would be drop the check, but check that page
1574 		 * table is clear before calling pmdp_collapse_flush() under
1575 		 * ptl. It has higher chance to recover THP for the VMA, but
1576 		 * has higher cost too.
1577 		 */
1578 		if (vma->anon_vma)
1579 			continue;
1580 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1581 		if (addr & ~HPAGE_PMD_MASK)
1582 			continue;
1583 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1584 			continue;
1585 		mm = vma->vm_mm;
1586 		pmd = mm_find_pmd(mm, addr);
1587 		if (!pmd)
1588 			continue;
1589 		/*
1590 		 * We need exclusive mmap_lock to retract page table.
1591 		 *
1592 		 * We use trylock due to lock inversion: we need to acquire
1593 		 * mmap_lock while holding page lock. Fault path does it in
1594 		 * reverse order. Trylock is a way to avoid deadlock.
1595 		 */
1596 		if (mmap_write_trylock(mm)) {
1597 			if (!khugepaged_test_exit(mm)) {
1598 				spinlock_t *ptl = pmd_lock(mm, pmd);
1599 				/* assume page table is clear */
1600 				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1601 				spin_unlock(ptl);
1602 				mm_dec_nr_ptes(mm);
1603 				pte_free(mm, pmd_pgtable(_pmd));
1604 			}
1605 			mmap_write_unlock(mm);
1606 		} else {
1607 			/* Try again later */
1608 			khugepaged_add_pte_mapped_thp(mm, addr);
1609 		}
1610 	}
1611 	i_mmap_unlock_write(mapping);
1612 }
1613 
1614 /**
1615  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1616  *
1617  * @mm: process address space where collapse happens
1618  * @file: file that collapse on
1619  * @start: collapse start address
1620  * @hpage: new allocated huge page for collapse
1621  * @node: appointed node the new huge page allocate from
1622  *
1623  * Basic scheme is simple, details are more complex:
1624  *  - allocate and lock a new huge page;
1625  *  - scan page cache replacing old pages with the new one
1626  *    + swap/gup in pages if necessary;
1627  *    + fill in gaps;
1628  *    + keep old pages around in case rollback is required;
1629  *  - if replacing succeeds:
1630  *    + copy data over;
1631  *    + free old pages;
1632  *    + unlock huge page;
1633  *  - if replacing failed;
1634  *    + put all pages back and unfreeze them;
1635  *    + restore gaps in the page cache;
1636  *    + unlock and free huge page;
1637  */
1638 static void collapse_file(struct mm_struct *mm,
1639 		struct file *file, pgoff_t start,
1640 		struct page **hpage, int node)
1641 {
1642 	struct address_space *mapping = file->f_mapping;
1643 	gfp_t gfp;
1644 	struct page *new_page;
1645 	pgoff_t index, end = start + HPAGE_PMD_NR;
1646 	LIST_HEAD(pagelist);
1647 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1648 	int nr_none = 0, result = SCAN_SUCCEED;
1649 	bool is_shmem = shmem_file(file);
1650 	int nr;
1651 
1652 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1653 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1654 
1655 	/* Only allocate from the target node */
1656 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1657 
1658 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1659 	if (!new_page) {
1660 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1661 		goto out;
1662 	}
1663 
1664 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1665 		result = SCAN_CGROUP_CHARGE_FAIL;
1666 		goto out;
1667 	}
1668 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1669 
1670 	/* This will be less messy when we use multi-index entries */
1671 	do {
1672 		xas_lock_irq(&xas);
1673 		xas_create_range(&xas);
1674 		if (!xas_error(&xas))
1675 			break;
1676 		xas_unlock_irq(&xas);
1677 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1678 			result = SCAN_FAIL;
1679 			goto out;
1680 		}
1681 	} while (1);
1682 
1683 	__SetPageLocked(new_page);
1684 	if (is_shmem)
1685 		__SetPageSwapBacked(new_page);
1686 	new_page->index = start;
1687 	new_page->mapping = mapping;
1688 
1689 	/*
1690 	 * At this point the new_page is locked and not up-to-date.
