xref: /openbmc/linux/mm/khugepaged.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 	       scan_sleep_millisecs_store);
152 
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 					  struct kobj_attribute *attr,
155 					  char *buf)
156 {
157 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159 
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 					   struct kobj_attribute *attr,
162 					   const char *buf, size_t count)
163 {
164 	unsigned int msecs;
165 	int err;
166 
167 	err = kstrtouint(buf, 10, &msecs);
168 	if (err)
169 		return -EINVAL;
170 
171 	khugepaged_alloc_sleep_millisecs = msecs;
172 	khugepaged_sleep_expire = 0;
173 	wake_up_interruptible(&khugepaged_wait);
174 
175 	return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 	       alloc_sleep_millisecs_store);
180 
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 				  struct kobj_attribute *attr,
183 				  char *buf)
184 {
185 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 				   struct kobj_attribute *attr,
189 				   const char *buf, size_t count)
190 {
191 	unsigned int pages;
192 	int err;
193 
194 	err = kstrtouint(buf, 10, &pages);
195 	if (err || !pages)
196 		return -EINVAL;
197 
198 	khugepaged_pages_to_scan = pages;
199 
200 	return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 	       pages_to_scan_store);
205 
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 				    struct kobj_attribute *attr,
208 				    char *buf)
209 {
210 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 	__ATTR_RO(pages_collapsed);
214 
215 static ssize_t full_scans_show(struct kobject *kobj,
216 			       struct kobj_attribute *attr,
217 			       char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 	__ATTR_RO(full_scans);
223 
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 				      struct kobj_attribute *attr, char *buf)
226 {
227 	return single_hugepage_flag_show(kobj, attr, buf,
228 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 				       struct kobj_attribute *attr,
232 				       const char *buf, size_t count)
233 {
234 	return single_hugepage_flag_store(kobj, attr, buf, count,
235 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 	__ATTR(defrag, 0644, khugepaged_defrag_show,
239 	       khugepaged_defrag_store);
240 
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 					     struct kobj_attribute *attr,
251 					     char *buf)
252 {
253 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 					      struct kobj_attribute *attr,
257 					      const char *buf, size_t count)
258 {
259 	int err;
260 	unsigned long max_ptes_none;
261 
262 	err = kstrtoul(buf, 10, &max_ptes_none);
263 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 		return -EINVAL;
265 
266 	khugepaged_max_ptes_none = max_ptes_none;
267 
268 	return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 	       khugepaged_max_ptes_none_store);
273 
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 					     struct kobj_attribute *attr,
276 					     char *buf)
277 {
278 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280 
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 					      struct kobj_attribute *attr,
283 					      const char *buf, size_t count)
284 {
285 	int err;
286 	unsigned long max_ptes_swap;
287 
288 	err  = kstrtoul(buf, 10, &max_ptes_swap);
289 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 		return -EINVAL;
291 
292 	khugepaged_max_ptes_swap = max_ptes_swap;
293 
294 	return count;
295 }
296 
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 	       khugepaged_max_ptes_swap_store);
300 
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 					       struct kobj_attribute *attr,
303 					       char *buf)
304 {
305 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307 
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 					      struct kobj_attribute *attr,
310 					      const char *buf, size_t count)
311 {
312 	int err;
313 	unsigned long max_ptes_shared;
314 
315 	err  = kstrtoul(buf, 10, &max_ptes_shared);
316 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 		return -EINVAL;
318 
319 	khugepaged_max_ptes_shared = max_ptes_shared;
320 
321 	return count;
322 }
323 
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 	       khugepaged_max_ptes_shared_store);
327 
328 static struct attribute *khugepaged_attr[] = {
329 	&khugepaged_defrag_attr.attr,
330 	&khugepaged_max_ptes_none_attr.attr,
331 	&khugepaged_max_ptes_swap_attr.attr,
332 	&khugepaged_max_ptes_shared_attr.attr,
333 	&pages_to_scan_attr.attr,
334 	&pages_collapsed_attr.attr,
335 	&full_scans_attr.attr,
336 	&scan_sleep_millisecs_attr.attr,
337 	&alloc_sleep_millisecs_attr.attr,
338 	NULL,
339 };
340 
341 struct attribute_group khugepaged_attr_group = {
342 	.attrs = khugepaged_attr,
343 	.name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346 
347 int hugepage_madvise(struct vm_area_struct *vma,
348 		     unsigned long *vm_flags, int advice)
349 {
350 	switch (advice) {
351 	case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 		/*
354 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 		 * can't handle this properly after s390_enable_sie, so we simply
356 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 		 */
358 		if (mm_has_pgste(vma->vm_mm))
359 			return 0;
360 #endif
361 		*vm_flags &= ~VM_NOHUGEPAGE;
362 		*vm_flags |= VM_HUGEPAGE;
363 		/*
364 		 * If the vma become good for khugepaged to scan,
365 		 * register it here without waiting a page fault that
366 		 * may not happen any time soon.
367 		 */
368 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 				khugepaged_enter_vma_merge(vma, *vm_flags))
370 			return -ENOMEM;
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct mm_slot),
390 					  __alignof__(struct mm_slot), 0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 	if (!mm_slot_cache)	/* initialization failed */
410 		return NULL;
411 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413 
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 	kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418 
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 	struct mm_slot *mm_slot;
422 
423 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 		if (mm == mm_slot->mm)
425 			return mm_slot;
426 
427 	return NULL;
428 }
429 
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 				    struct mm_slot *mm_slot)
432 {
433 	mm_slot->mm = mm;
434 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436 
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 	return atomic_read(&mm->mm_users) == 0;
440 }
441 
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 			       unsigned long vm_flags)
444 {
445 	if (!transhuge_vma_enabled(vma, vm_flags))
446 		return false;
447 
448 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449 				vma->vm_pgoff, HPAGE_PMD_NR))
450 		return false;
451 
452 	/* Enabled via shmem mount options or sysfs settings. */
453 	if (shmem_file(vma->vm_file))
454 		return shmem_huge_enabled(vma);
455 
456 	/* THP settings require madvise. */
457 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458 		return false;
459 
460 	/* Only regular file is valid */
461 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462 	    (vm_flags & VM_EXEC)) {
463 		struct inode *inode = vma->vm_file->f_inode;
464 
465 		return !inode_is_open_for_write(inode) &&
466 			S_ISREG(inode->i_mode);
467 	}
468 
469 	if (!vma->anon_vma || vma->vm_ops)
470 		return false;
471 	if (vma_is_temporary_stack(vma))
472 		return false;
473 	return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475 
476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478 	struct mm_slot *mm_slot;
479 	int wakeup;
480 
481 	mm_slot = alloc_mm_slot();
482 	if (!mm_slot)
483 		return -ENOMEM;
484 
485 	/* __khugepaged_exit() must not run from under us */
486 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488 		free_mm_slot(mm_slot);
489 		return 0;
490 	}
491 
492 	spin_lock(&khugepaged_mm_lock);
493 	insert_to_mm_slots_hash(mm, mm_slot);
494 	/*
495 	 * Insert just behind the scanning cursor, to let the area settle
496 	 * down a little.
497 	 */
498 	wakeup = list_empty(&khugepaged_scan.mm_head);
499 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500 	spin_unlock(&khugepaged_mm_lock);
501 
502 	mmgrab(mm);
503 	if (wakeup)
504 		wake_up_interruptible(&khugepaged_wait);
505 
506 	return 0;
507 }
508 
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510 			       unsigned long vm_flags)
511 {
512 	unsigned long hstart, hend;
513 
514 	/*
515 	 * khugepaged only supports read-only files for non-shmem files.
516 	 * khugepaged does not yet work on special mappings. And
517 	 * file-private shmem THP is not supported.
518 	 */
519 	if (!hugepage_vma_check(vma, vm_flags))
520 		return 0;
521 
522 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523 	hend = vma->vm_end & HPAGE_PMD_MASK;
524 	if (hstart < hend)
525 		return khugepaged_enter(vma, vm_flags);
526 	return 0;
527 }
528 
529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531 	struct mm_slot *mm_slot;
532 	int free = 0;
533 
534 	spin_lock(&khugepaged_mm_lock);
535 	mm_slot = get_mm_slot(mm);
536 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537 		hash_del(&mm_slot->hash);
538 		list_del(&mm_slot->mm_node);
539 		free = 1;
540 	}
541 	spin_unlock(&khugepaged_mm_lock);
542 
543 	if (free) {
544 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545 		free_mm_slot(mm_slot);
546 		mmdrop(mm);
547 	} else if (mm_slot) {
548 		/*
549 		 * This is required to serialize against
550 		 * khugepaged_test_exit() (which is guaranteed to run
551 		 * under mmap sem read mode). Stop here (after we
552 		 * return all pagetables will be destroyed) until
553 		 * khugepaged has finished working on the pagetables
554 		 * under the mmap_lock.
