xref: /openbmc/linux/mm/khugepaged.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27 
28 enum scan_result {
29 	SCAN_FAIL,
30 	SCAN_SUCCEED,
31 	SCAN_PMD_NULL,
32 	SCAN_PMD_NONE,
33 	SCAN_PMD_MAPPED,
34 	SCAN_EXCEED_NONE_PTE,
35 	SCAN_EXCEED_SWAP_PTE,
36 	SCAN_EXCEED_SHARED_PTE,
37 	SCAN_PTE_NON_PRESENT,
38 	SCAN_PTE_UFFD_WP,
39 	SCAN_PTE_MAPPED_HUGEPAGE,
40 	SCAN_PAGE_RO,
41 	SCAN_LACK_REFERENCED_PAGE,
42 	SCAN_PAGE_NULL,
43 	SCAN_SCAN_ABORT,
44 	SCAN_PAGE_COUNT,
45 	SCAN_PAGE_LRU,
46 	SCAN_PAGE_LOCK,
47 	SCAN_PAGE_ANON,
48 	SCAN_PAGE_COMPOUND,
49 	SCAN_ANY_PROCESS,
50 	SCAN_VMA_NULL,
51 	SCAN_VMA_CHECK,
52 	SCAN_ADDRESS_RANGE,
53 	SCAN_DEL_PAGE_LRU,
54 	SCAN_ALLOC_HUGE_PAGE_FAIL,
55 	SCAN_CGROUP_CHARGE_FAIL,
56 	SCAN_TRUNCATED,
57 	SCAN_PAGE_HAS_PRIVATE,
58 };
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62 
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65 
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77  * default collapse hugepages if there is at least one pte mapped like
78  * it would have happened if the vma was large enough during page
79  * fault.
80  *
81  * Note that these are only respected if collapse was initiated by khugepaged.
82  */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86 
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89 
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91 
92 #define MAX_PTE_MAPPED_THP 8
93 
94 struct collapse_control {
95 	bool is_khugepaged;
96 
97 	/* Num pages scanned per node */
98 	u32 node_load[MAX_NUMNODES];
99 
100 	/* nodemask for allocation fallback */
101 	nodemask_t alloc_nmask;
102 };
103 
104 /**
105  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106  * @slot: hash lookup from mm to mm_slot
107  * @nr_pte_mapped_thp: number of pte mapped THP
108  * @pte_mapped_thp: address array corresponding pte mapped THP
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 
113 	/* pte-mapped THP in this mm */
114 	int nr_pte_mapped_thp;
115 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117 
118 /**
119  * struct khugepaged_scan - cursor for scanning
120  * @mm_head: the head of the mm list to scan
121  * @mm_slot: the current mm_slot we are scanning
122  * @address: the next address inside that to be scanned
123  *
124  * There is only the one khugepaged_scan instance of this cursor structure.
125  */
126 struct khugepaged_scan {
127 	struct list_head mm_head;
128 	struct khugepaged_mm_slot *mm_slot;
129 	unsigned long address;
130 };
131 
132 static struct khugepaged_scan khugepaged_scan = {
133 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135 
136 #ifdef CONFIG_SYSFS
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138 					 struct kobj_attribute *attr,
139 					 char *buf)
140 {
141 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143 
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145 					  struct kobj_attribute *attr,
146 					  const char *buf, size_t count)
147 {
148 	unsigned int msecs;
149 	int err;
150 
151 	err = kstrtouint(buf, 10, &msecs);
152 	if (err)
153 		return -EINVAL;
154 
155 	khugepaged_scan_sleep_millisecs = msecs;
156 	khugepaged_sleep_expire = 0;
157 	wake_up_interruptible(&khugepaged_wait);
158 
159 	return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162 	__ATTR_RW(scan_sleep_millisecs);
163 
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165 					  struct kobj_attribute *attr,
166 					  char *buf)
167 {
168 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170 
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172 					   struct kobj_attribute *attr,
173 					   const char *buf, size_t count)
174 {
175 	unsigned int msecs;
176 	int err;
177 
178 	err = kstrtouint(buf, 10, &msecs);
179 	if (err)
180 		return -EINVAL;
181 
182 	khugepaged_alloc_sleep_millisecs = msecs;
183 	khugepaged_sleep_expire = 0;
184 	wake_up_interruptible(&khugepaged_wait);
185 
186 	return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189 	__ATTR_RW(alloc_sleep_millisecs);
190 
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192 				  struct kobj_attribute *attr,
193 				  char *buf)
194 {
195 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198 				   struct kobj_attribute *attr,
199 				   const char *buf, size_t count)
200 {
201 	unsigned int pages;
202 	int err;
203 
204 	err = kstrtouint(buf, 10, &pages);
205 	if (err || !pages)
206 		return -EINVAL;
207 
208 	khugepaged_pages_to_scan = pages;
209 
210 	return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213 	__ATTR_RW(pages_to_scan);
214 
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216 				    struct kobj_attribute *attr,
217 				    char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222 	__ATTR_RO(pages_collapsed);
223 
224 static ssize_t full_scans_show(struct kobject *kobj,
225 			       struct kobj_attribute *attr,
226 			       char *buf)
227 {
228 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231 	__ATTR_RO(full_scans);
232 
233 static ssize_t defrag_show(struct kobject *kobj,
234 			   struct kobj_attribute *attr, char *buf)
235 {
236 	return single_hugepage_flag_show(kobj, attr, buf,
237 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
239 static ssize_t defrag_store(struct kobject *kobj,
240 			    struct kobj_attribute *attr,
241 			    const char *buf, size_t count)
242 {
243 	return single_hugepage_flag_store(kobj, attr, buf, count,
244 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247 	__ATTR_RW(defrag);
248 
249 /*
250  * max_ptes_none controls if khugepaged should collapse hugepages over
251  * any unmapped ptes in turn potentially increasing the memory
252  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253  * reduce the available free memory in the system as it
254  * runs. Increasing max_ptes_none will instead potentially reduce the
255  * free memory in the system during the khugepaged scan.
256  */
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258 				  struct kobj_attribute *attr,
259 				  char *buf)
260 {
261 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264 				   struct kobj_attribute *attr,
265 				   const char *buf, size_t count)
266 {
267 	int err;
268 	unsigned long max_ptes_none;
269 
270 	err = kstrtoul(buf, 10, &max_ptes_none);
271 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272 		return -EINVAL;
273 
274 	khugepaged_max_ptes_none = max_ptes_none;
275 
276 	return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279 	__ATTR_RW(max_ptes_none);
280 
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282 				  struct kobj_attribute *attr,
283 				  char *buf)
284 {
285 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287 
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289 				   struct kobj_attribute *attr,
290 				   const char *buf, size_t count)
291 {
292 	int err;
293 	unsigned long max_ptes_swap;
294 
295 	err  = kstrtoul(buf, 10, &max_ptes_swap);
296 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297 		return -EINVAL;
298 
299 	khugepaged_max_ptes_swap = max_ptes_swap;
300 
301 	return count;
302 }
303 
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305 	__ATTR_RW(max_ptes_swap);
306 
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308 				    struct kobj_attribute *attr,
309 				    char *buf)
310 {
311 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313 
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315 				     struct kobj_attribute *attr,
316 				     const char *buf, size_t count)
317 {
318 	int err;
319 	unsigned long max_ptes_shared;
320 
321 	err  = kstrtoul(buf, 10, &max_ptes_shared);
322 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323 		return -EINVAL;
324 
325 	khugepaged_max_ptes_shared = max_ptes_shared;
326 
327 	return count;
328 }
329 
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331 	__ATTR_RW(max_ptes_shared);
332 
333 static struct attribute *khugepaged_attr[] = {
334 	&khugepaged_defrag_attr.attr,
335 	&khugepaged_max_ptes_none_attr.attr,
336 	&khugepaged_max_ptes_swap_attr.attr,
337 	&khugepaged_max_ptes_shared_attr.attr,
338 	&pages_to_scan_attr.attr,
339 	&pages_collapsed_attr.attr,
340 	&full_scans_attr.attr,
341 	&scan_sleep_millisecs_attr.attr,
342 	&alloc_sleep_millisecs_attr.attr,
343 	NULL,
344 };
345 
346 struct attribute_group khugepaged_attr_group = {
347 	.attrs = khugepaged_attr,
348 	.name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351 
352 int hugepage_madvise(struct vm_area_struct *vma,
353 		     unsigned long *vm_flags, int advice)
354 {
355 	switch (advice) {
356 	case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358 		/*
359 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360 		 * can't handle this properly after s390_enable_sie, so we simply
361 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
362 		 */
363 		if (mm_has_pgste(vma->vm_mm))
364 			return 0;
365 #endif
366 		*vm_flags &= ~VM_NOHUGEPAGE;
367 		*vm_flags |= VM_HUGEPAGE;
368 		/*
369 		 * If the vma become good for khugepaged to scan,
370 		 * register it here without waiting a page fault that
371 		 * may not happen any time soon.