1691 	 * It's safe to insert it into the page cache, because nobody would
1692 	 * be able to map it or use it in another way until we unlock it.
1693 	 */
1694 
1695 	xas_set(&xas, start);
1696 	for (index = start; index < end; index++) {
1697 		struct page *page = xas_next(&xas);
1698 
1699 		VM_BUG_ON(index != xas.xa_index);
1700 		if (is_shmem) {
1701 			if (!page) {
1702 				/*
1703 				 * Stop if extent has been truncated or
1704 				 * hole-punched, and is now completely
1705 				 * empty.
1706 				 */
1707 				if (index == start) {
1708 					if (!xas_next_entry(&xas, end - 1)) {
1709 						result = SCAN_TRUNCATED;
1710 						goto xa_locked;
1711 					}
1712 					xas_set(&xas, index);
1713 				}
1714 				if (!shmem_charge(mapping->host, 1)) {
1715 					result = SCAN_FAIL;
1716 					goto xa_locked;
1717 				}
1718 				xas_store(&xas, new_page);
1719 				nr_none++;
1720 				continue;
1721 			}
1722 
1723 			if (xa_is_value(page) || !PageUptodate(page)) {
1724 				xas_unlock_irq(&xas);
1725 				/* swap in or instantiate fallocated page */
1726 				if (shmem_getpage(mapping->host, index, &page,
1727 						  SGP_NOALLOC)) {
1728 					result = SCAN_FAIL;
1729 					goto xa_unlocked;
1730 				}
1731 			} else if (trylock_page(page)) {
1732 				get_page(page);
1733 				xas_unlock_irq(&xas);
1734 			} else {
1735 				result = SCAN_PAGE_LOCK;
1736 				goto xa_locked;
1737 			}
1738 		} else {	/* !is_shmem */
1739 			if (!page || xa_is_value(page)) {
1740 				xas_unlock_irq(&xas);
1741 				page_cache_sync_readahead(mapping, &file->f_ra,
1742 							  file, index,
1743 							  end - index);
1744 				/* drain pagevecs to help isolate_lru_page() */
1745 				lru_add_drain();
1746 				page = find_lock_page(mapping, index);
1747 				if (unlikely(page == NULL)) {
1748 					result = SCAN_FAIL;
1749 					goto xa_unlocked;
1750 				}
1751 			} else if (PageDirty(page)) {
1752 				/*
1753 				 * khugepaged only works on read-only fd,
1754 				 * so this page is dirty because it hasn't
1755 				 * been flushed since first write. There
1756 				 * won't be new dirty pages.
1757 				 *
1758 				 * Trigger async flush here and hope the
1759 				 * writeback is done when khugepaged
1760 				 * revisits this page.
1761 				 *
1762 				 * This is a one-off situation. We are not
1763 				 * forcing writeback in loop.
1764 				 */
1765 				xas_unlock_irq(&xas);
1766 				filemap_flush(mapping);
1767 				result = SCAN_FAIL;
1768 				goto xa_unlocked;
1769 			} else if (PageWriteback(page)) {
1770 				xas_unlock_irq(&xas);
1771 				result = SCAN_FAIL;
1772 				goto xa_unlocked;
1773 			} else if (trylock_page(page)) {
1774 				get_page(page);
1775 				xas_unlock_irq(&xas);
1776 			} else {
1777 				result = SCAN_PAGE_LOCK;
1778 				goto xa_locked;
1779 			}
1780 		}
1781 
1782 		/*
1783 		 * The page must be locked, so we can drop the i_pages lock
1784 		 * without racing with truncate.