555 		 */
556 		mmap_write_lock(mm);
557 		mmap_write_unlock(mm);
558 	}
559 }
560 
561 static void release_pte_page(struct page *page)
562 {
563 	mod_node_page_state(page_pgdat(page),
564 			NR_ISOLATED_ANON + page_is_file_lru(page),
565 			-compound_nr(page));
566 	unlock_page(page);
567 	putback_lru_page(page);
568 }
569 
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571 		struct list_head *compound_pagelist)
572 {
573 	struct page *page, *tmp;
574 
575 	while (--_pte >= pte) {
576 		pte_t pteval = *_pte;
577 
578 		page = pte_page(pteval);
579 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580 				!PageCompound(page))
581 			release_pte_page(page);
582 	}
583 
584 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585 		list_del(&page->lru);
586 		release_pte_page(page);
587 	}
588 }
589 
590 static bool is_refcount_suitable(struct page *page)
591 {
592 	int expected_refcount;
593 
594 	expected_refcount = total_mapcount(page);
595 	if (PageSwapCache(page))
596 		expected_refcount += compound_nr(page);
597 
598 	return page_count(page) == expected_refcount;
599 }
600 
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602 					unsigned long address,
603 					pte_t *pte,
604 					struct list_head *compound_pagelist)
605 {
606 	struct page *page = NULL;
607 	pte_t *_pte;
608 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609 	bool writable = false;
610 
611 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612 	     _pte++, address += PAGE_SIZE) {
613 		pte_t pteval = *_pte;
614 		if (pte_none(pteval) || (pte_present(pteval) &&
615 				is_zero_pfn(pte_pfn(pteval)))) {
616 			if (!userfaultfd_armed(vma) &&
617 			    ++none_or_zero <= khugepaged_max_ptes_none) {
618 				continue;
619 			} else {
620 				result = SCAN_EXCEED_NONE_PTE;
621 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
622 				goto out;
623 			}
624 		}
625 		if (!pte_present(pteval)) {
626 			result = SCAN_PTE_NON_PRESENT;
627 			goto out;
628 		}
629 		page = vm_normal_page(vma, address, pteval);
630 		if (unlikely(!page)) {
631 			result = SCAN_PAGE_NULL;
632 			goto out;
633 		}
634 
635 		VM_BUG_ON_PAGE(!PageAnon(page), page);
636 
637 		if (page_mapcount(page) > 1 &&
638 				++shared > khugepaged_max_ptes_shared) {
639 			result = SCAN_EXCEED_SHARED_PTE;
640 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
641 			goto out;
642 		}
643 
644 		if (PageCompound(page)) {
645 			struct page *p;
646 			page = compound_head(page);
647 
648 			/*
649 			 * Check if we have dealt with the compound page
650 			 * already
651 			 */
652 			list_for_each_entry(p, compound_pagelist, lru) {
653 				if (page == p)
654 					goto next;
655 			}
656 		}
657 
658 		/*
659 		 * We can do it before isolate_lru_page because the
660 		 * page can't be freed from under us. NOTE: PG_lock
661 		 * is needed to serialize against split_huge_page
662 		 * when invoked from the VM.
663 		 */
664 		if (!trylock_page(page)) {
665 			result = SCAN_PAGE_LOCK;
666 			goto out;
667 		}
668 
669 		/*
670 		 * Check if the page has any GUP (or other external) pins.
671 		 *
672 		 * The page table that maps the page has been already unlinked
673 		 * from the page table tree and this process cannot get
674 		 * an additional pin on the page.
675 		 *
676 		 * New pins can come later if the page is shared across fork,
677 		 * but not from this process. The other process cannot write to
678 		 * the page, only trigger CoW.
679 		 */
680 		if (!is_refcount_suitable(page)) {
681 			unlock_page(page);
682 			result = SCAN_PAGE_COUNT;
683 			goto out;
684 		}
685 		if (!pte_write(pteval) && PageSwapCache(page) &&
686 				!reuse_swap_page(page)) {
687 			/*
688 			 * Page is in the swap cache and cannot be re-used.
689 			 * It cannot be collapsed into a THP.
690 			 */
691 			unlock_page(page);
692 			result = SCAN_SWAP_CACHE_PAGE;
693 			goto out;
694 		}
695 
696 		/*
697 		 * Isolate the page to avoid collapsing an hugepage
698 		 * currently in use by the VM.
699 		 */
700 		if (isolate_lru_page(page)) {
701 			unlock_page(page);
702 			result = SCAN_DEL_PAGE_LRU;
703 			goto out;
704 		}
705 		mod_node_page_state(page_pgdat(page),
706 				NR_ISOLATED_ANON + page_is_file_lru(page),
707 				compound_nr(page));
708 		VM_BUG_ON_PAGE(!PageLocked(page), page);
709 		VM_BUG_ON_PAGE(PageLRU(page), page);
710 
711 		if (PageCompound(page))
712 			list_add_tail(&page->lru, compound_pagelist);
713 next:
714 		/* There should be enough young pte to collapse the page */
715 		if (pte_young(pteval) ||
716 		    page_is_young(page) || PageReferenced(page) ||
717 		    mmu_notifier_test_young(vma->vm_mm, address))
718 			referenced++;
719 
720 		if (pte_write(pteval))
721 			writable = true;
722 	}
723 
724 	if (unlikely(!writable)) {
725 		result = SCAN_PAGE_RO;
726 	} else if (unlikely(!referenced)) {
727 		result = SCAN_LACK_REFERENCED_PAGE;
728 	} else {
729 		result = SCAN_SUCCEED;
730 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
731 						    referenced, writable, result);
732 		return 1;
733 	}
734 out:
735 	release_pte_pages(pte, _pte, compound_pagelist);
736 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
737 					    referenced, writable, result);
738 	return 0;
739 }
740 
741 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
742 				      struct vm_area_struct *vma,
743 				      unsigned long address,
744 				      spinlock_t *ptl,
745 				      struct list_head *compound_pagelist)
746 {
747 	struct page *src_page, *tmp;
748 	pte_t *_pte;
749 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
750 				_pte++, page++, address += PAGE_SIZE) {
751 		pte_t pteval = *_pte;
752 
753 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
754 			clear_user_highpage(page, address);
755 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
756 			if (is_zero_pfn(pte_pfn(pteval))) {
757 				/*
758 				 * ptl mostly unnecessary.
759 				 */
760 				spin_lock(ptl);
761 				ptep_clear(vma->vm_mm, address, _pte);
762 				spin_unlock(ptl);
763 			}
764 		} else {
765 			src_page = pte_page(pteval);
766 			copy_user_highpage(page, src_page, address, vma);
767 			if (!PageCompound(src_page))
768 				release_pte_page(src_page);
769 			/*
770 			 * ptl mostly unnecessary, but preempt has to
771 			 * be disabled to update the per-cpu stats
772 			 * inside page_remove_rmap().
773 			 */
774 			spin_lock(ptl);
775 			ptep_clear(vma->vm_mm, address, _pte);
776 			page_remove_rmap(src_page, false);
777 			spin_unlock(ptl);
778 			free_page_and_swap_cache(src_page);
779 		}
780 	}
781 
782 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
783 		list_del(&src_page->lru);
784 		release_pte_page(src_page);
785 	}
786 }
787 
788 static void khugepaged_alloc_sleep(void)
789 {
790 	DEFINE_WAIT(wait);
791 
792 	add_wait_queue(&khugepaged_wait, &wait);
793 	freezable_schedule_timeout_interruptible(
794 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
795 	remove_wait_queue(&khugepaged_wait, &wait);
796 }
797 
798 static int khugepaged_node_load[MAX_NUMNODES];
799 
800 static bool khugepaged_scan_abort(int nid)
801 {
802 	int i;
803 
804 	/*
805 	 * If node_reclaim_mode is disabled, then no extra effort is made to
806 	 * allocate memory locally.
