1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_page(struct page *page) 494 { 495 mod_node_page_state(page_pgdat(page), 496 NR_ISOLATED_ANON + page_is_file_lru(page), 497 -compound_nr(page)); 498 unlock_page(page); 499 putback_lru_page(page); 500 } 501 502 static void release_pte_pages(pte_t *pte, pte_t *_pte, 503 struct list_head *compound_pagelist) 504 { 505 struct page *page, *tmp; 506 507 while (--_pte >= pte) { 508 pte_t pteval = *_pte; 509 510 page = pte_page(pteval); 511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 512 !PageCompound(page)) 513 release_pte_page(page); 514 } 515 516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 517 list_del(&page->lru); 518 release_pte_page(page); 519 } 520 } 521 522 static bool is_refcount_suitable(struct page *page) 523 { 524 int expected_refcount; 525 526 expected_refcount = total_mapcount(page); 527 if (PageSwapCache(page)) 528 expected_refcount += compound_nr(page); 529 530 return page_count(page) == expected_refcount; 531 } 532 533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 534 unsigned long address, 535 pte_t *pte, 536 struct collapse_control *cc, 537 struct list_head *compound_pagelist) 538 { 539 struct page *page = NULL; 540 pte_t *_pte; 541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 542 bool writable = false; 543 544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 545 _pte++, address += PAGE_SIZE) { 546 pte_t pteval = *_pte; 547 if (pte_none(pteval) || (pte_present(pteval) && 548 is_zero_pfn(pte_pfn(pteval)))) { 549 ++none_or_zero; 550 if (!userfaultfd_armed(vma) && 551 (!cc->is_khugepaged || 552 none_or_zero <= khugepaged_max_ptes_none)) { 553 continue; 554 } else { 555 result = SCAN_EXCEED_NONE_PTE; 556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 557 goto out; 558 } 559 } 560 if (!pte_present(pteval)) { 561 result = SCAN_PTE_NON_PRESENT; 562 goto out; 563 } 564 page = vm_normal_page(vma, address, pteval); 565 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 566 result = SCAN_PAGE_NULL; 567 goto out; 568 } 569 570 VM_BUG_ON_PAGE(!PageAnon(page), page); 571 572 if (page_mapcount(page) > 1) { 573 ++shared; 574 if (cc->is_khugepaged && 575 shared > khugepaged_max_ptes_shared) { 576 result = SCAN_EXCEED_SHARED_PTE; 577 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 578 goto out; 579 } 580 } 581 582 if (PageCompound(page)) { 583 struct page *p; 584 page = compound_head(page); 585 586 /* 587 * Check if we have dealt with the compound page 588 * already 589 */ 590 list_for_each_entry(p, compound_pagelist, lru) { 591 if (page == p) 592 goto next; 593 } 594 } 595 596 /* 597 * We can do it before isolate_lru_page because the 598 * page can't be freed from under us. NOTE: PG_lock 599 * is needed to serialize against split_huge_page 600 * when invoked from the VM. 601 */ 602 if (!trylock_page(page)) { 603 result = SCAN_PAGE_LOCK; 604 goto out; 605 } 606 607 /* 608 * Check if the page has any GUP (or other external) pins. 609 * 610 * The page table that maps the page has been already unlinked 611 * from the page table tree and this process cannot get 612 * an additional pin on the page. 613 * 614 * New pins can come later if the page is shared across fork, 615 * but not from this process. The other process cannot write to 616 * the page, only trigger CoW. 617 */ 618 if (!is_refcount_suitable(page)) { 619 unlock_page(page); 620 result = SCAN_PAGE_COUNT; 621 goto out; 622 } 623 624 /* 625 * Isolate the page to avoid collapsing an hugepage 626 * currently in use by the VM. 627 */ 628 if (isolate_lru_page(page)) { 629 unlock_page(page); 630 result = SCAN_DEL_PAGE_LRU; 631 goto out; 632 } 633 mod_node_page_state(page_pgdat(page), 634 NR_ISOLATED_ANON + page_is_file_lru(page), 635 compound_nr(page)); 636 VM_BUG_ON_PAGE(!PageLocked(page), page); 637 VM_BUG_ON_PAGE(PageLRU(page), page); 638 639 if (PageCompound(page)) 640 list_add_tail(&page->lru, compound_pagelist); 641 next: 642 /* 643 * If collapse was initiated by khugepaged, check that there is 644 * enough young pte to justify collapsing the page 645 */ 646 if (cc->is_khugepaged && 647 (pte_young(pteval) || page_is_young(page) || 648 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 649 address))) 650 referenced++; 651 652 if (pte_write(pteval)) 653 writable = true; 654 } 655 656 if (unlikely(!writable)) { 657 result = SCAN_PAGE_RO; 658 } else if (unlikely(cc->is_khugepaged && !referenced)) { 659 result = SCAN_LACK_REFERENCED_PAGE; 660 } else { 661 result = SCAN_SUCCEED; 662 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 663 referenced, writable, result); 664 return result; 665 } 666 out: 667 release_pte_pages(pte, _pte, compound_pagelist); 668 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 669 referenced, writable, result); 670 return result; 671 } 672 673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 674 struct vm_area_struct *vma, 675 unsigned long address, 676 spinlock_t *ptl, 677 struct list_head *compound_pagelist) 678 { 679 struct page *src_page, *tmp; 680 pte_t *_pte; 681 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 682 _pte++, page++, address += PAGE_SIZE) { 683 pte_t pteval = *_pte; 684 685 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 686 clear_user_highpage(page, address); 687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 688 if (is_zero_pfn(pte_pfn(pteval))) { 689 /* 690 * ptl mostly unnecessary. 691 */ 692 spin_lock(ptl); 693 ptep_clear(vma->vm_mm, address, _pte); 694 spin_unlock(ptl); 695 } 696 } else { 697 src_page = pte_page(pteval); 698 copy_user_highpage(page, src_page, address, vma); 699 if (!PageCompound(src_page)) 700 release_pte_page(src_page); 701 /* 702 * ptl mostly unnecessary, but preempt has to 703 * be disabled to update the per-cpu stats 704 * inside page_remove_rmap(). 705 */ 706 spin_lock(ptl); 707 ptep_clear(vma->vm_mm, address, _pte); 708 page_remove_rmap(src_page, vma, false); 709 spin_unlock(ptl); 710 free_page_and_swap_cache(src_page); 711 } 712 } 713 714 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 715 list_del(&src_page->lru); 716 mod_node_page_state(page_pgdat(src_page), 717 NR_ISOLATED_ANON + page_is_file_lru(src_page), 718 -compound_nr(src_page)); 719 unlock_page(src_page); 720 free_swap_cache(src_page); 721 putback_lru_page(src_page); 722 } 723 } 724 725 static void khugepaged_alloc_sleep(void) 726 { 727 DEFINE_WAIT(wait); 728 729 add_wait_queue(&khugepaged_wait, &wait); 730 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 731 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 732 remove_wait_queue(&khugepaged_wait, &wait); 733 } 734 735 struct collapse_control khugepaged_collapse_control = { 736 .is_khugepaged = true, 737 }; 738 739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 740 { 741 int i; 742 743 /* 744 * If node_reclaim_mode is disabled, then no extra effort is made to 745 * allocate memory locally. 746 */ 747 if (!node_reclaim_enabled()) 748 return false; 749 750 /* If there is a count for this node already, it must be acceptable */ 751 if (cc->node_load[nid]) 752 return false; 753 754 for (i = 0; i < MAX_NUMNODES; i++) { 755 if (!cc->node_load[i]) 756 continue; 757 if (node_distance(nid, i) > node_reclaim_distance) 758 return true; 759 } 760 return false; 761 } 762 763 #define khugepaged_defrag() \ 764 (transparent_hugepage_flags & \ 765 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 766 767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 769 { 770 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 771 } 772 773 #ifdef CONFIG_NUMA 774 static int hpage_collapse_find_target_node(struct collapse_control *cc) 775 { 776 int nid, target_node = 0, max_value = 0; 777 778 /* find first node with max normal pages hit */ 779 for (nid = 0; nid < MAX_NUMNODES; nid++) 780 if (cc->node_load[nid] > max_value) { 781 max_value = cc->node_load[nid]; 782 target_node = nid; 783 } 784 785 for_each_online_node(nid) { 786 if (max_value == cc->node_load[nid]) 787 node_set(nid, cc->alloc_nmask); 788 } 789 790 return target_node; 791 } 792 #else 793 static int hpage_collapse_find_target_node(struct collapse_control *cc) 794 { 795 return 0; 796 } 797 #endif 798 799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 800 nodemask_t *nmask) 801 { 802 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 803 if (unlikely(!