1785 		 */
1786 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1787 
1788 		/* make sure the page is up to date */
1789 		if (unlikely(!PageUptodate(page))) {
1790 			result = SCAN_FAIL;
1791 			goto out_unlock;
1792 		}
1793 
1794 		/*
1795 		 * If file was truncated then extended, or hole-punched, before
1796 		 * we locked the first page, then a THP might be there already.
1797 		 */
1798 		if (PageTransCompound(page)) {
1799 			result = SCAN_PAGE_COMPOUND;
1800 			goto out_unlock;
1801 		}
1802 
1803 		if (page_mapping(page) != mapping) {
1804 			result = SCAN_TRUNCATED;
1805 			goto out_unlock;
1806 		}
1807 
1808 		if (!is_shmem && (PageDirty(page) ||
1809 				  PageWriteback(page))) {
1810 			/*
1811 			 * khugepaged only works on read-only fd, so this
1812 			 * page is dirty because it hasn't been flushed
1813 			 * since first write.
1814 			 */
1815 			result = SCAN_FAIL;
1816 			goto out_unlock;
1817 		}
1818 
1819 		if (isolate_lru_page(page)) {
1820 			result = SCAN_DEL_PAGE_LRU;
1821 			goto out_unlock;
1822 		}
1823 
1824 		if (page_has_private(page) &&
1825 		    !try_to_release_page(page, GFP_KERNEL)) {
1826 			result = SCAN_PAGE_HAS_PRIVATE;
1827 			putback_lru_page(page);
1828 			goto out_unlock;
1829 		}
1830 
1831 		if (page_mapped(page))
1832 			unmap_mapping_pages(mapping, index, 1, false);
1833 
1834 		xas_lock_irq(&xas);
1835 		xas_set(&xas, index);
1836 
1837 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1838 		VM_BUG_ON_PAGE(page_mapped(page), page);
1839 
1840 		/*
1841 		 * The page is expected to have page_count() == 3:
1842 		 *  - we hold a pin on it;
1843 		 *  - one reference from page cache;
1844 		 *  - one from isolate_lru_page;
1845 		 */
1846 		if (!page_ref_freeze(page, 3)) {
1847 			result = SCAN_PAGE_COUNT;
1848 			xas_unlock_irq(&xas);
1849 			putback_lru_page(page);
1850 			goto out_unlock;
1851 		}
1852 
1853 		/*
1854 		 * Add the page to the list to be able to undo the collapse if
1855 		 * something go wrong.
1856 		 */
1857 		list_add_tail(&page->lru, &pagelist);
1858 
1859 		/* Finally, replace with the new page. */
1860 		xas_store(&xas, new_page);
1861 		continue;
1862 out_unlock:
1863 		unlock_page(page);
1864 		put_page(page);
1865 		goto xa_unlocked;
1866 	}
1867 	nr = thp_nr_pages(new_page);
1868 
1869 	if (is_shmem)
1870 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1871 	else {
1872 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1873 		filemap_nr_thps_inc(mapping);
1874 		/*
1875 		 * Paired with smp_mb() in do_dentry_open() to ensure
1876 		 * i_writecount is up to date and the update to nr_thps is
1877 		 * visible. Ensures the page cache will be truncated if the
1878 		 * file is opened writable.
1879 		 */
1880 		smp_mb();
1881 		if (inode_is_open_for_write(mapping->host)) {
1882 			result = SCAN_FAIL;
1883 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1884 			filemap_nr_thps_dec(mapping);
1885 			goto xa_locked;
1886 		}
1887 	}
1888 
1889 	if (nr_none) {
1890 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1891 		if (is_shmem)
1892 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1893 	}
1894 
1895 xa_locked:
1896 	xas_unlock_irq(&xas);
1897 xa_unlocked:
1898 
1899 	if (result == SCAN_SUCCEED) {
1900 		struct page *page, *tmp;
1901 
1902 		/*
1903 		 * Replacing old pages with new one has succeeded, now we
1904 		 * need to copy the content and free the old pages.