807 	 */
808 	if (!node_reclaim_enabled())
809 		return false;
810 
811 	/* If there is a count for this node already, it must be acceptable */
812 	if (khugepaged_node_load[nid])
813 		return false;
814 
815 	for (i = 0; i < MAX_NUMNODES; i++) {
816 		if (!khugepaged_node_load[i])
817 			continue;
818 		if (node_distance(nid, i) > node_reclaim_distance)
819 			return true;
820 	}
821 	return false;
822 }
823 
824 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
825 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
826 {
827 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
828 }
829 
830 #ifdef CONFIG_NUMA
831 static int khugepaged_find_target_node(void)
832 {
833 	static int last_khugepaged_target_node = NUMA_NO_NODE;
834 	int nid, target_node = 0, max_value = 0;
835 
836 	/* find first node with max normal pages hit */
837 	for (nid = 0; nid < MAX_NUMNODES; nid++)
838 		if (khugepaged_node_load[nid] > max_value) {
839 			max_value = khugepaged_node_load[nid];
840 			target_node = nid;
841 		}
842 
843 	/* do some balance if several nodes have the same hit record */
844 	if (target_node <= last_khugepaged_target_node)
845 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
846 				nid++)
847 			if (max_value == khugepaged_node_load[nid]) {
848 				target_node = nid;
849 				break;
850 			}
851 
852 	last_khugepaged_target_node = target_node;
853 	return target_node;
854 }
855 
856 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
857 {
858 	if (IS_ERR(*hpage)) {
859 		if (!*wait)
860 			return false;
861 
862 		*wait = false;
863 		*hpage = NULL;
864 		khugepaged_alloc_sleep();
865 	} else if (*hpage) {
866 		put_page(*hpage);
867 		*hpage = NULL;
868 	}
869 
870 	return true;
871 }
872 
873 static struct page *
874 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
875 {
876 	VM_BUG_ON_PAGE(*hpage, *hpage);
877 
878 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
879 	if (unlikely(!*hpage)) {
880 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
881 		*hpage = ERR_PTR(-ENOMEM);
882 		return NULL;
883 	}
884 
885 	prep_transhuge_page(*hpage);
886 	count_vm_event(THP_COLLAPSE_ALLOC);
887 	return *hpage;
888 }
889 #else
890 static int khugepaged_find_target_node(void)
891 {
892 	return 0;
893 }
894 
895 static inline struct page *alloc_khugepaged_hugepage(void)
896 {
897 	struct page *page;
898 
899 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
900 			   HPAGE_PMD_ORDER);
901 	if (page)
902 		prep_transhuge_page(page);
903 	return page;
904 }
905 
906 static struct page *khugepaged_alloc_hugepage(bool *wait)
907 {
908 	struct page *hpage;
909 
910 	do {
911 		hpage = alloc_khugepaged_hugepage();
912 		if (!hpage) {
913 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
914 			if (!*wait)
915 				return NULL;
916 
917 			*wait = false;
918 			khugepaged_alloc_sleep();
919 		} else
920 			count_vm_event(THP_COLLAPSE_ALLOC);
921 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
922 
923 	return hpage;
924 }
925 
926 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
927 {
928 	/*
929 	 * If the hpage allocated earlier was briefly exposed in page cache
930 	 * before collapse_file() failed, it is possible that racing lookups
931 	 * have not yet completed, and would then be unpleasantly surprised by
932 	 * finding the hpage reused for the same mapping at a different offset.
933 	 * Just release the previous allocation if there is any danger of that.
934 	 */
935 	if (*hpage && page_count(*hpage) > 1) {
936 		put_page(*hpage);
937 		*hpage = NULL;
938 	}
939 
940 	if (!*hpage)
941 		*hpage = khugepaged_alloc_hugepage(wait);
942 
943 	if (unlikely(!*hpage))
944 		return false;
945 
946 	return true;
947 }
948 
949 static struct page *
950 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
951 {
952 	VM_BUG_ON(!*hpage);
953 
954 	return  *hpage;
955 }
956 #endif
957 
958 /*
959  * If mmap_lock temporarily dropped, revalidate vma
960  * before taking mmap_lock.
961  * Return 0 if succeeds, otherwise return none-zero
962  * value (scan code).
963  */
964 
965 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
966 		struct vm_area_struct **vmap)
967 {
968 	struct vm_area_struct *vma;
969 	unsigned long hstart, hend;
970 
971 	if (unlikely(khugepaged_test_exit(mm)))
972 		return SCAN_ANY_PROCESS;
973 
974 	*vmap = vma = find_vma(mm, address);
975 	if (!vma)
976 		return SCAN_VMA_NULL;
977 
978 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
979 	hend = vma->vm_end & HPAGE_PMD_MASK;
980 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
981 		return SCAN_ADDRESS_RANGE;
982 	if (!hugepage_vma_check(vma, vma->vm_flags))
983 		return SCAN_VMA_CHECK;
984 	/* Anon VMA expected */
985 	if (!vma->anon_vma || vma->vm_ops)
986 		return SCAN_VMA_CHECK;
987 	return 0;
988 }
989 
990 /*
991  * Bring missing pages in from swap, to complete THP collapse.
992  * Only done if khugepaged_scan_pmd believes it is worthwhile.
993  *
994  * Called and returns without pte mapped or spinlocks held,
995  * but with mmap_lock held to protect against vma changes.
996  */
997 
998 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
999 					struct vm_area_struct *vma,
1000 					unsigned long haddr, pmd_t *pmd,
1001 					int referenced)
1002 {
1003 	int swapped_in = 0;
1004 	vm_fault_t ret = 0;
1005 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1006 
1007 	for (address = haddr; address < end; address += PAGE_SIZE) {
1008 		struct vm_fault vmf = {
1009 			.vma = vma,
1010 			.address = address,
1011 			.pgoff = linear_page_index(vma, haddr),
1012 			.flags = FAULT_FLAG_ALLOW_RETRY,
1013 			.pmd = pmd,
1014 		};
1015 
1016 		vmf.pte = pte_offset_map(pmd, address);
1017 		vmf.orig_pte = *vmf.pte;
1018 		if (!is_swap_pte(vmf.orig_pte)) {
1019 			pte_unmap(vmf.pte);
1020 			continue;
1021 		}
1022 		swapped_in++;
1023 		ret = do_swap_page(&vmf);
1024 
1025 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1026 		if (ret & VM_FAULT_RETRY) {
1027 			mmap_read_lock(mm);
1028 			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1029 				/* vma is no longer available, don't continue to swapin */
1030 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1031 				return false;
1032 			}
1033 			/* check if the pmd is still valid */
1034 			if (mm_find_pmd(mm, haddr) != pmd) {
1035 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1036 				return false;
1037 			}
1038 		}
1039 		if (ret & VM_FAULT_ERROR) {
1040 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1041 			return false;
1042 		}
1043 	}
1044 
1045 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1046 	if (swapped_in)
1047 		lru_add_drain();
1048 
1049 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1050 	return true;
1051 }
1052 
1053 static void collapse_huge_page(struct mm_struct *mm,
1054 				   unsigned long address,
1055 				   struct page **hpage,
1056 				   int node, int referenced, int unmapped)
1057 {
1058 	LIST_HEAD(compound_pagelist);
1059 	pmd_t *pmd, _pmd;
1060 	pte_t *pte;
1061 	pgtable_t pgtable;
1062 	struct page *new_page;
1063 	spinlock_t *pmd_ptl, *pte_ptl;
1064 	int isolated = 0, result = 0;
1065 	struct vm_area_struct *vma;
1066 	struct mmu_notifier_range range;
1067 	gfp_t gfp;
1068 
1069 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1070 
1071 	/* Only allocate from the target node */
1072 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1073 
1074 	/*
1075 	 * Before allocating the hugepage, release the mmap_lock read lock.
1076 	 * The allocation can take potentially a long time if it involves
1077 	 * sync compaction, and we do not need to hold the mmap_lock during
1078 	 * that. We will recheck the vma after taking it again in write mode.
1079 	 */
1080 	mmap_read_unlock(mm);
1081 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1082 	if (!new_page) {
1083 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1084 		goto out_nolock;
1085 	}
1086 
1087 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1088 		result = SCAN_CGROUP_CHARGE_FAIL;
1089 		goto out_nolock;
1090 	}
1091 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1092 
1093 	mmap_read_lock(mm);
1094 	result = hugepage_vma_revalidate(mm, address, &vma);
1095 	if (result) {
1096 		mmap_read_unlock(mm);
1097 		goto out_nolock;
1098 	}
1099 
1100 	pmd = mm_find_pmd(mm, address);
1101 	if (!pmd) {
1102 		result = SCAN_PMD_NULL;
1103 		mmap_read_unlock(mm);
1104 		goto out_nolock;
1105 	}
1106 
1107 	/*
1108 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1109 	 * If it fails, we release mmap_lock and jump out_nolock.