*hpage)) { 804 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 805 return false; 806 } 807 808 prep_transhuge_page(*hpage); 809 count_vm_event(THP_COLLAPSE_ALLOC); 810 return true; 811 } 812 813 /* 814 * If mmap_lock temporarily dropped, revalidate vma 815 * before taking mmap_lock. 816 * Returns enum scan_result value. 817 */ 818 819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 820 bool expect_anon, 821 struct vm_area_struct **vmap, 822 struct collapse_control *cc) 823 { 824 struct vm_area_struct *vma; 825 826 if (unlikely(hpage_collapse_test_exit(mm))) 827 return SCAN_ANY_PROCESS; 828 829 *vmap = vma = find_vma(mm, address); 830 if (!vma) 831 return SCAN_VMA_NULL; 832 833 if (!transhuge_vma_suitable(vma, address)) 834 return SCAN_ADDRESS_RANGE; 835 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 836 cc->is_khugepaged)) 837 return SCAN_VMA_CHECK; 838 /* 839 * Anon VMA expected, the address may be unmapped then 840 * remapped to file after khugepaged reaquired the mmap_lock. 841 * 842 * hugepage_vma_check may return true for qualified file 843 * vmas. 844 */ 845 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 846 return SCAN_PAGE_ANON; 847 return SCAN_SUCCEED; 848 } 849 850 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 851 unsigned long address, 852 pmd_t **pmd) 853 { 854 pmd_t pmde; 855 856 *pmd = mm_find_pmd(mm, address); 857 if (!*pmd) 858 return SCAN_PMD_NULL; 859 860 pmde = pmdp_get_lockless(*pmd); 861 862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 863 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 864 barrier(); 865 #endif 866 if (pmd_none(pmde)) 867 return SCAN_PMD_NONE; 868 if (pmd_trans_huge(pmde)) 869 return SCAN_PMD_MAPPED; 870 if (pmd_bad(pmde)) 871 return SCAN_PMD_NULL; 872 return SCAN_SUCCEED; 873 } 874 875 static int check_pmd_still_valid(struct mm_struct *mm, 876 unsigned long address, 877 pmd_t *pmd) 878 { 879 pmd_t *new_pmd; 880 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 881 882 if (result != SCAN_SUCCEED) 883 return result; 884 if (new_pmd != pmd) 885 return SCAN_FAIL; 886 return SCAN_SUCCEED; 887 } 888 889 /* 890 * Bring missing pages in from swap, to complete THP collapse. 891 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 892 * 893 * Called and returns without pte mapped or spinlocks held. 894 * Note that if false is returned, mmap_lock will be released. 895 */ 896 897 static int __collapse_huge_page_swapin(struct mm_struct *mm, 898 struct vm_area_struct *vma, 899 unsigned long haddr, pmd_t *pmd, 900 int referenced) 901 { 902 int swapped_in = 0; 903 vm_fault_t ret = 0; 904 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 905 906 for (address = haddr; address < end; address += PAGE_SIZE) { 907 struct vm_fault vmf = { 908 .vma = vma, 909 .address = address, 910 .pgoff = linear_page_index(vma, haddr), 911 .flags = FAULT_FLAG_ALLOW_RETRY, 912 .pmd = pmd, 913 }; 914 915 vmf.pte = pte_offset_map(pmd, address); 916 vmf.orig_pte = *vmf.pte; 917 if (!is_swap_pte(vmf.orig_pte)) { 918 pte_unmap(vmf.pte); 919 continue; 920 } 921 ret = do_swap_page(&vmf); 922 923 /* 924 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 925 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 926 * we do not retry here and swap entry will remain in pagetable 927 * resulting in later failure. 928 */ 929 if (ret & VM_FAULT_RETRY) { 930 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 931 /* Likely, but not guaranteed, that page lock failed */ 932 return SCAN_PAGE_LOCK; 933 } 934 if (ret & VM_FAULT_ERROR) { 935 mmap_read_unlock(mm); 936 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 937 return SCAN_FAIL; 938 } 939 swapped_in++; 940 } 941 942 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 943 if (swapped_in) 944 lru_add_drain(); 945 946 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 947 return SCAN_SUCCEED; 948 } 949 950 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 951 struct collapse_control *cc) 952 { 953 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 954 GFP_TRANSHUGE); 955 int node = hpage_collapse_find_target_node(cc); 956 957 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 958 return SCAN_ALLOC_HUGE_PAGE_FAIL; 959 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 960 return SCAN_CGROUP_CHARGE_FAIL; 961 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 962 return SCAN_SUCCEED; 963 } 964 965 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 966 int referenced, int unmapped, 967 struct collapse_control *cc) 968 { 969 LIST_HEAD(compound_pagelist); 970 pmd_t *pmd, _pmd; 971 pte_t *pte; 972 pgtable_t pgtable; 973 struct page *hpage; 974 spinlock_t *pmd_ptl, *pte_ptl; 975 int result = SCAN_FAIL; 976 struct vm_area_struct *vma; 977 struct mmu_notifier_range range; 978 979 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 980 981 /* 982 * Before allocating the hugepage, release the mmap_lock read lock. 983 * The allocation can take potentially a long time if it involves 984 * sync compaction, and we do not need to hold the mmap_lock during 985 * that. We will recheck the vma after taking it again in write mode. 986 */ 987 mmap_read_unlock(mm); 988 989 result = alloc_charge_hpage(&hpage, mm, cc); 990 if (result != SCAN_SUCCEED) 991 goto out_nolock; 992 993 mmap_read_lock(mm); 994 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 995 if (result != SCAN_SUCCEED) { 996 mmap_read_unlock(mm); 997 goto out_nolock; 998 } 999 1000 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1001 if (result != SCAN_SUCCEED) { 1002 mmap_read_unlock(mm); 1003 goto out_nolock; 1004 } 1005 1006 if (unmapped) { 1007 /* 1008 * __collapse_huge_page_swapin will return with mmap_lock 1009 * released when it fails. So we jump out_nolock directly in 1010 * that case. Continuing to collapse causes inconsistency. 1011 */ 1012 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1013 referenced); 1014 if (result != SCAN_SUCCEED) 1015 goto out_nolock; 1016 } 1017 1018 mmap_read_unlock(mm); 1019 /* 1020 * Prevent all access to pagetables with the exception of 1021 * gup_fast later handled by the ptep_clear_flush and the VM 1022 * handled by the anon_vma lock + PG_lock. 1023 */ 1024 mmap_write_lock(mm); 1025 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1026 if (result != SCAN_SUCCEED) 1027 goto out_up_write; 1028 /* check if the pmd is still valid */ 1029 result = check_pmd_still_valid(mm, address, pmd); 1030 if (result != SCAN_SUCCEED) 1031 goto out_up_write; 1032 1033 anon_vma_lock_write(vma->anon_vma); 1034 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1036 address, address + HPAGE_PMD_SIZE); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 pte = pte_offset_map(pmd, address); 1040 pte_ptl = pte_lockptr(mm, pmd); 1041 1042 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1043 /* 1044 * This removes any huge TLB entry from the CPU so we won't allow 1045 * huge and small TLB entries for the same virtual address to 1046 * avoid the risk of CPU bugs in that area. 1047 * 1048 * Parallel fast GUP is fine since fast GUP will back off when 1049 * it detects PMD is changed. 