1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/swapops.h> 20 #include <linux/shmem_fs.h> 21 22 #include <asm/tlb.h> 23 #include <asm/pgalloc.h> 24 #include "internal.h" 25 26 enum scan_result { 27 SCAN_FAIL, 28 SCAN_SUCCEED, 29 SCAN_PMD_NULL, 30 SCAN_EXCEED_NONE_PTE, 31 SCAN_EXCEED_SWAP_PTE, 32 SCAN_EXCEED_SHARED_PTE, 33 SCAN_PTE_NON_PRESENT, 34 SCAN_PTE_UFFD_WP, 35 SCAN_PAGE_RO, 36 SCAN_LACK_REFERENCED_PAGE, 37 SCAN_PAGE_NULL, 38 SCAN_SCAN_ABORT, 39 SCAN_PAGE_COUNT, 40 SCAN_PAGE_LRU, 41 SCAN_PAGE_LOCK, 42 SCAN_PAGE_ANON, 43 SCAN_PAGE_COMPOUND, 44 SCAN_ANY_PROCESS, 45 SCAN_VMA_NULL, 46 SCAN_VMA_CHECK, 47 SCAN_ADDRESS_RANGE, 48 SCAN_SWAP_CACHE_PAGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 151 scan_sleep_millisecs_store); 152 153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 154 struct kobj_attribute *attr, 155 char *buf) 156 { 157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 158 } 159 160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 const char *buf, size_t count) 163 { 164 unsigned int msecs; 165 int err; 166 167 err = kstrtouint(buf, 10, &msecs); 168 if (err) 169 return -EINVAL; 170 171 khugepaged_alloc_sleep_millisecs = msecs; 172 khugepaged_sleep_expire = 0; 173 wake_up_interruptible(&khugepaged_wait); 174 175 return count; 176 } 177 static struct kobj_attribute alloc_sleep_millisecs_attr = 178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 179 alloc_sleep_millisecs_store); 180 181 static ssize_t pages_to_scan_show(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 char *buf) 184 { 185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 186 } 187 static ssize_t pages_to_scan_store(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 const char *buf, size_t count) 190 { 191 unsigned int pages; 192 int err; 193 194 err = kstrtouint(buf, 10, &pages); 195 if (err || !pages) 196 return -EINVAL; 197 198 khugepaged_pages_to_scan = pages; 199 200 return count; 201 } 202 static struct kobj_attribute pages_to_scan_attr = 203 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 204 pages_to_scan_store); 205 206 static ssize_t pages_collapsed_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 211 } 212 static struct kobj_attribute pages_collapsed_attr = 213 __ATTR_RO(pages_collapsed); 214 215 static ssize_t full_scans_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 220 } 221 static struct kobj_attribute full_scans_attr = 222 __ATTR_RO(full_scans); 223 224 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 225 struct kobj_attribute *attr, char *buf) 226 { 227 return single_hugepage_flag_show(kobj, attr, buf, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 231 struct kobj_attribute *attr, 232 const char *buf, size_t count) 233 { 234 return single_hugepage_flag_store(kobj, attr, buf, count, 235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 236 } 237 static struct kobj_attribute khugepaged_defrag_attr = 238 __ATTR(defrag, 0644, khugepaged_defrag_show, 239 khugepaged_defrag_store); 240 241 /* 242 * max_ptes_none controls if khugepaged should collapse hugepages over 243 * any unmapped ptes in turn potentially increasing the memory 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 245 * reduce the available free memory in the system as it 246 * runs. Increasing max_ptes_none will instead potentially reduce the 247 * free memory in the system during the khugepaged scan. 248 */ 249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 250 struct kobj_attribute *attr, 251 char *buf) 252 { 253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 254 } 255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 int err; 260 unsigned long max_ptes_none; 261 262 err = kstrtoul(buf, 10, &max_ptes_none); 263 if (err || max_ptes_none > HPAGE_PMD_NR-1) 264 return -EINVAL; 265 266 khugepaged_max_ptes_none = max_ptes_none; 267 268 return count; 269 } 270 static struct kobj_attribute khugepaged_max_ptes_none_attr = 271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 272 khugepaged_max_ptes_none_store); 273 274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 char *buf) 277 { 278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 279 } 280 281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 int err; 286 unsigned long max_ptes_swap; 287 288 err = kstrtoul(buf, 10, &max_ptes_swap); 289 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 290 return -EINVAL; 291 292 khugepaged_max_ptes_swap = max_ptes_swap; 293 294 return count; 295 } 296 297 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 299 khugepaged_max_ptes_swap_store); 300 301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 302 struct kobj_attribute *attr, 303 char *buf) 304 { 305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 306 } 307 308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 309 struct kobj_attribute *attr, 310 const char *buf, size_t count) 311 { 312 int err; 313 unsigned long max_ptes_shared; 314 315 err = kstrtoul(buf, 10, &max_ptes_shared); 316 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 317 return -EINVAL; 318 319 khugepaged_max_ptes_shared = max_ptes_shared; 320 321 return count; 322 } 323 324 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 326 khugepaged_max_ptes_shared_store); 327 328 static struct attribute *khugepaged_attr[] = { 329 &khugepaged_defrag_attr.attr, 330 &khugepaged_max_ptes_none_attr.attr, 331 &khugepaged_max_ptes_swap_attr.attr, 332 &khugepaged_max_ptes_shared_attr.attr, 333 &pages_to_scan_attr.attr, 334 &pages_collapsed_attr.attr, 335 &full_scans_attr.attr, 336 &scan_sleep_millisecs_attr.attr, 337 &alloc_sleep_millisecs_attr.attr, 338 NULL, 339 }; 340 341 struct attribute_group khugepaged_attr_group = { 342 .attrs = khugepaged_attr, 343 .name = "khugepaged", 344 }; 345 #endif /* CONFIG_SYSFS */ 346 347 int hugepage_madvise(struct vm_area_struct *vma, 348 unsigned long *vm_flags, int advice) 349 { 350 switch (advice) { 351 case MADV_HUGEPAGE: 352 #ifdef CONFIG_S390 353 /* 354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 355 * can't handle this properly after s390_enable_sie, so we simply 356 * ignore the madvise to prevent qemu from causing a SIGSEGV. 357 */ 358 if (mm_has_pgste(vma->vm_mm)) 359 return 0; 360 #endif 361 *vm_flags &= ~VM_NOHUGEPAGE; 362 *vm_flags |= VM_HUGEPAGE; 363 /* 364 * If the vma become good for khugepaged to scan, 365 * register it here without waiting a page fault that 366 * may not happen any time soon. 367 */ 368 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 369 khugepaged_enter_vma_merge(vma, *vm_flags)) 370 return -ENOMEM; 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct mm_slot), 390 __alignof__(struct mm_slot), 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline struct mm_slot *alloc_mm_slot(void) 408 { 409 if (!mm_slot_cache) /* initialization failed */ 410 return NULL; 411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 412 } 413 414 static inline void free_mm_slot(struct mm_slot *mm_slot) 415 { 416 kmem_cache_free(mm_slot_cache, mm_slot); 417 } 418 419 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 420 { 421 struct mm_slot *mm_slot; 422 423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 424 if (mm == mm_slot->mm) 425 return mm_slot; 426 427 return NULL; 428 } 429 430 static void insert_to_mm_slots_hash(struct mm_struct *mm, 431 struct mm_slot *mm_slot) 432 { 433 mm_slot->mm = mm; 434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 435 } 436 437 static inline int khugepaged_test_exit(struct mm_struct *mm) 438 { 439 return atomic_read(&mm->mm_users) == 0; 440 } 441 442 static bool hugepage_vma_check(struct vm_area_struct *vma, 443 unsigned long vm_flags) 444 { 445 if (!transhuge_vma_enabled(vma, vm_flags)) 446 return false; 447 448 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - 449 vma->vm_pgoff, HPAGE_PMD_NR)) 450 return false; 451 452 /* Enabled via shmem mount options or sysfs settings. */ 453 if (shmem_file(vma->vm_file)) 454 return shmem_huge_enabled(vma); 455 456 /* THP settings require madvise. */ 457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) 458 return false; 459 460 /* Only regular file is valid */ 461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file && 462 (vm_flags & VM_EXEC)) { 463 struct inode *inode = vma->vm_file->f_inode; 464 465 return !inode_is_open_for_write(inode) && 466 S_ISREG(inode->i_mode); 467 } 468 469 if (!vma->anon_vma || vma->vm_ops) 470 return false; 471 if (vma_is_temporary_stack(vma)) 472 return false; 473 return !