1905 		 */
1906 		index = start;
1907 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1908 			while (index < page->index) {
1909 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1910 				index++;
1911 			}
1912 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1913 					page);
1914 			list_del(&page->lru);
1915 			page->mapping = NULL;
1916 			page_ref_unfreeze(page, 1);
1917 			ClearPageActive(page);
1918 			ClearPageUnevictable(page);
1919 			unlock_page(page);
1920 			put_page(page);
1921 			index++;
1922 		}
1923 		while (index < end) {
1924 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1925 			index++;
1926 		}
1927 
1928 		SetPageUptodate(new_page);
1929 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1930 		if (is_shmem)
1931 			set_page_dirty(new_page);
1932 		lru_cache_add(new_page);
1933 
1934 		/*
1935 		 * Remove pte page tables, so we can re-fault the page as huge.
1936 		 */
1937 		retract_page_tables(mapping, start);
1938 		*hpage = NULL;
1939 
1940 		khugepaged_pages_collapsed++;
1941 	} else {
1942 		struct page *page;
1943 
1944 		/* Something went wrong: roll back page cache changes */
1945 		xas_lock_irq(&xas);
1946 		mapping->nrpages -= nr_none;
1947 
1948 		if (is_shmem)
1949 			shmem_uncharge(mapping->host, nr_none);
1950 
1951 		xas_set(&xas, start);
1952 		xas_for_each(&xas, page, end - 1) {
1953 			page = list_first_entry_or_null(&pagelist,
1954 					struct page, lru);
1955 			if (!page || xas.xa_index < page->index) {
1956 				if (!nr_none)
1957 					break;
1958 				nr_none--;
1959 				/* Put holes back where they were */
1960 				xas_store(&xas, NULL);
1961 				continue;
1962 			}
1963 
1964 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1965 
1966 			/* Unfreeze the page. */
1967 			list_del(&page->lru);
1968 			page_ref_unfreeze(page, 2);
1969 			xas_store(&xas, page);
1970 			xas_pause(&xas);
1971 			xas_unlock_irq(&xas);
1972 			unlock_page(page);
1973 			putback_lru_page(page);
1974 			xas_lock_irq(&xas);
1975 		}
1976 		VM_BUG_ON(nr_none);
1977 		xas_unlock_irq(&xas);
1978 
1979 		new_page->mapping = NULL;
1980 	}
1981 
1982 	unlock_page(new_page);
1983 out:
1984 	VM_BUG_ON(!list_empty(&pagelist));
1985 	if (!IS_ERR_OR_NULL(*hpage))
1986 		mem_cgroup_uncharge(page_folio(*hpage));
1987 	/* TODO: tracepoints */
1988 }
1989 
1990 static void khugepaged_scan_file(struct mm_struct *mm,
1991 		struct file *file, pgoff_t start, struct page **hpage)
1992 {
1993 	struct page *page = NULL;
1994 	struct address_space *mapping = file->f_mapping;
1995 	XA_STATE(xas, &mapping->i_pages, start);
1996 	int present, swap;
1997 	int node = NUMA_NO_NODE;
1998 	int result = SCAN_SUCCEED;
1999 
2000 	present = 0;
2001 	swap = 0;
2002 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2003 	rcu_read_lock();
2004 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2005 		if (xas_retry(&xas, page))
2006 			continue;
2007 
2008 		if (xa_is_value(page)) {
2009 			if (++swap > khugepaged_max_ptes_swap) {
2010 				result = SCAN_EXCEED_SWAP_PTE;
2011 				break;
2012 			}
2013 			continue;
2014 		}
2015 
2016 		if (PageTransCompound(page)) {
2017 			result = SCAN_PAGE_COMPOUND;
2018 			break;
2019 		}
2020 
2021 		node = page_to_nid(page);
2022 		if (khugepaged_scan_abort(node)) {
2023 			result = SCAN_SCAN_ABORT;
2024 			break;
2025 		}
2026 		khugepaged_node_load[node]++;
2027 
2028 		if (!PageLRU(page)) {
2029 			result = SCAN_PAGE_LRU;
2030 			break;
2031 		}
2032 
2033 		if (page_count(page) !=
2034 		    1 + page_mapcount(page) + page_has_private(page)) {
2035 			result = SCAN_PAGE_COUNT;
2036 			break;
2037 		}
2038 
2039 		/*
2040 		 * We probably should check if the page is referenced here, but
2041 		 * nobody would transfer pte_young() to PageReferenced() for us.