1050 */ 1051 _pmd = pmdp_collapse_flush(vma, address, pmd); 1052 spin_unlock(pmd_ptl); 1053 mmu_notifier_invalidate_range_end(&range); 1054 tlb_remove_table_sync_one(); 1055 1056 spin_lock(pte_ptl); 1057 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1058 &compound_pagelist); 1059 spin_unlock(pte_ptl); 1060 1061 if (unlikely(result != SCAN_SUCCEED)) { 1062 pte_unmap(pte); 1063 spin_lock(pmd_ptl); 1064 BUG_ON(!pmd_none(*pmd)); 1065 /* 1066 * We can only use set_pmd_at when establishing 1067 * hugepmds and never for establishing regular pmds that 1068 * points to regular pagetables. Use pmd_populate for that 1069 */ 1070 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1071 spin_unlock(pmd_ptl); 1072 anon_vma_unlock_write(vma->anon_vma); 1073 goto out_up_write; 1074 } 1075 1076 /* 1077 * All pages are isolated and locked so anon_vma rmap 1078 * can't run anymore. 1079 */ 1080 anon_vma_unlock_write(vma->anon_vma); 1081 1082 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1083 &compound_pagelist); 1084 pte_unmap(pte); 1085 /* 1086 * spin_lock() below is not the equivalent of smp_wmb(), but 1087 * the smp_wmb() inside __SetPageUptodate() can be reused to 1088 * avoid the copy_huge_page writes to become visible after 1089 * the set_pmd_at() write. 1090 */ 1091 __SetPageUptodate(hpage); 1092 pgtable = pmd_pgtable(_pmd); 1093 1094 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1095 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1096 1097 spin_lock(pmd_ptl); 1098 BUG_ON(!pmd_none(*pmd)); 1099 page_add_new_anon_rmap(hpage, vma, address); 1100 lru_cache_add_inactive_or_unevictable(hpage, vma); 1101 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1102 set_pmd_at(mm, address, pmd, _pmd); 1103 update_mmu_cache_pmd(vma, address, pmd); 1104 spin_unlock(pmd_ptl); 1105 1106 hpage = NULL; 1107 1108 result = SCAN_SUCCEED; 1109 out_up_write: 1110 mmap_write_unlock(mm); 1111 out_nolock: 1112 if (hpage) { 1113 mem_cgroup_uncharge(page_folio(hpage)); 1114 put_page(hpage); 1115 } 1116 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1117 return result; 1118 } 1119 1120 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1121 struct vm_area_struct *vma, 1122 unsigned long address, bool *mmap_locked, 1123 struct collapse_control *cc) 1124 { 1125 pmd_t *pmd; 1126 pte_t *pte, *_pte; 1127 int result = SCAN_FAIL, referenced = 0; 1128 int none_or_zero = 0, shared = 0; 1129 struct page *page = NULL; 1130 unsigned long _address; 1131 spinlock_t *ptl; 1132 int node = NUMA_NO_NODE, unmapped = 0; 1133 bool writable = false; 1134 1135 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1136 1137 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1138 if (result != SCAN_SUCCEED) 1139 goto out; 1140 1141 memset(cc->node_load, 0, sizeof(cc->node_load)); 1142 nodes_clear(cc->alloc_nmask); 1143 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1144 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1145 _pte++, _address += PAGE_SIZE) { 1146 pte_t pteval = *_pte; 1147 if (is_swap_pte(pteval)) { 1148 ++unmapped; 1149 if (!cc->is_khugepaged || 1150 unmapped <= khugepaged_max_ptes_swap) { 1151 /* 1152 * Always be strict with uffd-wp 1153 * enabled swap entries. Please see 1154 * comment below for pte_uffd_wp(). 1155 */ 1156 if (pte_swp_uffd_wp(pteval)) { 1157 result = SCAN_PTE_UFFD_WP; 1158 goto out_unmap; 1159 } 1160 continue; 1161 } else { 1162 result = SCAN_EXCEED_SWAP_PTE; 1163 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1164 goto out_unmap; 1165 } 1166 } 1167 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1168 ++none_or_zero; 1169 if (!userfaultfd_armed(vma) && 1170 (!cc->is_khugepaged || 1171 none_or_zero <= khugepaged_max_ptes_none)) { 1172 continue; 1173 } else { 1174 result = SCAN_EXCEED_NONE_PTE; 1175 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1176 goto out_unmap; 1177 } 1178 } 1179 if (pte_uffd_wp(pteval)) { 1180 /* 1181 * Don't collapse the page if any of the small 1182 * PTEs are armed with uffd write protection. 1183 * Here we can also mark the new huge pmd as 1184 * write protected if any of the small ones is 1185 * marked but that could bring unknown 1186 * userfault messages that falls outside of 1187 * the registered range. So, just be simple. 1188 */ 1189 result = SCAN_PTE_UFFD_WP; 1190 goto out_unmap; 1191 } 1192 if (pte_write(pteval)) 1193 writable = true; 1194 1195 page = vm_normal_page(vma, _address, pteval); 1196 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1197 result = SCAN_PAGE_NULL; 1198 goto out_unmap; 1199 } 1200 1201 if (page_mapcount(page) > 1) { 1202 ++shared; 1203 if (cc->is_khugepaged && 1204 shared > khugepaged_max_ptes_shared) { 1205 result = SCAN_EXCEED_SHARED_PTE; 1206 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1207 goto out_unmap; 1208 } 1209 } 1210 1211 page = compound_head(page); 1212 1213 /* 1214 * Record which node the original page is from and save this 1215 * information to cc->node_load[]. 1216 * Khugepaged will allocate hugepage from the node has the max 1217 * hit record. 1218 */ 1219 node = page_to_nid(page); 1220 if (hpage_collapse_scan_abort(node, cc)) { 1221 result = SCAN_SCAN_ABORT; 1222 goto out_unmap; 1223 } 1224 cc->node_load[node]++; 1225 if (!PageLRU(page)) { 1226 result = SCAN_PAGE_LRU; 1227 goto out_unmap; 1228 } 1229 if (PageLocked(page)) { 1230 result = SCAN_PAGE_LOCK; 1231 goto out_unmap; 1232 } 1233 if (!PageAnon(page)) { 1234 result = SCAN_PAGE_ANON; 1235 goto out_unmap; 1236 } 1237 1238 /* 1239 * Check if the page has any GUP (or other external) pins. 1240 * 1241 * Here the check may be racy: 1242 * it may see total_mapcount > refcount in some cases? 1243 * But such case is ephemeral we could always retry collapse 1244 * later. However it may report false positive if the page 1245 * has excessive GUP pins (i.e. 512). Anyway the same check 1246 * will be done again later the risk seems low. 1247 */ 1248 if (!is_refcount_suitable(page)) { 1249 result = SCAN_PAGE_COUNT; 1250 goto out_unmap; 1251 } 1252 1253 /* 1254 * If collapse was initiated by khugepaged, check that there is 1255 * enough young pte to justify collapsing the page 1256 */ 1257 if (cc->is_khugepaged && 1258 (pte_young(pteval) || page_is_young(page) || 1259 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1260 address))) 1261 referenced++; 1262 } 1263 if (!writable) { 1264 result = SCAN_PAGE_RO; 1265 } else if (cc->is_khugepaged && 1266 (!referenced || 1267 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1268 result = SCAN_LACK_REFERENCED_PAGE; 1269 } else { 1270 result = SCAN_SUCCEED; 1271 } 1272 out_unmap: 1273 pte_unmap_unlock(pte, ptl); 1274 if (result == SCAN_SUCCEED) { 1275 result = collapse_huge_page(mm, address, referenced, 1276 unmapped, cc); 1277 /* collapse_huge_page will return with the mmap_lock released */ 1278 *mmap_locked = false; 1279 } 1280 out: 1281 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1282 none_or_zero, result, unmapped); 1283 return result; 1284 } 1285 1286 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1287 { 1288 struct mm_slot *slot = &mm_slot->slot; 1289 struct mm_struct *mm = slot->mm; 1290 1291 lockdep_assert_held(&khugepaged_mm_lock); 1292 1293 if (hpage_collapse_test_exit(mm)) { 1294 /* free mm_slot */ 1295 hash_del(&slot->hash); 1296 list_del(&slot->mm_node); 1297 1298 /* 1299 * Not strictly needed because the mm exited already. 1300 * 1301 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1302 */ 1303 1304 /* khugepaged_mm_lock actually not necessary for the below */ 1305 mm_slot_free(mm_slot_cache, mm_slot); 1306 mmdrop(mm); 1307 } 1308 } 1309 1310 #ifdef CONFIG_SHMEM 1311 /* 1312 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1313 * khugepaged should try to collapse the page table. 1314 * 1315 * Note that following race exists: 1316 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1317 * emptying the A's ->pte_mapped_thp[] array. 1318 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1319 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1320 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1321 * ->pte-mapped_thp[] array. 