1110 	 * Continuing to collapse causes inconsistency.
1111 	 */
1112 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1113 						     pmd, referenced)) {
1114 		mmap_read_unlock(mm);
1115 		goto out_nolock;
1116 	}
1117 
1118 	mmap_read_unlock(mm);
1119 	/*
1120 	 * Prevent all access to pagetables with the exception of
1121 	 * gup_fast later handled by the ptep_clear_flush and the VM
1122 	 * handled by the anon_vma lock + PG_lock.
1123 	 */
1124 	mmap_write_lock(mm);
1125 	result = hugepage_vma_revalidate(mm, address, &vma);
1126 	if (result)
1127 		goto out_up_write;
1128 	/* check if the pmd is still valid */
1129 	if (mm_find_pmd(mm, address) != pmd)
1130 		goto out_up_write;
1131 
1132 	anon_vma_lock_write(vma->anon_vma);
1133 
1134 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1135 				address, address + HPAGE_PMD_SIZE);
1136 	mmu_notifier_invalidate_range_start(&range);
1137 
1138 	pte = pte_offset_map(pmd, address);
1139 	pte_ptl = pte_lockptr(mm, pmd);
1140 
1141 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1142 	/*
1143 	 * After this gup_fast can't run anymore. This also removes
1144 	 * any huge TLB entry from the CPU so we won't allow
1145 	 * huge and small TLB entries for the same virtual address
1146 	 * to avoid the risk of CPU bugs in that area.
1147 	 */
1148 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1149 	spin_unlock(pmd_ptl);
1150 	mmu_notifier_invalidate_range_end(&range);
1151 
1152 	spin_lock(pte_ptl);
1153 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1154 			&compound_pagelist);
1155 	spin_unlock(pte_ptl);
1156 
1157 	if (unlikely(!isolated)) {
1158 		pte_unmap(pte);
1159 		spin_lock(pmd_ptl);
1160 		BUG_ON(!pmd_none(*pmd));
1161 		/*
1162 		 * We can only use set_pmd_at when establishing
1163 		 * hugepmds and never for establishing regular pmds that
1164 		 * points to regular pagetables. Use pmd_populate for that
1165 		 */
1166 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1167 		spin_unlock(pmd_ptl);
1168 		anon_vma_unlock_write(vma->anon_vma);
1169 		result = SCAN_FAIL;
1170 		goto out_up_write;
1171 	}
1172 
1173 	/*
1174 	 * All pages are isolated and locked so anon_vma rmap
1175 	 * can't run anymore.
1176 	 */
1177 	anon_vma_unlock_write(vma->anon_vma);
1178 
1179 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1180 			&compound_pagelist);
1181 	pte_unmap(pte);
1182 	/*
1183 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1184 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1185 	 * avoid the copy_huge_page writes to become visible after
1186 	 * the set_pmd_at() write.
1187 	 */
1188 	__SetPageUptodate(new_page);
1189 	pgtable = pmd_pgtable(_pmd);
1190 
1191 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1192 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1193 
1194 	spin_lock(pmd_ptl);
1195 	BUG_ON(!pmd_none(*pmd));
1196 	page_add_new_anon_rmap(new_page, vma, address, true);
1197 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1198 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1199 	set_pmd_at(mm, address, pmd, _pmd);
1200 	update_mmu_cache_pmd(vma, address, pmd);
1201 	spin_unlock(pmd_ptl);
1202 
1203 	*hpage = NULL;
1204 
1205 	khugepaged_pages_collapsed++;
1206 	result = SCAN_SUCCEED;
1207 out_up_write:
1208 	mmap_write_unlock(mm);
1209 out_nolock:
1210 	if (!IS_ERR_OR_NULL(*hpage))
1211 		mem_cgroup_uncharge(page_folio(*hpage));
1212 	trace_mm_collapse_huge_page(mm, isolated, result);
1213 	return;
1214 }
1215 
1216 static int khugepaged_scan_pmd(struct mm_struct *mm,
1217 			       struct vm_area_struct *vma,
1218 			       unsigned long address,
1219 			       struct page **hpage)
1220 {
1221 	pmd_t *pmd;
1222 	pte_t *pte, *_pte;
1223 	int ret = 0, result = 0, referenced = 0;
1224 	int none_or_zero = 0, shared = 0;
1225 	struct page *page = NULL;
1226 	unsigned long _address;
1227 	spinlock_t *ptl;
1228 	int node = NUMA_NO_NODE, unmapped = 0;
1229 	bool writable = false;
1230 
1231 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1232 
1233 	pmd = mm_find_pmd(mm, address);
1234 	if (!pmd) {
1235 		result = SCAN_PMD_NULL;
1236 		goto out;
1237 	}
1238 
1239 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1240 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1241 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1242 	     _pte++, _address += PAGE_SIZE) {
1243 		pte_t pteval = *_pte;
1244 		if (is_swap_pte(pteval)) {
1245 			if (++unmapped <= khugepaged_max_ptes_swap) {
1246 				/*
1247 				 * Always be strict with uffd-wp
1248 				 * enabled swap entries.  Please see
1249 				 * comment below for pte_uffd_wp().
1250 				 */
1251 				if (pte_swp_uffd_wp(pteval)) {
1252 					result = SCAN_PTE_UFFD_WP;
1253 					goto out_unmap;
1254 				}
1255 				continue;
1256 			} else {
1257 				result = SCAN_EXCEED_SWAP_PTE;
1258 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1259 				goto out_unmap;
1260 			}
1261 		}
1262 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1263 			if (!userfaultfd_armed(vma) &&
1264 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1265 				continue;
1266 			} else {
1267 				result = SCAN_EXCEED_NONE_PTE;
1268 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1269 				goto out_unmap;
1270 			}
1271 		}
1272 		if (pte_uffd_wp(pteval)) {
1273 			/*
1274 			 * Don't collapse the page if any of the small
1275 			 * PTEs are armed with uffd write protection.
1276 			 * Here we can also mark the new huge pmd as
1277 			 * write protected if any of the small ones is
1278 			 * marked but that could bring unknown
1279 			 * userfault messages that falls outside of
1280 			 * the registered range.  So, just be simple.
1281 			 */
1282 			result = SCAN_PTE_UFFD_WP;
1283 			goto out_unmap;
1284 		}
1285 		if (pte_write(pteval))
1286 			writable = true;
1287 
1288 		page = vm_normal_page(vma, _address, pteval);
1289 		if (unlikely(!page)) {
1290 			result = SCAN_PAGE_NULL;
1291 			goto out_unmap;
1292 		}
1293 
1294 		if (page_mapcount(page) > 1 &&
1295 				++shared > khugepaged_max_ptes_shared) {
1296 			result = SCAN_EXCEED_SHARED_PTE;
1297 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1298 			goto out_unmap;
1299 		}
1300 
1301 		page = compound_head(page);
1302 
1303 		/*
1304 		 * Record which node the original page is from and save this
1305 		 * information to khugepaged_node_load[].
1306 		 * Khugepaged will allocate hugepage from the node has the max
1307 		 * hit record.
1308 		 */
1309 		node = page_to_nid(page);
1310 		if (khugepaged_scan_abort(node)) {
1311 			result = SCAN_SCAN_ABORT;
1312 			goto out_unmap;
1313 		}
1314 		khugepaged_node_load[node]++;
1315 		if (!PageLRU(page)) {
1316 			result = SCAN_PAGE_LRU;
1317 			goto out_unmap;
1318 		}
1319 		if (PageLocked(page)) {
1320 			result = SCAN_PAGE_LOCK;
1321 			goto out_unmap;
1322 		}
1323 		if (!PageAnon(page)) {
1324 			result = SCAN_PAGE_ANON;
1325 			goto out_unmap;
1326 		}
1327 
1328 		/*
1329 		 * Check if the page has any GUP (or other external) pins.
1330 		 *
1331 		 * Here the check is racy it may see totmal_mapcount > refcount
1332 		 * in some cases.
1333 		 * For example, one process with one forked child process.
1334 		 * The parent has the PMD split due to MADV_DONTNEED, then
1335 		 * the child is trying unmap the whole PMD, but khugepaged
1336 		 * may be scanning the parent between the child has
1337 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1338 		 * khugepaged may see total_mapcount > refcount.
1339 		 *
1340 		 * But such case is ephemeral we could always retry collapse
1341 		 * later.  However it may report false positive if the page
1342 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1343 		 * will be done again later the risk seems low.