(vm_flags & VM_NO_KHUGEPAGED); 474 } 475 476 int __khugepaged_enter(struct mm_struct *mm) 477 { 478 struct mm_slot *mm_slot; 479 int wakeup; 480 481 mm_slot = alloc_mm_slot(); 482 if (!mm_slot) 483 return -ENOMEM; 484 485 /* __khugepaged_exit() must not run from under us */ 486 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 487 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 488 free_mm_slot(mm_slot); 489 return 0; 490 } 491 492 spin_lock(&khugepaged_mm_lock); 493 insert_to_mm_slots_hash(mm, mm_slot); 494 /* 495 * Insert just behind the scanning cursor, to let the area settle 496 * down a little. 497 */ 498 wakeup = list_empty(&khugepaged_scan.mm_head); 499 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 500 spin_unlock(&khugepaged_mm_lock); 501 502 mmgrab(mm); 503 if (wakeup) 504 wake_up_interruptible(&khugepaged_wait); 505 506 return 0; 507 } 508 509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 510 unsigned long vm_flags) 511 { 512 unsigned long hstart, hend; 513 514 /* 515 * khugepaged only supports read-only files for non-shmem files. 516 * khugepaged does not yet work on special mappings. And 517 * file-private shmem THP is not supported. 518 */ 519 if (!hugepage_vma_check(vma, vm_flags)) 520 return 0; 521 522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 523 hend = vma->vm_end & HPAGE_PMD_MASK; 524 if (hstart < hend) 525 return khugepaged_enter(vma, vm_flags); 526 return 0; 527 } 528 529 void __khugepaged_exit(struct mm_struct *mm) 530 { 531 struct mm_slot *mm_slot; 532 int free = 0; 533 534 spin_lock(&khugepaged_mm_lock); 535 mm_slot = get_mm_slot(mm); 536 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 537 hash_del(&mm_slot->hash); 538 list_del(&mm_slot->mm_node); 539 free = 1; 540 } 541 spin_unlock(&khugepaged_mm_lock); 542 543 if (free) { 544 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 545 free_mm_slot(mm_slot); 546 mmdrop(mm); 547 } else if (mm_slot) { 548 /* 549 * This is required to serialize against 550 * khugepaged_test_exit() (which is guaranteed to run 551 * under mmap sem read mode). Stop here (after we 552 * return all pagetables will be destroyed) until 553 * khugepaged has finished working on the pagetables 554 * under the mmap_lock. 555 */ 556 mmap_write_lock(mm); 557 mmap_write_unlock(mm); 558 } 559 } 560 561 static void release_pte_page(struct page *page) 562 { 563 mod_node_page_state(page_pgdat(page), 564 NR_ISOLATED_ANON + page_is_file_lru(page), 565 -compound_nr(page)); 566 unlock_page(page); 567 putback_lru_page(page); 568 } 569 570 static void release_pte_pages(pte_t *pte, pte_t *_pte, 571 struct list_head *compound_pagelist) 572 { 573 struct page *page, *tmp; 574 575 while (--_pte >= pte) { 576 pte_t pteval = *_pte; 577 578 page = pte_page(pteval); 579 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 580 !PageCompound(page)) 581 release_pte_page(page); 582 } 583 584 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 585 list_del(&page->lru); 586 release_pte_page(page); 587 } 588 } 589 590 static bool is_refcount_suitable(struct page *page) 591 { 592 int expected_refcount; 593 594 expected_refcount = total_mapcount(page); 595 if (PageSwapCache(page)) 596 expected_refcount += compound_nr(page); 597 598 return page_count(page) == expected_refcount; 599 } 600 601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 602 unsigned long address, 603 pte_t *pte, 604 struct list_head *compound_pagelist) 605 { 606 struct page *page = NULL; 607 pte_t *_pte; 608 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 609 bool writable = false; 610 611 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 612 _pte++, address += PAGE_SIZE) { 613 pte_t pteval = *_pte; 614 if (pte_none(pteval) || (pte_present(pteval) && 615 is_zero_pfn(pte_pfn(pteval)))) { 616 if (!userfaultfd_armed(vma) && 617 ++none_or_zero <= khugepaged_max_ptes_none) { 618 continue; 619 } else { 620 result = SCAN_EXCEED_NONE_PTE; 621 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 622 goto out; 623 } 624 } 625 if (!pte_present(pteval)) { 626 result = SCAN_PTE_NON_PRESENT; 627 goto out; 628 } 629 page = vm_normal_page(vma, address, pteval); 630 if (unlikely(!page)) { 631 result = SCAN_PAGE_NULL; 632 goto out; 633 } 634 635 VM_BUG_ON_PAGE(!PageAnon(page), page); 636 637 if (page_mapcount(page) > 1 && 638 ++shared > khugepaged_max_ptes_shared) { 639 result = SCAN_EXCEED_SHARED_PTE; 640 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 641 goto out; 642 } 643 644 if (PageCompound(page)) { 645 struct page *p; 646 page = compound_head(page); 647 648 /* 649 * Check if we have dealt with the compound page 650 * already 651 */ 652 list_for_each_entry(p, compound_pagelist, lru) { 653 if (page == p) 654 goto next; 655 } 656 } 657 658 /* 659 * We can do it before isolate_lru_page because the 660 * page can't be freed from under us. NOTE: PG_lock 661 * is needed to serialize against split_huge_page 662 * when invoked from the VM. 663 */ 664 if (!trylock_page(page)) { 665 result = SCAN_PAGE_LOCK; 666 goto out; 667 } 668 669 /* 670 * Check if the page has any GUP (or other external) pins. 671 * 672 * The page table that maps the page has been already unlinked 673 * from the page table tree and this process cannot get 674 * an additional pin on the page. 675 * 676 * New pins can come later if the page is shared across fork, 677 * but not from this process. The other process cannot write to 678 * the page, only trigger CoW. 679 */ 680 if (!is_refcount_suitable(page)) { 681 unlock_page(page); 682 result = SCAN_PAGE_COUNT; 683 goto out; 684 } 685 if (!pte_write(pteval) && PageSwapCache(page) && 686 !reuse_swap_page(page)) { 687 /* 688 * Page is in the swap cache and cannot be re-used. 689 * It cannot be collapsed into a THP. 690 */ 691 unlock_page(page); 692 result = SCAN_SWAP_CACHE_PAGE; 693 goto out; 694 } 695 696 /* 697 * Isolate the page to avoid collapsing an hugepage 698 * currently in use by the VM. 699 */ 700 if (isolate_lru_page(page)) { 701 unlock_page(page); 702 result = SCAN_DEL_PAGE_LRU; 703 goto out; 704 } 705 mod_node_page_state(page_pgdat(page), 706 NR_ISOLATED_ANON + page_is_file_lru(page), 707 compound_nr(page)); 708 VM_BUG_ON_PAGE(!PageLocked(page), page); 709 VM_BUG_ON_PAGE(PageLRU(page), page); 710 711 if (PageCompound(page)) 712 list_add_tail(&page->lru, compound_pagelist); 713 next: 714 /* There should be enough young pte to collapse the page */ 715 if (pte_young(pteval) || 716 page_is_young(page) || PageReferenced(page) || 717 mmu_notifier_test_young(vma->vm_mm, address)) 718 referenced++; 719 720 if (pte_write(pteval)) 721 writable = true; 722 } 723 724 if (unlikely(!writable)) { 725 result = SCAN_PAGE_RO; 726 } else if (unlikely(!referenced)) { 727 result = SCAN_LACK_REFERENCED_PAGE; 728 } else { 729 result = SCAN_SUCCEED; 730 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 731 referenced, writable, result); 732 return 1; 733 } 734 out: 735 release_pte_pages(pte, _pte, compound_pagelist); 736 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 737 referenced, writable, result); 738 return 0; 739 } 740 741 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 742 struct vm_area_struct *vma, 743 unsigned long address, 744 spinlock_t *ptl, 745 struct list_head *compound_pagelist) 746 { 747 struct page *src_page, *tmp; 748 pte_t *_pte; 749 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 750 _pte++, page++, address += PAGE_SIZE) { 751 pte_t pteval = *_pte; 752 753 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 754 clear_user_highpage(page, address); 755 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 756 if (is_zero_pfn(pte_pfn(pteval))) { 757 /* 758 * ptl mostly unnecessary. 