372 		 */
373 		khugepaged_enter_vma(vma, *vm_flags);
374 		break;
375 	case MADV_NOHUGEPAGE:
376 		*vm_flags &= ~VM_HUGEPAGE;
377 		*vm_flags |= VM_NOHUGEPAGE;
378 		/*
379 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380 		 * this vma even if we leave the mm registered in khugepaged if
381 		 * it got registered before VM_NOHUGEPAGE was set.
382 		 */
383 		break;
384 	}
385 
386 	return 0;
387 }
388 
389 int __init khugepaged_init(void)
390 {
391 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392 					  sizeof(struct khugepaged_mm_slot),
393 					  __alignof__(struct khugepaged_mm_slot),
394 					  0, NULL);
395 	if (!mm_slot_cache)
396 		return -ENOMEM;
397 
398 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 
403 	return 0;
404 }
405 
406 void __init khugepaged_destroy(void)
407 {
408 	kmem_cache_destroy(mm_slot_cache);
409 }
410 
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413 	return atomic_read(&mm->mm_users) == 0;
414 }
415 
416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418 	struct khugepaged_mm_slot *mm_slot;
419 	struct mm_slot *slot;
420 	int wakeup;
421 
422 	mm_slot = mm_slot_alloc(mm_slot_cache);
423 	if (!mm_slot)
424 		return;
425 
426 	slot = &mm_slot->slot;
427 
428 	/* __khugepaged_exit() must not run from under us */
429 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431 		mm_slot_free(mm_slot_cache, mm_slot);
432 		return;
433 	}
434 
435 	spin_lock(&khugepaged_mm_lock);
436 	mm_slot_insert(mm_slots_hash, mm, slot);
437 	/*
438 	 * Insert just behind the scanning cursor, to let the area settle
439 	 * down a little.
440 	 */
441 	wakeup = list_empty(&khugepaged_scan.mm_head);
442 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443 	spin_unlock(&khugepaged_mm_lock);
444 
445 	mmgrab(mm);
446 	if (wakeup)
447 		wake_up_interruptible(&khugepaged_wait);
448 }
449 
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451 			  unsigned long vm_flags)
452 {
453 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454 	    hugepage_flags_enabled()) {
455 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
456 			__khugepaged_enter(vma->vm_mm);
457 	}
458 }
459 
460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462 	struct khugepaged_mm_slot *mm_slot;
463 	struct mm_slot *slot;
464 	int free = 0;
465 
466 	spin_lock(&khugepaged_mm_lock);
467 	slot = mm_slot_lookup(mm_slots_hash, mm);
468 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470 		hash_del(&slot->hash);
471 		list_del(&slot->mm_node);
472 		free = 1;
473 	}
474 	spin_unlock(&khugepaged_mm_lock);
475 
476 	if (free) {
477 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478 		mm_slot_free(mm_slot_cache, mm_slot);
479 		mmdrop(mm);
480 	} else if (mm_slot) {
481 		/*
482 		 * This is required to serialize against
483 		 * hpage_collapse_test_exit() (which is guaranteed to run
484 		 * under mmap sem read mode). Stop here (after we return all
485 		 * pagetables will be destroyed) until khugepaged has finished
486 		 * working on the pagetables under the mmap_lock.
487 		 */
488 		mmap_write_lock(mm);
489 		mmap_write_unlock(mm);
490 	}
491 }
492 
493 static void release_pte_folio(struct folio *folio)
494 {
495 	node_stat_mod_folio(folio,
496 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
497 			-folio_nr_pages(folio));
498 	folio_unlock(folio);
499 	folio_putback_lru(folio);
500 }
501 
502 static void release_pte_page(struct page *page)
503 {
504 	release_pte_folio(page_folio(page));
505 }
506 
507 static void release_pte_pages(pte_t *pte, pte_t *_pte,
508 		struct list_head *compound_pagelist)
509 {
510 	struct folio *folio, *tmp;
511 
512 	while (--_pte >= pte) {
513 		pte_t pteval = *_pte;
514 		unsigned long pfn;
515 
516 		if (pte_none(pteval))
517 			continue;
518 		pfn = pte_pfn(pteval);
519 		if (is_zero_pfn(pfn))
520 			continue;
521 		folio = pfn_folio(pfn);
522 		if (folio_test_large(folio))
523 			continue;
524 		release_pte_folio(folio);
525 	}
526 
527 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
528 		list_del(&folio->lru);
529 		release_pte_folio(folio);
530 	}
531 }
532 
533 static bool is_refcount_suitable(struct page *page)
534 {
535 	int expected_refcount;
536 
537 	expected_refcount = total_mapcount(page);
538 	if (PageSwapCache(page))
539 		expected_refcount += compound_nr(page);
540 
541 	return page_count(page) == expected_refcount;
542 }
543 
544 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
545 					unsigned long address,
546 					pte_t *pte,
547 					struct collapse_control *cc,
548 					struct list_head *compound_pagelist)
549 {
550 	struct page *page = NULL;
551 	pte_t *_pte;
552 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
553 	bool writable = false;
554 
555 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
556 	     _pte++, address += PAGE_SIZE) {
557 		pte_t pteval = *_pte;
558 		if (pte_none(pteval) || (pte_present(pteval) &&
559 				is_zero_pfn(pte_pfn(pteval)))) {
560 			++none_or_zero;
561 			if (!userfaultfd_armed(vma) &&
562 			    (!cc->is_khugepaged ||
563 			     none_or_zero <= khugepaged_max_ptes_none)) {
564 				continue;
565 			} else {
566 				result = SCAN_EXCEED_NONE_PTE;
567 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
568 				goto out;
569 			}
570 		}
571 		if (!pte_present(pteval)) {
572 			result = SCAN_PTE_NON_PRESENT;
573 			goto out;
574 		}
575 		page = vm_normal_page(vma, address, pteval);
576 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
577 			result = SCAN_PAGE_NULL;
578 			goto out;
579 		}
580 
581 		VM_BUG_ON_PAGE(!PageAnon(page), page);
582 
583 		if (page_mapcount(page) > 1) {
584 			++shared;
585 			if (cc->is_khugepaged &&
586 			    shared > khugepaged_max_ptes_shared) {
587 				result = SCAN_EXCEED_SHARED_PTE;
588 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
589 				goto out;
590 			}
591 		}
592 
593 		if (PageCompound(page)) {
594 			struct page *p;
595 			page = compound_head(page);
596 
597 			/*
598 			 * Check if we have dealt with the compound page
599 			 * already
600 			 */
601 			list_for_each_entry(p, compound_pagelist, lru) {
602 				if (page == p)
603 					goto next;
604 			}
605 		}
606 
607 		/*
608 		 * We can do it before isolate_lru_page because the
609 		 * page can't be freed from under us. NOTE: PG_lock
610 		 * is needed to serialize against split_huge_page
611 		 * when invoked from the VM.
612 		 */
613 		if (!trylock_page(page)) {
614 			result = SCAN_PAGE_LOCK;
615 			goto out;
616 		}
617 
618 		/*
619 		 * Check if the page has any GUP (or other external) pins.
620 		 *
621 		 * The page table that maps the page has been already unlinked
622 		 * from the page table tree and this process cannot get
623 		 * an additional pin on the page.
624 		 *
625 		 * New pins can come later if the page is shared across fork,
626 		 * but not from this process. The other process cannot write to
627 		 * the page, only trigger CoW.
628 		 */
629 		if (!is_refcount_suitable(page)) {
630 			unlock_page(page);
631 			result = SCAN_PAGE_COUNT;
632 			goto out;
633 		}
634 
635 		/*
636 		 * Isolate the page to avoid collapsing an hugepage
637 		 * currently in use by the VM.
638 		 */
639 		if (!isolate_lru_page(page)) {
640 			unlock_page(page);
641 			result = SCAN_DEL_PAGE_LRU;
642 			goto out;
643 		}
644 		mod_node_page_state(page_pgdat(page),
645 				NR_ISOLATED_ANON + page_is_file_lru(page),
646 				compound_nr(page));
647 		VM_BUG_ON_PAGE(!PageLocked(page), page);
648 		VM_BUG_ON_PAGE(PageLRU(page), page);
649 
650 		if (PageCompound(page))
651 			list_add_tail(&page->lru, compound_pagelist);
652 next:
653 		/*
654 		 * If collapse was initiated by khugepaged, check that there is
655 		 * enough young pte to justify collapsing the page
656 		 */
657 		if (cc->is_khugepaged &&
658 		    (pte_young(pteval) || page_is_young(page) ||
659 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
660 								     address)))
661 			referenced++;
662 
663 		if (pte_write(pteval))
664 			writable = true;
665 	}
666 
667 	if (unlikely(!writable)) {
668 		result = SCAN_PAGE_RO;
669 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
670 		result = SCAN_LACK_REFERENCED_PAGE;
671 	} else {
672 		result = SCAN_SUCCEED;
673 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
674 						    referenced, writable, result);
675 		return result;
676 	}
677 out:
678 	release_pte_pages(pte, _pte, compound_pagelist);
679 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
680 					    referenced, writable, result);
681 	return result;
682 }
683 
684 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
685 				      struct vm_area_struct *vma,
686 				      unsigned long address,
687 				      spinlock_t *ptl,
688 				      struct list_head *compound_pagelist)
689 {
690 	struct page *src_page, *tmp;
691 	pte_t *_pte;
692 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
693 				_pte++, page++, address += PAGE_SIZE) {
694 		pte_t pteval = *_pte;
695 
696 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 			clear_user_highpage(page, address);
698 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
699 			if (is_zero_pfn(pte_pfn(pteval))) {
700 				/*
701 				 * ptl mostly unnecessary.
