1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_folio(struct folio *folio) 494 { 495 node_stat_mod_folio(folio, 496 NR_ISOLATED_ANON + folio_is_file_lru(folio), 497 -folio_nr_pages(folio)); 498 folio_unlock(folio); 499 folio_putback_lru(folio); 500 } 501 502 static void release_pte_page(struct page *page) 503 { 504 release_pte_folio(page_folio(page)); 505 } 506 507 static void release_pte_pages(pte_t *pte, pte_t *_pte, 508 struct list_head *compound_pagelist) 509 { 510 struct folio *folio, *tmp; 511 512 while (--_pte >= pte) { 513 pte_t pteval = *_pte; 514 unsigned long pfn; 515 516 if (pte_none(pteval)) 517 continue; 518 pfn = pte_pfn(pteval); 519 if (is_zero_pfn(pfn)) 520 continue; 521 folio = pfn_folio(pfn); 522 if (folio_test_large(folio)) 523 continue; 524 release_pte_folio(folio); 525 } 526 527 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 528 list_del(&folio->lru); 529 release_pte_folio(folio); 530 } 531 } 532 533 static bool is_refcount_suitable(struct page *page) 534 { 535 int expected_refcount; 536 537 expected_refcount = total_mapcount(page); 538 if (PageSwapCache(page)) 539 expected_refcount += compound_nr(page); 540 541 return page_count(page) == expected_refcount; 542 } 543 544 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 545 unsigned long address, 546 pte_t *pte, 547 struct collapse_control *cc, 548 struct list_head *compound_pagelist) 549 { 550 struct page *page = NULL; 551 pte_t *_pte; 552 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 553 bool writable = false; 554 555 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 556 _pte++, address += PAGE_SIZE) { 557 pte_t pteval = *_pte; 558 if (pte_none(pteval) || (pte_present(pteval) && 559 is_zero_pfn(pte_pfn(pteval)))) { 560 ++none_or_zero; 561 if (!userfaultfd_armed(vma) && 562 (!cc->is_khugepaged || 563 none_or_zero <= khugepaged_max_ptes_none)) { 564 continue; 565 } else { 566 result = SCAN_EXCEED_NONE_PTE; 567 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 568 goto out; 569 } 570 } 571 if (!pte_present(pteval)) { 572 result = SCAN_PTE_NON_PRESENT; 573 goto out; 574 } 575 page = vm_normal_page(vma, address, pteval); 576 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 577 result = SCAN_PAGE_NULL; 578 goto out; 579 } 580 581 VM_BUG_ON_PAGE(!PageAnon(page), page); 582 583 if (page_mapcount(page) > 1) { 584 ++shared; 585 if (cc->is_khugepaged && 586 shared > khugepaged_max_ptes_shared) { 587 result = SCAN_EXCEED_SHARED_PTE; 588 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 589 goto out; 590 } 591 } 592 593 if (PageCompound(page)) { 594 struct page *p; 595 page = compound_head(page); 596 597 /* 598 * Check if we have dealt with the compound page 599 * already 600 */ 601 list_for_each_entry(p, compound_pagelist, lru) { 602 if (page == p) 603 goto next; 604 } 605 } 606 607 /* 608 * We can do it before isolate_lru_page because the 609 * page can't be freed from under us. NOTE: PG_lock 610 * is needed to serialize against split_huge_page 611 * when invoked from the VM. 612 */ 613 if (!trylock_page(page)) { 614 result = SCAN_PAGE_LOCK; 615 goto out; 616 } 617 618 /* 619 * Check if the page has any GUP (or other external) pins. 620 * 621 * The page table that maps the page has been already unlinked 622 * from the page table tree and this process cannot get 623 * an additional pin on the page. 624 * 625 * New pins can come later if the page is shared across fork, 626 * but not from this process. The other process cannot write to 627 * the page, only trigger CoW. 628 */ 629 if (!is_refcount_suitable(page)) { 630 unlock_page(page); 631 result = SCAN_PAGE_COUNT; 632 goto out; 633 } 634 635 /* 636 * Isolate the page to avoid collapsing an hugepage 637 * currently in use by the VM. 638 */ 639 if (!isolate_lru_page(page)) { 640 unlock_page(page); 641 result = SCAN_DEL_PAGE_LRU; 642 goto out; 643 } 644 mod_node_page_state(page_pgdat(page), 645 NR_ISOLATED_ANON + page_is_file_lru(page), 646 compound_nr(page)); 647 VM_BUG_ON_PAGE(!PageLocked(page), page); 648 VM_BUG_ON_PAGE(PageLRU(page), page); 649 650 if (PageCompound(page)) 651 list_add_tail(&page->lru, compound_pagelist); 652 next: 653 /* 654 * If collapse was initiated by khugepaged, check that there is 655 * enough young pte to justify collapsing the page 656 */ 657 if (cc->is_khugepaged && 658 (pte_young(pteval) || page_is_young(page) || 659 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 660 address))) 661 referenced++; 662 663 if (pte_write(pteval)) 664 writable = true; 665 } 666 667 if (unlikely(!writable)) { 668 result = SCAN_PAGE_RO; 669 } else if (unlikely(cc->is_khugepaged && !referenced)) { 670 result = SCAN_LACK_REFERENCED_PAGE; 671 } else { 672 result = SCAN_SUCCEED; 673 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 674 referenced, writable, result); 675 return result; 676 } 677 out: 678 release_pte_pages(pte, _pte, compound_pagelist); 679 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 680 referenced, writable, result); 681 return result; 682 } 683 684 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 685 struct vm_area_struct *vma, 686 unsigned long address, 687 spinlock_t *ptl, 688 struct list_head *compound_pagelist) 689 { 690 struct page *src_page, *tmp; 691 pte_t *_pte; 692 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 693 _pte++, page++, address += PAGE_SIZE) { 694 pte_t pteval = *_pte; 695 696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 697 clear_user_highpage(page, address); 698 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 699 if (is_zero_pfn(pte_pfn(pteval))) { 700 /* 701 * ptl mostly unnecessary. 702 */ 703 spin_lock(ptl); 704 ptep_clear(vma->vm_mm, address, _pte); 705 spin_unlock(ptl); 706 } 707 } else { 708 src_page = pte_page(pteval); 709 copy_user_highpage(page, src_page, address, vma); 710 if (!PageCompound(src_page)) 711 release_pte_page(src_page); 712 /* 713 * ptl mostly unnecessary, but preempt has to 714 * be disabled to update the per-cpu stats 715 * inside page_remove_rmap(). 716 */ 717 spin_lock(ptl); 718 ptep_clear(vma->vm_mm, address, _pte); 719 page_remove_rmap(src_page, vma, false); 720 spin_unlock(ptl); 721 free_page_and_swap_cache(src_page); 722 } 723 } 724 725 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 726 list_del(&src_page->lru); 727 mod_node_page_state(page_pgdat(src_page), 728 NR_ISOLATED_ANON + page_is_file_lru(src_page), 729 -compound_nr(src_page)); 730 unlock_page(src_page); 731 free_swap_cache(src_page); 732 putback_lru_page(src_page); 733 } 734 } 735 736 static void khugepaged_alloc_sleep(void) 737 { 738 DEFINE_WAIT(wait); 739 740 add_wait_queue(&khugepaged_wait, &wait); 741 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 742 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 743 remove_wait_queue(&khugepaged_wait, &wait); 744 } 745 746 struct collapse_control khugepaged_collapse_control = { 747 .is_khugepaged = true, 748 }; 749 750 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 751 { 752 int i; 753 754 /* 755 * If node_reclaim_mode is disabled, then no extra effort is made to 756 * allocate memory locally. 757 */ 758 if (!node_reclaim_enabled()) 759 return false; 760 761 /* If there is a count for this node already, it must be acceptable */ 762 if (cc->node_load[nid]) 763 return false; 764 765 for (i = 0; i < MAX_NUMNODES; i++) { 766 if (!cc->node_load[i]) 767 continue; 768 if (node_distance(nid, i) > node_reclaim_distance) 769 return true; 770 } 771 return false; 772 } 773 774 #define khugepaged_defrag() \ 775 (transparent_hugepage_flags & \ 776 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 777 778 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 779 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 780 { 781 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 782 } 783 784 #ifdef CONFIG_NUMA 785 static int hpage_collapse_find_target_node(struct collapse_control *cc) 786 { 787 int nid, target_node = 0, max_value = 0; 788 789 /* find first node with max normal pages hit */ 790 for (nid = 0; nid < MAX_NUMNODES; nid++) 791 if (cc->node_load[nid] > max_value) { 792 max_value = cc->node_load[nid]; 793 target_node = nid; 794 } 795 796 for_each_online_node(nid) { 797 if (max_value == cc->node_load[nid]) 798 node_set(nid, cc->alloc_nmask); 799 } 800 801 return target_node; 802 } 803 #else 804 static int hpage_collapse_find_target_node(struct collapse_control *cc) 805 { 806 return 0; 807 } 808 #endif 809 810 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 811 nodemask_t *nmask) 812 { 813 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 814 if (unlikely(!