759 */ 760 spin_lock(ptl); 761 ptep_clear(vma->vm_mm, address, _pte); 762 spin_unlock(ptl); 763 } 764 } else { 765 src_page = pte_page(pteval); 766 copy_user_highpage(page, src_page, address, vma); 767 if (!PageCompound(src_page)) 768 release_pte_page(src_page); 769 /* 770 * ptl mostly unnecessary, but preempt has to 771 * be disabled to update the per-cpu stats 772 * inside page_remove_rmap(). 773 */ 774 spin_lock(ptl); 775 ptep_clear(vma->vm_mm, address, _pte); 776 page_remove_rmap(src_page, false); 777 spin_unlock(ptl); 778 free_page_and_swap_cache(src_page); 779 } 780 } 781 782 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 783 list_del(&src_page->lru); 784 release_pte_page(src_page); 785 } 786 } 787 788 static void khugepaged_alloc_sleep(void) 789 { 790 DEFINE_WAIT(wait); 791 792 add_wait_queue(&khugepaged_wait, &wait); 793 freezable_schedule_timeout_interruptible( 794 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 795 remove_wait_queue(&khugepaged_wait, &wait); 796 } 797 798 static int khugepaged_node_load[MAX_NUMNODES]; 799 800 static bool khugepaged_scan_abort(int nid) 801 { 802 int i; 803 804 /* 805 * If node_reclaim_mode is disabled, then no extra effort is made to 806 * allocate memory locally. 807 */ 808 if (!node_reclaim_enabled()) 809 return false; 810 811 /* If there is a count for this node already, it must be acceptable */ 812 if (khugepaged_node_load[nid]) 813 return false; 814 815 for (i = 0; i < MAX_NUMNODES; i++) { 816 if (!khugepaged_node_load[i]) 817 continue; 818 if (node_distance(nid, i) > node_reclaim_distance) 819 return true; 820 } 821 return false; 822 } 823 824 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 825 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 826 { 827 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 828 } 829 830 #ifdef CONFIG_NUMA 831 static int khugepaged_find_target_node(void) 832 { 833 static int last_khugepaged_target_node = NUMA_NO_NODE; 834 int nid, target_node = 0, max_value = 0; 835 836 /* find first node with max normal pages hit */ 837 for (nid = 0; nid < MAX_NUMNODES; nid++) 838 if (khugepaged_node_load[nid] > max_value) { 839 max_value = khugepaged_node_load[nid]; 840 target_node = nid; 841 } 842 843 /* do some balance if several nodes have the same hit record */ 844 if (target_node <= last_khugepaged_target_node) 845 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 846 nid++) 847 if (max_value == khugepaged_node_load[nid]) { 848 target_node = nid; 849 break; 850 } 851 852 last_khugepaged_target_node = target_node; 853 return target_node; 854 } 855 856 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 857 { 858 if (IS_ERR(*hpage)) { 859 if (!*wait) 860 return false; 861 862 *wait = false; 863 *hpage = NULL; 864 khugepaged_alloc_sleep(); 865 } else if (*hpage) { 866 put_page(*hpage); 867 *hpage = NULL; 868 } 869 870 return true; 871 } 872 873 static struct page * 874 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 875 { 876 VM_BUG_ON_PAGE(*hpage, *hpage); 877 878 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 879 if (unlikely(!*hpage)) { 880 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 881 *hpage = ERR_PTR(-ENOMEM); 882 return NULL; 883 } 884 885 prep_transhuge_page(*hpage); 886 count_vm_event(THP_COLLAPSE_ALLOC); 887 return *hpage; 888 } 889 #else 890 static int khugepaged_find_target_node(void) 891 { 892 return 0; 893 } 894 895 static inline struct page *alloc_khugepaged_hugepage(void) 896 { 897 struct page *page; 898 899 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 900 HPAGE_PMD_ORDER); 901 if (page) 902 prep_transhuge_page(page); 903 return page; 904 } 905 906 static struct page *khugepaged_alloc_hugepage(bool *wait) 907 { 908 struct page *hpage; 909 910 do { 911 hpage = alloc_khugepaged_hugepage(); 912 if (!hpage) { 913 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 914 if (!*wait) 915 return NULL; 916 917 *wait = false; 918 khugepaged_alloc_sleep(); 919 } else 920 count_vm_event(THP_COLLAPSE_ALLOC); 921 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 922 923 return hpage; 924 } 925 926 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 927 { 928 /* 929 * If the hpage allocated earlier was briefly exposed in page cache 930 * before collapse_file() failed, it is possible that racing lookups 931 * have not yet completed, and would then be unpleasantly surprised by 932 * finding the hpage reused for the same mapping at a different offset. 933 * Just release the previous allocation if there is any danger of that. 934 */ 935 if (*hpage && page_count(*hpage) > 1) { 936 put_page(*hpage); 937 *hpage = NULL; 938 } 939 940 if (!*hpage) 941 *hpage = khugepaged_alloc_hugepage(wait); 942 943 if (unlikely(!*hpage)) 944 return false; 945 946 return true; 947 } 948 949 static struct page * 950 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 951 { 952 VM_BUG_ON(!*hpage); 953 954 return *hpage; 955 } 956 #endif 957 958 /* 959 * If mmap_lock temporarily dropped, revalidate vma 960 * before taking mmap_lock. 961 * Return 0 if succeeds, otherwise return none-zero 962 * value (scan code). 963 */ 964 965 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 966 struct vm_area_struct **vmap) 967 { 968 struct vm_area_struct *vma; 969 unsigned long hstart, hend; 970 971 if (unlikely(khugepaged_test_exit(mm))) 972 return SCAN_ANY_PROCESS; 973 974 *vmap = vma = find_vma(mm, address); 975 if (!vma) 976 return SCAN_VMA_NULL; 977 978 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 979 hend = vma->vm_end & HPAGE_PMD_MASK; 980 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 981 return SCAN_ADDRESS_RANGE; 982 if (!hugepage_vma_check(vma, vma->vm_flags)) 983 return SCAN_VMA_CHECK; 984 /* Anon VMA expected */ 985 if (!vma->anon_vma || vma->vm_ops) 986 return SCAN_VMA_CHECK; 987 return 0; 988 } 989 990 /* 991 * Bring missing pages in from swap, to complete THP collapse. 992 * Only done if khugepaged_scan_pmd believes it is worthwhile. 993 * 994 * Called and returns without pte mapped or spinlocks held, 995 * but with mmap_lock held to protect against vma changes. 