702 				 */
703 				spin_lock(ptl);
704 				ptep_clear(vma->vm_mm, address, _pte);
705 				spin_unlock(ptl);
706 			}
707 		} else {
708 			src_page = pte_page(pteval);
709 			copy_user_highpage(page, src_page, address, vma);
710 			if (!PageCompound(src_page))
711 				release_pte_page(src_page);
712 			/*
713 			 * ptl mostly unnecessary, but preempt has to
714 			 * be disabled to update the per-cpu stats
715 			 * inside page_remove_rmap().
716 			 */
717 			spin_lock(ptl);
718 			ptep_clear(vma->vm_mm, address, _pte);
719 			page_remove_rmap(src_page, vma, false);
720 			spin_unlock(ptl);
721 			free_page_and_swap_cache(src_page);
722 		}
723 	}
724 
725 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
726 		list_del(&src_page->lru);
727 		mod_node_page_state(page_pgdat(src_page),
728 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
729 				    -compound_nr(src_page));
730 		unlock_page(src_page);
731 		free_swap_cache(src_page);
732 		putback_lru_page(src_page);
733 	}
734 }
735 
736 static void khugepaged_alloc_sleep(void)
737 {
738 	DEFINE_WAIT(wait);
739 
740 	add_wait_queue(&khugepaged_wait, &wait);
741 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
742 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
743 	remove_wait_queue(&khugepaged_wait, &wait);
744 }
745 
746 struct collapse_control khugepaged_collapse_control = {
747 	.is_khugepaged = true,
748 };
749 
750 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
751 {
752 	int i;
753 
754 	/*
755 	 * If node_reclaim_mode is disabled, then no extra effort is made to
756 	 * allocate memory locally.
757 	 */
758 	if (!node_reclaim_enabled())
759 		return false;
760 
761 	/* If there is a count for this node already, it must be acceptable */
762 	if (cc->node_load[nid])
763 		return false;
764 
765 	for (i = 0; i < MAX_NUMNODES; i++) {
766 		if (!cc->node_load[i])
767 			continue;
768 		if (node_distance(nid, i) > node_reclaim_distance)
769 			return true;
770 	}
771 	return false;
772 }
773 
774 #define khugepaged_defrag()					\
775 	(transparent_hugepage_flags &				\
776 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
777 
778 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
779 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
780 {
781 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
782 }
783 
784 #ifdef CONFIG_NUMA
785 static int hpage_collapse_find_target_node(struct collapse_control *cc)
786 {
787 	int nid, target_node = 0, max_value = 0;
788 
789 	/* find first node with max normal pages hit */
790 	for (nid = 0; nid < MAX_NUMNODES; nid++)
791 		if (cc->node_load[nid] > max_value) {
792 			max_value = cc->node_load[nid];
793 			target_node = nid;
794 		}
795 
796 	for_each_online_node(nid) {
797 		if (max_value == cc->node_load[nid])
798 			node_set(nid, cc->alloc_nmask);
799 	}
800 
801 	return target_node;
802 }
803 #else
804 static int hpage_collapse_find_target_node(struct collapse_control *cc)
805 {
806 	return 0;
807 }
808 #endif
809 
810 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
811 				      nodemask_t *nmask)
812 {
813 	*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
814 	if (unlikely(!*hpage)) {
815 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
816 		return false;
817 	}
818 
819 	prep_transhuge_page(*hpage);
820 	count_vm_event(THP_COLLAPSE_ALLOC);
821 	return true;
822 }
823 
824 /*
825  * If mmap_lock temporarily dropped, revalidate vma
826  * before taking mmap_lock.
827  * Returns enum scan_result value.
828  */
829 
830 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
831 				   bool expect_anon,
832 				   struct vm_area_struct **vmap,
833 				   struct collapse_control *cc)
834 {
835 	struct vm_area_struct *vma;
836 
837 	if (unlikely(hpage_collapse_test_exit(mm)))
838 		return SCAN_ANY_PROCESS;
839 
840 	*vmap = vma = find_vma(mm, address);
841 	if (!vma)
842 		return SCAN_VMA_NULL;
843 
844 	if (!transhuge_vma_suitable(vma, address))
845 		return SCAN_ADDRESS_RANGE;
846 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
847 				cc->is_khugepaged))
848 		return SCAN_VMA_CHECK;
849 	/*
850 	 * Anon VMA expected, the address may be unmapped then
851 	 * remapped to file after khugepaged reaquired the mmap_lock.
852 	 *
853 	 * hugepage_vma_check may return true for qualified file
854 	 * vmas.
855 	 */
856 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
857 		return SCAN_PAGE_ANON;
858 	return SCAN_SUCCEED;
859 }
860 
861 /*
862  * See pmd_trans_unstable() for how the result may change out from
863  * underneath us, even if we hold mmap_lock in read.
864  */
865 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
866 				   unsigned long address,
867 				   pmd_t **pmd)
868 {
869 	pmd_t pmde;
870 
871 	*pmd = mm_find_pmd(mm, address);
872 	if (!*pmd)
873 		return SCAN_PMD_NULL;
874 
875 	pmde = pmdp_get_lockless(*pmd);
876 
877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
878 	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
879 	barrier();
880 #endif
881 	if (pmd_none(pmde))
882 		return SCAN_PMD_NONE;
883 	if (!pmd_present(pmde))
884 		return SCAN_PMD_NULL;
885 	if (pmd_trans_huge(pmde))
886 		return SCAN_PMD_MAPPED;
887 	if (pmd_devmap(pmde))
888 		return SCAN_PMD_NULL;
889 	if (pmd_bad(pmde))
890 		return SCAN_PMD_NULL;
891 	return SCAN_SUCCEED;
892 }
893 
894 static int check_pmd_still_valid(struct mm_struct *mm,
895 				 unsigned long address,
896 				 pmd_t *pmd)
897 {
898 	pmd_t *new_pmd;
899 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
900 
901 	if (result != SCAN_SUCCEED)
902 		return result;
903 	if (new_pmd != pmd)
904 		return SCAN_FAIL;
905 	return SCAN_SUCCEED;
906 }
907 
908 /*
909  * Bring missing pages in from swap, to complete THP collapse.
910  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
911  *
912  * Called and returns without pte mapped or spinlocks held.
913  * Note that if false is returned, mmap_lock will be released.
914  */
915 
916 static int __collapse_huge_page_swapin(struct mm_struct *mm,
917 				       struct vm_area_struct *vma,
918 				       unsigned long haddr, pmd_t *pmd,
919 				       int referenced)
920 {
921 	int swapped_in = 0;
922 	vm_fault_t ret = 0;
923 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
924 
925 	for (address = haddr; address < end; address += PAGE_SIZE) {
926 		struct vm_fault vmf = {
927 			.vma = vma,
928 			.address = address,
929 			.pgoff = linear_page_index(vma, haddr),
930 			.flags = FAULT_FLAG_ALLOW_RETRY,
931 			.pmd = pmd,
932 		};
933 
934 		vmf.pte = pte_offset_map(pmd, address);
935 		vmf.orig_pte = *vmf.pte;
936 		if (!is_swap_pte(vmf.orig_pte)) {
937 			pte_unmap(vmf.pte);
938 			continue;
939 		}
940 		ret = do_swap_page(&vmf);
941 
942 		/*
943 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
944 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
945 		 * we do not retry here and swap entry will remain in pagetable
946 		 * resulting in later failure.