1344 		 */
1345 		if (!is_refcount_suitable(page)) {
1346 			result = SCAN_PAGE_COUNT;
1347 			goto out_unmap;
1348 		}
1349 		if (pte_young(pteval) ||
1350 		    page_is_young(page) || PageReferenced(page) ||
1351 		    mmu_notifier_test_young(vma->vm_mm, address))
1352 			referenced++;
1353 	}
1354 	if (!writable) {
1355 		result = SCAN_PAGE_RO;
1356 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1357 		result = SCAN_LACK_REFERENCED_PAGE;
1358 	} else {
1359 		result = SCAN_SUCCEED;
1360 		ret = 1;
1361 	}
1362 out_unmap:
1363 	pte_unmap_unlock(pte, ptl);
1364 	if (ret) {
1365 		node = khugepaged_find_target_node();
1366 		/* collapse_huge_page will return with the mmap_lock released */
1367 		collapse_huge_page(mm, address, hpage, node,
1368 				referenced, unmapped);
1369 	}
1370 out:
1371 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1372 				     none_or_zero, result, unmapped);
1373 	return ret;
1374 }
1375 
1376 static void collect_mm_slot(struct mm_slot *mm_slot)
1377 {
1378 	struct mm_struct *mm = mm_slot->mm;
1379 
1380 	lockdep_assert_held(&khugepaged_mm_lock);
1381 
1382 	if (khugepaged_test_exit(mm)) {
1383 		/* free mm_slot */
1384 		hash_del(&mm_slot->hash);
1385 		list_del(&mm_slot->mm_node);
1386 
1387 		/*
1388 		 * Not strictly needed because the mm exited already.
1389 		 *
1390 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1391 		 */
1392 
1393 		/* khugepaged_mm_lock actually not necessary for the below */
1394 		free_mm_slot(mm_slot);
1395 		mmdrop(mm);
1396 	}
1397 }
1398 
1399 #ifdef CONFIG_SHMEM
1400 /*
1401  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1402  * khugepaged should try to collapse the page table.
1403  */
1404 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1405 					 unsigned long addr)
1406 {
1407 	struct mm_slot *mm_slot;
1408 
1409 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1410 
1411 	spin_lock(&khugepaged_mm_lock);
1412 	mm_slot = get_mm_slot(mm);
1413 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1414 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1415 	spin_unlock(&khugepaged_mm_lock);
1416 	return 0;
1417 }
1418 
1419 /**
1420  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1421  * address haddr.
1422  *
1423  * @mm: process address space where collapse happens
1424  * @addr: THP collapse address
1425  *
1426  * This function checks whether all the PTEs in the PMD are pointing to the
1427  * right THP. If so, retract the page table so the THP can refault in with
1428  * as pmd-mapped.
1429  */
1430 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1431 {
1432 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1433 	struct vm_area_struct *vma = find_vma(mm, haddr);
1434 	struct page *hpage;
1435 	pte_t *start_pte, *pte;
1436 	pmd_t *pmd, _pmd;
1437 	spinlock_t *ptl;
1438 	int count = 0;
1439 	int i;
1440 
1441 	if (!vma || !vma->vm_file ||
1442 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1443 		return;
1444 
1445 	/*
1446 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1447 	 * collapsed by this mm. But we can still collapse if the page is
1448 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1449 	 * will not fail the vma for missing VM_HUGEPAGE
1450 	 */
1451 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1452 		return;
1453 
1454 	hpage = find_lock_page(vma->vm_file->f_mapping,
1455 			       linear_page_index(vma, haddr));
1456 	if (!hpage)
1457 		return;
1458 
1459 	if (!PageHead(hpage))
1460 		goto drop_hpage;
1461 
1462 	pmd = mm_find_pmd(mm, haddr);
1463 	if (!pmd)
1464 		goto drop_hpage;
1465 
1466 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1467 
1468 	/* step 1: check all mapped PTEs are to the right huge page */
1469 	for (i = 0, addr = haddr, pte = start_pte;
1470 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1471 		struct page *page;
1472 
1473 		/* empty pte, skip */
1474 		if (pte_none(*pte))
1475 			continue;
1476 
1477 		/* page swapped out, abort */
1478 		if (!pte_present(*pte))
1479 			goto abort;
1480 
1481 		page = vm_normal_page(vma, addr, *pte);
1482 
1483 		/*
1484 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1485 		 * page table, but the new page will not be a subpage of hpage.
1486 		 */
1487 		if (hpage + i != page)
1488 			goto abort;
1489 		count++;
1490 	}
1491 
1492 	/* step 2: adjust rmap */
1493 	for (i = 0, addr = haddr, pte = start_pte;
1494 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1495 		struct page *page;
1496 
1497 		if (pte_none(*pte))
1498 			continue;
1499 		page = vm_normal_page(vma, addr, *pte);
1500 		page_remove_rmap(page, false);
1501 	}
1502 
1503 	pte_unmap_unlock(start_pte, ptl);
1504 
1505 	/* step 3: set proper refcount and mm_counters. */
1506 	if (count) {
1507 		page_ref_sub(hpage, count);
1508 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1509 	}
1510 
1511 	/* step 4: collapse pmd */
1512 	ptl = pmd_lock(vma->vm_mm, pmd);
1513 	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1514 	spin_unlock(ptl);
1515 	mm_dec_nr_ptes(mm);
1516 	pte_free(mm, pmd_pgtable(_pmd));
1517 
1518 drop_hpage:
1519 	unlock_page(hpage);
1520 	put_page(hpage);
1521 	return;
1522 
1523 abort:
1524 	pte_unmap_unlock(start_pte, ptl);
1525 	goto drop_hpage;
1526 }
1527 
1528 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1529 {
1530 	struct mm_struct *mm = mm_slot->mm;
1531 	int i;
1532 
1533 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1534 		return;
1535 
1536 	if (!mmap_write_trylock(mm))
1537 		return;
1538 
1539 	if (unlikely(khugepaged_test_exit(mm)))
1540 		goto out;
1541 
1542 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1543 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1544 
1545 out:
1546 	mm_slot->nr_pte_mapped_thp = 0;
1547 	mmap_write_unlock(mm);
1548 }
1549 
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1551 {
1552 	struct vm_area_struct *vma;
1553 	struct mm_struct *mm;
1554 	unsigned long addr;
1555 	pmd_t *pmd, _pmd;
1556 
1557 	i_mmap_lock_write(mapping);
1558 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1559 		/*
1560 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 		 * got written to. These VMAs are likely not worth investing
1562 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563 		 * later.
1564 		 *
1565 		 * Not that vma->anon_vma check is racy: it can be set up after
1566 		 * the check but before we took mmap_lock by the fault path.
1567 		 * But page lock would prevent establishing any new ptes of the
1568 		 * page, so we are safe.
1569 		 *
1570 		 * An alternative would be drop the check, but check that page
1571 		 * table is clear before calling pmdp_collapse_flush() under
1572 		 * ptl. It has higher chance to recover THP for the VMA, but
1573 		 * has higher cost too.
1574 		 */
1575 		if (vma->anon_vma)
1576 			continue;
1577 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578 		if (addr & ~HPAGE_PMD_MASK)
1579 			continue;
1580 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581 			continue;
1582 		mm = vma->vm_mm;
1583 		pmd = mm_find_pmd(mm, addr);
1584 		if (!pmd)
1585 			continue;
1586 		/*
1587 		 * We need exclusive mmap_lock to retract page table.
1588 		 *
1589 		 * We use trylock due to lock inversion: we need to acquire
1590 		 * mmap_lock while holding page lock. Fault path does it in
1591 		 * reverse order. Trylock is a way to avoid deadlock.