996 */ 997 998 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 999 struct vm_area_struct *vma, 1000 unsigned long haddr, pmd_t *pmd, 1001 int referenced) 1002 { 1003 int swapped_in = 0; 1004 vm_fault_t ret = 0; 1005 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1006 1007 for (address = haddr; address < end; address += PAGE_SIZE) { 1008 struct vm_fault vmf = { 1009 .vma = vma, 1010 .address = address, 1011 .pgoff = linear_page_index(vma, haddr), 1012 .flags = FAULT_FLAG_ALLOW_RETRY, 1013 .pmd = pmd, 1014 }; 1015 1016 vmf.pte = pte_offset_map(pmd, address); 1017 vmf.orig_pte = *vmf.pte; 1018 if (!is_swap_pte(vmf.orig_pte)) { 1019 pte_unmap(vmf.pte); 1020 continue; 1021 } 1022 swapped_in++; 1023 ret = do_swap_page(&vmf); 1024 1025 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1026 if (ret & VM_FAULT_RETRY) { 1027 mmap_read_lock(mm); 1028 if (hugepage_vma_revalidate(mm, haddr, &vma)) { 1029 /* vma is no longer available, don't continue to swapin */ 1030 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1031 return false; 1032 } 1033 /* check if the pmd is still valid */ 1034 if (mm_find_pmd(mm, haddr) != pmd) { 1035 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1036 return false; 1037 } 1038 } 1039 if (ret & VM_FAULT_ERROR) { 1040 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1041 return false; 1042 } 1043 } 1044 1045 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1046 if (swapped_in) 1047 lru_add_drain(); 1048 1049 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1050 return true; 1051 } 1052 1053 static void collapse_huge_page(struct mm_struct *mm, 1054 unsigned long address, 1055 struct page **hpage, 1056 int node, int referenced, int unmapped) 1057 { 1058 LIST_HEAD(compound_pagelist); 1059 pmd_t *pmd, _pmd; 1060 pte_t *pte; 1061 pgtable_t pgtable; 1062 struct page *new_page; 1063 spinlock_t *pmd_ptl, *pte_ptl; 1064 int isolated = 0, result = 0; 1065 struct vm_area_struct *vma; 1066 struct mmu_notifier_range range; 1067 gfp_t gfp; 1068 1069 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1070 1071 /* Only allocate from the target node */ 1072 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1073 1074 /* 1075 * Before allocating the hugepage, release the mmap_lock read lock. 1076 * The allocation can take potentially a long time if it involves 1077 * sync compaction, and we do not need to hold the mmap_lock during 1078 * that. We will recheck the vma after taking it again in write mode. 1079 */ 1080 mmap_read_unlock(mm); 1081 new_page = khugepaged_alloc_page(hpage, gfp, node); 1082 if (!new_page) { 1083 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1084 goto out_nolock; 1085 } 1086 1087 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1088 result = SCAN_CGROUP_CHARGE_FAIL; 1089 goto out_nolock; 1090 } 1091 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1092 1093 mmap_read_lock(mm); 1094 result = hugepage_vma_revalidate(mm, address, &vma); 1095 if (result) { 1096 mmap_read_unlock(mm); 1097 goto out_nolock; 1098 } 1099 1100 pmd = mm_find_pmd(mm, address); 1101 if (!pmd) { 1102 result = SCAN_PMD_NULL; 1103 mmap_read_unlock(mm); 1104 goto out_nolock; 1105 } 1106 1107 /* 1108 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1109 * If it fails, we release mmap_lock and jump out_nolock. 1110 * Continuing to collapse causes inconsistency. 1111 */ 1112 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1113 pmd, referenced)) { 1114 mmap_read_unlock(mm); 1115 goto out_nolock; 1116 } 1117 1118 mmap_read_unlock(mm); 1119 /* 1120 * Prevent all access to pagetables with the exception of 1121 * gup_fast later handled by the ptep_clear_flush and the VM 1122 * handled by the anon_vma lock + PG_lock. 1123 */ 1124 mmap_write_lock(mm); 1125 result = hugepage_vma_revalidate(mm, address, &vma); 1126 if (result) 1127 goto out_up_write; 1128 /* check if the pmd is still valid */ 1129 if (mm_find_pmd(mm, address) != pmd) 1130 goto out_up_write; 1131 1132 anon_vma_lock_write(vma->anon_vma); 1133 1134 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1135 address, address + HPAGE_PMD_SIZE); 1136 mmu_notifier_invalidate_range_start(&range); 1137 1138 pte = pte_offset_map(pmd, address); 1139 pte_ptl = pte_lockptr(mm, pmd); 1140 1141 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1142 /* 1143 * After this gup_fast can't run anymore. This also removes 1144 * any huge TLB entry from the CPU so we won't allow 1145 * huge and small TLB entries for the same virtual address 1146 * to avoid the risk of CPU bugs in that area. 1147 */ 1148 _pmd = pmdp_collapse_flush(vma, address, pmd); 1149 spin_unlock(pmd_ptl); 1150 mmu_notifier_invalidate_range_end(&range); 1151 1152 spin_lock(pte_ptl); 1153 isolated = __collapse_huge_page_isolate(vma, address, pte, 1154 &compound_pagelist); 1155 spin_unlock(pte_ptl); 1156 1157 if (unlikely(!isolated)) { 1158 pte_unmap(pte); 1159 spin_lock(pmd_ptl); 1160 BUG_ON(!pmd_none(*pmd)); 1161 /* 1162 * We can only use set_pmd_at when establishing 1163 * hugepmds and never for establishing regular pmds that 1164 * points to regular pagetables. Use pmd_populate for that 1165 */ 1166 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1167 spin_unlock(pmd_ptl); 1168 anon_vma_unlock_write(vma->anon_vma); 1169 result = SCAN_FAIL; 1170 goto out_up_write; 1171 } 1172 1173 /* 1174 * All pages are isolated and locked so anon_vma rmap 1175 * can't run anymore. 1176 */ 1177 anon_vma_unlock_write(vma->anon_vma); 1178 1179 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1180 &compound_pagelist); 1181 pte_unmap(pte); 1182 /* 1183 * spin_lock() below is not the equivalent of smp_wmb(), but 1184 * the smp_wmb() inside __SetPageUptodate() can be reused to 1185 * avoid the copy_huge_page writes to become visible after 1186 * the set_pmd_at() write. 1187 */ 1188 __SetPageUptodate(new_page); 1189 pgtable = pmd_pgtable(_pmd); 1190 1191 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1192 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1193 1194 spin_lock(pmd_ptl); 1195 BUG_ON(!pmd_none(*pmd)); 1196 page_add_new_anon_rmap(new_page, vma, address, true); 1197 lru_cache_add_inactive_or_unevictable(new_page, vma); 1198 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1199 set_pmd_at(mm, address, pmd, _pmd); 1200 update_mmu_cache_pmd(vma, address, pmd); 1201 spin_unlock(pmd_ptl); 1202 1203 *hpage = NULL; 1204 1205 khugepaged_pages_collapsed++; 1206 result = SCAN_SUCCEED; 1207 out_up_write: 1208 mmap_write_unlock(mm); 1209 out_nolock: 1210 if (!IS_ERR_OR_NULL(*hpage)) 1211 mem_cgroup_uncharge(page_folio(*hpage)); 1212 trace_mm_collapse_huge_page(mm, isolated, result); 1213 return; 1214 } 1215 1216 static int khugepaged_scan_pmd(struct mm_struct *mm, 1217 struct vm_area_struct *vma, 1218 unsigned long address, 1219 struct page **hpage) 1220 { 1221 pmd_t *pmd; 1222 pte_t *pte, *_pte; 1223 int ret = 0, result = 0, referenced = 0; 1224 int none_or_zero = 0, shared = 0; 1225 struct page *page = NULL; 1226 unsigned long _address; 1227 spinlock_t *ptl; 1228 int node = NUMA_NO_NODE, unmapped = 0; 1229 bool writable = false; 1230 1231 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1232 1233 pmd = mm_find_pmd(mm, address); 1234 if (!pmd) { 1235 result = SCAN_PMD_NULL; 1236 goto out; 1237 } 1238 1239 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1240 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1241 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1242 _pte++, _address += PAGE_SIZE) { 1243 pte_t pteval = *_pte; 1244 if (is_swap_pte(pteval)) { 1245 if (++unmapped <= khugepaged_max_ptes_swap) { 1246 /* 1247 * Always be strict with uffd-wp 1248 * enabled swap entries. Please see 1249 * comment below for pte_uffd_wp(). 1250 */ 1251 if (pte_swp_uffd_wp(pteval)) { 1252 result = SCAN_PTE_UFFD_WP; 1253 goto out_unmap; 1254 } 1255 continue; 1256 } else { 1257 result = SCAN_EXCEED_SWAP_PTE; 1258 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1259 goto out_unmap; 1260 } 1261 } 1262 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1263 if (!userfaultfd_armed(vma) && 1264 ++none_or_zero <= khugepaged_max_ptes_none) { 1265 continue; 1266 } else { 1267 result = SCAN_EXCEED_NONE_PTE; 1268 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1269 goto out_unmap; 1270 } 1271 } 1272 if (pte_uffd_wp(pteval)) { 1273 /* 1274 * Don't collapse the page if any of the small 1275 * PTEs are armed with uffd write protection. 1276 * Here we can also mark the new huge pmd as 1277 * write protected if any of the small ones is 1278 * marked but that could bring unknown 1279 * userfault messages that falls outside of 1280 * the registered range. So, just be simple. 