*hpage)) { 815 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 816 return false; 817 } 818 819 prep_transhuge_page(*hpage); 820 count_vm_event(THP_COLLAPSE_ALLOC); 821 return true; 822 } 823 824 /* 825 * If mmap_lock temporarily dropped, revalidate vma 826 * before taking mmap_lock. 827 * Returns enum scan_result value. 828 */ 829 830 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 831 bool expect_anon, 832 struct vm_area_struct **vmap, 833 struct collapse_control *cc) 834 { 835 struct vm_area_struct *vma; 836 837 if (unlikely(hpage_collapse_test_exit(mm))) 838 return SCAN_ANY_PROCESS; 839 840 *vmap = vma = find_vma(mm, address); 841 if (!vma) 842 return SCAN_VMA_NULL; 843 844 if (!transhuge_vma_suitable(vma, address)) 845 return SCAN_ADDRESS_RANGE; 846 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 847 cc->is_khugepaged)) 848 return SCAN_VMA_CHECK; 849 /* 850 * Anon VMA expected, the address may be unmapped then 851 * remapped to file after khugepaged reaquired the mmap_lock. 852 * 853 * hugepage_vma_check may return true for qualified file 854 * vmas. 855 */ 856 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 857 return SCAN_PAGE_ANON; 858 return SCAN_SUCCEED; 859 } 860 861 /* 862 * See pmd_trans_unstable() for how the result may change out from 863 * underneath us, even if we hold mmap_lock in read. 864 */ 865 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 866 unsigned long address, 867 pmd_t **pmd) 868 { 869 pmd_t pmde; 870 871 *pmd = mm_find_pmd(mm, address); 872 if (!*pmd) 873 return SCAN_PMD_NULL; 874 875 pmde = pmdp_get_lockless(*pmd); 876 877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 878 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 879 barrier(); 880 #endif 881 if (pmd_none(pmde)) 882 return SCAN_PMD_NONE; 883 if (!pmd_present(pmde)) 884 return SCAN_PMD_NULL; 885 if (pmd_trans_huge(pmde)) 886 return SCAN_PMD_MAPPED; 887 if (pmd_devmap(pmde)) 888 return SCAN_PMD_NULL; 889 if (pmd_bad(pmde)) 890 return SCAN_PMD_NULL; 891 return SCAN_SUCCEED; 892 } 893 894 static int check_pmd_still_valid(struct mm_struct *mm, 895 unsigned long address, 896 pmd_t *pmd) 897 { 898 pmd_t *new_pmd; 899 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 900 901 if (result != SCAN_SUCCEED) 902 return result; 903 if (new_pmd != pmd) 904 return SCAN_FAIL; 905 return SCAN_SUCCEED; 906 } 907 908 /* 909 * Bring missing pages in from swap, to complete THP collapse. 910 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 911 * 912 * Called and returns without pte mapped or spinlocks held. 913 * Note that if false is returned, mmap_lock will be released. 914 */ 915 916 static int __collapse_huge_page_swapin(struct mm_struct *mm, 917 struct vm_area_struct *vma, 918 unsigned long haddr, pmd_t *pmd, 919 int referenced) 920 { 921 int swapped_in = 0; 922 vm_fault_t ret = 0; 923 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 924 925 for (address = haddr; address < end; address += PAGE_SIZE) { 926 struct vm_fault vmf = { 927 .vma = vma, 928 .address = address, 929 .pgoff = linear_page_index(vma, haddr), 930 .flags = FAULT_FLAG_ALLOW_RETRY, 931 .pmd = pmd, 932 }; 933 934 vmf.pte = pte_offset_map(pmd, address); 935 vmf.orig_pte = *vmf.pte; 936 if (!is_swap_pte(vmf.orig_pte)) { 937 pte_unmap(vmf.pte); 938 continue; 939 } 940 ret = do_swap_page(&vmf); 941 942 /* 943 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 944 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 945 * we do not retry here and swap entry will remain in pagetable 946 * resulting in later failure. 947 */ 948 if (ret & VM_FAULT_RETRY) { 949 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 950 /* Likely, but not guaranteed, that page lock failed */ 951 return SCAN_PAGE_LOCK; 952 } 953 if (ret & VM_FAULT_ERROR) { 954 mmap_read_unlock(mm); 955 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 956 return SCAN_FAIL; 957 } 958 swapped_in++; 959 } 960 961 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 962 if (swapped_in) 963 lru_add_drain(); 964 965 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 966 return SCAN_SUCCEED; 967 } 968 969 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 970 struct collapse_control *cc) 971 { 972 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 973 GFP_TRANSHUGE); 974 int node = hpage_collapse_find_target_node(cc); 975 976 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 977 return SCAN_ALLOC_HUGE_PAGE_FAIL; 978 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 979 return SCAN_CGROUP_CHARGE_FAIL; 980 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 981 return SCAN_SUCCEED; 982 } 983 984 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 985 int referenced, int unmapped, 986 struct collapse_control *cc) 987 { 988 LIST_HEAD(compound_pagelist); 989 pmd_t *pmd, _pmd; 990 pte_t *pte; 991 pgtable_t pgtable; 992 struct page *hpage; 993 spinlock_t *pmd_ptl, *pte_ptl; 994 int result = SCAN_FAIL; 995 struct vm_area_struct *vma; 996 struct mmu_notifier_range range; 997 998 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 999 1000 /* 1001 * Before allocating the hugepage, release the mmap_lock read lock. 1002 * The allocation can take potentially a long time if it involves 1003 * sync compaction, and we do not need to hold the mmap_lock during 1004 * that. We will recheck the vma after taking it again in write mode. 1005 */ 1006 mmap_read_unlock(mm); 1007 1008 result = alloc_charge_hpage(&hpage, mm, cc); 1009 if (result != SCAN_SUCCEED) 1010 goto out_nolock; 1011 1012 mmap_read_lock(mm); 1013 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1014 if (result != SCAN_SUCCEED) { 1015 mmap_read_unlock(mm); 1016 goto out_nolock; 1017 } 1018 1019 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1020 if (result != SCAN_SUCCEED) { 1021 mmap_read_unlock(mm); 1022 goto out_nolock; 1023 } 1024 1025 if (unmapped) { 1026 /* 1027 * __collapse_huge_page_swapin will return with mmap_lock 1028 * released when it fails. So we jump out_nolock directly in 1029 * that case. Continuing to collapse causes inconsistency. 1030 */ 1031 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1032 referenced); 1033 if (result != SCAN_SUCCEED) 1034 goto out_nolock; 1035 } 1036 1037 mmap_read_unlock(mm); 1038 /* 1039 * Prevent all access to pagetables with the exception of 1040 * gup_fast later handled by the ptep_clear_flush and the VM 1041 * handled by the anon_vma lock + PG_lock. 1042 */ 1043 mmap_write_lock(mm); 1044 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1045 if (result != SCAN_SUCCEED) 1046 goto out_up_write; 1047 /* check if the pmd is still valid */ 1048 result = check_pmd_still_valid(mm, address, pmd); 1049 if (result != SCAN_SUCCEED) 1050 goto out_up_write; 1051 1052 anon_vma_lock_write(vma->anon_vma); 1053 1054 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1055 address + HPAGE_PMD_SIZE); 1056 mmu_notifier_invalidate_range_start(&range); 1057 1058 pte = pte_offset_map(pmd, address); 1059 pte_ptl = pte_lockptr(mm, pmd); 1060 1061 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1062 /* 1063 * This removes any huge TLB entry from the CPU so we won't allow 1064 * huge and small TLB entries for the same virtual address to 1065 * avoid the risk of CPU bugs in that area. 1066 * 1067 * Parallel fast GUP is fine since fast GUP will back off when 1068 * it detects PMD is changed. 