1322 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1323 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1324 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1325 * Thus, it's possible the same address is added multiple times for the same 1326 * mm_struct. Should this happen, we'll simply attempt 1327 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1328 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1329 * attempts will return quickly (without grabbing any additional locks) when 1330 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1331 * check, and since this is a rare occurrence, the cost of preventing this 1332 * "multiple-add" is thought to be more expensive than just handling it, should 1333 * it occur. 1334 */ 1335 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1336 unsigned long addr) 1337 { 1338 struct khugepaged_mm_slot *mm_slot; 1339 struct mm_slot *slot; 1340 bool ret = false; 1341 1342 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1343 1344 spin_lock(&khugepaged_mm_lock); 1345 slot = mm_slot_lookup(mm_slots_hash, mm); 1346 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1347 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1348 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1349 ret = true; 1350 } 1351 spin_unlock(&khugepaged_mm_lock); 1352 return ret; 1353 } 1354 1355 /* hpage must be locked, and mmap_lock must be held in write */ 1356 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1357 pmd_t *pmdp, struct page *hpage) 1358 { 1359 struct vm_fault vmf = { 1360 .vma = vma, 1361 .address = addr, 1362 .flags = 0, 1363 .pmd = pmdp, 1364 }; 1365 1366 VM_BUG_ON(!PageTransHuge(hpage)); 1367 mmap_assert_write_locked(vma->vm_mm); 1368 1369 if (do_set_pmd(&vmf, hpage)) 1370 return SCAN_FAIL; 1371 1372 get_page(hpage); 1373 return SCAN_SUCCEED; 1374 } 1375 1376 /* 1377 * A note about locking: 1378 * Trying to take the page table spinlocks would be useless here because those 1379 * are only used to synchronize: 1380 * 1381 * - modifying terminal entries (ones that point to a data page, not to another 1382 * page table) 1383 * - installing *new* non-terminal entries 1384 * 1385 * Instead, we need roughly the same kind of protection as free_pgtables() or 1386 * mm_take_all_locks() (but only for a single VMA): 1387 * The mmap lock together with this VMA's rmap locks covers all paths towards 1388 * the page table entries we're messing with here, except for hardware page 1389 * table walks and lockless_pages_from_mm(). 1390 */ 1391 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1392 unsigned long addr, pmd_t *pmdp) 1393 { 1394 pmd_t pmd; 1395 struct mmu_notifier_range range; 1396 1397 mmap_assert_write_locked(mm); 1398 if (vma->vm_file) 1399 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1400 /* 1401 * All anon_vmas attached to the VMA have the same root and are 1402 * therefore locked by the same lock. 1403 */ 1404 if (vma->anon_vma) 1405 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1406 1407 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr, 1408 addr + HPAGE_PMD_SIZE); 1409 mmu_notifier_invalidate_range_start(&range); 1410 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1411 tlb_remove_table_sync_one(); 1412 mmu_notifier_invalidate_range_end(&range); 1413 mm_dec_nr_ptes(mm); 1414 page_table_check_pte_clear_range(mm, addr, pmd); 1415 pte_free(mm, pmd_pgtable(pmd)); 1416 } 1417 1418 /** 1419 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1420 * address haddr. 1421 * 1422 * @mm: process address space where collapse happens 1423 * @addr: THP collapse address 1424 * @install_pmd: If a huge PMD should be installed 1425 * 1426 * This function checks whether all the PTEs in the PMD are pointing to the 1427 * right THP. If so, retract the page table so the THP can refault in with 1428 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1429 */ 1430 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1431 bool install_pmd) 1432 { 1433 unsigned long haddr = addr & HPAGE_PMD_MASK; 1434 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1435 struct page *hpage; 1436 pte_t *start_pte, *pte; 1437 pmd_t *pmd; 1438 spinlock_t *ptl; 1439 int count = 0, result = SCAN_FAIL; 1440 int i; 1441 1442 mmap_assert_write_locked(mm); 1443 1444 /* Fast check before locking page if already PMD-mapped */ 1445 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1446 if (result == SCAN_PMD_MAPPED) 1447 return result; 1448 1449 if (!vma || !vma->vm_file || 1450 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1451 return SCAN_VMA_CHECK; 1452 1453 /* 1454 * If we are here, we've succeeded in replacing all the native pages 1455 * in the page cache with a single hugepage. If a mm were to fault-in 1456 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1457 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1458 * analogously elide sysfs THP settings here. 1459 */ 1460 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1461 return SCAN_VMA_CHECK; 1462 1463 /* 1464 * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings 1465 * that got written to. Without this, we'd have to also lock the 1466 * anon_vma if one exists. 1467 */ 1468 if (vma->anon_vma) 1469 return SCAN_VMA_CHECK; 1470 1471 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1472 if (userfaultfd_wp(vma)) 1473 return SCAN_PTE_UFFD_WP; 1474 1475 hpage = find_lock_page(vma->vm_file->f_mapping, 1476 linear_page_index(vma, haddr)); 1477 if (!hpage) 1478 return SCAN_PAGE_NULL; 1479 1480 if (!PageHead(hpage)) { 1481 result = SCAN_FAIL; 1482 goto drop_hpage; 1483 } 1484 1485 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1486 result = SCAN_PAGE_COMPOUND; 1487 goto drop_hpage; 1488 } 1489 1490 switch (result) { 1491 case SCAN_SUCCEED: 1492 break; 1493 case SCAN_PMD_NONE: 1494 /* 1495 * In MADV_COLLAPSE path, possible race with khugepaged where 1496 * all pte entries have been removed and pmd cleared. If so, 1497 * skip all the pte checks and just update the pmd mapping. 1498 */ 1499 goto maybe_install_pmd; 1500 default: 1501 goto drop_hpage; 1502 } 1503 1504 /* 1505 * We need to lock the mapping so that from here on, only GUP-fast and 1506 * hardware page walks can access the parts of the page tables that 1507 * we're operating on. 1508 * See collapse_and_free_pmd(). 1509 */ 1510 i_mmap_lock_write(vma->vm_file->f_mapping); 1511 1512 /* 1513 * This spinlock should be unnecessary: Nobody else should be accessing 1514 * the page tables under spinlock protection here, only 1515 * lockless_pages_from_mm() and the hardware page walker can access page 1516 * tables while all the high-level locks are held in write mode. 1517 */ 1518 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1519 result = SCAN_FAIL; 1520 1521 /* step 1: check all mapped PTEs are to the right huge page */ 1522 for (i = 0, addr = haddr, pte = start_pte; 1523 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1524 struct page *page; 1525 1526 /* empty pte, skip */ 1527 if (pte_none(*pte)) 1528 continue; 1529 1530 /* page swapped out, abort */ 1531 if (!pte_present(*pte)) { 1532 result = SCAN_PTE_NON_PRESENT; 1533 goto abort; 1534 } 1535 1536 page = vm_normal_page(vma, addr, *pte); 1537 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1538 page = NULL; 1539 /* 1540 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1541 * page table, but the new page will not be a subpage of hpage. 