1281 */ 1282 result = SCAN_PTE_UFFD_WP; 1283 goto out_unmap; 1284 } 1285 if (pte_write(pteval)) 1286 writable = true; 1287 1288 page = vm_normal_page(vma, _address, pteval); 1289 if (unlikely(!page)) { 1290 result = SCAN_PAGE_NULL; 1291 goto out_unmap; 1292 } 1293 1294 if (page_mapcount(page) > 1 && 1295 ++shared > khugepaged_max_ptes_shared) { 1296 result = SCAN_EXCEED_SHARED_PTE; 1297 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1298 goto out_unmap; 1299 } 1300 1301 page = compound_head(page); 1302 1303 /* 1304 * Record which node the original page is from and save this 1305 * information to khugepaged_node_load[]. 1306 * Khugepaged will allocate hugepage from the node has the max 1307 * hit record. 1308 */ 1309 node = page_to_nid(page); 1310 if (khugepaged_scan_abort(node)) { 1311 result = SCAN_SCAN_ABORT; 1312 goto out_unmap; 1313 } 1314 khugepaged_node_load[node]++; 1315 if (!PageLRU(page)) { 1316 result = SCAN_PAGE_LRU; 1317 goto out_unmap; 1318 } 1319 if (PageLocked(page)) { 1320 result = SCAN_PAGE_LOCK; 1321 goto out_unmap; 1322 } 1323 if (!PageAnon(page)) { 1324 result = SCAN_PAGE_ANON; 1325 goto out_unmap; 1326 } 1327 1328 /* 1329 * Check if the page has any GUP (or other external) pins. 1330 * 1331 * Here the check is racy it may see totmal_mapcount > refcount 1332 * in some cases. 1333 * For example, one process with one forked child process. 1334 * The parent has the PMD split due to MADV_DONTNEED, then 1335 * the child is trying unmap the whole PMD, but khugepaged 1336 * may be scanning the parent between the child has 1337 * PageDoubleMap flag cleared and dec the mapcount. So 1338 * khugepaged may see total_mapcount > refcount. 1339 * 1340 * But such case is ephemeral we could always retry collapse 1341 * later. However it may report false positive if the page 1342 * has excessive GUP pins (i.e. 512). Anyway the same check 1343 * will be done again later the risk seems low. 1344 */ 1345 if (!is_refcount_suitable(page)) { 1346 result = SCAN_PAGE_COUNT; 1347 goto out_unmap; 1348 } 1349 if (pte_young(pteval) || 1350 page_is_young(page) || PageReferenced(page) || 1351 mmu_notifier_test_young(vma->vm_mm, address)) 1352 referenced++; 1353 } 1354 if (!writable) { 1355 result = SCAN_PAGE_RO; 1356 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1357 result = SCAN_LACK_REFERENCED_PAGE; 1358 } else { 1359 result = SCAN_SUCCEED; 1360 ret = 1; 1361 } 1362 out_unmap: 1363 pte_unmap_unlock(pte, ptl); 1364 if (ret) { 1365 node = khugepaged_find_target_node(); 1366 /* collapse_huge_page will return with the mmap_lock released */ 1367 collapse_huge_page(mm, address, hpage, node, 1368 referenced, unmapped); 1369 } 1370 out: 1371 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1372 none_or_zero, result, unmapped); 1373 return ret; 1374 } 1375 1376 static void collect_mm_slot(struct mm_slot *mm_slot) 1377 { 1378 struct mm_struct *mm = mm_slot->mm; 1379 1380 lockdep_assert_held(&khugepaged_mm_lock); 1381 1382 if (khugepaged_test_exit(mm)) { 1383 /* free mm_slot */ 1384 hash_del(&mm_slot->hash); 1385 list_del(&mm_slot->mm_node); 1386 1387 /* 1388 * Not strictly needed because the mm exited already. 1389 * 1390 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1391 */ 1392 1393 /* khugepaged_mm_lock actually not necessary for the below */ 1394 free_mm_slot(mm_slot); 1395 mmdrop(mm); 1396 } 1397 } 1398 1399 #ifdef CONFIG_SHMEM 1400 /* 1401 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1402 * khugepaged should try to collapse the page table. 1403 */ 1404 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1405 unsigned long addr) 1406 { 1407 struct mm_slot *mm_slot; 1408 1409 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1410 1411 spin_lock(&khugepaged_mm_lock); 1412 mm_slot = get_mm_slot(mm); 1413 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1414 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1415 spin_unlock(&khugepaged_mm_lock); 1416 return 0; 1417 } 1418 1419 /** 1420 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1421 * address haddr. 1422 * 1423 * @mm: process address space where collapse happens 1424 * @addr: THP collapse address 1425 * 1426 * This function checks whether all the PTEs in the PMD are pointing to the 1427 * right THP. If so, retract the page table so the THP can refault in with 1428 * as pmd-mapped. 1429 */ 1430 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1431 { 1432 unsigned long haddr = addr & HPAGE_PMD_MASK; 1433 struct vm_area_struct *vma = find_vma(mm, haddr); 1434 struct page *hpage; 1435 pte_t *start_pte, *pte; 1436 pmd_t *pmd, _pmd; 1437 spinlock_t *ptl; 1438 int count = 0; 1439 int i; 1440 1441 if (!vma || !vma->vm_file || 1442 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1443 return; 1444 1445 /* 1446 * This vm_flags may not have VM_HUGEPAGE if the page was not 1447 * collapsed by this mm. But we can still collapse if the page is 1448 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1449 * will not fail the vma for missing VM_HUGEPAGE 1450 */ 1451 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1452 return; 1453 1454 hpage = find_lock_page(vma->vm_file->f_mapping, 1455 linear_page_index(vma, haddr)); 1456 if (!hpage) 1457 return; 1458 1459 if (!PageHead(hpage)) 1460 goto drop_hpage; 1461 1462 pmd = mm_find_pmd(mm, haddr); 1463 if (!pmd) 1464 goto drop_hpage; 1465 1466 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1467 1468 /* step 1: check all mapped PTEs are to the right huge page */ 1469 for (i = 0, addr = haddr, pte = start_pte; 1470 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1471 struct page *page; 1472 1473 /* empty pte, skip */ 1474 if (pte_none(*pte)) 1475 continue; 1476 1477 /* page swapped out, abort */ 1478 if (!pte_present(*pte)) 1479 goto abort; 1480 1481 page = vm_normal_page(vma, addr, *pte); 1482 1483 /* 1484 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1485 * page table, but the new page will not be a subpage of hpage. 1486 */ 1487 if (hpage + i != page) 1488 goto abort; 1489 count++; 1490 } 1491 1492 /* step 2: adjust rmap */ 1493 for (i = 0, addr = haddr, pte = start_pte; 1494 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1495 struct page *page; 1496 1497 if (pte_none(*pte)) 1498 continue; 1499 page = vm_normal_page(vma, addr, *pte); 1500 page_remove_rmap(page, false); 1501 } 1502 1503 pte_unmap_unlock(start_pte, ptl); 1504 1505 /* step 3: set proper refcount and mm_counters. */ 1506 if (count) { 1507 page_ref_sub(hpage, count); 1508 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1509 } 1510 1511 /* step 4: collapse pmd */ 1512 ptl = pmd_lock(vma->vm_mm, pmd); 1513 _pmd = pmdp_collapse_flush(vma, haddr, pmd); 1514 spin_unlock(ptl); 1515 mm_dec_nr_ptes(mm); 1516 pte_free(mm, pmd_pgtable(_pmd)); 1517 1518 drop_hpage: 1519 unlock_page(hpage); 1520 put_page(hpage); 1521 return; 1522 1523 abort: 1524 pte_unmap_unlock(start_pte, ptl); 1525 goto drop_hpage; 1526 } 1527 1528 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1529 { 1530 struct mm_struct *mm = mm_slot->mm; 1531 int i; 1532 1533 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1534 return; 1535 1536 if (!mmap_write_trylock(mm)) 1537 return; 1538 1539 if (unlikely(khugepaged_test_exit(mm))) 1540 goto out; 1541 1542 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1543 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1544 1545 out: 1546 mm_slot->nr_pte_mapped_thp = 0; 1547 mmap_write_unlock(mm); 1548 } 1549 1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1551 { 1552 struct vm_area_struct *vma; 1553 struct mm_struct *mm; 1554 unsigned long addr; 1555 pmd_t *pmd, _pmd; 1556 1557 i_mmap_lock_write(mapping); 1558 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1559 /* 1560 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1561 * got written to. These VMAs are likely not worth investing 1562 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1563 * later. 