1069 */ 1070 _pmd = pmdp_collapse_flush(vma, address, pmd); 1071 spin_unlock(pmd_ptl); 1072 mmu_notifier_invalidate_range_end(&range); 1073 tlb_remove_table_sync_one(); 1074 1075 spin_lock(pte_ptl); 1076 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1077 &compound_pagelist); 1078 spin_unlock(pte_ptl); 1079 1080 if (unlikely(result != SCAN_SUCCEED)) { 1081 pte_unmap(pte); 1082 spin_lock(pmd_ptl); 1083 BUG_ON(!pmd_none(*pmd)); 1084 /* 1085 * We can only use set_pmd_at when establishing 1086 * hugepmds and never for establishing regular pmds that 1087 * points to regular pagetables. Use pmd_populate for that 1088 */ 1089 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1090 spin_unlock(pmd_ptl); 1091 anon_vma_unlock_write(vma->anon_vma); 1092 goto out_up_write; 1093 } 1094 1095 /* 1096 * All pages are isolated and locked so anon_vma rmap 1097 * can't run anymore. 1098 */ 1099 anon_vma_unlock_write(vma->anon_vma); 1100 1101 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1102 &compound_pagelist); 1103 pte_unmap(pte); 1104 /* 1105 * spin_lock() below is not the equivalent of smp_wmb(), but 1106 * the smp_wmb() inside __SetPageUptodate() can be reused to 1107 * avoid the copy_huge_page writes to become visible after 1108 * the set_pmd_at() write. 1109 */ 1110 __SetPageUptodate(hpage); 1111 pgtable = pmd_pgtable(_pmd); 1112 1113 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1114 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1115 1116 spin_lock(pmd_ptl); 1117 BUG_ON(!pmd_none(*pmd)); 1118 page_add_new_anon_rmap(hpage, vma, address); 1119 lru_cache_add_inactive_or_unevictable(hpage, vma); 1120 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1121 set_pmd_at(mm, address, pmd, _pmd); 1122 update_mmu_cache_pmd(vma, address, pmd); 1123 spin_unlock(pmd_ptl); 1124 1125 hpage = NULL; 1126 1127 result = SCAN_SUCCEED; 1128 out_up_write: 1129 mmap_write_unlock(mm); 1130 out_nolock: 1131 if (hpage) { 1132 mem_cgroup_uncharge(page_folio(hpage)); 1133 put_page(hpage); 1134 } 1135 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1136 return result; 1137 } 1138 1139 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1140 struct vm_area_struct *vma, 1141 unsigned long address, bool *mmap_locked, 1142 struct collapse_control *cc) 1143 { 1144 pmd_t *pmd; 1145 pte_t *pte, *_pte; 1146 int result = SCAN_FAIL, referenced = 0; 1147 int none_or_zero = 0, shared = 0; 1148 struct page *page = NULL; 1149 unsigned long _address; 1150 spinlock_t *ptl; 1151 int node = NUMA_NO_NODE, unmapped = 0; 1152 bool writable = false; 1153 1154 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1155 1156 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1157 if (result != SCAN_SUCCEED) 1158 goto out; 1159 1160 memset(cc->node_load, 0, sizeof(cc->node_load)); 1161 nodes_clear(cc->alloc_nmask); 1162 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1163 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1164 _pte++, _address += PAGE_SIZE) { 1165 pte_t pteval = *_pte; 1166 if (is_swap_pte(pteval)) { 1167 ++unmapped; 1168 if (!cc->is_khugepaged || 1169 unmapped <= khugepaged_max_ptes_swap) { 1170 /* 1171 * Always be strict with uffd-wp 1172 * enabled swap entries. Please see 1173 * comment below for pte_uffd_wp(). 1174 */ 1175 if (pte_swp_uffd_wp(pteval)) { 1176 result = SCAN_PTE_UFFD_WP; 1177 goto out_unmap; 1178 } 1179 continue; 1180 } else { 1181 result = SCAN_EXCEED_SWAP_PTE; 1182 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1183 goto out_unmap; 1184 } 1185 } 1186 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1187 ++none_or_zero; 1188 if (!userfaultfd_armed(vma) && 1189 (!cc->is_khugepaged || 1190 none_or_zero <= khugepaged_max_ptes_none)) { 1191 continue; 1192 } else { 1193 result = SCAN_EXCEED_NONE_PTE; 1194 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1195 goto out_unmap; 1196 } 1197 } 1198 if (pte_uffd_wp(pteval)) { 1199 /* 1200 * Don't collapse the page if any of the small 1201 * PTEs are armed with uffd write protection. 1202 * Here we can also mark the new huge pmd as 1203 * write protected if any of the small ones is 1204 * marked but that could bring unknown 1205 * userfault messages that falls outside of 1206 * the registered range. So, just be simple. 1207 */ 1208 result = SCAN_PTE_UFFD_WP; 1209 goto out_unmap; 1210 } 1211 if (pte_write(pteval)) 1212 writable = true; 1213 1214 page = vm_normal_page(vma, _address, pteval); 1215 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1216 result = SCAN_PAGE_NULL; 1217 goto out_unmap; 1218 } 1219 1220 if (page_mapcount(page) > 1) { 1221 ++shared; 1222 if (cc->is_khugepaged && 1223 shared > khugepaged_max_ptes_shared) { 1224 result = SCAN_EXCEED_SHARED_PTE; 1225 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1226 goto out_unmap; 1227 } 1228 } 1229 1230 page = compound_head(page); 1231 1232 /* 1233 * Record which node the original page is from and save this 1234 * information to cc->node_load[]. 1235 * Khugepaged will allocate hugepage from the node has the max 1236 * hit record. 1237 */ 1238 node = page_to_nid(page); 1239 if (hpage_collapse_scan_abort(node, cc)) { 1240 result = SCAN_SCAN_ABORT; 1241 goto out_unmap; 1242 } 1243 cc->node_load[node]++; 1244 if (!PageLRU(page)) { 1245 result = SCAN_PAGE_LRU; 1246 goto out_unmap; 1247 } 1248 if (PageLocked(page)) { 1249 result = SCAN_PAGE_LOCK; 1250 goto out_unmap; 1251 } 1252 if (!PageAnon(page)) { 1253 result = SCAN_PAGE_ANON; 1254 goto out_unmap; 1255 } 1256 1257 /* 1258 * Check if the page has any GUP (or other external) pins. 1259 * 1260 * Here the check may be racy: 1261 * it may see total_mapcount > refcount in some cases? 1262 * But such case is ephemeral we could always retry collapse 1263 * later. However it may report false positive if the page 1264 * has excessive GUP pins (i.e. 512). Anyway the same check 1265 * will be done again later the risk seems low. 1266 */ 1267 if (!is_refcount_suitable(page)) { 1268 result = SCAN_PAGE_COUNT; 1269 goto out_unmap; 1270 } 1271 1272 /* 1273 * If collapse was initiated by khugepaged, check that there is 1274 * enough young pte to justify collapsing the page 1275 */ 1276 if (cc->is_khugepaged && 1277 (pte_young(pteval) || page_is_young(page) || 1278 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1279 address))) 1280 referenced++; 1281 } 1282 if (!writable) { 1283 result = SCAN_PAGE_RO; 1284 } else if (cc->is_khugepaged && 1285 (!referenced || 1286 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1287 result = SCAN_LACK_REFERENCED_PAGE; 1288 } else { 1289 result = SCAN_SUCCEED; 1290 } 1291 out_unmap: 1292 pte_unmap_unlock(pte, ptl); 1293 if (result == SCAN_SUCCEED) { 1294 result = collapse_huge_page(mm, address, referenced, 1295 unmapped, cc); 1296 /* collapse_huge_page will return with the mmap_lock released */ 1297 *mmap_locked = false; 1298 } 1299 out: 1300 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1301 none_or_zero, result, unmapped); 1302 return result; 1303 } 1304 1305 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1306 { 1307 struct mm_slot *slot = &mm_slot->slot; 1308 struct mm_struct *mm = slot->mm; 1309 1310 lockdep_assert_held(&khugepaged_mm_lock); 1311 1312 if (hpage_collapse_test_exit(mm)) { 1313 /* free mm_slot */ 1314 hash_del(&slot->hash); 1315 list_del(&slot->mm_node); 1316 1317 /* 1318 * Not strictly needed because the mm exited already. 1319 * 1320 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1321 */ 1322 1323 /* khugepaged_mm_lock actually not necessary for the below */ 1324 mm_slot_free(mm_slot_cache, mm_slot); 1325 mmdrop(mm); 1326 } 1327 } 1328 1329 #ifdef CONFIG_SHMEM 1330 /* 1331 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1332 * khugepaged should try to collapse the page table. 1333 * 1334 * Note that following race exists: 1335 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1336 * emptying the A's ->pte_mapped_thp[] array. 1337 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1338 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1339 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1340 * ->pte-mapped_thp[] array. 