1592 		 */
1593 		if (mmap_write_trylock(mm)) {
1594 			if (!khugepaged_test_exit(mm)) {
1595 				spinlock_t *ptl = pmd_lock(mm, pmd);
1596 				/* assume page table is clear */
1597 				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1598 				spin_unlock(ptl);
1599 				mm_dec_nr_ptes(mm);
1600 				pte_free(mm, pmd_pgtable(_pmd));
1601 			}
1602 			mmap_write_unlock(mm);
1603 		} else {
1604 			/* Try again later */
1605 			khugepaged_add_pte_mapped_thp(mm, addr);
1606 		}
1607 	}
1608 	i_mmap_unlock_write(mapping);
1609 }
1610 
1611 /**
1612  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1613  *
1614  * @mm: process address space where collapse happens
1615  * @file: file that collapse on
1616  * @start: collapse start address
1617  * @hpage: new allocated huge page for collapse
1618  * @node: appointed node the new huge page allocate from
1619  *
1620  * Basic scheme is simple, details are more complex:
1621  *  - allocate and lock a new huge page;
1622  *  - scan page cache replacing old pages with the new one
1623  *    + swap/gup in pages if necessary;
1624  *    + fill in gaps;
1625  *    + keep old pages around in case rollback is required;
1626  *  - if replacing succeeds:
1627  *    + copy data over;
1628  *    + free old pages;
1629  *    + unlock huge page;
1630  *  - if replacing failed;
1631  *    + put all pages back and unfreeze them;
1632  *    + restore gaps in the page cache;
1633  *    + unlock and free huge page;
1634  */
1635 static void collapse_file(struct mm_struct *mm,
1636 		struct file *file, pgoff_t start,
1637 		struct page **hpage, int node)
1638 {
1639 	struct address_space *mapping = file->f_mapping;
1640 	gfp_t gfp;
1641 	struct page *new_page;
1642 	pgoff_t index, end = start + HPAGE_PMD_NR;
1643 	LIST_HEAD(pagelist);
1644 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645 	int nr_none = 0, result = SCAN_SUCCEED;
1646 	bool is_shmem = shmem_file(file);
1647 	int nr;
1648 
1649 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1650 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1651 
1652 	/* Only allocate from the target node */
1653 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1654 
1655 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1656 	if (!new_page) {
1657 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1658 		goto out;
1659 	}
1660 
1661 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1662 		result = SCAN_CGROUP_CHARGE_FAIL;
1663 		goto out;
1664 	}
1665 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1666 
1667 	/*
1668 	 * Ensure we have slots for all the pages in the range.  This is
1669 	 * almost certainly a no-op because most of the pages must be present
1670 	 */
1671 	do {
1672 		xas_lock_irq(&xas);
1673 		xas_create_range(&xas);
1674 		if (!xas_error(&xas))
1675 			break;
1676 		xas_unlock_irq(&xas);
1677 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1678 			result = SCAN_FAIL;
1679 			goto out;
1680 		}
1681 	} while (1);
1682 
1683 	__SetPageLocked(new_page);
1684 	if (is_shmem)
1685 		__SetPageSwapBacked(new_page);
1686 	new_page->index = start;
1687 	new_page->mapping = mapping;
1688 
1689 	/*
1690 	 * At this point the new_page is locked and not up-to-date.
1691 	 * It's safe to insert it into the page cache, because nobody would
1692 	 * be able to map it or use it in another way until we unlock it.
1693 	 */
1694 
1695 	xas_set(&xas, start);
1696 	for (index = start; index < end; index++) {
1697 		struct page *page = xas_next(&xas);
1698 
1699 		VM_BUG_ON(index != xas.xa_index);
1700 		if (is_shmem) {
1701 			if (!page) {
1702 				/*
1703 				 * Stop if extent has been truncated or
1704 				 * hole-punched, and is now completely
1705 				 * empty.
1706 				 */
1707 				if (index == start) {
1708 					if (!xas_next_entry(&xas, end - 1)) {
1709 						result = SCAN_TRUNCATED;
1710 						goto xa_locked;
1711 					}
1712 					xas_set(&xas, index);
1713 				}
1714 				if (!shmem_charge(mapping->host, 1)) {
1715 					result = SCAN_FAIL;
1716 					goto xa_locked;
1717 				}
1718 				xas_store(&xas, new_page);
1719 				nr_none++;
1720 				continue;
1721 			}
1722 
1723 			if (xa_is_value(page) || !PageUptodate(page)) {
1724 				xas_unlock_irq(&xas);
1725 				/* swap in or instantiate fallocated page */
1726 				if (shmem_getpage(mapping->host, index, &page,
1727 						  SGP_NOALLOC)) {
1728 					result = SCAN_FAIL;
1729 					goto xa_unlocked;
1730 				}
1731 			} else if (trylock_page(page)) {
1732 				get_page(page);
1733 				xas_unlock_irq(&xas);
1734 			} else {
1735 				result = SCAN_PAGE_LOCK;
1736 				goto xa_locked;
1737 			}
1738 		} else {	/* !is_shmem */
1739 			if (!page || xa_is_value(page)) {
1740 				xas_unlock_irq(&xas);
1741 				page_cache_sync_readahead(mapping, &file->f_ra,
1742 							  file, index,
1743 							  end - index);
1744 				/* drain pagevecs to help isolate_lru_page() */
1745 				lru_add_drain();
1746 				page = find_lock_page(mapping, index);
1747 				if (unlikely(page == NULL)) {
1748 					result = SCAN_FAIL;
1749 					goto xa_unlocked;
1750 				}
1751 			} else if (PageDirty(page)) {
1752 				/*
1753 				 * khugepaged only works on read-only fd,
1754 				 * so this page is dirty because it hasn't
1755 				 * been flushed since first write. There
1756 				 * won't be new dirty pages.
1757 				 *
1758 				 * Trigger async flush here and hope the
1759 				 * writeback is done when khugepaged
1760 				 * revisits this page.
1761 				 *
1762 				 * This is a one-off situation. We are not
1763 				 * forcing writeback in loop.
1764 				 */
1765 				xas_unlock_irq(&xas);
1766 				filemap_flush(mapping);
1767 				result = SCAN_FAIL;
1768 				goto xa_unlocked;
1769 			} else if (PageWriteback(page)) {
1770 				xas_unlock_irq(&xas);
1771 				result = SCAN_FAIL;
1772 				goto xa_unlocked;
1773 			} else if (trylock_page(page)) {
1774 				get_page(page);
1775 				xas_unlock_irq(&xas);
1776 			} else {
1777 				result = SCAN_PAGE_LOCK;
1778 				goto xa_locked;
1779 			}
1780 		}
1781 
1782 		/*
1783 		 * The page must be locked, so we can drop the i_pages lock
1784 		 * without racing with truncate.
1785 		 */
1786 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1787 
1788 		/* make sure the page is up to date */
1789 		if (unlikely(!PageUptodate(page))) {
1790 			result = SCAN_FAIL;
1791 			goto out_unlock;
1792 		}
1793 
1794 		/*
1795 		 * If file was truncated then extended, or hole-punched, before
1796 		 * we locked the first page, then a THP might be there already.
1797 		 */
1798 		if (PageTransCompound(page)) {
1799 			result = SCAN_PAGE_COMPOUND;
1800 			goto out_unlock;
1801 		}
1802 
1803 		if (page_mapping(page) != mapping) {
1804 			result = SCAN_TRUNCATED;
1805 			goto out_unlock;
1806 		}
1807 
1808 		if (!is_shmem && (PageDirty(page) ||
1809 				  PageWriteback(page))) {
1810 			/*
1811 			 * khugepaged only works on read-only fd, so this
1812 			 * page is dirty because it hasn't been flushed
1813 			 * since first write.
1814 			 */
1815 			result = SCAN_FAIL;
1816 			goto out_unlock;
1817 		}
1818 
1819 		if (isolate_lru_page(page)) {
1820 			result = SCAN_DEL_PAGE_LRU;
1821 			goto out_unlock;
1822 		}
1823 
1824 		if (page_has_private(page) &&
1825 		    !try_to_release_page(page, GFP_KERNEL)) {
1826 			result = SCAN_PAGE_HAS_PRIVATE;
1827 			putback_lru_page(page);
1828 			goto out_unlock;
1829 		}
1830 
1831 		if (page_mapped(page))
1832 			unmap_mapping_pages(mapping, index, 1, false);
1833 
1834 		xas_lock_irq(&xas);
1835 		xas_set(&xas, index);
1836 
1837 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1838 		VM_BUG_ON_PAGE(page_mapped(page), page);
1839 
1840 		/*
1841 		 * The page is expected to have page_count() == 3:
1842 		 *  - we hold a pin on it;
1843 		 *  - one reference from page cache;
1844 		 *  - one from isolate_lru_page;
1845 		 */
1846 		if (!page_ref_freeze(page, 3)) {
1847 			result = SCAN_PAGE_COUNT;
1848 			xas_unlock_irq(&xas);
1849 			putback_lru_page(page);
1850 			goto out_unlock;
1851 		}
1852 
1853 		/*
1854 		 * Add the page to the list to be able to undo the collapse if
1855 		 * something go wrong.