947 		 */
948 		if (ret & VM_FAULT_RETRY) {
949 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
950 			/* Likely, but not guaranteed, that page lock failed */
951 			return SCAN_PAGE_LOCK;
952 		}
953 		if (ret & VM_FAULT_ERROR) {
954 			mmap_read_unlock(mm);
955 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
956 			return SCAN_FAIL;
957 		}
958 		swapped_in++;
959 	}
960 
961 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
962 	if (swapped_in)
963 		lru_add_drain();
964 
965 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
966 	return SCAN_SUCCEED;
967 }
968 
969 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
970 			      struct collapse_control *cc)
971 {
972 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
973 		     GFP_TRANSHUGE);
974 	int node = hpage_collapse_find_target_node(cc);
975 
976 	if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
977 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
978 	if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
979 		return SCAN_CGROUP_CHARGE_FAIL;
980 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
981 	return SCAN_SUCCEED;
982 }
983 
984 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
985 			      int referenced, int unmapped,
986 			      struct collapse_control *cc)
987 {
988 	LIST_HEAD(compound_pagelist);
989 	pmd_t *pmd, _pmd;
990 	pte_t *pte;
991 	pgtable_t pgtable;
992 	struct page *hpage;
993 	spinlock_t *pmd_ptl, *pte_ptl;
994 	int result = SCAN_FAIL;
995 	struct vm_area_struct *vma;
996 	struct mmu_notifier_range range;
997 
998 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
999 
1000 	/*
1001 	 * Before allocating the hugepage, release the mmap_lock read lock.
1002 	 * The allocation can take potentially a long time if it involves
1003 	 * sync compaction, and we do not need to hold the mmap_lock during
1004 	 * that. We will recheck the vma after taking it again in write mode.
1005 	 */
1006 	mmap_read_unlock(mm);
1007 
1008 	result = alloc_charge_hpage(&hpage, mm, cc);
1009 	if (result != SCAN_SUCCEED)
1010 		goto out_nolock;
1011 
1012 	mmap_read_lock(mm);
1013 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1014 	if (result != SCAN_SUCCEED) {
1015 		mmap_read_unlock(mm);
1016 		goto out_nolock;
1017 	}
1018 
1019 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1020 	if (result != SCAN_SUCCEED) {
1021 		mmap_read_unlock(mm);
1022 		goto out_nolock;
1023 	}
1024 
1025 	if (unmapped) {
1026 		/*
1027 		 * __collapse_huge_page_swapin will return with mmap_lock
1028 		 * released when it fails. So we jump out_nolock directly in
1029 		 * that case.  Continuing to collapse causes inconsistency.
1030 		 */
1031 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1032 						     referenced);
1033 		if (result != SCAN_SUCCEED)
1034 			goto out_nolock;
1035 	}
1036 
1037 	mmap_read_unlock(mm);
1038 	/*
1039 	 * Prevent all access to pagetables with the exception of
1040 	 * gup_fast later handled by the ptep_clear_flush and the VM
1041 	 * handled by the anon_vma lock + PG_lock.
1042 	 */
1043 	mmap_write_lock(mm);
1044 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1045 	if (result != SCAN_SUCCEED)
1046 		goto out_up_write;
1047 	/* check if the pmd is still valid */
1048 	result = check_pmd_still_valid(mm, address, pmd);
1049 	if (result != SCAN_SUCCEED)
1050 		goto out_up_write;
1051 
1052 	anon_vma_lock_write(vma->anon_vma);
1053 
1054 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1055 				address + HPAGE_PMD_SIZE);
1056 	mmu_notifier_invalidate_range_start(&range);
1057 
1058 	pte = pte_offset_map(pmd, address);
1059 	pte_ptl = pte_lockptr(mm, pmd);
1060 
1061 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1062 	/*
1063 	 * This removes any huge TLB entry from the CPU so we won't allow
1064 	 * huge and small TLB entries for the same virtual address to
1065 	 * avoid the risk of CPU bugs in that area.
1066 	 *
1067 	 * Parallel fast GUP is fine since fast GUP will back off when
1068 	 * it detects PMD is changed.
1069 	 */
1070 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1071 	spin_unlock(pmd_ptl);
1072 	mmu_notifier_invalidate_range_end(&range);
1073 	tlb_remove_table_sync_one();
1074 
1075 	spin_lock(pte_ptl);
1076 	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1077 					       &compound_pagelist);
1078 	spin_unlock(pte_ptl);
1079 
1080 	if (unlikely(result != SCAN_SUCCEED)) {
1081 		pte_unmap(pte);
1082 		spin_lock(pmd_ptl);
1083 		BUG_ON(!pmd_none(*pmd));
1084 		/*
1085 		 * We can only use set_pmd_at when establishing
1086 		 * hugepmds and never for establishing regular pmds that
1087 		 * points to regular pagetables. Use pmd_populate for that
1088 		 */
1089 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1090 		spin_unlock(pmd_ptl);
1091 		anon_vma_unlock_write(vma->anon_vma);
1092 		goto out_up_write;
1093 	}
1094 
1095 	/*
1096 	 * All pages are isolated and locked so anon_vma rmap
1097 	 * can't run anymore.
1098 	 */
1099 	anon_vma_unlock_write(vma->anon_vma);
1100 
1101 	__collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1102 				  &compound_pagelist);
1103 	pte_unmap(pte);
1104 	/*
1105 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1106 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1107 	 * avoid the copy_huge_page writes to become visible after
1108 	 * the set_pmd_at() write.
1109 	 */
1110 	__SetPageUptodate(hpage);
1111 	pgtable = pmd_pgtable(_pmd);
1112 
1113 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1114 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1115 
1116 	spin_lock(pmd_ptl);
1117 	BUG_ON(!pmd_none(*pmd));
1118 	page_add_new_anon_rmap(hpage, vma, address);
1119 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1120 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1121 	set_pmd_at(mm, address, pmd, _pmd);
1122 	update_mmu_cache_pmd(vma, address, pmd);
1123 	spin_unlock(pmd_ptl);
1124 
1125 	hpage = NULL;
1126 
1127 	result = SCAN_SUCCEED;
1128 out_up_write:
1129 	mmap_write_unlock(mm);
1130 out_nolock:
1131 	if (hpage) {
1132 		mem_cgroup_uncharge(page_folio(hpage));
1133 		put_page(hpage);
1134 	}
1135 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1136 	return result;
1137 }
1138 
1139 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1140 				   struct vm_area_struct *vma,
1141 				   unsigned long address, bool *mmap_locked,
1142 				   struct collapse_control *cc)
1143 {
1144 	pmd_t *pmd;
1145 	pte_t *pte, *_pte;
1146 	int result = SCAN_FAIL, referenced = 0;
1147 	int none_or_zero = 0, shared = 0;
1148 	struct page *page = NULL;
1149 	unsigned long _address;
1150 	spinlock_t *ptl;
1151 	int node = NUMA_NO_NODE, unmapped = 0;
1152 	bool writable = false;
1153 
1154 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1155 
1156 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1157 	if (result != SCAN_SUCCEED)
1158 		goto out;
1159 
1160 	memset(cc->node_load, 0, sizeof(cc->node_load));
1161 	nodes_clear(cc->alloc_nmask);
1162 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1163 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1164 	     _pte++, _address += PAGE_SIZE) {
1165 		pte_t pteval = *_pte;
1166 		if (is_swap_pte(pteval)) {
1167 			++unmapped;
1168 			if (!cc->is_khugepaged ||
1169 			    unmapped <= khugepaged_max_ptes_swap) {
1170 				/*
1171 				 * Always be strict with uffd-wp
1172 				 * enabled swap entries.  Please see
1173 				 * comment below for pte_uffd_wp().
1174 				 */
1175 				if (pte_swp_uffd_wp(pteval)) {
1176 					result = SCAN_PTE_UFFD_WP;
1177 					goto out_unmap;
1178 				}
1179 				continue;
1180 			} else {
1181 				result = SCAN_EXCEED_SWAP_PTE;
1182 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1183 				goto out_unmap;
1184 			}
1185 		}
1186 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1187 			++none_or_zero;
1188 			if (!userfaultfd_armed(vma) &&
1189 			    (!cc->is_khugepaged ||
1190 			     none_or_zero <= khugepaged_max_ptes_none)) {
1191 				continue;
1192 			} else {
1193 				result = SCAN_EXCEED_NONE_PTE;
1194 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1195 				goto out_unmap;
1196 			}
1197 		}
1198 		if (pte_uffd_wp(pteval)) {
1199 			/*
1200 			 * Don't collapse the page if any of the small
1201 			 * PTEs are armed with uffd write protection.
1202 			 * Here we can also mark the new huge pmd as
1203 			 * write protected if any of the small ones is
1204 			 * marked but that could bring unknown
1205 			 * userfault messages that falls outside of
1206 			 * the registered range.  So, just be simple.
1207 			 */
1208 			result = SCAN_PTE_UFFD_WP;
1209 			goto out_unmap;
1210 		}
1211 		if (pte_write(pteval))
1212 			writable = true;
1213 
1214 		page = vm_normal_page(vma, _address, pteval);
1215 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1216 			result = SCAN_PAGE_NULL;
1217 			goto out_unmap;
1218 		}
1219 
1220 		if (page_mapcount(page) > 1) {
1221 			++shared;
1222 			if (cc->is_khugepaged &&
1223 			    shared > khugepaged_max_ptes_shared) {
1224 				result = SCAN_EXCEED_SHARED_PTE;
1225 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1226 				goto out_unmap;
1227 			}
1228 		}
1229 
1230 		page = compound_head(page);
1231 
1232 		/*
1233 		 * Record which node the original page is from and save this
1234 		 * information to cc->node_load[].