1542 */ 1543 if (hpage + i != page) 1544 goto abort; 1545 count++; 1546 } 1547 1548 /* step 2: adjust rmap */ 1549 for (i = 0, addr = haddr, pte = start_pte; 1550 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1551 struct page *page; 1552 1553 if (pte_none(*pte)) 1554 continue; 1555 page = vm_normal_page(vma, addr, *pte); 1556 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1557 goto abort; 1558 page_remove_rmap(page, vma, false); 1559 } 1560 1561 pte_unmap_unlock(start_pte, ptl); 1562 1563 /* step 3: set proper refcount and mm_counters. */ 1564 if (count) { 1565 page_ref_sub(hpage, count); 1566 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1567 } 1568 1569 /* step 4: remove pte entries */ 1570 collapse_and_free_pmd(mm, vma, haddr, pmd); 1571 1572 i_mmap_unlock_write(vma->vm_file->f_mapping); 1573 1574 maybe_install_pmd: 1575 /* step 5: install pmd entry */ 1576 result = install_pmd 1577 ? set_huge_pmd(vma, haddr, pmd, hpage) 1578 : SCAN_SUCCEED; 1579 1580 drop_hpage: 1581 unlock_page(hpage); 1582 put_page(hpage); 1583 return result; 1584 1585 abort: 1586 pte_unmap_unlock(start_pte, ptl); 1587 i_mmap_unlock_write(vma->vm_file->f_mapping); 1588 goto drop_hpage; 1589 } 1590 1591 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1592 { 1593 struct mm_slot *slot = &mm_slot->slot; 1594 struct mm_struct *mm = slot->mm; 1595 int i; 1596 1597 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1598 return; 1599 1600 if (!mmap_write_trylock(mm)) 1601 return; 1602 1603 if (unlikely(hpage_collapse_test_exit(mm))) 1604 goto out; 1605 1606 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1607 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1608 1609 out: 1610 mm_slot->nr_pte_mapped_thp = 0; 1611 mmap_write_unlock(mm); 1612 } 1613 1614 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1615 struct mm_struct *target_mm, 1616 unsigned long target_addr, struct page *hpage, 1617 struct collapse_control *cc) 1618 { 1619 struct vm_area_struct *vma; 1620 int target_result = SCAN_FAIL; 1621 1622 i_mmap_lock_write(mapping); 1623 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1624 int result = SCAN_FAIL; 1625 struct mm_struct *mm = NULL; 1626 unsigned long addr = 0; 1627 pmd_t *pmd; 1628 bool is_target = false; 1629 1630 /* 1631 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1632 * got written to. These VMAs are likely not worth investing 1633 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1634 * later. 1635 * 1636 * Note that vma->anon_vma check is racy: it can be set up after 1637 * the check but before we took mmap_lock by the fault path. 1638 * But page lock would prevent establishing any new ptes of the 1639 * page, so we are safe. 1640 * 1641 * An alternative would be drop the check, but check that page 1642 * table is clear before calling pmdp_collapse_flush() under 1643 * ptl. It has higher chance to recover THP for the VMA, but 1644 * has higher cost too. It would also probably require locking 1645 * the anon_vma. 1646 */ 1647 if (vma->anon_vma) { 1648 result = SCAN_PAGE_ANON; 1649 goto next; 1650 } 1651 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1652 if (addr & ~HPAGE_PMD_MASK || 1653 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1654 result = SCAN_VMA_CHECK; 1655 goto next; 1656 } 1657 mm = vma->vm_mm; 1658 is_target = mm == target_mm && addr == target_addr; 1659 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1660 if (result != SCAN_SUCCEED) 1661 goto next; 1662 /* 1663 * We need exclusive mmap_lock to retract page table. 1664 * 1665 * We use trylock due to lock inversion: we need to acquire 1666 * mmap_lock while holding page lock. Fault path does it in 1667 * reverse order. Trylock is a way to avoid deadlock. 1668 * 1669 * Also, it's not MADV_COLLAPSE's job to collapse other 1670 * mappings - let khugepaged take care of them later. 1671 */ 1672 result = SCAN_PTE_MAPPED_HUGEPAGE; 1673 if ((cc->is_khugepaged || is_target) && 1674 mmap_write_trylock(mm)) { 1675 /* 1676 * When a vma is registered with uffd-wp, we can't 1677 * recycle the pmd pgtable because there can be pte 1678 * markers installed. Skip it only, so the rest mm/vma 1679 * can still have the same file mapped hugely, however 1680 * it'll always mapped in small page size for uffd-wp 1681 * registered ranges. 1682 */ 1683 if (hpage_collapse_test_exit(mm)) { 1684 result = SCAN_ANY_PROCESS; 1685 goto unlock_next; 1686 } 1687 if (userfaultfd_wp(vma)) { 1688 result = SCAN_PTE_UFFD_WP; 1689 goto unlock_next; 1690 } 1691 collapse_and_free_pmd(mm, vma, addr, pmd); 1692 if (!cc->is_khugepaged && is_target) 1693 result = set_huge_pmd(vma, addr, pmd, hpage); 1694 else 1695 result = SCAN_SUCCEED; 1696 1697 unlock_next: 1698 mmap_write_unlock(mm); 1699 goto next; 1700 } 1701 /* 1702 * Calling context will handle target mm/addr. Otherwise, let 1703 * khugepaged try again later. 1704 */ 1705 if (!is_target) { 1706 khugepaged_add_pte_mapped_thp(mm, addr); 1707 continue; 1708 } 1709 next: 1710 if (is_target) 1711 target_result = result; 1712 } 1713 i_mmap_unlock_write(mapping); 1714 return target_result; 1715 } 1716 1717 /** 1718 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1719 * 1720 * @mm: process address space where collapse happens 1721 * @addr: virtual collapse start address 1722 * @file: file that collapse on 1723 * @start: collapse start address 1724 * @cc: collapse context and scratchpad 1725 * 1726 * Basic scheme is simple, details are more complex: 1727 * - allocate and lock a new huge page; 1728 * - scan page cache replacing old pages with the new one 1729 * + swap/gup in pages if necessary; 1730 * + fill in gaps; 1731 * + keep old pages around in case rollback is required; 1732 * - if replacing succeeds: 1733 * + copy data over; 1734 * + free old pages; 1735 * + unlock huge page; 1736 * - if replacing failed; 1737 * + put all pages back and unfreeze them; 1738 * + restore gaps in the page cache; 1739 * + unlock and free huge page; 1740 */ 1741 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1742 struct file *file, pgoff_t start, 1743 struct collapse_control *cc) 1744 { 1745 struct address_space *mapping = file->f_mapping; 1746 struct page *hpage; 1747 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1748 LIST_HEAD(pagelist); 1749 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1750 int nr_none = 0, result = SCAN_SUCCEED; 1751 bool is_shmem = shmem_file(file); 1752 int nr = 0; 1753 1754 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1755 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1756 1757 result = alloc_charge_hpage(&hpage, mm, cc); 1758 if (result != SCAN_SUCCEED) 1759 goto out; 1760 1761 /* 1762 * Ensure we have slots for all the pages in the range. This is 1763 * almost certainly a no-op because most of the pages must be present 1764 */ 1765 do { 1766 xas_lock_irq(&xas); 1767 xas_create_range(&xas); 1768 if (!xas_error(&xas)) 1769 break; 1770 xas_unlock_irq(&xas); 1771 if (!xas_nomem(&xas, GFP_KERNEL)) { 1772 result = SCAN_FAIL; 1773 goto out; 1774 } 1775 } while (1); 1776 1777 __SetPageLocked(hpage); 1778 if (is_shmem) 1779 __SetPageSwapBacked(hpage); 1780 hpage->index = start; 1781 hpage->mapping = mapping; 1782 1783 /* 1784 * At this point the hpage is locked and not up-to-date. 1785 * It's safe to insert it into the page cache, because nobody would 1786 * be able to map it or use it in another way until we unlock it. 1787 */ 1788 1789 xas_set(&xas, start); 1790 for (index = start; index < end; index++) { 1791 struct page *page = xas_next(&xas); 1792 struct folio *folio; 1793 1794 VM_BUG_ON(index != xas.xa_index); 1795 if (is_shmem) { 1796 if (!page) { 1797 /* 1798 * Stop if extent has been truncated or 1799 * hole-punched, and is now completely 1800 * empty. 1801 */ 1802 if (index == start) { 1803 if (!xas_next_entry(&xas, end - 1)) { 1804 result = SCAN_TRUNCATED; 1805 goto xa_locked; 1806 } 1807 xas_set(&xas, index); 1808 } 1809 if (!shmem_charge(mapping->host, 1)) { 1810 result = SCAN_FAIL; 1811 goto xa_locked; 1812 } 1813 xas_store(&xas, hpage); 1814 nr_none++; 1815 continue; 1816 } 1817 1818 if (xa_is_value(page) || !PageUptodate(page)) { 1819 xas_unlock_irq(&xas); 1820 /* swap in or instantiate fallocated page */ 1821 if (shmem_get_folio(mapping->host, index, 1822 &folio, SGP_NOALLOC)) { 1823 result = SCAN_FAIL; 1824 goto xa_unlocked; 1825 } 1826 page = folio_file_page(folio, index); 1827 } else if (trylock_page(page)) { 1828 get_page(page); 1829 xas_unlock_irq(&xas); 1830 } else { 1831 result = SCAN_PAGE_LOCK; 1832 goto xa_locked; 1833 } 1834 } else { /* !is_shmem */ 1835 if (!page || xa_is_value(page)) { 1836 xas_unlock_irq(&xas); 1837 page_cache_sync_readahead(mapping, &file->f_ra, 1838 file, index, 1839 end - index); 1840 /* drain pagevecs to help isolate_lru_page() */ 1841 lru_add_drain(); 1842 page = find_lock_page(mapping, index); 1843 if (unlikely(page == NULL)) { 1844 result = SCAN_FAIL; 1845 goto xa_unlocked; 1846 } 1847 } else if (PageDirty(page)) { 1848 /* 1849 * khugepaged only works on read-only fd, 1850 * so this page is dirty because it hasn't 1851 * been flushed since first write. There 1852 * won't be new dirty pages. 