1341 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1342 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1343 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1344 * Thus, it's possible the same address is added multiple times for the same 1345 * mm_struct. Should this happen, we'll simply attempt 1346 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1347 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1348 * attempts will return quickly (without grabbing any additional locks) when 1349 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1350 * check, and since this is a rare occurrence, the cost of preventing this 1351 * "multiple-add" is thought to be more expensive than just handling it, should 1352 * it occur. 1353 */ 1354 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1355 unsigned long addr) 1356 { 1357 struct khugepaged_mm_slot *mm_slot; 1358 struct mm_slot *slot; 1359 bool ret = false; 1360 1361 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1362 1363 spin_lock(&khugepaged_mm_lock); 1364 slot = mm_slot_lookup(mm_slots_hash, mm); 1365 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1366 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1367 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1368 ret = true; 1369 } 1370 spin_unlock(&khugepaged_mm_lock); 1371 return ret; 1372 } 1373 1374 /* hpage must be locked, and mmap_lock must be held in write */ 1375 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1376 pmd_t *pmdp, struct page *hpage) 1377 { 1378 struct vm_fault vmf = { 1379 .vma = vma, 1380 .address = addr, 1381 .flags = 0, 1382 .pmd = pmdp, 1383 }; 1384 1385 VM_BUG_ON(!PageTransHuge(hpage)); 1386 mmap_assert_write_locked(vma->vm_mm); 1387 1388 if (do_set_pmd(&vmf, hpage)) 1389 return SCAN_FAIL; 1390 1391 get_page(hpage); 1392 return SCAN_SUCCEED; 1393 } 1394 1395 /* 1396 * A note about locking: 1397 * Trying to take the page table spinlocks would be useless here because those 1398 * are only used to synchronize: 1399 * 1400 * - modifying terminal entries (ones that point to a data page, not to another 1401 * page table) 1402 * - installing *new* non-terminal entries 1403 * 1404 * Instead, we need roughly the same kind of protection as free_pgtables() or 1405 * mm_take_all_locks() (but only for a single VMA): 1406 * The mmap lock together with this VMA's rmap locks covers all paths towards 1407 * the page table entries we're messing with here, except for hardware page 1408 * table walks and lockless_pages_from_mm(). 1409 */ 1410 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1411 unsigned long addr, pmd_t *pmdp) 1412 { 1413 pmd_t pmd; 1414 struct mmu_notifier_range range; 1415 1416 mmap_assert_write_locked(mm); 1417 if (vma->vm_file) 1418 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1419 /* 1420 * All anon_vmas attached to the VMA have the same root and are 1421 * therefore locked by the same lock. 1422 */ 1423 if (vma->anon_vma) 1424 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1425 1426 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1427 addr + HPAGE_PMD_SIZE); 1428 mmu_notifier_invalidate_range_start(&range); 1429 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1430 tlb_remove_table_sync_one(); 1431 mmu_notifier_invalidate_range_end(&range); 1432 mm_dec_nr_ptes(mm); 1433 page_table_check_pte_clear_range(mm, addr, pmd); 1434 pte_free(mm, pmd_pgtable(pmd)); 1435 } 1436 1437 /** 1438 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1439 * address haddr. 1440 * 1441 * @mm: process address space where collapse happens 1442 * @addr: THP collapse address 1443 * @install_pmd: If a huge PMD should be installed 1444 * 1445 * This function checks whether all the PTEs in the PMD are pointing to the 1446 * right THP. If so, retract the page table so the THP can refault in with 1447 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1448 */ 1449 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1450 bool install_pmd) 1451 { 1452 unsigned long haddr = addr & HPAGE_PMD_MASK; 1453 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1454 struct page *hpage; 1455 pte_t *start_pte, *pte; 1456 pmd_t *pmd; 1457 spinlock_t *ptl; 1458 int count = 0, result = SCAN_FAIL; 1459 int i; 1460 1461 mmap_assert_write_locked(mm); 1462 1463 /* Fast check before locking page if already PMD-mapped */ 1464 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1465 if (result == SCAN_PMD_MAPPED) 1466 return result; 1467 1468 if (!vma || !vma->vm_file || 1469 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1470 return SCAN_VMA_CHECK; 1471 1472 /* 1473 * If we are here, we've succeeded in replacing all the native pages 1474 * in the page cache with a single hugepage. If a mm were to fault-in 1475 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1476 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1477 * analogously elide sysfs THP settings here. 1478 */ 1479 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1480 return SCAN_VMA_CHECK; 1481 1482 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1483 if (userfaultfd_wp(vma)) 1484 return SCAN_PTE_UFFD_WP; 1485 1486 hpage = find_lock_page(vma->vm_file->f_mapping, 1487 linear_page_index(vma, haddr)); 1488 if (!hpage) 1489 return SCAN_PAGE_NULL; 1490 1491 if (!PageHead(hpage)) { 1492 result = SCAN_FAIL; 1493 goto drop_hpage; 1494 } 1495 1496 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1497 result = SCAN_PAGE_COMPOUND; 1498 goto drop_hpage; 1499 } 1500 1501 switch (result) { 1502 case SCAN_SUCCEED: 1503 break; 1504 case SCAN_PMD_NONE: 1505 /* 1506 * In MADV_COLLAPSE path, possible race with khugepaged where 1507 * all pte entries have been removed and pmd cleared. If so, 1508 * skip all the pte checks and just update the pmd mapping. 1509 */ 1510 goto maybe_install_pmd; 1511 default: 1512 goto drop_hpage; 1513 } 1514 1515 /* 1516 * We need to lock the mapping so that from here on, only GUP-fast and 1517 * hardware page walks can access the parts of the page tables that 1518 * we're operating on. 1519 * See collapse_and_free_pmd(). 1520 */ 1521 i_mmap_lock_write(vma->vm_file->f_mapping); 1522 1523 /* 1524 * This spinlock should be unnecessary: Nobody else should be accessing 1525 * the page tables under spinlock protection here, only 1526 * lockless_pages_from_mm() and the hardware page walker can access page 1527 * tables while all the high-level locks are held in write mode. 1528 */ 1529 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1530 result = SCAN_FAIL; 1531 1532 /* step 1: check all mapped PTEs are to the right huge page */ 1533 for (i = 0, addr = haddr, pte = start_pte; 1534 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1535 struct page *page; 1536 1537 /* empty pte, skip */ 1538 if (pte_none(*pte)) 1539 continue; 1540 1541 /* page swapped out, abort */ 1542 if (!pte_present(*pte)) { 1543 result = SCAN_PTE_NON_PRESENT; 1544 goto abort; 1545 } 1546 1547 page = vm_normal_page(vma, addr, *pte); 1548 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1549 page = NULL; 1550 /* 1551 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1552 * page table, but the new page will not be a subpage of hpage. 