1235 		 * Khugepaged will allocate hugepage from the node has the max
1236 		 * hit record.
1237 		 */
1238 		node = page_to_nid(page);
1239 		if (hpage_collapse_scan_abort(node, cc)) {
1240 			result = SCAN_SCAN_ABORT;
1241 			goto out_unmap;
1242 		}
1243 		cc->node_load[node]++;
1244 		if (!PageLRU(page)) {
1245 			result = SCAN_PAGE_LRU;
1246 			goto out_unmap;
1247 		}
1248 		if (PageLocked(page)) {
1249 			result = SCAN_PAGE_LOCK;
1250 			goto out_unmap;
1251 		}
1252 		if (!PageAnon(page)) {
1253 			result = SCAN_PAGE_ANON;
1254 			goto out_unmap;
1255 		}
1256 
1257 		/*
1258 		 * Check if the page has any GUP (or other external) pins.
1259 		 *
1260 		 * Here the check may be racy:
1261 		 * it may see total_mapcount > refcount in some cases?
1262 		 * But such case is ephemeral we could always retry collapse
1263 		 * later.  However it may report false positive if the page
1264 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1265 		 * will be done again later the risk seems low.
1266 		 */
1267 		if (!is_refcount_suitable(page)) {
1268 			result = SCAN_PAGE_COUNT;
1269 			goto out_unmap;
1270 		}
1271 
1272 		/*
1273 		 * If collapse was initiated by khugepaged, check that there is
1274 		 * enough young pte to justify collapsing the page
1275 		 */
1276 		if (cc->is_khugepaged &&
1277 		    (pte_young(pteval) || page_is_young(page) ||
1278 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1279 								     address)))
1280 			referenced++;
1281 	}
1282 	if (!writable) {
1283 		result = SCAN_PAGE_RO;
1284 	} else if (cc->is_khugepaged &&
1285 		   (!referenced ||
1286 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1287 		result = SCAN_LACK_REFERENCED_PAGE;
1288 	} else {
1289 		result = SCAN_SUCCEED;
1290 	}
1291 out_unmap:
1292 	pte_unmap_unlock(pte, ptl);
1293 	if (result == SCAN_SUCCEED) {
1294 		result = collapse_huge_page(mm, address, referenced,
1295 					    unmapped, cc);
1296 		/* collapse_huge_page will return with the mmap_lock released */
1297 		*mmap_locked = false;
1298 	}
1299 out:
1300 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1301 				     none_or_zero, result, unmapped);
1302 	return result;
1303 }
1304 
1305 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1306 {
1307 	struct mm_slot *slot = &mm_slot->slot;
1308 	struct mm_struct *mm = slot->mm;
1309 
1310 	lockdep_assert_held(&khugepaged_mm_lock);
1311 
1312 	if (hpage_collapse_test_exit(mm)) {
1313 		/* free mm_slot */
1314 		hash_del(&slot->hash);
1315 		list_del(&slot->mm_node);
1316 
1317 		/*
1318 		 * Not strictly needed because the mm exited already.
1319 		 *
1320 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1321 		 */
1322 
1323 		/* khugepaged_mm_lock actually not necessary for the below */
1324 		mm_slot_free(mm_slot_cache, mm_slot);
1325 		mmdrop(mm);
1326 	}
1327 }
1328 
1329 #ifdef CONFIG_SHMEM
1330 /*
1331  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1332  * khugepaged should try to collapse the page table.
1333  *
1334  * Note that following race exists:
1335  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1336  *     emptying the A's ->pte_mapped_thp[] array.
1337  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1338  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1339  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1340  *     ->pte-mapped_thp[] array.
1341  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1342  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1343  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1344  * Thus, it's possible the same address is added multiple times for the same
1345  * mm_struct.  Should this happen, we'll simply attempt
1346  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1347  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1348  * attempts will return quickly (without grabbing any additional locks) when
1349  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1350  * check, and since this is a rare occurrence, the cost of preventing this
1351  * "multiple-add" is thought to be more expensive than just handling it, should
1352  * it occur.
1353  */
1354 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1355 					  unsigned long addr)
1356 {
1357 	struct khugepaged_mm_slot *mm_slot;
1358 	struct mm_slot *slot;
1359 	bool ret = false;
1360 
1361 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1362 
1363 	spin_lock(&khugepaged_mm_lock);
1364 	slot = mm_slot_lookup(mm_slots_hash, mm);
1365 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1366 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1367 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1368 		ret = true;
1369 	}
1370 	spin_unlock(&khugepaged_mm_lock);
1371 	return ret;
1372 }
1373 
1374 /* hpage must be locked, and mmap_lock must be held in write */
1375 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1376 			pmd_t *pmdp, struct page *hpage)
1377 {
1378 	struct vm_fault vmf = {
1379 		.vma = vma,
1380 		.address = addr,
1381 		.flags = 0,
1382 		.pmd = pmdp,
1383 	};
1384 
1385 	VM_BUG_ON(!PageTransHuge(hpage));
1386 	mmap_assert_write_locked(vma->vm_mm);
1387 
1388 	if (do_set_pmd(&vmf, hpage))
1389 		return SCAN_FAIL;
1390 
1391 	get_page(hpage);
1392 	return SCAN_SUCCEED;
1393 }
1394 
1395 /*
1396  * A note about locking:
1397  * Trying to take the page table spinlocks would be useless here because those
1398  * are only used to synchronize:
1399  *
1400  *  - modifying terminal entries (ones that point to a data page, not to another
1401  *    page table)
1402  *  - installing *new* non-terminal entries
1403  *
1404  * Instead, we need roughly the same kind of protection as free_pgtables() or
1405  * mm_take_all_locks() (but only for a single VMA):
1406  * The mmap lock together with this VMA's rmap locks covers all paths towards
1407  * the page table entries we're messing with here, except for hardware page
1408  * table walks and lockless_pages_from_mm().
1409  */
1410 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1411 				  unsigned long addr, pmd_t *pmdp)
1412 {
1413 	pmd_t pmd;
1414 	struct mmu_notifier_range range;
1415 
1416 	mmap_assert_write_locked(mm);
1417 	if (vma->vm_file)
1418 		lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1419 	/*
1420 	 * All anon_vmas attached to the VMA have the same root and are
1421 	 * therefore locked by the same lock.
1422 	 */
1423 	if (vma->anon_vma)
1424 		lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1425 
1426 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1427 				addr + HPAGE_PMD_SIZE);
1428 	mmu_notifier_invalidate_range_start(&range);
1429 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1430 	tlb_remove_table_sync_one();
1431 	mmu_notifier_invalidate_range_end(&range);
1432 	mm_dec_nr_ptes(mm);
1433 	page_table_check_pte_clear_range(mm, addr, pmd);
1434 	pte_free(mm, pmd_pgtable(pmd));
1435 }
1436 
1437 /**
1438  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1439  * address haddr.
1440  *
1441  * @mm: process address space where collapse happens
1442  * @addr: THP collapse address
1443  * @install_pmd: If a huge PMD should be installed
1444  *
1445  * This function checks whether all the PTEs in the PMD are pointing to the
1446  * right THP. If so, retract the page table so the THP can refault in with
1447  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1448  */
1449 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1450 			    bool install_pmd)
1451 {
1452 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1453 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1454 	struct page *hpage;
1455 	pte_t *start_pte, *pte;
1456 	pmd_t *pmd;
1457 	spinlock_t *ptl;
1458 	int count = 0, result = SCAN_FAIL;
1459 	int i;
1460 
1461 	mmap_assert_write_locked(mm);
1462 
1463 	/* Fast check before locking page if already PMD-mapped */
1464 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1465 	if (result == SCAN_PMD_MAPPED)
1466 		return result;
1467 
1468 	if (!vma || !vma->vm_file ||
1469 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1470 		return SCAN_VMA_CHECK;
1471 
1472 	/*
1473 	 * If we are here, we've succeeded in replacing all the native pages
1474 	 * in the page cache with a single hugepage. If a mm were to fault-in
1475 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1476 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1477 	 * analogously elide sysfs THP settings here.
1478 	 */
1479 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1480 		return SCAN_VMA_CHECK;
1481 
1482 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1483 	if (userfaultfd_wp(vma))
1484 		return SCAN_PTE_UFFD_WP;
1485 
1486 	hpage = find_lock_page(vma->vm_file->f_mapping,
1487 			       linear_page_index(vma, haddr));
1488 	if (!hpage)
1489 		return SCAN_PAGE_NULL;
1490 
1491 	if (!PageHead(hpage)) {
1492 		result = SCAN_FAIL;
1493 		goto drop_hpage;
1494 	}
1495 
1496 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1497 		result = SCAN_PAGE_COMPOUND;
1498 		goto drop_hpage;
1499 	}
1500 
1501 	switch (result) {
1502 	case SCAN_SUCCEED:
1503 		break;
1504 	case SCAN_PMD_NONE:
1505 		/*
1506 		 * In MADV_COLLAPSE path, possible race with khugepaged where
1507 		 * all pte entries have been removed and pmd cleared.  If so,
1508 		 * skip all the pte checks and just update the pmd mapping.