1853 * 1854 * Trigger async flush here and hope the 1855 * writeback is done when khugepaged 1856 * revisits this page. 1857 * 1858 * This is a one-off situation. We are not 1859 * forcing writeback in loop. 1860 */ 1861 xas_unlock_irq(&xas); 1862 filemap_flush(mapping); 1863 result = SCAN_FAIL; 1864 goto xa_unlocked; 1865 } else if (PageWriteback(page)) { 1866 xas_unlock_irq(&xas); 1867 result = SCAN_FAIL; 1868 goto xa_unlocked; 1869 } else if (trylock_page(page)) { 1870 get_page(page); 1871 xas_unlock_irq(&xas); 1872 } else { 1873 result = SCAN_PAGE_LOCK; 1874 goto xa_locked; 1875 } 1876 } 1877 1878 /* 1879 * The page must be locked, so we can drop the i_pages lock 1880 * without racing with truncate. 1881 */ 1882 VM_BUG_ON_PAGE(!PageLocked(page), page); 1883 1884 /* make sure the page is up to date */ 1885 if (unlikely(!PageUptodate(page))) { 1886 result = SCAN_FAIL; 1887 goto out_unlock; 1888 } 1889 1890 /* 1891 * If file was truncated then extended, or hole-punched, before 1892 * we locked the first page, then a THP might be there already. 1893 * This will be discovered on the first iteration. 1894 */ 1895 if (PageTransCompound(page)) { 1896 struct page *head = compound_head(page); 1897 1898 result = compound_order(head) == HPAGE_PMD_ORDER && 1899 head->index == start 1900 /* Maybe PMD-mapped */ 1901 ? SCAN_PTE_MAPPED_HUGEPAGE 1902 : SCAN_PAGE_COMPOUND; 1903 goto out_unlock; 1904 } 1905 1906 folio = page_folio(page); 1907 1908 if (folio_mapping(folio) != mapping) { 1909 result = SCAN_TRUNCATED; 1910 goto out_unlock; 1911 } 1912 1913 if (!is_shmem && (folio_test_dirty(folio) || 1914 folio_test_writeback(folio))) { 1915 /* 1916 * khugepaged only works on read-only fd, so this 1917 * page is dirty because it hasn't been flushed 1918 * since first write. 1919 */ 1920 result = SCAN_FAIL; 1921 goto out_unlock; 1922 } 1923 1924 if (folio_isolate_lru(folio)) { 1925 result = SCAN_DEL_PAGE_LRU; 1926 goto out_unlock; 1927 } 1928 1929 if (folio_has_private(folio) && 1930 !filemap_release_folio(folio, GFP_KERNEL)) { 1931 result = SCAN_PAGE_HAS_PRIVATE; 1932 folio_putback_lru(folio); 1933 goto out_unlock; 1934 } 1935 1936 if (folio_mapped(folio)) 1937 try_to_unmap(folio, 1938 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1939 1940 xas_lock_irq(&xas); 1941 xas_set(&xas, index); 1942 1943 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1944 1945 /* 1946 * The page is expected to have page_count() == 3: 1947 * - we hold a pin on it; 1948 * - one reference from page cache; 1949 * - one from isolate_lru_page; 1950 */ 1951 if (!page_ref_freeze(page, 3)) { 1952 result = SCAN_PAGE_COUNT; 1953 xas_unlock_irq(&xas); 1954 putback_lru_page(page); 1955 goto out_unlock; 1956 } 1957 1958 /* 1959 * Add the page to the list to be able to undo the collapse if 1960 * something go wrong. 1961 */ 1962 list_add_tail(&page->lru, &pagelist); 1963 1964 /* Finally, replace with the new page. */ 1965 xas_store(&xas, hpage); 1966 continue; 1967 out_unlock: 1968 unlock_page(page); 1969 put_page(page); 1970 goto xa_unlocked; 1971 } 1972 nr = thp_nr_pages(hpage); 1973 1974 if (is_shmem) 1975 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 1976 else { 1977 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 1978 filemap_nr_thps_inc(mapping); 1979 /* 1980 * Paired with smp_mb() in do_dentry_open() to ensure 1981 * i_writecount is up to date and the update to nr_thps is 1982 * visible. Ensures the page cache will be truncated if the 1983 * file is opened writable. 1984 */ 1985 smp_mb(); 1986 if (inode_is_open_for_write(mapping->host)) { 1987 result = SCAN_FAIL; 1988 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 1989 filemap_nr_thps_dec(mapping); 1990 goto xa_locked; 1991 } 1992 } 1993 1994 if (nr_none) { 1995 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 1996 /* nr_none is always 0 for non-shmem. */ 1997 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 1998 } 1999 2000 /* Join all the small entries into a single multi-index entry */ 2001 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2002 xas_store(&xas, hpage); 2003 xa_locked: 2004 xas_unlock_irq(&xas); 2005 xa_unlocked: 2006 2007 /* 2008 * If collapse is successful, flush must be done now before copying. 2009 * If collapse is unsuccessful, does flush actually need to be done? 2010 * Do it anyway, to clear the state. 2011 */ 2012 try_to_unmap_flush(); 2013 2014 if (result == SCAN_SUCCEED) { 2015 struct page *page, *tmp; 2016 struct folio *folio; 2017 2018 /* 2019 * Replacing old pages with new one has succeeded, now we 2020 * need to copy the content and free the old pages. 2021 */ 2022 index = start; 2023 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2024 while (index < page->index) { 2025 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2026 index++; 2027 } 2028 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2029 page); 2030 list_del(&page->lru); 2031 page->mapping = NULL; 2032 page_ref_unfreeze(page, 1); 2033 ClearPageActive(page); 2034 ClearPageUnevictable(page); 2035 unlock_page(page); 2036 put_page(page); 2037 index++; 2038 } 2039 while (index < end) { 2040 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2041 index++; 2042 } 2043 2044 folio = page_folio(hpage); 2045 folio_mark_uptodate(folio); 2046 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2047 2048 if (is_shmem) 2049 folio_mark_dirty(folio); 2050 folio_add_lru(folio); 2051 2052 /* 2053 * Remove pte page tables, so we can re-fault the page as huge. 2054 */ 2055 result = retract_page_tables(mapping, start, mm, addr, hpage, 2056 cc); 2057 unlock_page(hpage); 2058 hpage = NULL; 2059 } else { 2060 struct page *page; 2061 2062 /* Something went wrong: roll back page cache changes */ 2063 xas_lock_irq(&xas); 2064 if (nr_none) { 2065 mapping->nrpages -= nr_none; 2066 shmem_uncharge(mapping->host, nr_none); 2067 } 2068 2069 xas_set(&xas, start); 2070 xas_for_each(&xas, page, end - 1) { 2071 page = list_first_entry_or_null(&pagelist, 2072 struct page, lru); 2073 if (!page || xas.xa_index < page->index) { 2074 if (!nr_none) 2075 break; 2076 nr_none--; 2077 /* Put holes back where they were */ 2078 xas_store(&xas, NULL); 2079 continue; 2080 } 2081 2082 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2083 2084 /* Unfreeze the page. */ 2085 list_del(&page->lru); 2086 page_ref_unfreeze(page, 2); 2087 xas_store(&xas, page); 2088 xas_pause(&xas); 2089 xas_unlock_irq(&xas); 2090 unlock_page(page); 2091 putback_lru_page(page); 2092 xas_lock_irq(&xas); 2093 } 2094 VM_BUG_ON(nr_none); 2095 xas_unlock_irq(&xas); 2096 2097 hpage->mapping = NULL; 2098 } 2099 2100 if (hpage) 2101 unlock_page(hpage); 2102 out: 2103 VM_BUG_ON(!list_empty(&pagelist)); 2104 if (hpage) { 2105 mem_cgroup_uncharge(page_folio(hpage)); 2106 put_page(hpage); 2107 } 2108 2109 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2110 return result; 2111 } 2112 2113 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2114 struct file *file, pgoff_t start, 2115 struct collapse_control *cc) 2116 { 2117 struct page *page = NULL; 2118 struct address_space *mapping = file->f_mapping; 2119 XA_STATE(xas, &mapping->i_pages, start); 2120 int present, swap; 2121 int node = NUMA_NO_NODE; 2122 int result = SCAN_SUCCEED; 2123 2124 present = 0; 2125 swap = 0; 2126 memset(cc->node_load, 0, sizeof(cc->node_load)); 2127 nodes_clear(cc->alloc_nmask); 2128 rcu_read_lock(); 2129 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2130 if (xas_retry(&xas, page)) 2131 continue; 2132 2133 if (xa_is_value(page)) { 2134 ++swap; 2135 if (cc->is_khugepaged && 2136 swap > khugepaged_max_ptes_swap) { 2137 result = SCAN_EXCEED_SWAP_PTE; 2138 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2139 break; 2140 } 2141 continue; 2142 } 2143 2144 /* 2145 * TODO: khugepaged should compact smaller compound pages 2146 * into a PMD sized page 2147 */ 2148 if (PageTransCompound(page)) { 2149 struct page *head = compound_head(page); 2150 2151 result = compound_order(head) == HPAGE_PMD_ORDER && 2152 head->index == start 2153 /* Maybe PMD-mapped */ 2154 ? SCAN_PTE_MAPPED_HUGEPAGE 2155 : SCAN_PAGE_COMPOUND; 2156 /* 2157 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2158 * by the caller won't touch the page cache, and so 2159 * it's safe to skip LRU and refcount checks before 2160 * returning. 