1553 */ 1554 if (hpage + i != page) 1555 goto abort; 1556 count++; 1557 } 1558 1559 /* step 2: adjust rmap */ 1560 for (i = 0, addr = haddr, pte = start_pte; 1561 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1562 struct page *page; 1563 1564 if (pte_none(*pte)) 1565 continue; 1566 page = vm_normal_page(vma, addr, *pte); 1567 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1568 goto abort; 1569 page_remove_rmap(page, vma, false); 1570 } 1571 1572 pte_unmap_unlock(start_pte, ptl); 1573 1574 /* step 3: set proper refcount and mm_counters. */ 1575 if (count) { 1576 page_ref_sub(hpage, count); 1577 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1578 } 1579 1580 /* step 4: remove pte entries */ 1581 /* we make no change to anon, but protect concurrent anon page lookup */ 1582 if (vma->anon_vma) 1583 anon_vma_lock_write(vma->anon_vma); 1584 1585 collapse_and_free_pmd(mm, vma, haddr, pmd); 1586 1587 if (vma->anon_vma) 1588 anon_vma_unlock_write(vma->anon_vma); 1589 i_mmap_unlock_write(vma->vm_file->f_mapping); 1590 1591 maybe_install_pmd: 1592 /* step 5: install pmd entry */ 1593 result = install_pmd 1594 ? set_huge_pmd(vma, haddr, pmd, hpage) 1595 : SCAN_SUCCEED; 1596 1597 drop_hpage: 1598 unlock_page(hpage); 1599 put_page(hpage); 1600 return result; 1601 1602 abort: 1603 pte_unmap_unlock(start_pte, ptl); 1604 i_mmap_unlock_write(vma->vm_file->f_mapping); 1605 goto drop_hpage; 1606 } 1607 1608 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1609 { 1610 struct mm_slot *slot = &mm_slot->slot; 1611 struct mm_struct *mm = slot->mm; 1612 int i; 1613 1614 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1615 return; 1616 1617 if (!mmap_write_trylock(mm)) 1618 return; 1619 1620 if (unlikely(hpage_collapse_test_exit(mm))) 1621 goto out; 1622 1623 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1624 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1625 1626 out: 1627 mm_slot->nr_pte_mapped_thp = 0; 1628 mmap_write_unlock(mm); 1629 } 1630 1631 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1632 struct mm_struct *target_mm, 1633 unsigned long target_addr, struct page *hpage, 1634 struct collapse_control *cc) 1635 { 1636 struct vm_area_struct *vma; 1637 int target_result = SCAN_FAIL; 1638 1639 i_mmap_lock_write(mapping); 1640 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1641 int result = SCAN_FAIL; 1642 struct mm_struct *mm = NULL; 1643 unsigned long addr = 0; 1644 pmd_t *pmd; 1645 bool is_target = false; 1646 1647 /* 1648 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1649 * got written to. These VMAs are likely not worth investing 1650 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1651 * later. 1652 * 1653 * Note that vma->anon_vma check is racy: it can be set up after 1654 * the check but before we took mmap_lock by the fault path. 1655 * But page lock would prevent establishing any new ptes of the 1656 * page, so we are safe. 1657 * 1658 * An alternative would be drop the check, but check that page 1659 * table is clear before calling pmdp_collapse_flush() under 1660 * ptl. It has higher chance to recover THP for the VMA, but 1661 * has higher cost too. It would also probably require locking 1662 * the anon_vma. 1663 */ 1664 if (READ_ONCE(vma->anon_vma)) { 1665 result = SCAN_PAGE_ANON; 1666 goto next; 1667 } 1668 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1669 if (addr & ~HPAGE_PMD_MASK || 1670 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1671 result = SCAN_VMA_CHECK; 1672 goto next; 1673 } 1674 mm = vma->vm_mm; 1675 is_target = mm == target_mm && addr == target_addr; 1676 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1677 if (result != SCAN_SUCCEED) 1678 goto next; 1679 /* 1680 * We need exclusive mmap_lock to retract page table. 1681 * 1682 * We use trylock due to lock inversion: we need to acquire 1683 * mmap_lock while holding page lock. Fault path does it in 1684 * reverse order. Trylock is a way to avoid deadlock. 1685 * 1686 * Also, it's not MADV_COLLAPSE's job to collapse other 1687 * mappings - let khugepaged take care of them later. 1688 */ 1689 result = SCAN_PTE_MAPPED_HUGEPAGE; 1690 if ((cc->is_khugepaged || is_target) && 1691 mmap_write_trylock(mm)) { 1692 /* 1693 * Re-check whether we have an ->anon_vma, because 1694 * collapse_and_free_pmd() requires that either no 1695 * ->anon_vma exists or the anon_vma is locked. 1696 * We already checked ->anon_vma above, but that check 1697 * is racy because ->anon_vma can be populated under the 1698 * mmap lock in read mode. 1699 */ 1700 if (vma->anon_vma) { 1701 result = SCAN_PAGE_ANON; 1702 goto unlock_next; 1703 } 1704 /* 1705 * When a vma is registered with uffd-wp, we can't 1706 * recycle the pmd pgtable because there can be pte 1707 * markers installed. Skip it only, so the rest mm/vma 1708 * can still have the same file mapped hugely, however 1709 * it'll always mapped in small page size for uffd-wp 1710 * registered ranges. 1711 */ 1712 if (hpage_collapse_test_exit(mm)) { 1713 result = SCAN_ANY_PROCESS; 1714 goto unlock_next; 1715 } 1716 if (userfaultfd_wp(vma)) { 1717 result = SCAN_PTE_UFFD_WP; 1718 goto unlock_next; 1719 } 1720 collapse_and_free_pmd(mm, vma, addr, pmd); 1721 if (!cc->is_khugepaged && is_target) 1722 result = set_huge_pmd(vma, addr, pmd, hpage); 1723 else 1724 result = SCAN_SUCCEED; 1725 1726 unlock_next: 1727 mmap_write_unlock(mm); 1728 goto next; 1729 } 1730 /* 1731 * Calling context will handle target mm/addr. Otherwise, let 1732 * khugepaged try again later. 1733 */ 1734 if (!is_target) { 1735 khugepaged_add_pte_mapped_thp(mm, addr); 1736 continue; 1737 } 1738 next: 1739 if (is_target) 1740 target_result = result; 1741 } 1742 i_mmap_unlock_write(mapping); 1743 return target_result; 1744 } 1745 1746 /** 1747 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1748 * 1749 * @mm: process address space where collapse happens 1750 * @addr: virtual collapse start address 1751 * @file: file that collapse on 1752 * @start: collapse start address 1753 * @cc: collapse context and scratchpad 1754 * 1755 * Basic scheme is simple, details are more complex: 1756 * - allocate and lock a new huge page; 1757 * - scan page cache replacing old pages with the new one 1758 * + swap/gup in pages if necessary; 1759 * + fill in gaps; 1760 * + keep old pages around in case rollback is required; 1761 * - if replacing succeeds: 1762 * + copy data over; 1763 * + free old pages; 1764 * + unlock huge page; 1765 * - if replacing failed; 1766 * + put all pages back and unfreeze them; 1767 * + restore gaps in the page cache; 1768 * + unlock and free huge page; 1769 */ 1770 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1771 struct file *file, pgoff_t start, 1772 struct collapse_control *cc) 1773 { 1774 struct address_space *mapping = file->f_mapping; 1775 struct page *hpage; 1776 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1777 LIST_HEAD(pagelist); 1778 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1779 int nr_none = 0, result = SCAN_SUCCEED; 1780 bool is_shmem = shmem_file(file); 1781 int nr = 0; 1782 1783 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1784 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1785 1786 result = alloc_charge_hpage(&hpage, mm, cc); 1787 if (result != SCAN_SUCCEED) 1788 goto out; 1789 1790 /* 1791 * Ensure we have slots for all the pages in the range. This is 1792 * almost certainly a no-op because most of the pages must be present 1793 */ 1794 do { 1795 xas_lock_irq(&xas); 1796 xas_create_range(&xas); 1797 if (!xas_error(&xas)) 1798 break; 1799 xas_unlock_irq(&xas); 1800 if (!xas_nomem(&xas, GFP_KERNEL)) { 1801 result = SCAN_FAIL; 1802 goto out; 1803 } 1804 } while (1); 1805 1806 __SetPageLocked(hpage); 1807 if (is_shmem) 1808 __SetPageSwapBacked(hpage); 1809 hpage->index = start; 1810 hpage->mapping = mapping; 1811 1812 /* 1813 * At this point the hpage is locked and not up-to-date. 1814 * It's safe to insert it into the page cache, because nobody would 1815 * be able to map it or use it in another way until we unlock it. 1816 */ 1817 1818 xas_set(&xas, start); 1819 for (index = start; index < end; index++) { 1820 struct page *page = xas_next(&xas); 1821 struct folio *folio; 1822 1823 VM_BUG_ON(index != xas.xa_index); 1824 if (is_shmem) { 1825 if (!page) { 1826 /* 1827 * Stop if extent has been truncated or 1828 * hole-punched, and is now completely 1829 * empty. 