1509 		 */
1510 		goto maybe_install_pmd;
1511 	default:
1512 		goto drop_hpage;
1513 	}
1514 
1515 	/*
1516 	 * We need to lock the mapping so that from here on, only GUP-fast and
1517 	 * hardware page walks can access the parts of the page tables that
1518 	 * we're operating on.
1519 	 * See collapse_and_free_pmd().
1520 	 */
1521 	i_mmap_lock_write(vma->vm_file->f_mapping);
1522 
1523 	/*
1524 	 * This spinlock should be unnecessary: Nobody else should be accessing
1525 	 * the page tables under spinlock protection here, only
1526 	 * lockless_pages_from_mm() and the hardware page walker can access page
1527 	 * tables while all the high-level locks are held in write mode.
1528 	 */
1529 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1530 	result = SCAN_FAIL;
1531 
1532 	/* step 1: check all mapped PTEs are to the right huge page */
1533 	for (i = 0, addr = haddr, pte = start_pte;
1534 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1535 		struct page *page;
1536 
1537 		/* empty pte, skip */
1538 		if (pte_none(*pte))
1539 			continue;
1540 
1541 		/* page swapped out, abort */
1542 		if (!pte_present(*pte)) {
1543 			result = SCAN_PTE_NON_PRESENT;
1544 			goto abort;
1545 		}
1546 
1547 		page = vm_normal_page(vma, addr, *pte);
1548 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1549 			page = NULL;
1550 		/*
1551 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1552 		 * page table, but the new page will not be a subpage of hpage.
1553 		 */
1554 		if (hpage + i != page)
1555 			goto abort;
1556 		count++;
1557 	}
1558 
1559 	/* step 2: adjust rmap */
1560 	for (i = 0, addr = haddr, pte = start_pte;
1561 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1562 		struct page *page;
1563 
1564 		if (pte_none(*pte))
1565 			continue;
1566 		page = vm_normal_page(vma, addr, *pte);
1567 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1568 			goto abort;
1569 		page_remove_rmap(page, vma, false);
1570 	}
1571 
1572 	pte_unmap_unlock(start_pte, ptl);
1573 
1574 	/* step 3: set proper refcount and mm_counters. */
1575 	if (count) {
1576 		page_ref_sub(hpage, count);
1577 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1578 	}
1579 
1580 	/* step 4: remove pte entries */
1581 	/* we make no change to anon, but protect concurrent anon page lookup */
1582 	if (vma->anon_vma)
1583 		anon_vma_lock_write(vma->anon_vma);
1584 
1585 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1586 
1587 	if (vma->anon_vma)
1588 		anon_vma_unlock_write(vma->anon_vma);
1589 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1590 
1591 maybe_install_pmd:
1592 	/* step 5: install pmd entry */
1593 	result = install_pmd
1594 			? set_huge_pmd(vma, haddr, pmd, hpage)
1595 			: SCAN_SUCCEED;
1596 
1597 drop_hpage:
1598 	unlock_page(hpage);
1599 	put_page(hpage);
1600 	return result;
1601 
1602 abort:
1603 	pte_unmap_unlock(start_pte, ptl);
1604 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1605 	goto drop_hpage;
1606 }
1607 
1608 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1609 {
1610 	struct mm_slot *slot = &mm_slot->slot;
1611 	struct mm_struct *mm = slot->mm;
1612 	int i;
1613 
1614 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1615 		return;
1616 
1617 	if (!mmap_write_trylock(mm))
1618 		return;
1619 
1620 	if (unlikely(hpage_collapse_test_exit(mm)))
1621 		goto out;
1622 
1623 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1624 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1625 
1626 out:
1627 	mm_slot->nr_pte_mapped_thp = 0;
1628 	mmap_write_unlock(mm);
1629 }
1630 
1631 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1632 			       struct mm_struct *target_mm,
1633 			       unsigned long target_addr, struct page *hpage,
1634 			       struct collapse_control *cc)
1635 {
1636 	struct vm_area_struct *vma;
1637 	int target_result = SCAN_FAIL;
1638 
1639 	i_mmap_lock_write(mapping);
1640 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1641 		int result = SCAN_FAIL;
1642 		struct mm_struct *mm = NULL;
1643 		unsigned long addr = 0;
1644 		pmd_t *pmd;
1645 		bool is_target = false;
1646 
1647 		/*
1648 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1649 		 * got written to. These VMAs are likely not worth investing
1650 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1651 		 * later.
1652 		 *
1653 		 * Note that vma->anon_vma check is racy: it can be set up after
1654 		 * the check but before we took mmap_lock by the fault path.
1655 		 * But page lock would prevent establishing any new ptes of the
1656 		 * page, so we are safe.
1657 		 *
1658 		 * An alternative would be drop the check, but check that page
1659 		 * table is clear before calling pmdp_collapse_flush() under
1660 		 * ptl. It has higher chance to recover THP for the VMA, but
1661 		 * has higher cost too. It would also probably require locking
1662 		 * the anon_vma.
1663 		 */
1664 		if (READ_ONCE(vma->anon_vma)) {
1665 			result = SCAN_PAGE_ANON;
1666 			goto next;
1667 		}
1668 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1669 		if (addr & ~HPAGE_PMD_MASK ||
1670 		    vma->vm_end < addr + HPAGE_PMD_SIZE) {
1671 			result = SCAN_VMA_CHECK;
1672 			goto next;
1673 		}
1674 		mm = vma->vm_mm;
1675 		is_target = mm == target_mm && addr == target_addr;
1676 		result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1677 		if (result != SCAN_SUCCEED)
1678 			goto next;
1679 		/*
1680 		 * We need exclusive mmap_lock to retract page table.
1681 		 *
1682 		 * We use trylock due to lock inversion: we need to acquire
1683 		 * mmap_lock while holding page lock. Fault path does it in
1684 		 * reverse order. Trylock is a way to avoid deadlock.
1685 		 *
1686 		 * Also, it's not MADV_COLLAPSE's job to collapse other
1687 		 * mappings - let khugepaged take care of them later.
1688 		 */
1689 		result = SCAN_PTE_MAPPED_HUGEPAGE;
1690 		if ((cc->is_khugepaged || is_target) &&
1691 		    mmap_write_trylock(mm)) {
1692 			/*
1693 			 * Re-check whether we have an ->anon_vma, because
1694 			 * collapse_and_free_pmd() requires that either no
1695 			 * ->anon_vma exists or the anon_vma is locked.
1696 			 * We already checked ->anon_vma above, but that check
1697 			 * is racy because ->anon_vma can be populated under the
1698 			 * mmap lock in read mode.
1699 			 */
1700 			if (vma->anon_vma) {
1701 				result = SCAN_PAGE_ANON;
1702 				goto unlock_next;
1703 			}
1704 			/*
1705 			 * When a vma is registered with uffd-wp, we can't
1706 			 * recycle the pmd pgtable because there can be pte
1707 			 * markers installed.  Skip it only, so the rest mm/vma
1708 			 * can still have the same file mapped hugely, however
1709 			 * it'll always mapped in small page size for uffd-wp
1710 			 * registered ranges.
1711 			 */
1712 			if (hpage_collapse_test_exit(mm)) {
1713 				result = SCAN_ANY_PROCESS;
1714 				goto unlock_next;
1715 			}
1716 			if (userfaultfd_wp(vma)) {
1717 				result = SCAN_PTE_UFFD_WP;
1718 				goto unlock_next;
1719 			}
1720 			collapse_and_free_pmd(mm, vma, addr, pmd);
1721 			if (!cc->is_khugepaged && is_target)
1722 				result = set_huge_pmd(vma, addr, pmd, hpage);
1723 			else
1724 				result = SCAN_SUCCEED;
1725 
1726 unlock_next:
1727 			mmap_write_unlock(mm);
1728 			goto next;
1729 		}
1730 		/*
1731 		 * Calling context will handle target mm/addr. Otherwise, let
1732 		 * khugepaged try again later.