2161 */ 2162 break; 2163 } 2164 2165 node = page_to_nid(page); 2166 if (hpage_collapse_scan_abort(node, cc)) { 2167 result = SCAN_SCAN_ABORT; 2168 break; 2169 } 2170 cc->node_load[node]++; 2171 2172 if (!PageLRU(page)) { 2173 result = SCAN_PAGE_LRU; 2174 break; 2175 } 2176 2177 if (page_count(page) != 2178 1 + page_mapcount(page) + page_has_private(page)) { 2179 result = SCAN_PAGE_COUNT; 2180 break; 2181 } 2182 2183 /* 2184 * We probably should check if the page is referenced here, but 2185 * nobody would transfer pte_young() to PageReferenced() for us. 2186 * And rmap walk here is just too costly... 2187 */ 2188 2189 present++; 2190 2191 if (need_resched()) { 2192 xas_pause(&xas); 2193 cond_resched_rcu(); 2194 } 2195 } 2196 rcu_read_unlock(); 2197 2198 if (result == SCAN_SUCCEED) { 2199 if (cc->is_khugepaged && 2200 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2201 result = SCAN_EXCEED_NONE_PTE; 2202 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2203 } else { 2204 result = collapse_file(mm, addr, file, start, cc); 2205 } 2206 } 2207 2208 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2209 return result; 2210 } 2211 #else 2212 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2213 struct file *file, pgoff_t start, 2214 struct collapse_control *cc) 2215 { 2216 BUILD_BUG(); 2217 } 2218 2219 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2220 { 2221 } 2222 2223 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2224 unsigned long addr) 2225 { 2226 return false; 2227 } 2228 #endif 2229 2230 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2231 struct collapse_control *cc) 2232 __releases(&khugepaged_mm_lock) 2233 __acquires(&khugepaged_mm_lock) 2234 { 2235 struct vma_iterator vmi; 2236 struct khugepaged_mm_slot *mm_slot; 2237 struct mm_slot *slot; 2238 struct mm_struct *mm; 2239 struct vm_area_struct *vma; 2240 int progress = 0; 2241 2242 VM_BUG_ON(!pages); 2243 lockdep_assert_held(&khugepaged_mm_lock); 2244 *result = SCAN_FAIL; 2245 2246 if (khugepaged_scan.mm_slot) { 2247 mm_slot = khugepaged_scan.mm_slot; 2248 slot = &mm_slot->slot; 2249 } else { 2250 slot = list_entry(khugepaged_scan.mm_head.next, 2251 struct mm_slot, mm_node); 2252 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2253 khugepaged_scan.address = 0; 2254 khugepaged_scan.mm_slot = mm_slot; 2255 } 2256 spin_unlock(&khugepaged_mm_lock); 2257 khugepaged_collapse_pte_mapped_thps(mm_slot); 2258 2259 mm = slot->mm; 2260 /* 2261 * Don't wait for semaphore (to avoid long wait times). Just move to 2262 * the next mm on the list. 2263 */ 2264 vma = NULL; 2265 if (unlikely(!mmap_read_trylock(mm))) 2266 goto breakouterloop_mmap_lock; 2267 2268 progress++; 2269 if (unlikely(hpage_collapse_test_exit(mm))) 2270 goto breakouterloop; 2271 2272 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2273 for_each_vma(vmi, vma) { 2274 unsigned long hstart, hend; 2275 2276 cond_resched(); 2277 if (unlikely(hpage_collapse_test_exit(mm))) { 2278 progress++; 2279 break; 2280 } 2281 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2282 skip: 2283 progress++; 2284 continue; 2285 } 2286 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2287 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2288 if (khugepaged_scan.address > hend) 2289 goto skip; 2290 if (khugepaged_scan.address < hstart) 2291 khugepaged_scan.address = hstart; 2292 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2293 2294 while (khugepaged_scan.address < hend) { 2295 bool mmap_locked = true; 2296 2297 cond_resched(); 2298 if (unlikely(hpage_collapse_test_exit(mm))) 2299 goto breakouterloop; 2300 2301 VM_BUG_ON(khugepaged_scan.address < hstart || 2302 khugepaged_scan.address + HPAGE_PMD_SIZE > 2303 hend); 2304 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2305 struct file *file = get_file(vma->vm_file); 2306 pgoff_t pgoff = linear_page_index(vma, 2307 khugepaged_scan.address); 2308 2309 mmap_read_unlock(mm); 2310 *result = hpage_collapse_scan_file(mm, 2311 khugepaged_scan.address, 2312 file, pgoff, cc); 2313 mmap_locked = false; 2314 fput(file); 2315 } else { 2316 *result = hpage_collapse_scan_pmd(mm, vma, 2317 khugepaged_scan.address, 2318 &mmap_locked, 2319 cc); 2320 } 2321 switch (*result) { 2322 case SCAN_PTE_MAPPED_HUGEPAGE: { 2323 pmd_t *pmd; 2324 2325 *result = find_pmd_or_thp_or_none(mm, 2326 khugepaged_scan.address, 2327 &pmd); 2328 if (*result != SCAN_SUCCEED) 2329 break; 2330 if (!khugepaged_add_pte_mapped_thp(mm, 2331 khugepaged_scan.address)) 2332 break; 2333 } fallthrough; 2334 case SCAN_SUCCEED: 2335 ++khugepaged_pages_collapsed; 2336 break; 2337 default: 2338 break; 2339 } 2340 2341 /* move to next address */ 2342 khugepaged_scan.address += HPAGE_PMD_SIZE; 2343 progress += HPAGE_PMD_NR; 2344 if (!mmap_locked) 2345 /* 2346 * We released mmap_lock so break loop. Note 2347 * that we drop mmap_lock before all hugepage 2348 * allocations, so if allocation fails, we are 2349 * guaranteed to break here and report the 2350 * correct result back to caller. 2351 */ 2352 goto breakouterloop_mmap_lock; 2353 if (progress >= pages) 2354 goto breakouterloop; 2355 } 2356 } 2357 breakouterloop: 2358 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2359 breakouterloop_mmap_lock: 2360 2361 spin_lock(&khugepaged_mm_lock); 2362 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2363 /* 2364 * Release the current mm_slot if this mm is about to die, or 2365 * if we scanned all vmas of this mm. 2366 */ 2367 if (hpage_collapse_test_exit(mm) || !vma) { 2368 /* 2369 * Make sure that if mm_users is reaching zero while 2370 * khugepaged runs here, khugepaged_exit will find 2371 * mm_slot not pointing to the exiting mm. 2372 */ 2373 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2374 slot = list_entry(slot->mm_node.next, 2375 struct mm_slot, mm_node); 2376 khugepaged_scan.mm_slot = 2377 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2378 khugepaged_scan.address = 0; 2379 } else { 2380 khugepaged_scan.mm_slot = NULL; 2381 khugepaged_full_scans++; 2382 } 2383 2384 collect_mm_slot(mm_slot); 2385 } 2386 2387 return progress; 2388 } 2389 2390 static int khugepaged_has_work(void) 2391 { 2392 return !list_empty(&khugepaged_scan.mm_head) && 2393 hugepage_flags_enabled(); 2394 } 2395 2396 static int khugepaged_wait_event(void) 2397 { 2398 return !list_empty(&khugepaged_scan.mm_head) || 2399 kthread_should_stop(); 2400 } 2401 2402 static void khugepaged_do_scan(struct collapse_control *cc) 2403 { 2404 unsigned int progress = 0, pass_through_head = 0; 2405 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2406 bool wait = true; 2407 int result = SCAN_SUCCEED; 2408 2409 lru_add_drain_all(); 2410 2411 while (true) { 2412 cond_resched(); 2413 2414 if (unlikely(kthread_should_stop() || try_to_freeze())) 2415 break; 2416 2417 spin_lock(&khugepaged_mm_lock); 2418 if (!khugepaged_scan.mm_slot) 2419 pass_through_head++; 2420 if (khugepaged_has_work() && 2421 pass_through_head < 2) 2422 progress += khugepaged_scan_mm_slot(pages - progress, 2423 &result, cc); 2424 else 2425 progress = pages; 2426 spin_unlock(&khugepaged_mm_lock); 2427 2428 