1830 */ 1831 if (index == start) { 1832 if (!xas_next_entry(&xas, end - 1)) { 1833 result = SCAN_TRUNCATED; 1834 goto xa_locked; 1835 } 1836 xas_set(&xas, index); 1837 } 1838 if (!shmem_charge(mapping->host, 1)) { 1839 result = SCAN_FAIL; 1840 goto xa_locked; 1841 } 1842 xas_store(&xas, hpage); 1843 nr_none++; 1844 continue; 1845 } 1846 1847 if (xa_is_value(page) || !PageUptodate(page)) { 1848 xas_unlock_irq(&xas); 1849 /* swap in or instantiate fallocated page */ 1850 if (shmem_get_folio(mapping->host, index, 1851 &folio, SGP_NOALLOC)) { 1852 result = SCAN_FAIL; 1853 goto xa_unlocked; 1854 } 1855 page = folio_file_page(folio, index); 1856 } else if (trylock_page(page)) { 1857 get_page(page); 1858 xas_unlock_irq(&xas); 1859 } else { 1860 result = SCAN_PAGE_LOCK; 1861 goto xa_locked; 1862 } 1863 } else { /* !is_shmem */ 1864 if (!page || xa_is_value(page)) { 1865 xas_unlock_irq(&xas); 1866 page_cache_sync_readahead(mapping, &file->f_ra, 1867 file, index, 1868 end - index); 1869 /* drain pagevecs to help isolate_lru_page() */ 1870 lru_add_drain(); 1871 page = find_lock_page(mapping, index); 1872 if (unlikely(page == NULL)) { 1873 result = SCAN_FAIL; 1874 goto xa_unlocked; 1875 } 1876 } else if (PageDirty(page)) { 1877 /* 1878 * khugepaged only works on read-only fd, 1879 * so this page is dirty because it hasn't 1880 * been flushed since first write. There 1881 * won't be new dirty pages. 1882 * 1883 * Trigger async flush here and hope the 1884 * writeback is done when khugepaged 1885 * revisits this page. 1886 * 1887 * This is a one-off situation. We are not 1888 * forcing writeback in loop. 1889 */ 1890 xas_unlock_irq(&xas); 1891 filemap_flush(mapping); 1892 result = SCAN_FAIL; 1893 goto xa_unlocked; 1894 } else if (PageWriteback(page)) { 1895 xas_unlock_irq(&xas); 1896 result = SCAN_FAIL; 1897 goto xa_unlocked; 1898 } else if (trylock_page(page)) { 1899 get_page(page); 1900 xas_unlock_irq(&xas); 1901 } else { 1902 result = SCAN_PAGE_LOCK; 1903 goto xa_locked; 1904 } 1905 } 1906 1907 /* 1908 * The page must be locked, so we can drop the i_pages lock 1909 * without racing with truncate. 1910 */ 1911 VM_BUG_ON_PAGE(!PageLocked(page), page); 1912 1913 /* make sure the page is up to date */ 1914 if (unlikely(!PageUptodate(page))) { 1915 result = SCAN_FAIL; 1916 goto out_unlock; 1917 } 1918 1919 /* 1920 * If file was truncated then extended, or hole-punched, before 1921 * we locked the first page, then a THP might be there already. 1922 * This will be discovered on the first iteration. 1923 */ 1924 if (PageTransCompound(page)) { 1925 struct page *head = compound_head(page); 1926 1927 result = compound_order(head) == HPAGE_PMD_ORDER && 1928 head->index == start 1929 /* Maybe PMD-mapped */ 1930 ? SCAN_PTE_MAPPED_HUGEPAGE 1931 : SCAN_PAGE_COMPOUND; 1932 goto out_unlock; 1933 } 1934 1935 folio = page_folio(page); 1936 1937 if (folio_mapping(folio) != mapping) { 1938 result = SCAN_TRUNCATED; 1939 goto out_unlock; 1940 } 1941 1942 if (!is_shmem && (folio_test_dirty(folio) || 1943 folio_test_writeback(folio))) { 1944 /* 1945 * khugepaged only works on read-only fd, so this 1946 * page is dirty because it hasn't been flushed 1947 * since first write. 1948 */ 1949 result = SCAN_FAIL; 1950 goto out_unlock; 1951 } 1952 1953 if (!folio_isolate_lru(folio)) { 1954 result = SCAN_DEL_PAGE_LRU; 1955 goto out_unlock; 1956 } 1957 1958 if (folio_has_private(folio) && 1959 !filemap_release_folio(folio, GFP_KERNEL)) { 1960 result = SCAN_PAGE_HAS_PRIVATE; 1961 folio_putback_lru(folio); 1962 goto out_unlock; 1963 } 1964 1965 if (folio_mapped(folio)) 1966 try_to_unmap(folio, 1967 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1968 1969 xas_lock_irq(&xas); 1970 xas_set(&xas, index); 1971 1972 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1973 1974 /* 1975 * The page is expected to have page_count() == 3: 1976 * - we hold a pin on it; 1977 * - one reference from page cache; 1978 * - one from isolate_lru_page; 1979 */ 1980 if (!page_ref_freeze(page, 3)) { 1981 result = SCAN_PAGE_COUNT; 1982 xas_unlock_irq(&xas); 1983 putback_lru_page(page); 1984 goto out_unlock; 1985 } 1986 1987 /* 1988 * Add the page to the list to be able to undo the collapse if 1989 * something go wrong. 1990 */ 1991 list_add_tail(&page->lru, &pagelist); 1992 1993 /* Finally, replace with the new page. */ 1994 xas_store(&xas, hpage); 1995 continue; 1996 out_unlock: 1997 unlock_page(page); 1998 put_page(page); 1999 goto xa_unlocked; 2000 } 2001 nr = thp_nr_pages(hpage); 2002 2003 if (is_shmem) 2004 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2005 else { 2006 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2007 filemap_nr_thps_inc(mapping); 2008 /* 2009 * Paired with smp_mb() in do_dentry_open() to ensure 2010 * i_writecount is up to date and the update to nr_thps is 2011 * visible. Ensures the page cache will be truncated if the 2012 * file is opened writable. 2013 */ 2014 smp_mb(); 2015 if (inode_is_open_for_write(mapping->host)) { 2016 result = SCAN_FAIL; 2017 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 2018 filemap_nr_thps_dec(mapping); 2019 goto xa_locked; 2020 } 2021 } 2022 2023 if (nr_none) { 2024 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2025 /* nr_none is always 0 for non-shmem. */ 2026 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2027 } 2028 2029 /* Join all the small entries into a single multi-index entry */ 2030 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2031 xas_store(&xas, hpage); 2032 xa_locked: 2033 xas_unlock_irq(&xas); 2034 xa_unlocked: 2035 2036 /* 2037 * If collapse is successful, flush must be done now before copying. 2038 * If collapse is unsuccessful, does flush actually need to be done? 2039 * Do it anyway, to clear the state. 2040 */ 2041 try_to_unmap_flush(); 2042 2043 if (result == SCAN_SUCCEED) { 2044 struct page *page, *tmp; 2045 struct folio *folio; 2046 2047 /* 2048 * Replacing old pages with new one has succeeded, now we 2049 * need to copy the content and free the old pages. 2050 */ 2051 index = start; 2052 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2053 while (index < page->index) { 2054 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2055 index++; 2056 } 2057 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2058 page); 2059 list_del(&page->lru); 2060 page->mapping = NULL; 2061 page_ref_unfreeze(page, 1); 2062 ClearPageActive(page); 2063 ClearPageUnevictable(page); 2064 unlock_page(page); 2065 put_page(page); 2066 index++; 2067 } 2068 while (index < end) { 2069 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2070 index++; 2071 } 2072 2073 folio = page_folio(hpage); 2074 folio_mark_uptodate(folio); 2075 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2076 2077 if (is_shmem) 2078 folio_mark_dirty(folio); 2079 folio_add_lru(folio); 2080 2081 /* 2082 * Remove pte page tables, so we can re-fault the page as huge. 2083 */ 2084 result = retract_page_tables(mapping, start, mm, addr, hpage, 2085 cc); 2086 unlock_page(hpage); 2087 hpage = NULL; 2088 } else { 2089 struct page *page; 2090 2091 /* Something went wrong: roll back page cache changes */ 2092 xas_lock_irq(&xas); 2093 if (nr_none) { 2094 mapping->nrpages -= nr_none; 2095 shmem_uncharge(mapping->host, nr_none); 2096 } 2097 2098 xas_set(&xas, start); 2099 xas_for_each(&xas, page, end - 1) { 2100 page = list_first_entry_or_null(&pagelist, 2101 struct page, lru); 2102 if (!page || xas.xa_index < page->index) { 2103 if (!nr_none) 2104 break; 2105 nr_none--; 2106 /* Put holes back where they were */ 2107 xas_store(&xas, NULL); 2108 continue; 2109 } 2110 2111 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2112 2113 /* Unfreeze the page. */ 2114 list_del(&page->lru); 2115 page_ref_unfreeze(page, 2); 2116 xas_store(&xas, page); 2117 xas_pause(&xas); 2118 xas_unlock_irq(&xas); 2119 unlock_page(page); 2120 putback_lru_page(page); 2121 xas_lock_irq(&xas); 2122 } 2123 VM_BUG_ON(nr_none); 2124 xas_unlock_irq(&xas); 2125 2126 hpage->mapping = NULL; 2127 } 2128 2129 if (hpage) 2130 unlock_page(hpage); 2131 out: 2132 VM_BUG_ON(!list_empty(&pagelist)); 2133 if (hpage) { 2134 mem_cgroup_uncharge(page_folio(hpage)); 2135 put_page(hpage); 2136 } 2137 2138 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2139 return result; 2140 } 2141 2142 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2143 struct file *file, pgoff_t start, 2144 struct collapse_control *cc) 2145 { 2146 struct page *page = NULL; 2147 struct address_space *mapping = file->f_mapping; 2148 XA_STATE(xas, &mapping->i_pages, start); 2149 int present, swap; 2150 int node = NUMA_NO_NODE; 2151 int result = SCAN_SUCCEED; 2152 2153 present = 0; 2154 swap = 0; 2155 memset(cc->node_load, 0, sizeof(cc->node_load)); 2156 nodes_clear(cc->alloc_nmask); 2157 rcu_read_lock(); 2158 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2159 if (xas_retry(&xas, page)) 2160 continue; 2161 2162 if (xa_is_value(page)) { 2163 ++swap; 2164 if (cc->is_khugepaged && 2165 swap > khugepaged_max_ptes_swap) { 2166 result = SCAN_EXCEED_SWAP_PTE; 2167 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2168 break; 2169 } 2170 continue; 2171 } 2172 2173 /* 2174 * TODO: khugepaged should compact smaller compound pages 2175 * into a PMD sized page 2176 */ 2177 if (PageTransCompound(page)) { 2178 struct page *head = compound_head(page); 2179 2180 result = compound_order(head) == HPAGE_PMD_ORDER && 2181 head->index == start 2182 /* Maybe PMD-mapped */ 2183 ? SCAN_PTE_MAPPED_HUGEPAGE 2184 : SCAN_PAGE_COMPOUND; 2185 /* 2186 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2187 * by the caller won't touch the page cache, and so 2188 * it's safe to skip LRU and refcount checks before 2189 * returning. 