1733 		 */
1734 		if (!is_target) {
1735 			khugepaged_add_pte_mapped_thp(mm, addr);
1736 			continue;
1737 		}
1738 next:
1739 		if (is_target)
1740 			target_result = result;
1741 	}
1742 	i_mmap_unlock_write(mapping);
1743 	return target_result;
1744 }
1745 
1746 /**
1747  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1748  *
1749  * @mm: process address space where collapse happens
1750  * @addr: virtual collapse start address
1751  * @file: file that collapse on
1752  * @start: collapse start address
1753  * @cc: collapse context and scratchpad
1754  *
1755  * Basic scheme is simple, details are more complex:
1756  *  - allocate and lock a new huge page;
1757  *  - scan page cache replacing old pages with the new one
1758  *    + swap/gup in pages if necessary;
1759  *    + fill in gaps;
1760  *    + keep old pages around in case rollback is required;
1761  *  - if replacing succeeds:
1762  *    + copy data over;
1763  *    + free old pages;
1764  *    + unlock huge page;
1765  *  - if replacing failed;
1766  *    + put all pages back and unfreeze them;
1767  *    + restore gaps in the page cache;
1768  *    + unlock and free huge page;
1769  */
1770 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1771 			 struct file *file, pgoff_t start,
1772 			 struct collapse_control *cc)
1773 {
1774 	struct address_space *mapping = file->f_mapping;
1775 	struct page *hpage;
1776 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1777 	LIST_HEAD(pagelist);
1778 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1779 	int nr_none = 0, result = SCAN_SUCCEED;
1780 	bool is_shmem = shmem_file(file);
1781 	int nr = 0;
1782 
1783 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1784 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1785 
1786 	result = alloc_charge_hpage(&hpage, mm, cc);
1787 	if (result != SCAN_SUCCEED)
1788 		goto out;
1789 
1790 	/*
1791 	 * Ensure we have slots for all the pages in the range.  This is
1792 	 * almost certainly a no-op because most of the pages must be present
1793 	 */
1794 	do {
1795 		xas_lock_irq(&xas);
1796 		xas_create_range(&xas);
1797 		if (!xas_error(&xas))
1798 			break;
1799 		xas_unlock_irq(&xas);
1800 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1801 			result = SCAN_FAIL;
1802 			goto out;
1803 		}
1804 	} while (1);
1805 
1806 	__SetPageLocked(hpage);
1807 	if (is_shmem)
1808 		__SetPageSwapBacked(hpage);
1809 	hpage->index = start;
1810 	hpage->mapping = mapping;
1811 
1812 	/*
1813 	 * At this point the hpage is locked and not up-to-date.
1814 	 * It's safe to insert it into the page cache, because nobody would
1815 	 * be able to map it or use it in another way until we unlock it.
1816 	 */
1817 
1818 	xas_set(&xas, start);
1819 	for (index = start; index < end; index++) {
1820 		struct page *page = xas_next(&xas);
1821 		struct folio *folio;
1822 
1823 		VM_BUG_ON(index != xas.xa_index);
1824 		if (is_shmem) {
1825 			if (!page) {
1826 				/*
1827 				 * Stop if extent has been truncated or
1828 				 * hole-punched, and is now completely
1829 				 * empty.
1830 				 */
1831 				if (index == start) {
1832 					if (!xas_next_entry(&xas, end - 1)) {
1833 						result = SCAN_TRUNCATED;
1834 						goto xa_locked;
1835 					}
1836 					xas_set(&xas, index);
1837 				}
1838 				if (!shmem_charge(mapping->host, 1)) {
1839 					result = SCAN_FAIL;
1840 					goto xa_locked;
1841 				}
1842 				xas_store(&xas, hpage);
1843 				nr_none++;
1844 				continue;
1845 			}
1846 
1847 			if (xa_is_value(page) || !PageUptodate(page)) {
1848 				xas_unlock_irq(&xas);
1849 				/* swap in or instantiate fallocated page */
1850 				if (shmem_get_folio(mapping->host, index,
1851 						&folio, SGP_NOALLOC)) {
1852 					result = SCAN_FAIL;
1853 					goto xa_unlocked;
1854 				}
1855 				page = folio_file_page(folio, index);
1856 			} else if (trylock_page(page)) {
1857 				get_page(page);
1858 				xas_unlock_irq(&xas);
1859 			} else {
1860 				result = SCAN_PAGE_LOCK;
1861 				goto xa_locked;
1862 			}
1863 		} else {	/* !is_shmem */
1864 			if (!page || xa_is_value(page)) {
1865 				xas_unlock_irq(&xas);
1866 				page_cache_sync_readahead(mapping, &file->f_ra,
1867 							  file, index,
1868 							  end - index);
1869 				/* drain pagevecs to help isolate_lru_page() */
1870 				lru_add_drain();
1871 				page = find_lock_page(mapping, index);
1872 				if (unlikely(page == NULL)) {
1873 					result = SCAN_FAIL;
1874 					goto xa_unlocked;
1875 				}
1876 			} else if (PageDirty(page)) {
1877 				/*
1878 				 * khugepaged only works on read-only fd,
1879 				 * so this page is dirty because it hasn't
1880 				 * been flushed since first write. There
1881 				 * won't be new dirty pages.
1882 				 *
1883 				 * Trigger async flush here and hope the
1884 				 * writeback is done when khugepaged
1885 				 * revisits this page.
1886 				 *
1887 				 * This is a one-off situation. We are not
1888 				 * forcing writeback in loop.
1889 				 */
1890 				xas_unlock_irq(&xas);
1891 				filemap_flush(mapping);
1892 				result = SCAN_FAIL;
1893 				goto xa_unlocked;
1894 			} else if (PageWriteback(page)) {
1895 				xas_unlock_irq(&xas);
1896 				result = SCAN_FAIL;
1897 				goto xa_unlocked;
1898 			} else if (trylock_page(page)) {
1899 				get_page(page);
1900 				xas_unlock_irq(&xas);
1901 			} else {
1902 				result = SCAN_PAGE_LOCK;
1903 				goto xa_locked;
1904 			}
1905 		}
1906 
1907 		/*
1908 		 * The page must be locked, so we can drop the i_pages lock
1909 		 * without racing with truncate.
1910 		 */
1911 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1912 
1913 		/* make sure the page is up to date */
1914 		if (unlikely(!PageUptodate(page))) {
1915 			result = SCAN_FAIL;
1916 			goto out_unlock;
1917 		}
1918 
1919 		/*
1920 		 * If file was truncated then extended, or hole-punched, before
1921 		 * we locked the first page, then a THP might be there already.
1922 		 * This will be discovered on the first iteration.
1923 		 */
1924 		if (PageTransCompound(page)) {
1925 			struct page *head = compound_head(page);
1926 
1927 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1928 					head->index == start
1929 					/* Maybe PMD-mapped */
1930 					? SCAN_PTE_MAPPED_HUGEPAGE
1931 					: SCAN_PAGE_COMPOUND;
1932 			goto out_unlock;
1933 		}
1934 
1935 		folio = page_folio(page);
1936 
1937 		if (folio_mapping(folio) != mapping) {
1938 			result = SCAN_TRUNCATED;
1939 			goto out_unlock;
1940 		}
1941 
1942 		if (!is_shmem && (folio_test_dirty(folio) ||
1943 				  folio_test_writeback(folio))) {
1944 			/*
1945 			 * khugepaged only works on read-only fd, so this
1946 			 * page is dirty because it hasn't been flushed
1947 			 * since first write.
1948 			 */
1949 			result = SCAN_FAIL;
1950 			goto out_unlock;
1951 		}
1952 
1953 		if (!folio_isolate_lru(folio)) {
1954 			result = SCAN_DEL_PAGE_LRU;
1955 			goto out_unlock;
1956 		}
1957 
1958 		if (folio_has_private(folio) &&
1959 		    !filemap_release_folio(folio, GFP_KERNEL)) {
1960 			result = SCAN_PAGE_HAS_PRIVATE;
1961 			folio_putback_lru(folio);
1962 			goto out_unlock;
1963 		}
1964 
1965 		if (folio_mapped(folio))
1966 			try_to_unmap(folio,
1967 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1968 
1969 		xas_lock_irq(&xas);
1970 		xas_set(&xas, index);
1971 
1972 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1973 
1974 		/*
1975 		 * The page is expected to have page_count() == 3:
1976 		 *  - we hold a pin on it;
1977 		 *  - one reference from page cache;
1978 		 *  - one from isolate_lru_page;
1979 		 */
1980 		if (!page_ref_freeze(page, 3)) {
1981 			result = SCAN_PAGE_COUNT;
1982 			xas_unlock_irq(&xas);
1983 			putback_lru_page(page);
1984 			goto out_unlock;
1985 		}
1986 
1987 		/*
1988 		 * Add the page to the list to be able to undo the collapse if
1989 		 * something go wrong.
1990 		 */
1991 		list_add_tail(&page->lru, &pagelist);
1992 
1993 		/* Finally, replace with the new page. */
1994 		xas_store(&xas, hpage);
1995 		continue;
1996 out_unlock:
1997 		unlock_page(page);
1998 		put_page(page);
1999 		goto xa_unlocked;
2000 	}
2001 	nr = thp_nr_pages(hpage);
2002 
2003 	if (is_shmem)
2004 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
2005 	else {
2006 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
2007 		filemap_nr_thps_inc(mapping);
2008 		/*
2009 		 * Paired with smp_mb() in do_dentry_open() to ensure
2010 		 * i_writecount is up to date and the update to nr_thps is
2011 		 * visible. Ensures the page cache will be truncated if the
2012 		 * file is opened writable.