1856 		 */
1857 		list_add_tail(&page->lru, &pagelist);
1858 
1859 		/* Finally, replace with the new page. */
1860 		xas_store(&xas, new_page);
1861 		continue;
1862 out_unlock:
1863 		unlock_page(page);
1864 		put_page(page);
1865 		goto xa_unlocked;
1866 	}
1867 	nr = thp_nr_pages(new_page);
1868 
1869 	if (is_shmem)
1870 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1871 	else {
1872 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1873 		filemap_nr_thps_inc(mapping);
1874 		/*
1875 		 * Paired with smp_mb() in do_dentry_open() to ensure
1876 		 * i_writecount is up to date and the update to nr_thps is
1877 		 * visible. Ensures the page cache will be truncated if the
1878 		 * file is opened writable.
1879 		 */
1880 		smp_mb();
1881 		if (inode_is_open_for_write(mapping->host)) {
1882 			result = SCAN_FAIL;
1883 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1884 			filemap_nr_thps_dec(mapping);
1885 			goto xa_locked;
1886 		}
1887 	}
1888 
1889 	if (nr_none) {
1890 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1891 		if (is_shmem)
1892 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1893 	}
1894 
1895 	/* Join all the small entries into a single multi-index entry */
1896 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1897 	xas_store(&xas, new_page);
1898 xa_locked:
1899 	xas_unlock_irq(&xas);
1900 xa_unlocked:
1901 
1902 	if (result == SCAN_SUCCEED) {
1903 		struct page *page, *tmp;
1904 
1905 		/*
1906 		 * Replacing old pages with new one has succeeded, now we
1907 		 * need to copy the content and free the old pages.
1908 		 */
1909 		index = start;
1910 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1911 			while (index < page->index) {
1912 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1913 				index++;
1914 			}
1915 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1916 					page);
1917 			list_del(&page->lru);
1918 			page->mapping = NULL;
1919 			page_ref_unfreeze(page, 1);
1920 			ClearPageActive(page);
1921 			ClearPageUnevictable(page);
1922 			unlock_page(page);
1923 			put_page(page);
1924 			index++;
1925 		}
1926 		while (index < end) {
1927 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1928 			index++;
1929 		}
1930 
1931 		SetPageUptodate(new_page);
1932 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1933 		if (is_shmem)
1934 			set_page_dirty(new_page);
1935 		lru_cache_add(new_page);
1936 
1937 		/*
1938 		 * Remove pte page tables, so we can re-fault the page as huge.
1939 		 */
1940 		retract_page_tables(mapping, start);
1941 		*hpage = NULL;
1942 
1943 		khugepaged_pages_collapsed++;
1944 	} else {
1945 		struct page *page;
1946 
1947 		/* Something went wrong: roll back page cache changes */
1948 		xas_lock_irq(&xas);
1949 		mapping->nrpages -= nr_none;
1950 
1951 		if (is_shmem)
1952 			shmem_uncharge(mapping->host, nr_none);
1953 
1954 		xas_set(&xas, start);
1955 		xas_for_each(&xas, page, end - 1) {
1956 			page = list_first_entry_or_null(&pagelist,
1957 					struct page, lru);
1958 			if (!page || xas.xa_index < page->index) {
1959 				if (!nr_none)
1960 					break;
1961 				nr_none--;
1962 				/* Put holes back where they were */
1963 				xas_store(&xas, NULL);
1964 				continue;
1965 			}
1966 
1967 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1968 
1969 			/* Unfreeze the page. */
1970 			list_del(&page->lru);
1971 			page_ref_unfreeze(page, 2);
1972 			xas_store(&xas, page);
1973 			xas_pause(&xas);
1974 			xas_unlock_irq(&xas);
1975 			unlock_page(page);
1976 			putback_lru_page(page);
1977 			xas_lock_irq(&xas);
1978 		}
1979 		VM_BUG_ON(nr_none);
1980 		xas_unlock_irq(&xas);
1981 
1982 		new_page->mapping = NULL;
1983 	}
1984 
1985 	unlock_page(new_page);
1986 out:
1987 	VM_BUG_ON(!list_empty(&pagelist));
1988 	if (!IS_ERR_OR_NULL(*hpage))
1989 		mem_cgroup_uncharge(page_folio(*hpage));
1990 	/* TODO: tracepoints */
1991 }
1992 
1993 static void khugepaged_scan_file(struct mm_struct *mm,
1994 		struct file *file, pgoff_t start, struct page **hpage)
1995 {
1996 	struct page *page = NULL;
1997 	struct address_space *mapping = file->f_mapping;
1998 	XA_STATE(xas, &mapping->i_pages, start);
1999 	int present, swap;
2000 	int node = NUMA_NO_NODE;
2001 	int result = SCAN_SUCCEED;
2002 
2003 	present = 0;
2004 	swap = 0;
2005 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2006 	rcu_read_lock();
2007 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2008 		if (xas_retry(&xas, page))
2009 			continue;
2010 
2011 		if (xa_is_value(page)) {
2012 			if (++swap > khugepaged_max_ptes_swap) {
2013 				result = SCAN_EXCEED_SWAP_PTE;
2014 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2015 				break;
2016 			}
2017 			continue;
2018 		}
2019 
2020 		/*
2021 		 * XXX: khugepaged should compact smaller compound pages
2022 		 * into a PMD sized page
2023 		 */
2024 		if (PageTransCompound(page)) {
2025 			result = SCAN_PAGE_COMPOUND;
2026 			break;
2027 		}
2028 
2029 		node = page_to_nid(page);
2030 		if (khugepaged_scan_abort(node)) {
2031 			result = SCAN_SCAN_ABORT;
2032 			break;
2033 		}
2034 		khugepaged_node_load[node]++;
2035 
2036 		if (!PageLRU(page)) {
2037 			result = SCAN_PAGE_LRU;
2038 			break;
2039 		}
2040 
2041 		if (page_count(page) !=
2042 		    1 + page_mapcount(page) + page_has_private(page)) {
2043 			result = SCAN_PAGE_COUNT;
2044 			break;
2045 		}
2046 
2047 		/*
2048 		 * We probably should check if the page is referenced here, but
2049 		 * nobody would transfer pte_young() to PageReferenced() for us.
2050 		 * And rmap walk here is just too costly...
2051 		 */
2052 
2053 		present++;
2054 
2055 		if (need_resched()) {
2056 			xas_pause(&xas);
2057 			cond_resched_rcu();
2058 		}
2059 	}
2060 	rcu_read_unlock();
2061 
2062 	if (result == SCAN_SUCCEED) {
2063 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2064 			result = SCAN_EXCEED_NONE_PTE;
2065 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2066 		} else {
2067 			node = khugepaged_find_target_node();
2068 			collapse_file(mm, file, start, hpage, node);
2069 		}
2070 	}
2071 
2072 	/* TODO: tracepoints */
2073 }
2074 #else
2075 static void khugepaged_scan_file(struct mm_struct *mm,
2076 		struct file *file, pgoff_t start, struct page **hpage)
2077 {
2078 	BUILD_BUG();
2079 }
2080 
2081 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2082 {
2083 }
2084 #endif
2085 
2086 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2087 					    struct page **hpage)
2088 	__releases(&khugepaged_mm_lock)
2089 	__acquires(&khugepaged_mm_lock)
2090 {
2091 	struct mm_slot *mm_slot;
2092 	struct mm_struct *mm;
2093 	struct vm_area_struct *vma;
2094 	int progress = 0;
2095 
2096 	VM_BUG_ON(!pages);
2097 	lockdep_assert_held(&khugepaged_mm_lock);
2098 
2099 	if (khugepaged_scan.mm_slot)
2100 		mm_slot = khugepaged_scan.mm_slot;
2101 	else {
2102 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2103 				     struct mm_slot, mm_node);
2104 		khugepaged_scan.address = 0;
2105 		khugepaged_scan.mm_slot = mm_slot;
2106 	}
2107 	spin_unlock(&khugepaged_mm_lock);
2108 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2109 
2110 	mm = mm_slot->mm;
2111 	/*
2112 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2113 	 * the next mm on the list.