1564 * 1565 * Not that vma->anon_vma check is racy: it can be set up after 1566 * the check but before we took mmap_lock by the fault path. 1567 * But page lock would prevent establishing any new ptes of the 1568 * page, so we are safe. 1569 * 1570 * An alternative would be drop the check, but check that page 1571 * table is clear before calling pmdp_collapse_flush() under 1572 * ptl. It has higher chance to recover THP for the VMA, but 1573 * has higher cost too. 1574 */ 1575 if (vma->anon_vma) 1576 continue; 1577 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1578 if (addr & ~HPAGE_PMD_MASK) 1579 continue; 1580 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1581 continue; 1582 mm = vma->vm_mm; 1583 pmd = mm_find_pmd(mm, addr); 1584 if (!pmd) 1585 continue; 1586 /* 1587 * We need exclusive mmap_lock to retract page table. 1588 * 1589 * We use trylock due to lock inversion: we need to acquire 1590 * mmap_lock while holding page lock. Fault path does it in 1591 * reverse order. Trylock is a way to avoid deadlock. 1592 */ 1593 if (mmap_write_trylock(mm)) { 1594 if (!khugepaged_test_exit(mm)) { 1595 spinlock_t *ptl = pmd_lock(mm, pmd); 1596 /* assume page table is clear */ 1597 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1598 spin_unlock(ptl); 1599 mm_dec_nr_ptes(mm); 1600 pte_free(mm, pmd_pgtable(_pmd)); 1601 } 1602 mmap_write_unlock(mm); 1603 } else { 1604 /* Try again later */ 1605 khugepaged_add_pte_mapped_thp(mm, addr); 1606 } 1607 } 1608 i_mmap_unlock_write(mapping); 1609 } 1610 1611 /** 1612 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1613 * 1614 * @mm: process address space where collapse happens 1615 * @file: file that collapse on 1616 * @start: collapse start address 1617 * @hpage: new allocated huge page for collapse 1618 * @node: appointed node the new huge page allocate from 1619 * 1620 * Basic scheme is simple, details are more complex: 1621 * - allocate and lock a new huge page; 1622 * - scan page cache replacing old pages with the new one 1623 * + swap/gup in pages if necessary; 1624 * + fill in gaps; 1625 * + keep old pages around in case rollback is required; 1626 * - if replacing succeeds: 1627 * + copy data over; 1628 * + free old pages; 1629 * + unlock huge page; 1630 * - if replacing failed; 1631 * + put all pages back and unfreeze them; 1632 * + restore gaps in the page cache; 1633 * + unlock and free huge page; 1634 */ 1635 static void collapse_file(struct mm_struct *mm, 1636 struct file *file, pgoff_t start, 1637 struct page **hpage, int node) 1638 { 1639 struct address_space *mapping = file->f_mapping; 1640 gfp_t gfp; 1641 struct page *new_page; 1642 pgoff_t index, end = start + HPAGE_PMD_NR; 1643 LIST_HEAD(pagelist); 1644 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1645 int nr_none = 0, result = SCAN_SUCCEED; 1646 bool is_shmem = shmem_file(file); 1647 int nr; 1648 1649 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1650 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1651 1652 /* Only allocate from the target node */ 1653 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1654 1655 new_page = khugepaged_alloc_page(hpage, gfp, node); 1656 if (!new_page) { 1657 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1658 goto out; 1659 } 1660 1661 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1662 result = SCAN_CGROUP_CHARGE_FAIL; 1663 goto out; 1664 } 1665 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1666 1667 /* 1668 * Ensure we have slots for all the pages in the range. This is 1669 * almost certainly a no-op because most of the pages must be present 1670 */ 1671 do { 1672 xas_lock_irq(&xas); 1673 xas_create_range(&xas); 1674 if (!xas_error(&xas)) 1675 break; 1676 xas_unlock_irq(&xas); 1677 if (!xas_nomem(&xas, GFP_KERNEL)) { 1678 result = SCAN_FAIL; 1679 goto out; 1680 } 1681 } while (1); 1682 1683 __SetPageLocked(new_page); 1684 if (is_shmem) 1685 __SetPageSwapBacked(new_page); 1686 new_page->index = start; 1687 new_page->mapping = mapping; 1688 1689 /* 1690 * At this point the new_page is locked and not up-to-date. 1691 * It's safe to insert it into the page cache, because nobody would 1692 * be able to map it or use it in another way until we unlock it. 1693 */ 1694 1695 xas_set(&xas, start); 1696 for (index = start; index < end; index++) { 1697 struct page *page = xas_next(&xas); 1698 1699 VM_BUG_ON(index != xas.xa_index); 1700 if (is_shmem) { 1701 if (!page) { 1702 /* 1703 * Stop if extent has been truncated or 1704 * hole-punched, and is now completely 1705 * empty. 1706 */ 1707 if (index == start) { 1708 if (!xas_next_entry(&xas, end - 1)) { 1709 result = SCAN_TRUNCATED; 1710 goto xa_locked; 1711 } 1712 xas_set(&xas, index); 1713 } 1714 if (!shmem_charge(mapping->host, 1)) { 1715 result = SCAN_FAIL; 1716 goto xa_locked; 1717 } 1718 xas_store(&xas, new_page); 1719 nr_none++; 1720 continue; 1721 } 1722 1723 if (xa_is_value(page) || !PageUptodate(page)) { 1724 xas_unlock_irq(&xas); 1725 /* swap in or instantiate fallocated page */ 1726 if (shmem_getpage(mapping->host, index, &page, 1727 SGP_NOALLOC)) { 1728 result = SCAN_FAIL; 1729 goto xa_unlocked; 1730 } 1731 } else if (trylock_page(page)) { 1732 get_page(page); 1733 xas_unlock_irq(&xas); 1734 } else { 1735 result = SCAN_PAGE_LOCK; 1736 goto xa_locked; 1737 } 1738 } else { /* !is_shmem */ 1739 if (!page || xa_is_value(page)) { 1740 xas_unlock_irq(&xas); 1741 page_cache_sync_readahead(mapping, &file->f_ra, 1742 file, index, 1743 end - index); 1744 /* drain pagevecs to help isolate_lru_page() */ 1745 lru_add_drain(); 1746 page = find_lock_page(mapping, index); 1747 if (unlikely(page == NULL)) { 1748 result = SCAN_FAIL; 1749 goto xa_unlocked; 1750 } 1751 } else if (PageDirty(page)) { 1752 /* 1753 * khugepaged only works on read-only fd, 1754 * so this page is dirty because it hasn't 1755 * been flushed since first write. There 1756 * won't be new dirty pages. 1757 * 1758 * Trigger async flush here and hope the 1759 * writeback is done when khugepaged 1760 * revisits this page. 1761 * 1762 * This is a one-off situation. We are not 1763 * forcing writeback in loop. 1764 */ 1765 xas_unlock_irq(&xas); 1766 filemap_flush(mapping); 1767 result = SCAN_FAIL; 1768 goto xa_unlocked; 1769 } else if (PageWriteback(page)) { 1770 xas_unlock_irq(&xas); 1771 result = SCAN_FAIL; 1772 goto xa_unlocked; 1773 } else if (trylock_page(page)) { 1774 get_page(page); 1775 xas_unlock_irq(&xas); 1776 } else { 1777 result = SCAN_PAGE_LOCK; 1778 goto xa_locked; 1779 } 1780 } 1781 1782 /* 1783 * The page must be locked, so we can drop the i_pages lock 1784 * without racing with truncate. 1785 */ 1786 VM_BUG_ON_PAGE(!PageLocked(page), page); 1787 1788 /* make sure the page is up to date */ 1789 if (unlikely(!PageUptodate(page))) { 1790 result = SCAN_FAIL; 1791 goto out_unlock; 1792 } 1793 1794 /* 1795 * If file was truncated then extended, or hole-punched, before 1796 * we locked the first page, then a THP might be there already. 1797 */ 1798 if (PageTransCompound(page)) { 1799 result = SCAN_PAGE_COMPOUND; 1800 goto out_unlock; 1801 } 1802 1803 if (page_mapping(page) != mapping) { 1804 result = SCAN_TRUNCATED; 1805 goto out_unlock; 1806 } 1807 1808 if (!is_shmem && (PageDirty(page) || 1809 PageWriteback(page))) { 1810 /* 1811 * khugepaged only works on read-only fd, so this 1812 * page is dirty because it hasn't been flushed 1813 * since first write. 