2190 */ 2191 break; 2192 } 2193 2194 node = page_to_nid(page); 2195 if (hpage_collapse_scan_abort(node, cc)) { 2196 result = SCAN_SCAN_ABORT; 2197 break; 2198 } 2199 cc->node_load[node]++; 2200 2201 if (!PageLRU(page)) { 2202 result = SCAN_PAGE_LRU; 2203 break; 2204 } 2205 2206 if (page_count(page) != 2207 1 + page_mapcount(page) + page_has_private(page)) { 2208 result = SCAN_PAGE_COUNT; 2209 break; 2210 } 2211 2212 /* 2213 * We probably should check if the page is referenced here, but 2214 * nobody would transfer pte_young() to PageReferenced() for us. 2215 * And rmap walk here is just too costly... 2216 */ 2217 2218 present++; 2219 2220 if (need_resched()) { 2221 xas_pause(&xas); 2222 cond_resched_rcu(); 2223 } 2224 } 2225 rcu_read_unlock(); 2226 2227 if (result == SCAN_SUCCEED) { 2228 if (cc->is_khugepaged && 2229 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2230 result = SCAN_EXCEED_NONE_PTE; 2231 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2232 } else { 2233 result = collapse_file(mm, addr, file, start, cc); 2234 } 2235 } 2236 2237 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2238 return result; 2239 } 2240 #else 2241 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2242 struct file *file, pgoff_t start, 2243 struct collapse_control *cc) 2244 { 2245 BUILD_BUG(); 2246 } 2247 2248 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2249 { 2250 } 2251 2252 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2253 unsigned long addr) 2254 { 2255 return false; 2256 } 2257 #endif 2258 2259 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2260 struct collapse_control *cc) 2261 __releases(&khugepaged_mm_lock) 2262 __acquires(&khugepaged_mm_lock) 2263 { 2264 struct vma_iterator vmi; 2265 struct khugepaged_mm_slot *mm_slot; 2266 struct mm_slot *slot; 2267 struct mm_struct *mm; 2268 struct vm_area_struct *vma; 2269 int progress = 0; 2270 2271 VM_BUG_ON(!pages); 2272 lockdep_assert_held(&khugepaged_mm_lock); 2273 *result = SCAN_FAIL; 2274 2275 if (khugepaged_scan.mm_slot) { 2276 mm_slot = khugepaged_scan.mm_slot; 2277 slot = &mm_slot->slot; 2278 } else { 2279 slot = list_entry(khugepaged_scan.mm_head.next, 2280 struct mm_slot, mm_node); 2281 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2282 khugepaged_scan.address = 0; 2283 khugepaged_scan.mm_slot = mm_slot; 2284 } 2285 spin_unlock(&khugepaged_mm_lock); 2286 khugepaged_collapse_pte_mapped_thps(mm_slot); 2287 2288 mm = slot->mm; 2289 /* 2290 * Don't wait for semaphore (to avoid long wait times). Just move to 2291 * the next mm on the list. 2292 */ 2293 vma = NULL; 2294 if (unlikely(!mmap_read_trylock(mm))) 2295 goto breakouterloop_mmap_lock; 2296 2297 progress++; 2298 if (unlikely(hpage_collapse_test_exit(mm))) 2299 goto breakouterloop; 2300 2301 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2302 for_each_vma(vmi, vma) { 2303 unsigned long hstart, hend; 2304 2305 cond_resched(); 2306 if (unlikely(hpage_collapse_test_exit(mm))) { 2307 progress++; 2308 break; 2309 } 2310 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2311 skip: 2312 progress++; 2313 continue; 2314 } 2315 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2316 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2317 if (khugepaged_scan.address > hend) 2318 goto skip; 2319 if (khugepaged_scan.address < hstart) 2320 khugepaged_scan.address = hstart; 2321 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2322 2323 while (khugepaged_scan.address < hend) { 2324 bool mmap_locked = true; 2325 2326 cond_resched(); 2327 if (unlikely(hpage_collapse_test_exit(mm))) 2328 goto breakouterloop; 2329 2330 VM_BUG_ON(khugepaged_scan.address < hstart || 2331 khugepaged_scan.address + HPAGE_PMD_SIZE > 2332 hend); 2333 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2334 struct file *file = get_file(vma->vm_file); 2335 pgoff_t pgoff = linear_page_index(vma, 2336 khugepaged_scan.address); 2337 2338 mmap_read_unlock(mm); 2339 *result = hpage_collapse_scan_file(mm, 2340 khugepaged_scan.address, 2341 file, pgoff, cc); 2342 mmap_locked = false; 2343 fput(file); 2344 } else { 2345 *result = hpage_collapse_scan_pmd(mm, vma, 2346 khugepaged_scan.address, 2347 &mmap_locked, 2348 cc); 2349 } 2350 switch (*result) { 2351 case SCAN_PTE_MAPPED_HUGEPAGE: { 2352 pmd_t *pmd; 2353 2354 *result = find_pmd_or_thp_or_none(mm, 2355 khugepaged_scan.address, 2356 &pmd); 2357 if (*result != SCAN_SUCCEED) 2358 break; 2359 if (!khugepaged_add_pte_mapped_thp(mm, 2360 khugepaged_scan.address)) 2361 break; 2362 } fallthrough; 2363 case SCAN_SUCCEED: 2364 ++khugepaged_pages_collapsed; 2365 break; 2366 default: 2367 break; 2368 } 2369 2370 /* move to next address */ 2371 khugepaged_scan.address += HPAGE_PMD_SIZE; 2372 progress += HPAGE_PMD_NR; 2373 if (!mmap_locked) 2374 /* 2375 * We released mmap_lock so break loop. Note 2376 * that we drop mmap_lock before all hugepage 2377 * allocations, so if allocation fails, we are 2378 * guaranteed to break here and report the 2379 * correct result back to caller. 2380 */ 2381 goto breakouterloop_mmap_lock; 2382 if (progress >= pages) 2383 goto breakouterloop; 2384 } 2385 } 2386 breakouterloop: 2387 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2388 breakouterloop_mmap_lock: 2389 2390 spin_lock(&khugepaged_mm_lock); 2391 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2392 /* 2393 * Release the current mm_slot if this mm is about to die, or 2394 * if we scanned all vmas of this mm. 2395 */ 2396 if (hpage_collapse_test_exit(mm) || !vma) { 2397 /* 2398 * Make sure that if mm_users is reaching zero while 2399 * khugepaged runs here, khugepaged_exit will find 2400 * mm_slot not pointing to the exiting mm. 2401 */ 2402 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2403 slot = list_entry(slot->mm_node.next, 2404 struct mm_slot, mm_node); 2405 khugepaged_scan.mm_slot = 2406 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2407 khugepaged_scan.address = 0; 2408 } else { 2409 khugepaged_scan.mm_slot = NULL; 2410 khugepaged_full_scans++; 2411 } 2412 2413 collect_mm_slot(mm_slot); 2414 } 2415 2416 return progress; 2417 } 2418 2419 static int khugepaged_has_work(void) 2420 { 2421 return !list_empty(&khugepaged_scan.mm_head) && 2422 hugepage_flags_enabled(); 2423 } 2424 2425 static int khugepaged_wait_event(void) 2426 { 2427 return !list_empty(&khugepaged_scan.mm_head) || 2428 kthread_should_stop(); 2429 } 2430 2431 static void khugepaged_do_scan(struct collapse_control *cc) 2432 { 2433 unsigned int progress = 0, pass_through_head = 0; 2434 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2435 bool wait = true; 2436 int result = SCAN_SUCCEED; 2437 2438 lru_add_drain_all(); 2439 2440 while (true) { 2441 cond_resched(); 2442 2443 if (unlikely(kthread_should_stop() || try_to_freeze())) 2444 break; 2445 2446 spin_lock(&khugepaged_mm_lock); 2447 if (!khugepaged_scan.mm_slot) 2448 pass_through_head++; 2449 if (khugepaged_has_work() && 2450 pass_through_head < 2) 2451 progress += khugepaged_scan_mm_slot(pages - progress, 2452 &result, cc); 