2042 		 * And rmap walk here is just too costly...
2043 		 */
2044 
2045 		present++;
2046 
2047 		if (need_resched()) {
2048 			xas_pause(&xas);
2049 			cond_resched_rcu();
2050 		}
2051 	}
2052 	rcu_read_unlock();
2053 
2054 	if (result == SCAN_SUCCEED) {
2055 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2056 			result = SCAN_EXCEED_NONE_PTE;
2057 		} else {
2058 			node = khugepaged_find_target_node();
2059 			collapse_file(mm, file, start, hpage, node);
2060 		}
2061 	}
2062 
2063 	/* TODO: tracepoints */
2064 }
2065 #else
2066 static void khugepaged_scan_file(struct mm_struct *mm,
2067 		struct file *file, pgoff_t start, struct page **hpage)
2068 {
2069 	BUILD_BUG();
2070 }
2071 
2072 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2073 {
2074 }
2075 #endif
2076 
2077 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2078 					    struct page **hpage)
2079 	__releases(&khugepaged_mm_lock)
2080 	__acquires(&khugepaged_mm_lock)
2081 {
2082 	struct mm_slot *mm_slot;
2083 	struct mm_struct *mm;
2084 	struct vm_area_struct *vma;
2085 	int progress = 0;
2086 
2087 	VM_BUG_ON(!pages);
2088 	lockdep_assert_held(&khugepaged_mm_lock);
2089 
2090 	if (khugepaged_scan.mm_slot)
2091 		mm_slot = khugepaged_scan.mm_slot;
2092 	else {
2093 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2094 				     struct mm_slot, mm_node);
2095 		khugepaged_scan.address = 0;
2096 		khugepaged_scan.mm_slot = mm_slot;
2097 	}
2098 	spin_unlock(&khugepaged_mm_lock);
2099 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2100 
2101 	mm = mm_slot->mm;
2102 	/*
2103 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2104 	 * the next mm on the list.
2105 	 */
2106 	vma = NULL;
2107 	if (unlikely(!mmap_read_trylock(mm)))
2108 		goto breakouterloop_mmap_lock;
2109 	if (likely(!khugepaged_test_exit(mm)))
2110 		vma = find_vma(mm, khugepaged_scan.address);
2111 
2112 	progress++;
2113 	for (; vma; vma = vma->vm_next) {
2114 		unsigned long hstart, hend;
2115 
2116 		cond_resched();
2117 		if (unlikely(khugepaged_test_exit(mm))) {
2118 			progress++;
2119 			break;
2120 		}
2121 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2122 skip:
2123 			progress++;
2124 			continue;
2125 		}
2126 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2127 		hend = vma->vm_end & HPAGE_PMD_MASK;
2128 		if (hstart >= hend)
2129 			goto skip;
2130 		if (khugepaged_scan.address > hend)
2131 			goto skip;
2132 		if (khugepaged_scan.address < hstart)
2133 			khugepaged_scan.address = hstart;
2134 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2135 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2136 			goto skip;
2137 
2138 		while (khugepaged_scan.address < hend) {
2139 			int ret;
2140 			cond_resched();
2141 			if (unlikely(khugepaged_test_exit(mm)))
2142 				goto breakouterloop;
2143 
2144 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2145 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2146 				  hend);
2147 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2148 				struct file *file = get_file(vma->vm_file);
2149 				pgoff_t pgoff = linear_page_index(vma,
2150 						khugepaged_scan.address);
2151 
2152 				mmap_read_unlock(mm);
2153 				ret = 1;
2154 				khugepaged_scan_file(mm, file, pgoff, hpage);
2155 				fput(file);
2156 			} else {
2157 				ret = khugepaged_scan_pmd(mm, vma,
2158 						khugepaged_scan.address,
2159 						hpage);
2160 			}
2161 			/* move to next address */
2162 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2163 			progress += HPAGE_PMD_NR;
2164 			if (ret)
2165 				/* we released mmap_lock so break loop */
2166 				goto breakouterloop_mmap_lock;
2167 			if (progress >= pages)
2168 				goto breakouterloop;
2169 		}
2170 	}
2171 breakouterloop:
2172 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2173 breakouterloop_mmap_lock:
2174 
2175 	spin_lock(&khugepaged_mm_lock);
2176 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2177 	/*
2178 	 * Release the current mm_slot if this mm is about to die, or
2179 	 * if we scanned all vmas of this mm.