1814 */ 1815 result = SCAN_FAIL; 1816 goto out_unlock; 1817 } 1818 1819 if (isolate_lru_page(page)) { 1820 result = SCAN_DEL_PAGE_LRU; 1821 goto out_unlock; 1822 } 1823 1824 if (page_has_private(page) && 1825 !try_to_release_page(page, GFP_KERNEL)) { 1826 result = SCAN_PAGE_HAS_PRIVATE; 1827 putback_lru_page(page); 1828 goto out_unlock; 1829 } 1830 1831 if (page_mapped(page)) 1832 unmap_mapping_pages(mapping, index, 1, false); 1833 1834 xas_lock_irq(&xas); 1835 xas_set(&xas, index); 1836 1837 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1838 VM_BUG_ON_PAGE(page_mapped(page), page); 1839 1840 /* 1841 * The page is expected to have page_count() == 3: 1842 * - we hold a pin on it; 1843 * - one reference from page cache; 1844 * - one from isolate_lru_page; 1845 */ 1846 if (!page_ref_freeze(page, 3)) { 1847 result = SCAN_PAGE_COUNT; 1848 xas_unlock_irq(&xas); 1849 putback_lru_page(page); 1850 goto out_unlock; 1851 } 1852 1853 /* 1854 * Add the page to the list to be able to undo the collapse if 1855 * something go wrong. 1856 */ 1857 list_add_tail(&page->lru, &pagelist); 1858 1859 /* Finally, replace with the new page. */ 1860 xas_store(&xas, new_page); 1861 continue; 1862 out_unlock: 1863 unlock_page(page); 1864 put_page(page); 1865 goto xa_unlocked; 1866 } 1867 nr = thp_nr_pages(new_page); 1868 1869 if (is_shmem) 1870 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); 1871 else { 1872 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); 1873 filemap_nr_thps_inc(mapping); 1874 /* 1875 * Paired with smp_mb() in do_dentry_open() to ensure 1876 * i_writecount is up to date and the update to nr_thps is 1877 * visible. Ensures the page cache will be truncated if the 1878 * file is opened writable. 1879 */ 1880 smp_mb(); 1881 if (inode_is_open_for_write(mapping->host)) { 1882 result = SCAN_FAIL; 1883 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); 1884 filemap_nr_thps_dec(mapping); 1885 goto xa_locked; 1886 } 1887 } 1888 1889 if (nr_none) { 1890 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1891 if (is_shmem) 1892 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1893 } 1894 1895 /* Join all the small entries into a single multi-index entry */ 1896 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 1897 xas_store(&xas, new_page); 1898 xa_locked: 1899 xas_unlock_irq(&xas); 1900 xa_unlocked: 1901 1902 if (result == SCAN_SUCCEED) { 1903 struct page *page, *tmp; 1904 1905 /* 1906 * Replacing old pages with new one has succeeded, now we 1907 * need to copy the content and free the old pages. 1908 */ 1909 index = start; 1910 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1911 while (index < page->index) { 1912 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1913 index++; 1914 } 1915 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1916 page); 1917 list_del(&page->lru); 1918 page->mapping = NULL; 1919 page_ref_unfreeze(page, 1); 1920 ClearPageActive(page); 1921 ClearPageUnevictable(page); 1922 unlock_page(page); 1923 put_page(page); 1924 index++; 1925 } 1926 while (index < end) { 1927 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1928 index++; 1929 } 1930 1931 SetPageUptodate(new_page); 1932 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1933 if (is_shmem) 1934 set_page_dirty(new_page); 1935 lru_cache_add(new_page); 1936 1937 /* 1938 * Remove pte page tables, so we can re-fault the page as huge. 1939 */ 1940 retract_page_tables(mapping, start); 1941 *hpage = NULL; 1942 1943 khugepaged_pages_collapsed++; 1944 } else { 1945 struct page *page; 1946 1947 /* Something went wrong: roll back page cache changes */ 1948 xas_lock_irq(&xas); 1949 mapping->nrpages -= nr_none; 1950 1951 if (is_shmem) 1952 shmem_uncharge(mapping->host, nr_none); 1953 1954 xas_set(&xas, start); 1955 xas_for_each(&xas, page, end - 1) { 1956 page = list_first_entry_or_null(&pagelist, 1957 struct page, lru); 1958 if (!page || xas.xa_index < page->index) { 1959 if (!nr_none) 1960 break; 1961 nr_none--; 1962 /* Put holes back where they were */ 1963 xas_store(&xas, NULL); 1964 continue; 1965 } 1966 1967 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1968 1969 /* Unfreeze the page. */ 1970 list_del(&page->lru); 1971 page_ref_unfreeze(page, 2); 1972 xas_store(&xas, page); 1973 xas_pause(&xas); 1974 xas_unlock_irq(&xas); 1975 unlock_page(page); 1976 putback_lru_page(page); 1977 xas_lock_irq(&xas); 1978 } 1979 VM_BUG_ON(nr_none); 1980 xas_unlock_irq(&xas); 1981 1982 new_page->mapping = NULL; 1983 } 1984 1985 unlock_page(new_page); 1986 out: 1987 VM_BUG_ON(!list_empty(&pagelist)); 1988 if (!IS_ERR_OR_NULL(*hpage)) 1989 mem_cgroup_uncharge(page_folio(*hpage)); 1990 /* TODO: tracepoints */ 1991 } 1992 1993 static void khugepaged_scan_file(struct mm_struct *mm, 1994 struct file *file, pgoff_t start, struct page **hpage) 1995 { 1996 struct page *page = NULL; 1997 struct address_space *mapping = file->f_mapping; 1998 XA_STATE(xas, &mapping->i_pages, start); 1999 int present, swap; 2000 int node = NUMA_NO_NODE; 2001 int result = SCAN_SUCCEED; 2002 2003 present = 0; 2004 swap = 0; 2005 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2006 rcu_read_lock(); 2007 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2008 if (xas_retry(&xas, page)) 2009 continue; 2010 2011 if (xa_is_value(page)) { 2012 if (++swap > khugepaged_max_ptes_swap) { 2013 result = SCAN_EXCEED_SWAP_PTE; 2014 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2015 break; 2016 } 2017 continue; 2018 } 2019 2020 /* 2021 * XXX: khugepaged should compact smaller compound pages 2022 * into a PMD sized page 2023 */ 2024 if (PageTransCompound(page)) { 2025 result = SCAN_PAGE_COMPOUND; 2026 break; 2027 } 2028 2029 node = page_to_nid(page); 2030 if (khugepaged_scan_abort(node)) { 2031 result = SCAN_SCAN_ABORT; 2032 break; 2033 } 2034 khugepaged_node_load[node]++; 2035 2036 if (!PageLRU(page)) { 2037 result = SCAN_PAGE_LRU; 2038 break; 2039 } 2040 2041 if (page_count(page) != 2042 1 + page_mapcount(page) + page_has_private(page)) { 2043 result = SCAN_PAGE_COUNT; 2044 break; 2045 } 2046 2047 /* 2048 * We probably should check if the page is referenced here, but 2049 * nobody would transfer pte_young() to PageReferenced() for us. 2050 * And rmap walk here is just too costly... 2051 */ 2052 2053 present++; 2054 2055 if (need_resched()) { 2056 xas_pause(&xas); 2057 cond_resched_rcu(); 2058 } 2059 } 2060 rcu_read_unlock(); 2061 2062 if (result == SCAN_SUCCEED) { 2063 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2064 result = SCAN_EXCEED_NONE_PTE; 2065 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2066 } else { 2067 node = khugepaged_find_target_node(); 2068 collapse_file(mm, file, start, hpage, node); 2069 } 2070 } 2071 2072 /* TODO: tracepoints */ 2073 } 2074 #else 2075 static void khugepaged_scan_file(struct mm_struct *mm, 2076 struct file *file, pgoff_t start, struct page **hpage) 2077 { 2078 BUILD_BUG(); 2079 } 2080 2081 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2082 { 2083 } 2084 #endif 2085 2086 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2087 struct page **hpage) 2088 __releases(&khugepaged_mm_lock) 2089 __acquires(&khugepaged_mm_lock) 2090 { 2091 struct mm_slot *mm_slot; 2092 struct mm_struct *mm; 2093 struct vm_area_struct *vma; 2094 int progress = 0; 2095 2096 VM_BUG_ON(!pages); 2097 lockdep_assert_held(&khugepaged_mm_lock); 2098 2099 if (khugepaged_scan.mm_slot) 2100 mm_slot = khugepaged_scan.mm_slot; 2101 else { 2102 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2103 struct mm_slot, mm_node); 2104 khugepaged_scan.address = 0; 2105 khugepaged_scan.mm_slot = mm_slot; 2106 } 2107 spin_unlock(&khugepaged_mm_lock); 2108 khugepaged_collapse_pte_mapped_thps(mm_slot); 2109 2110 mm = mm_slot->mm; 