2453 else 2454 progress = pages; 2455 spin_unlock(&khugepaged_mm_lock); 2456 2457 if (progress >= pages) 2458 break; 2459 2460 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2461 /* 2462 * If fail to allocate the first time, try to sleep for 2463 * a while. When hit again, cancel the scan. 2464 */ 2465 if (!wait) 2466 break; 2467 wait = false; 2468 khugepaged_alloc_sleep(); 2469 } 2470 } 2471 } 2472 2473 static bool khugepaged_should_wakeup(void) 2474 { 2475 return kthread_should_stop() || 2476 time_after_eq(jiffies, khugepaged_sleep_expire); 2477 } 2478 2479 static void khugepaged_wait_work(void) 2480 { 2481 if (khugepaged_has_work()) { 2482 const unsigned long scan_sleep_jiffies = 2483 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2484 2485 if (!scan_sleep_jiffies) 2486 return; 2487 2488 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2489 wait_event_freezable_timeout(khugepaged_wait, 2490 khugepaged_should_wakeup(), 2491 scan_sleep_jiffies); 2492 return; 2493 } 2494 2495 if (hugepage_flags_enabled()) 2496 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2497 } 2498 2499 static int khugepaged(void *none) 2500 { 2501 struct khugepaged_mm_slot *mm_slot; 2502 2503 set_freezable(); 2504 set_user_nice(current, MAX_NICE); 2505 2506 while (!kthread_should_stop()) { 2507 khugepaged_do_scan(&khugepaged_collapse_control); 2508 khugepaged_wait_work(); 2509 } 2510 2511 spin_lock(&khugepaged_mm_lock); 2512 mm_slot = khugepaged_scan.mm_slot; 2513 khugepaged_scan.mm_slot = NULL; 2514 if (mm_slot) 2515 collect_mm_slot(mm_slot); 2516 spin_unlock(&khugepaged_mm_lock); 2517 return 0; 2518 } 2519 2520 static void set_recommended_min_free_kbytes(void) 2521 { 2522 struct zone *zone; 2523 int nr_zones = 0; 2524 unsigned long recommended_min; 2525 2526 if (!hugepage_flags_enabled()) { 2527 calculate_min_free_kbytes(); 2528 goto update_wmarks; 2529 } 2530 2531 for_each_populated_zone(zone) { 2532 /* 2533 * We don't need to worry about fragmentation of 2534 * ZONE_MOVABLE since it only has movable pages. 2535 */ 2536 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2537 continue; 2538 2539 nr_zones++; 2540 } 2541 2542 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2543 recommended_min = pageblock_nr_pages * nr_zones * 2; 2544 2545 /* 2546 * Make sure that on average at least two pageblocks are almost free 2547 * of another type, one for a migratetype to fall back to and a 2548 * second to avoid subsequent fallbacks of other types There are 3 2549 * MIGRATE_TYPES we care about. 2550 */ 2551 recommended_min += pageblock_nr_pages * nr_zones * 2552 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2553 2554 /* don't ever allow to reserve more than 5% of the lowmem */ 2555 recommended_min = min(recommended_min, 2556 (unsigned long) nr_free_buffer_pages() / 20); 2557 recommended_min <<= (PAGE_SHIFT-10); 2558 2559 if (recommended_min > min_free_kbytes) { 2560 if (user_min_free_kbytes >= 0) 2561 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2562 min_free_kbytes, recommended_min); 2563 2564 min_free_kbytes = recommended_min; 2565 } 2566 2567 update_wmarks: 2568 setup_per_zone_wmarks(); 2569 } 2570 2571 int start_stop_khugepaged(void) 2572 { 2573 int err = 0; 2574 2575 mutex_lock(&khugepaged_mutex); 2576 if (hugepage_flags_enabled()) { 2577 if (!khugepaged_thread) 2578 khugepaged_thread = kthread_run(khugepaged, NULL, 2579 "khugepaged"); 2580 if (IS_ERR(khugepaged_thread)) { 2581 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2582 err = PTR_ERR(khugepaged_thread); 2583 khugepaged_thread = NULL; 2584 goto fail; 2585 } 2586 2587 if (!list_empty(&khugepaged_scan.mm_head)) 2588 wake_up_interruptible(&khugepaged_wait); 2589 } else if (khugepaged_thread) { 2590 kthread_stop(khugepaged_thread); 2591 khugepaged_thread = NULL; 2592 } 2593 set_recommended_min_free_kbytes(); 2594 fail: 2595 mutex_unlock(&khugepaged_mutex); 2596 return err; 2597 } 2598 2599 void khugepaged_min_free_kbytes_update(void) 2600 { 2601 mutex_lock(&khugepaged_mutex); 2602 if (hugepage_flags_enabled() && khugepaged_thread) 2603 set_recommended_min_free_kbytes(); 2604 mutex_unlock(&khugepaged_mutex); 2605 } 2606 2607 bool current_is_khugepaged(void) 2608 { 2609 return kthread_func(current) == khugepaged; 2610 } 2611 2612 static int madvise_collapse_errno(enum scan_result r) 2613 { 2614 /* 2615 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2616 * actionable feedback to caller, so they may take an appropriate 2617 * fallback measure depending on the nature of the failure. 2618 */ 2619 switch (r) { 2620 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2621 return -ENOMEM; 2622 case SCAN_CGROUP_CHARGE_FAIL: 2623 return -EBUSY; 2624 /* Resource temporary unavailable - trying again might succeed */ 2625 case SCAN_PAGE_COUNT: 2626 case SCAN_PAGE_LOCK: 2627 case SCAN_PAGE_LRU: 2628 case SCAN_DEL_PAGE_LRU: 2629 return -EAGAIN; 2630 /* 2631 * Other: Trying again likely not to succeed / error intrinsic to 2632 * specified memory range. khugepaged likely won't be able to collapse 2633 * either. 2634 */ 2635 default: 2636 return -EINVAL; 2637 } 2638 } 2639 2640 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2641 unsigned long start, unsigned long end) 2642 { 2643 struct collapse_control *cc; 2644 struct mm_struct *mm = vma->vm_mm; 2645 unsigned long hstart, hend, addr; 2646 int thps = 0, last_fail = SCAN_FAIL; 2647 bool mmap_locked = true; 2648 2649 BUG_ON(vma->vm_start > start); 2650 BUG_ON(vma->vm_end < end); 2651 2652 *prev = vma; 2653 2654 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2655 return -EINVAL; 2656 2657 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2658 if (!cc) 2659 return -ENOMEM; 2660 cc->is_khugepaged = false; 2661 2662 mmgrab(mm); 2663 lru_add_drain_all(); 2664 2665 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2666 hend = end & HPAGE_PMD_MASK; 2667 2668 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2669 int result = SCAN_FAIL; 2670 2671 if (!mmap_locked) { 2672 cond_resched(); 2673 mmap_read_lock(mm); 2674 mmap_locked = true; 2675 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2676 cc); 2677 if (result != SCAN_SUCCEED) { 2678 last_fail = result; 2679 goto out_nolock; 2680 } 2681 2682 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2683 } 2684 mmap_assert_locked(mm); 2685 memset(cc->node_load, 0, sizeof(cc->node_load)); 2686 nodes_clear(cc->alloc_nmask); 2687 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2688 struct file *file = get_file(vma->vm_file); 2689 pgoff_t pgoff = linear_page_index(vma, addr); 2690 2691 mmap_read_unlock(mm); 2692 mmap_locked = false; 2693 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2694 cc); 2695 fput(file); 2696 } else { 2697 result = hpage_collapse_scan_pmd(mm, vma, addr, 2698 &mmap_locked, cc); 2699 } 2700 if (!mmap_locked) 2701 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2702 2703 handle_result: 2704 switch (result) { 2705 case SCAN_SUCCEED: 2706 case SCAN_PMD_MAPPED: 2707 ++thps; 2708 break; 2709 case SCAN_PTE_MAPPED_HUGEPAGE: 2710 BUG_ON(mmap_locked); 2711 BUG_ON(*prev); 2712 mmap_write_lock(mm); 2713 result = collapse_pte_mapped_thp(mm, addr, true); 2714 mmap_write_unlock(mm); 2715 goto handle_result; 2716 /* Whitelisted set of results where continuing OK */ 2717 case SCAN_PMD_NULL: 2718 case SCAN_PTE_NON_PRESENT: 2719 case SCAN_PTE_UFFD_WP: 2720 case SCAN_PAGE_RO: 2721 case SCAN_LACK_REFERENCED_PAGE: 2722 case SCAN_PAGE_NULL: 2723 case SCAN_PAGE_COUNT: 2724 case SCAN_PAGE_LOCK: 2725 case SCAN_PAGE_COMPOUND: 2726 case SCAN_PAGE_LRU: 2727 case SCAN_DEL_PAGE_LRU: 2728 last_fail = result; 2729 break; 2730 default: 2731 last_fail = result; 2732 /* Other error, exit */ 2733 goto out_maybelock; 2734 } 2735 } 2736 2737 out_maybelock: 2738 /* Caller expects us to hold mmap_lock on return */ 2739 if (!mmap_locked) 2740 mmap_read_lock(mm); 2741 out_nolock: 2742 mmap_assert_locked(mm); 2743 mmdrop(mm); 2744 kfree(cc); 2745 2746 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2747 : madvise_collapse_errno(last_fail); 2748 } 2749