2180 	 */
2181 	if (khugepaged_test_exit(mm) || !vma) {
2182 		/*
2183 		 * Make sure that if mm_users is reaching zero while
2184 		 * khugepaged runs here, khugepaged_exit will find
2185 		 * mm_slot not pointing to the exiting mm.
2186 		 */
2187 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2188 			khugepaged_scan.mm_slot = list_entry(
2189 				mm_slot->mm_node.next,
2190 				struct mm_slot, mm_node);
2191 			khugepaged_scan.address = 0;
2192 		} else {
2193 			khugepaged_scan.mm_slot = NULL;
2194 			khugepaged_full_scans++;
2195 		}
2196 
2197 		collect_mm_slot(mm_slot);
2198 	}
2199 
2200 	return progress;
2201 }
2202 
2203 static int khugepaged_has_work(void)
2204 {
2205 	return !list_empty(&khugepaged_scan.mm_head) &&
2206 		khugepaged_enabled();
2207 }
2208 
2209 static int khugepaged_wait_event(void)
2210 {
2211 	return !list_empty(&khugepaged_scan.mm_head) ||
2212 		kthread_should_stop();
2213 }
2214 
2215 static void khugepaged_do_scan(void)
2216 {
2217 	struct page *hpage = NULL;
2218 	unsigned int progress = 0, pass_through_head = 0;
2219 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2220 	bool wait = true;
2221 
2222 	lru_add_drain_all();
2223 
2224 	while (progress < pages) {
2225 		if (!khugepaged_prealloc_page(&hpage, &wait))
2226 			break;
2227 
2228 		cond_resched();
2229 
2230 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2231 			break;
2232 
2233 		spin_lock(&khugepaged_mm_lock);
2234 		if (!khugepaged_scan.mm_slot)
2235 			pass_through_head++;
2236 		if (khugepaged_has_work() &&
2237 		    pass_through_head < 2)
2238 			progress += khugepaged_scan_mm_slot(pages - progress,
2239 							    &hpage);
2240 		else
2241 			progress = pages;
2242 		spin_unlock(&khugepaged_mm_lock);
2243 	}
2244 
2245 	if (!IS_ERR_OR_NULL(hpage))
2246 		put_page(hpage);
2247 }
2248 
2249 static bool khugepaged_should_wakeup(void)
2250 {
2251 	return kthread_should_stop() ||
2252 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2253 }
2254 
2255 static void khugepaged_wait_work(void)
2256 {
2257 	if (khugepaged_has_work()) {
2258 		const unsigned long scan_sleep_jiffies =
2259 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2260 
2261 		if (!scan_sleep_jiffies)
2262 			return;
2263 
2264 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2265 		wait_event_freezable_timeout(khugepaged_wait,
2266 					     khugepaged_should_wakeup(),
2267 					     scan_sleep_jiffies);
2268 		return;
2269 	}
2270 
2271 	if (khugepaged_enabled())
2272 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2273 }
2274 
2275 static int khugepaged(void *none)
2276 {
2277 	struct mm_slot *mm_slot;
2278 
2279 	set_freezable();
2280 	set_user_nice(current, MAX_NICE);
2281 
2282 	while (!kthread_should_stop()) {
2283 		khugepaged_do_scan();
2284 		khugepaged_wait_work();
2285 	}
2286 
2287 	spin_lock(&khugepaged_mm_lock);