2114 	 */
2115 	vma = NULL;
2116 	if (unlikely(!mmap_read_trylock(mm)))
2117 		goto breakouterloop_mmap_lock;
2118 	if (likely(!khugepaged_test_exit(mm)))
2119 		vma = find_vma(mm, khugepaged_scan.address);
2120 
2121 	progress++;
2122 	for (; vma; vma = vma->vm_next) {
2123 		unsigned long hstart, hend;
2124 
2125 		cond_resched();
2126 		if (unlikely(khugepaged_test_exit(mm))) {
2127 			progress++;
2128 			break;
2129 		}
2130 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2131 skip:
2132 			progress++;
2133 			continue;
2134 		}
2135 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2136 		hend = vma->vm_end & HPAGE_PMD_MASK;
2137 		if (hstart >= hend)
2138 			goto skip;
2139 		if (khugepaged_scan.address > hend)
2140 			goto skip;
2141 		if (khugepaged_scan.address < hstart)
2142 			khugepaged_scan.address = hstart;
2143 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2144 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2145 			goto skip;
2146 
2147 		while (khugepaged_scan.address < hend) {
2148 			int ret;
2149 			cond_resched();
2150 			if (unlikely(khugepaged_test_exit(mm)))
2151 				goto breakouterloop;
2152 
2153 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2154 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2155 				  hend);
2156 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2157 				struct file *file = get_file(vma->vm_file);
2158 				pgoff_t pgoff = linear_page_index(vma,
2159 						khugepaged_scan.address);
2160 
2161 				mmap_read_unlock(mm);
2162 				ret = 1;
2163 				khugepaged_scan_file(mm, file, pgoff, hpage);
2164 				fput(file);
2165 			} else {
2166 				ret = khugepaged_scan_pmd(mm, vma,
2167 						khugepaged_scan.address,
2168 						hpage);
2169 			}
2170 			/* move to next address */
2171 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2172 			progress += HPAGE_PMD_NR;
2173 			if (ret)
2174 				/* we released mmap_lock so break loop */
2175 				goto breakouterloop_mmap_lock;
2176 			if (progress >= pages)
2177 				goto breakouterloop;
2178 		}
2179 	}
2180 breakouterloop:
2181 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2182 breakouterloop_mmap_lock:
2183 
2184 	spin_lock(&khugepaged_mm_lock);
2185 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2186 	/*
2187 	 * Release the current mm_slot if this mm is about to die, or
2188 	 * if we scanned all vmas of this mm.
2189 	 */
2190 	if (khugepaged_test_exit(mm) || !vma) {
2191 		/*
2192 		 * Make sure that if mm_users is reaching zero while
2193 		 * khugepaged runs here, khugepaged_exit will find
2194 		 * mm_slot not pointing to the exiting mm.
2195 		 */
2196 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2197 			khugepaged_scan.mm_slot = list_entry(
2198 				mm_slot->mm_node.next,
2199 				struct mm_slot, mm_node);
2200 			khugepaged_scan.address = 0;
2201 		} else {
2202 			khugepaged_scan.mm_slot = NULL;
2203 			khugepaged_full_scans++;
2204 		}
2205 
2206 		collect_mm_slot(mm_slot);
2207 	}
2208 
2209 	return progress;
2210 }
2211 
2212 static int khugepaged_has_work(void)
2213 {
2214 	return !list_empty(&khugepaged_scan.mm_head) &&
2215 		khugepaged_enabled();
2216 }
2217 
2218 static int khugepaged_wait_event(void)
2219 {
2220 	return !list_empty(&khugepaged_scan.mm_head) ||
2221 		kthread_should_stop();
2222 }
2223 
2224 static void khugepaged_do_scan(void)
2225 {
2226 	struct page *hpage = NULL;
2227 	unsigned int progress = 0, pass_through_head = 0;
2228 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2229 	bool wait = true;
2230 
2231 	lru_add_drain_all();
2232 
2233 	while (progress < pages) {
2234 		if (!khugepaged_prealloc_page(&hpage, &wait))
2235 			break;
2236 
2237 		cond_resched();
2238 
2239 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2240 			break;
2241 
2242 		spin_lock(&khugepaged_mm_lock);
2243 		if (!khugepaged_scan.mm_slot)
2244 			pass_through_head++;
2245 		if (khugepaged_has_work() &&
2246 		    pass_through_head < 2)
2247 			progress += khugepaged_scan_mm_slot(pages - progress,
2248 							    &hpage);
2249 		else
2250 			progress = pages;
2251 		spin_unlock(&khugepaged_mm_lock);
2252 	}
2253 
2254 	if (!IS_ERR_OR_NULL(hpage))
2255 		put_page(hpage);
2256 }
2257 
2258 static bool khugepaged_should_wakeup(void)
2259 {
2260 	return kthread_should_stop() ||
2261 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2262 }
2263 
2264 static void khugepaged_wait_work(void)
2265 {
2266 	if (khugepaged_has_work()) {
2267 		const unsigned long scan_sleep_jiffies =
2268 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2269 
2270 		if (!scan_sleep_jiffies)
2271 			return;
2272 
2273 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2274 		wait_event_freezable_timeout(khugepaged_wait,
2275 					     khugepaged_should_wakeup(),
2276 					     scan_sleep_jiffies);
2277 		return;
2278 	}
2279 
2280 	if (khugepaged_enabled())
2281 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2282 }
2283 
2284 static int khugepaged(void *none)
2285 {
2286 	struct mm_slot *mm_slot;
2287 
2288 	set_freezable();
2289 	set_user_nice(current, MAX_NICE);
2290 
2291 	while (!kthread_should_stop()) {
2292 		khugepaged_do_scan();
2293 		khugepaged_wait_work();
2294 	}
2295 
2296 	spin_lock(&khugepaged_mm_lock);
2297 	mm_slot = khugepaged_scan.mm_slot;
2298 	khugepaged_scan.mm_slot = NULL;
2299 	if (mm_slot)
2300 		collect_mm_slot(mm_slot);
2301 	spin_unlock(&khugepaged_mm_lock);
2302 	return 0;
2303 }
2304 
2305 static void set_recommended_min_free_kbytes(void)
2306 {
2307 	struct zone *zone;
2308 	int nr_zones = 0;
2309 	unsigned long recommended_min;
2310 
2311 	if (!khugepaged_enabled()) {
2312 		calculate_min_free_kbytes();
2313 		goto update_wmarks;
2314 	}
2315 
2316 	for_each_populated_zone(zone) {
2317 		/*
2318 		 * We don't need to worry about fragmentation of
2319 		 * ZONE_MOVABLE since it only has movable pages.
2320 		 */
2321 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2322 			continue;
2323 
2324 		nr_zones++;
2325 	}
2326 
2327 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2328 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2329 
2330 	/*
2331 	 * Make sure that on average at least two pageblocks are almost free
2332 	 * of another type, one for a migratetype to fall back to and a
2333 	 * second to avoid subsequent fallbacks of other types There are 3
2334 	 * MIGRATE_TYPES we care about.
2335 	 */
2336 	recommended_min += pageblock_nr_pages * nr_zones *
2337 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2338 
2339 	/* don't ever allow to reserve more than 5% of the lowmem */
2340 	recommended_min = min(recommended_min,
2341 			      (unsigned long) nr_free_buffer_pages() / 20);
2342 	recommended_min <<= (PAGE_SHIFT-10);
2343 
2344 	if (recommended_min > min_free_kbytes) {
2345 		if (user_min_free_kbytes >= 0)
2346 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2347 				min_free_kbytes, recommended_min);
2348 
2349 		min_free_kbytes = recommended_min;
2350 	}
2351 
2352 update_wmarks:
2353 	setup_per_zone_wmarks();
2354 }
2355 
2356 int start_stop_khugepaged(void)
2357 {
2358 	int err = 0;
2359 
2360 	mutex_lock(&khugepaged_mutex);
2361 	if (khugepaged_enabled()) {
2362 		if (!khugepaged_thread)
2363 			khugepaged_thread = kthread_run(khugepaged, NULL,
2364 							"khugepaged");
2365 		if (IS_ERR(khugepaged_thread)) {
2366 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2367 			err = PTR_ERR(khugepaged_thread);
2368 			khugepaged_thread = NULL;
2369 			goto fail;
2370 		}
2371 
2372 		if (!list_empty(&khugepaged_scan.mm_head))
2373 			wake_up_interruptible(&khugepaged_wait);
2374 	} else if (khugepaged_thread) {
2375 		kthread_stop(khugepaged_thread);
2376 		khugepaged_thread = NULL;
2377 	}
2378 	set_recommended_min_free_kbytes();
2379 fail:
2380 	mutex_unlock(&khugepaged_mutex);
2381 	return err;
2382 }
2383 
2384 void khugepaged_min_free_kbytes_update(void)
2385 {
2386 	mutex_lock(&khugepaged_mutex);
2387 	if (khugepaged_enabled() && khugepaged_thread)
2388 		set_recommended_min_free_kbytes();
2389 	mutex_unlock(&khugepaged_mutex);
2390 }
2391