if (progress >= pages) 2429 break; 2430 2431 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2432 /* 2433 * If fail to allocate the first time, try to sleep for 2434 * a while. When hit again, cancel the scan. 2435 */ 2436 if (!wait) 2437 break; 2438 wait = false; 2439 khugepaged_alloc_sleep(); 2440 } 2441 } 2442 } 2443 2444 static bool khugepaged_should_wakeup(void) 2445 { 2446 return kthread_should_stop() || 2447 time_after_eq(jiffies, khugepaged_sleep_expire); 2448 } 2449 2450 static void khugepaged_wait_work(void) 2451 { 2452 if (khugepaged_has_work()) { 2453 const unsigned long scan_sleep_jiffies = 2454 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2455 2456 if (!scan_sleep_jiffies) 2457 return; 2458 2459 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2460 wait_event_freezable_timeout(khugepaged_wait, 2461 khugepaged_should_wakeup(), 2462 scan_sleep_jiffies); 2463 return; 2464 } 2465 2466 if (hugepage_flags_enabled()) 2467 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2468 } 2469 2470 static int khugepaged(void *none) 2471 { 2472 struct khugepaged_mm_slot *mm_slot; 2473 2474 set_freezable(); 2475 set_user_nice(current, MAX_NICE); 2476 2477 while (!kthread_should_stop()) { 2478 khugepaged_do_scan(&khugepaged_collapse_control); 2479 khugepaged_wait_work(); 2480 } 2481 2482 spin_lock(&khugepaged_mm_lock); 2483 mm_slot = khugepaged_scan.mm_slot; 2484 khugepaged_scan.mm_slot = NULL; 2485 if (mm_slot) 2486 collect_mm_slot(mm_slot); 2487 spin_unlock(&khugepaged_mm_lock); 2488 return 0; 2489 } 2490 2491 static void set_recommended_min_free_kbytes(void) 2492 { 2493 struct zone *zone; 2494 int nr_zones = 0; 2495 unsigned long recommended_min; 2496 2497 if (!hugepage_flags_enabled()) { 2498 calculate_min_free_kbytes(); 2499 goto update_wmarks; 2500 } 2501 2502 for_each_populated_zone(zone) { 2503 /* 2504 * We don't need to worry about fragmentation of 2505 * ZONE_MOVABLE since it only has movable pages. 2506 */ 2507 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2508 continue; 2509 2510 nr_zones++; 2511 } 2512 2513 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2514 recommended_min = pageblock_nr_pages * nr_zones * 2; 2515 2516 /* 2517 * Make sure that on average at least two pageblocks are almost free 2518 * of another type, one for a migratetype to fall back to and a 2519 * second to avoid subsequent fallbacks of other types There are 3 2520 * MIGRATE_TYPES we care about. 2521 */ 2522 recommended_min += pageblock_nr_pages * nr_zones * 2523 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2524 2525 /* don't ever allow to reserve more than 5% of the lowmem */ 2526 recommended_min = min(recommended_min, 2527 (unsigned long) nr_free_buffer_pages() / 20); 2528 recommended_min <<= (PAGE_SHIFT-10); 2529 2530 if (recommended_min > min_free_kbytes) { 2531 if (user_min_free_kbytes >= 0) 2532 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2533 min_free_kbytes, recommended_min); 2534 2535 min_free_kbytes = recommended_min; 2536 } 2537 2538 update_wmarks: 2539 setup_per_zone_wmarks(); 2540 } 2541 2542 int start_stop_khugepaged(void) 2543 { 2544 int err = 0; 2545 2546 mutex_lock(&khugepaged_mutex); 2547 if (hugepage_flags_enabled()) { 2548 if (!khugepaged_thread) 2549 khugepaged_thread = kthread_run(khugepaged, NULL, 2550 "khugepaged"); 2551 if (IS_ERR(khugepaged_thread)) { 2552 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2553 err = PTR_ERR(khugepaged_thread); 2554 khugepaged_thread = NULL; 2555 goto fail; 2556 } 2557 2558 if (!list_empty(&khugepaged_scan.mm_head)) 2559 wake_up_interruptible(&khugepaged_wait); 2560 } else if (khugepaged_thread) { 2561 kthread_stop(khugepaged_thread); 2562 khugepaged_thread = NULL; 2563 } 2564 set_recommended_min_free_kbytes(); 2565 fail: 2566 mutex_unlock(&khugepaged_mutex); 2567 return err; 2568 } 2569 2570 void khugepaged_min_free_kbytes_update(void) 2571 { 2572 mutex_lock(&khugepaged_mutex); 2573 if (hugepage_flags_enabled() && khugepaged_thread) 2574 set_recommended_min_free_kbytes(); 2575 mutex_unlock(&khugepaged_mutex); 2576 } 2577 2578 bool current_is_khugepaged(void) 2579 { 2580 return kthread_func(current) == khugepaged; 2581 } 2582 2583 static int madvise_collapse_errno(enum scan_result r) 2584 { 2585 /* 2586 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2587 * actionable feedback to caller, so they may take an appropriate 2588 * fallback measure depending on the nature of the failure. 2589 */ 2590 switch (r) { 2591 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2592 return -ENOMEM; 2593 case SCAN_CGROUP_CHARGE_FAIL: 2594 return -EBUSY; 2595 /* Resource temporary unavailable - trying again might succeed */ 2596 case SCAN_PAGE_LOCK: 2597 case SCAN_PAGE_LRU: 2598 case SCAN_DEL_PAGE_LRU: 2599 return -EAGAIN; 2600 /* 2601 * Other: Trying again likely not to succeed / error intrinsic to 2602 * specified memory range. khugepaged likely won't be able to collapse 2603 * either. 2604 */ 2605 default: 2606 return -EINVAL; 2607 } 2608 } 2609 2610 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2611 unsigned long start, unsigned long end) 2612 { 2613 struct collapse_control *cc; 2614 struct mm_struct *mm = vma->vm_mm; 2615 unsigned long hstart, hend, addr; 2616 int thps = 0, last_fail = SCAN_FAIL; 2617 bool mmap_locked = true; 2618 2619 BUG_ON(vma->vm_start > start); 2620 BUG_ON(vma->vm_end < end); 2621 2622 *prev = vma; 2623 2624 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2625 return -EINVAL; 2626 2627 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2628 if (!cc) 2629 return -ENOMEM; 2630 cc->is_khugepaged = false; 2631 2632 mmgrab(mm); 2633 lru_add_drain_all(); 2634 2635 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2636 hend = end & HPAGE_PMD_MASK; 2637 2638 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2639 int result = SCAN_FAIL; 2640 2641 if (!mmap_locked) { 2642 cond_resched(); 2643 mmap_read_lock(mm); 2644 mmap_locked = true; 2645 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2646 cc); 2647 if (result != SCAN_SUCCEED) { 2648 last_fail = result; 2649 goto out_nolock; 2650 } 2651 2652 hend = vma->vm_end & HPAGE_PMD_MASK; 2653 } 2654 mmap_assert_locked(mm); 2655 memset(cc->node_load, 0, sizeof(cc->node_load)); 2656 nodes_clear(cc->alloc_nmask); 2657 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2658 struct file *file = get_file(vma->vm_file); 2659 pgoff_t pgoff = linear_page_index(vma, addr); 2660 2661 mmap_read_unlock(mm); 2662 mmap_locked = false; 2663 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2664 cc); 2665 fput(file); 2666 } else { 2667 result = hpage_collapse_scan_pmd(mm, vma, addr, 2668 &mmap_locked, cc); 2669 } 2670 if (!mmap_locked) 2671 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2672 2673 handle_result: 2674 switch (result) { 2675 case SCAN_SUCCEED: 2676 case SCAN_PMD_MAPPED: 2677 ++thps; 2678 break; 2679 case SCAN_PTE_MAPPED_HUGEPAGE: 2680 BUG_ON(mmap_locked); 2681 BUG_ON(*prev); 2682 mmap_write_lock(mm); 2683 result = collapse_pte_mapped_thp(mm, addr, true); 2684 mmap_write_unlock(mm); 2685 goto handle_result; 2686 /* Whitelisted set of results where continuing OK */ 2687 case SCAN_PMD_NULL: 2688 case SCAN_PTE_NON_PRESENT: 2689 case SCAN_PTE_UFFD_WP: 2690 case SCAN_PAGE_RO: 2691 case SCAN_LACK_REFERENCED_PAGE: 2692 case SCAN_PAGE_NULL: 2693 case SCAN_PAGE_COUNT: 2694 case SCAN_PAGE_LOCK: 2695 case SCAN_PAGE_COMPOUND: 2696 case SCAN_PAGE_LRU: 2697 case SCAN_DEL_PAGE_LRU: 2698 last_fail = result; 2699 break; 2700 default: 2701 last_fail = result; 2702 /* Other error, exit */ 2703 goto out_maybelock; 2704 } 2705 } 2706 2707 out_maybelock: 2708 /* Caller expects us to hold mmap_lock on return */ 2709 if (!mmap_locked) 2710 mmap_read_lock(mm); 2711 out_nolock: 2712 mmap_assert_locked(mm); 2713 mmdrop(mm); 2714 kfree(cc); 2715 2716 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2717 : madvise_collapse_errno(last_fail); 2718 } 2719