2288 	mm_slot = khugepaged_scan.mm_slot;
2289 	khugepaged_scan.mm_slot = NULL;
2290 	if (mm_slot)
2291 		collect_mm_slot(mm_slot);
2292 	spin_unlock(&khugepaged_mm_lock);
2293 	return 0;
2294 }
2295 
2296 static void set_recommended_min_free_kbytes(void)
2297 {
2298 	struct zone *zone;
2299 	int nr_zones = 0;
2300 	unsigned long recommended_min;
2301 
2302 	if (!khugepaged_enabled()) {
2303 		calculate_min_free_kbytes();
2304 		goto update_wmarks;
2305 	}
2306 
2307 	for_each_populated_zone(zone) {
2308 		/*
2309 		 * We don't need to worry about fragmentation of
2310 		 * ZONE_MOVABLE since it only has movable pages.
2311 		 */
2312 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2313 			continue;
2314 
2315 		nr_zones++;
2316 	}
2317 
2318 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2319 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2320 
2321 	/*
2322 	 * Make sure that on average at least two pageblocks are almost free
2323 	 * of another type, one for a migratetype to fall back to and a
2324 	 * second to avoid subsequent fallbacks of other types There are 3
2325 	 * MIGRATE_TYPES we care about.
2326 	 */
2327 	recommended_min += pageblock_nr_pages * nr_zones *
2328 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2329 
2330 	/* don't ever allow to reserve more than 5% of the lowmem */
2331 	recommended_min = min(recommended_min,
2332 			      (unsigned long) nr_free_buffer_pages() / 20);
2333 	recommended_min <<= (PAGE_SHIFT-10);
2334 
2335 	if (recommended_min > min_free_kbytes) {
2336 		if (user_min_free_kbytes >= 0)
2337 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2338 				min_free_kbytes, recommended_min);
2339 
2340 		min_free_kbytes = recommended_min;
2341 	}
2342 
2343 update_wmarks:
2344 	setup_per_zone_wmarks();
2345 }
2346 
2347 int start_stop_khugepaged(void)
2348 {
2349 	int err = 0;
2350 
2351 	mutex_lock(&khugepaged_mutex);
2352 	if (khugepaged_enabled()) {
2353 		if (!khugepaged_thread)
2354 			khugepaged_thread = kthread_run(khugepaged, NULL,
2355 							"khugepaged");
2356 		if (IS_ERR(khugepaged_thread)) {
2357 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2358 			err = PTR_ERR(khugepaged_thread);
2359 			khugepaged_thread = NULL;
2360 			goto fail;
2361 		}
2362 
2363 		if (!list_empty(&khugepaged_scan.mm_head))
2364 			wake_up_interruptible(&khugepaged_wait);
2365 	} else if (khugepaged_thread) {
2366 		kthread_stop(khugepaged_thread);
2367 		khugepaged_thread = NULL;
2368 	}
2369 	set_recommended_min_free_kbytes();
2370 fail:
2371 	mutex_unlock(&khugepaged_mutex);
2372 	return err;
2373 }
2374 
2375 void khugepaged_min_free_kbytes_update(void)
2376 {
2377 	mutex_lock(&khugepaged_mutex);
2378 	if (khugepaged_enabled() && khugepaged_thread)
2379 		set_recommended_min_free_kbytes();
2380 	mutex_unlock(&khugepaged_mutex);
2381 }
2382