2111 /* 2112 * Don't wait for semaphore (to avoid long wait times). Just move to 2113 * the next mm on the list. 2114 */ 2115 vma = NULL; 2116 if (unlikely(!mmap_read_trylock(mm))) 2117 goto breakouterloop_mmap_lock; 2118 if (likely(!khugepaged_test_exit(mm))) 2119 vma = find_vma(mm, khugepaged_scan.address); 2120 2121 progress++; 2122 for (; vma; vma = vma->vm_next) { 2123 unsigned long hstart, hend; 2124 2125 cond_resched(); 2126 if (unlikely(khugepaged_test_exit(mm))) { 2127 progress++; 2128 break; 2129 } 2130 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2131 skip: 2132 progress++; 2133 continue; 2134 } 2135 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2136 hend = vma->vm_end & HPAGE_PMD_MASK; 2137 if (hstart >= hend) 2138 goto skip; 2139 if (khugepaged_scan.address > hend) 2140 goto skip; 2141 if (khugepaged_scan.address < hstart) 2142 khugepaged_scan.address = hstart; 2143 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2144 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2145 goto skip; 2146 2147 while (khugepaged_scan.address < hend) { 2148 int ret; 2149 cond_resched(); 2150 if (unlikely(khugepaged_test_exit(mm))) 2151 goto breakouterloop; 2152 2153 VM_BUG_ON(khugepaged_scan.address < hstart || 2154 khugepaged_scan.address + HPAGE_PMD_SIZE > 2155 hend); 2156 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2157 struct file *file = get_file(vma->vm_file); 2158 pgoff_t pgoff = linear_page_index(vma, 2159 khugepaged_scan.address); 2160 2161 mmap_read_unlock(mm); 2162 ret = 1; 2163 khugepaged_scan_file(mm, file, pgoff, hpage); 2164 fput(file); 2165 } else { 2166 ret = khugepaged_scan_pmd(mm, vma, 2167 khugepaged_scan.address, 2168 hpage); 2169 } 2170 /* move to next address */ 2171 khugepaged_scan.address += HPAGE_PMD_SIZE; 2172 progress += HPAGE_PMD_NR; 2173 if (ret) 2174 /* we released mmap_lock so break loop */ 2175 goto breakouterloop_mmap_lock; 2176 if (progress >= pages) 2177 goto breakouterloop; 2178 } 2179 } 2180 breakouterloop: 2181 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2182 breakouterloop_mmap_lock: 2183 2184 spin_lock(&khugepaged_mm_lock); 2185 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2186 /* 2187 * Release the current mm_slot if this mm is about to die, or 2188 * if we scanned all vmas of this mm. 2189 */ 2190 if (khugepaged_test_exit(mm) || !vma) { 2191 /* 2192 * Make sure that if mm_users is reaching zero while 2193 * khugepaged runs here, khugepaged_exit will find 2194 * mm_slot not pointing to the exiting mm. 2195 */ 2196 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2197 khugepaged_scan.mm_slot = list_entry( 2198 mm_slot->mm_node.next, 2199 struct mm_slot, mm_node); 2200 khugepaged_scan.address = 0; 2201 } else { 2202 khugepaged_scan.mm_slot = NULL; 2203 khugepaged_full_scans++; 2204 } 2205 2206 collect_mm_slot(mm_slot); 2207 } 2208 2209 return progress; 2210 } 2211 2212 static int khugepaged_has_work(void) 2213 { 2214 return !list_empty(&khugepaged_scan.mm_head) && 2215 khugepaged_enabled(); 2216 } 2217 2218 static int khugepaged_wait_event(void) 2219 { 2220 return !list_empty(&khugepaged_scan.mm_head) || 2221 kthread_should_stop(); 2222 } 2223 2224 static void khugepaged_do_scan(void) 2225 { 2226 struct page *hpage = NULL; 2227 unsigned int progress = 0, pass_through_head = 0; 2228 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2229 bool wait = true; 2230 2231 lru_add_drain_all(); 2232 2233 while (progress < pages) { 2234 if (!khugepaged_prealloc_page(&hpage, &wait)) 2235 break; 2236 2237 cond_resched(); 2238 2239 if (unlikely(kthread_should_stop() || try_to_freeze())) 2240 break; 2241 2242 spin_lock(&khugepaged_mm_lock); 2243 if (!khugepaged_scan.mm_slot) 2244 pass_through_head++; 2245 if (khugepaged_has_work() && 2246 pass_through_head < 2) 2247 progress += khugepaged_scan_mm_slot(pages - progress, 2248 &hpage); 2249 else 2250 progress = pages; 2251 spin_unlock(&khugepaged_mm_lock); 2252 } 2253 2254 if (!IS_ERR_OR_NULL(hpage)) 2255 put_page(hpage); 2256 } 2257 2258 static bool khugepaged_should_wakeup(void) 2259 { 2260 return kthread_should_stop() || 2261 time_after_eq(jiffies, khugepaged_sleep_expire); 2262 } 2263 2264 static void khugepaged_wait_work(void) 2265 { 2266 if (khugepaged_has_work()) { 2267 const unsigned long scan_sleep_jiffies = 2268 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2269 2270 if (!scan_sleep_jiffies) 2271 return; 2272 2273 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2274 wait_event_freezable_timeout(khugepaged_wait, 2275 khugepaged_should_wakeup(), 2276 scan_sleep_jiffies); 2277 return; 2278 } 2279 2280 if (khugepaged_enabled()) 2281 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2282 } 2283 2284 static int khugepaged(void *none) 2285 { 2286 struct mm_slot *mm_slot; 2287 2288 set_freezable(); 2289 set_user_nice(current, MAX_NICE); 2290 2291 while (!kthread_should_stop()) { 2292 khugepaged_do_scan(); 2293 khugepaged_wait_work(); 2294 } 2295 2296 spin_lock(&khugepaged_mm_lock); 2297 mm_slot = khugepaged_scan.mm_slot; 2298 khugepaged_scan.mm_slot = NULL; 2299 if (mm_slot) 2300 collect_mm_slot(mm_slot); 2301 spin_unlock(&khugepaged_mm_lock); 2302 return 0; 2303 } 2304 2305 static void set_recommended_min_free_kbytes(void) 2306 { 2307 struct zone *zone; 2308 int nr_zones = 0; 2309 unsigned long recommended_min; 2310 2311 if (!khugepaged_enabled()) { 2312 calculate_min_free_kbytes(); 2313 goto update_wmarks; 2314 } 2315 2316 for_each_populated_zone(zone) { 2317 /* 2318 * We don't need to worry about fragmentation of 2319 * ZONE_MOVABLE since it only has movable pages. 2320 */ 2321 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2322 continue; 2323 2324 nr_zones++; 2325 } 2326 2327 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2328 recommended_min = pageblock_nr_pages * nr_zones * 2; 2329 2330 /* 2331 * Make sure that on average at least two pageblocks are almost free 2332 * of another type, one for a migratetype to fall back to and a 2333 * second to avoid subsequent fallbacks of other types There are 3 2334 * MIGRATE_TYPES we care about. 2335 */ 2336 recommended_min += pageblock_nr_pages * nr_zones * 2337 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2338 2339 /* don't ever allow to reserve more than 5% of the lowmem */ 2340 recommended_min = min(recommended_min, 2341 (unsigned long) nr_free_buffer_pages() / 20); 2342 recommended_min <<= (PAGE_SHIFT-10); 2343 2344 if (recommended_min > min_free_kbytes) { 2345 if (user_min_free_kbytes >= 0) 2346 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2347 min_free_kbytes, recommended_min); 2348 2349 min_free_kbytes = recommended_min; 2350 } 2351 2352 update_wmarks: 2353 setup_per_zone_wmarks(); 2354 } 2355 2356 int start_stop_khugepaged(void) 2357 { 2358 int err = 0; 2359 2360 mutex_lock(&khugepaged_mutex); 2361 if (khugepaged_enabled()) { 2362 if (!khugepaged_thread) 2363 khugepaged_thread = kthread_run(khugepaged, NULL, 2364 "khugepaged"); 2365 if (IS_ERR(khugepaged_thread)) { 2366 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2367 err = PTR_ERR(khugepaged_thread); 2368 khugepaged_thread = NULL; 2369 goto fail; 2370 } 2371 2372 if (!list_empty(&khugepaged_scan.mm_head)) 2373 wake_up_interruptible(&khugepaged_wait); 2374 } else if (khugepaged_thread) { 2375 kthread_stop(khugepaged_thread); 2376 khugepaged_thread = NULL; 2377 } 2378 set_recommended_min_free_kbytes(); 2379 fail: 2380 mutex_unlock(&khugepaged_mutex); 2381 return err; 2382 } 2383 2384 void khugepaged_min_free_kbytes_update(void) 2385 { 2386 mutex_lock(&khugepaged_mutex); 2387 if (khugepaged_enabled() && khugepaged_thread) 2388 set_recommended_min_free_kbytes(); 2389 mutex_unlock(&khugepaged_mutex); 2390 } 2391