2013 		 */
2014 		smp_mb();
2015 		if (inode_is_open_for_write(mapping->host)) {
2016 			result = SCAN_FAIL;
2017 			__mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
2018 			filemap_nr_thps_dec(mapping);
2019 			goto xa_locked;
2020 		}
2021 	}
2022 
2023 	if (nr_none) {
2024 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2025 		/* nr_none is always 0 for non-shmem. */
2026 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2027 	}
2028 
2029 	/* Join all the small entries into a single multi-index entry */
2030 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2031 	xas_store(&xas, hpage);
2032 xa_locked:
2033 	xas_unlock_irq(&xas);
2034 xa_unlocked:
2035 
2036 	/*
2037 	 * If collapse is successful, flush must be done now before copying.
2038 	 * If collapse is unsuccessful, does flush actually need to be done?
2039 	 * Do it anyway, to clear the state.
2040 	 */
2041 	try_to_unmap_flush();
2042 
2043 	if (result == SCAN_SUCCEED) {
2044 		struct page *page, *tmp;
2045 		struct folio *folio;
2046 
2047 		/*
2048 		 * Replacing old pages with new one has succeeded, now we
2049 		 * need to copy the content and free the old pages.
2050 		 */
2051 		index = start;
2052 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2053 			while (index < page->index) {
2054 				clear_highpage(hpage + (index % HPAGE_PMD_NR));
2055 				index++;
2056 			}
2057 			copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2058 				      page);
2059 			list_del(&page->lru);
2060 			page->mapping = NULL;
2061 			page_ref_unfreeze(page, 1);
2062 			ClearPageActive(page);
2063 			ClearPageUnevictable(page);
2064 			unlock_page(page);
2065 			put_page(page);
2066 			index++;
2067 		}
2068 		while (index < end) {
2069 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2070 			index++;
2071 		}
2072 
2073 		folio = page_folio(hpage);
2074 		folio_mark_uptodate(folio);
2075 		folio_ref_add(folio, HPAGE_PMD_NR - 1);
2076 
2077 		if (is_shmem)
2078 			folio_mark_dirty(folio);
2079 		folio_add_lru(folio);
2080 
2081 		/*
2082 		 * Remove pte page tables, so we can re-fault the page as huge.
2083 		 */
2084 		result = retract_page_tables(mapping, start, mm, addr, hpage,
2085 					     cc);
2086 		unlock_page(hpage);
2087 		hpage = NULL;
2088 	} else {
2089 		struct page *page;
2090 
2091 		/* Something went wrong: roll back page cache changes */
2092 		xas_lock_irq(&xas);
2093 		if (nr_none) {
2094 			mapping->nrpages -= nr_none;
2095 			shmem_uncharge(mapping->host, nr_none);
2096 		}
2097 
2098 		xas_set(&xas, start);
2099 		xas_for_each(&xas, page, end - 1) {
2100 			page = list_first_entry_or_null(&pagelist,
2101 					struct page, lru);
2102 			if (!page || xas.xa_index < page->index) {
2103 				if (!nr_none)
2104 					break;
2105 				nr_none--;
2106 				/* Put holes back where they were */
2107 				xas_store(&xas, NULL);
2108 				continue;
2109 			}
2110 
2111 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2112 
2113 			/* Unfreeze the page. */
2114 			list_del(&page->lru);
2115 			page_ref_unfreeze(page, 2);
2116 			xas_store(&xas, page);
2117 			xas_pause(&xas);
2118 			xas_unlock_irq(&xas);
2119 			unlock_page(page);
2120 			putback_lru_page(page);
2121 			xas_lock_irq(&xas);
2122 		}
2123 		VM_BUG_ON(nr_none);
2124 		xas_unlock_irq(&xas);
2125 
2126 		hpage->mapping = NULL;
2127 	}
2128 
2129 	if (hpage)
2130 		unlock_page(hpage);
2131 out:
2132 	VM_BUG_ON(!list_empty(&pagelist));
2133 	if (hpage) {
2134 		mem_cgroup_uncharge(page_folio(hpage));
2135 		put_page(hpage);
2136 	}
2137 
2138 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2139 	return result;
2140 }
2141 
2142 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2143 				    struct file *file, pgoff_t start,
2144 				    struct collapse_control *cc)
2145 {
2146 	struct page *page = NULL;
2147 	struct address_space *mapping = file->f_mapping;
2148 	XA_STATE(xas, &mapping->i_pages, start);
2149 	int present, swap;
2150 	int node = NUMA_NO_NODE;
2151 	int result = SCAN_SUCCEED;
2152 
2153 	present = 0;
2154 	swap = 0;
2155 	memset(cc->node_load, 0, sizeof(cc->node_load));
2156 	nodes_clear(cc->alloc_nmask);
2157 	rcu_read_lock();
2158 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2159 		if (xas_retry(&xas, page))
2160 			continue;
2161 
2162 		if (xa_is_value(page)) {
2163 			++swap;
2164 			if (cc->is_khugepaged &&
2165 			    swap > khugepaged_max_ptes_swap) {
2166 				result = SCAN_EXCEED_SWAP_PTE;
2167 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2168 				break;
2169 			}
2170 			continue;
2171 		}
2172 
2173 		/*
2174 		 * TODO: khugepaged should compact smaller compound pages
2175 		 * into a PMD sized page
2176 		 */
2177 		if (PageTransCompound(page)) {
2178 			struct page *head = compound_head(page);
2179 
2180 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2181 					head->index == start
2182 					/* Maybe PMD-mapped */
2183 					? SCAN_PTE_MAPPED_HUGEPAGE
2184 					: SCAN_PAGE_COMPOUND;
2185 			/*
2186 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2187 			 * by the caller won't touch the page cache, and so
2188 			 * it's safe to skip LRU and refcount checks before
2189 			 * returning.
2190 			 */
2191 			break;
2192 		}
2193 
2194 		node = page_to_nid(page);
2195 		if (hpage_collapse_scan_abort(node, cc)) {
2196 			result = SCAN_SCAN_ABORT;
2197 			break;
2198 		}
2199 		cc->node_load[node]++;
2200 
2201 		if (!PageLRU(page)) {
2202 			result = SCAN_PAGE_LRU;
2203 			break;
2204 		}
2205 
2206 		if (page_count(page) !=
2207 		    1 + page_mapcount(page) + page_has_private(page)) {
2208 			result = SCAN_PAGE_COUNT;
2209 			break;
2210 		}
2211 
2212 		/*
2213 		 * We probably should check if the page is referenced here, but
2214 		 * nobody would transfer pte_young() to PageReferenced() for us.
2215 		 * And rmap walk here is just too costly...
2216 		 */
2217 
2218 		present++;
2219 
2220 		if (need_resched()) {
2221 			xas_pause(&xas);
2222 			cond_resched_rcu();
2223 		}
2224 	}
2225 	rcu_read_unlock();
2226 
2227 	if (result == SCAN_SUCCEED) {
2228 		if (cc->is_khugepaged &&
2229 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2230 			result = SCAN_EXCEED_NONE_PTE;
2231 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2232 		} else {
2233 			result = collapse_file(mm, addr, file, start, cc);
2234 		}
2235 	}
2236 
2237 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2238 	return result;
2239 }
2240 #else
2241 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2242 				    struct file *file, pgoff_t start,
2243 				    struct collapse_control *cc)
2244 {
2245 	BUILD_BUG();
2246 }
2247 
2248 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2249 {
2250 }
2251 
2252 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2253 					  unsigned long addr)
2254 {
2255 	return false;
2256 }
2257 #endif
2258 
2259 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2260 					    struct collapse_control *cc)
2261 	__releases(&khugepaged_mm_lock)
2262 	__acquires(&khugepaged_mm_lock)
2263 {
2264 	struct vma_iterator vmi;
2265 	struct khugepaged_mm_slot *mm_slot;
2266 	struct mm_slot *slot;
2267 	struct mm_struct *mm;
2268 	struct vm_area_struct *vma;
2269 	int progress = 0;
2270 
2271 	VM_BUG_ON(!pages);
2272 	lockdep_assert_held(&khugepaged_mm_lock);
2273 	*result = SCAN_FAIL;
2274 
2275 	if (khugepaged_scan.mm_slot) {
2276 		mm_slot = khugepaged_scan.mm_slot;
2277 		slot = &mm_slot->slot;
2278 	} else {
2279 		slot = list_entry(khugepaged_scan.mm_head.next,
2280 				     struct mm_slot, mm_node);
2281 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2282 		khugepaged_scan.address = 0;
2283 		khugepaged_scan.mm_slot = mm_slot;
2284 	}
2285 	spin_unlock(&khugepaged_mm_lock);
2286 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2287 
2288 	mm = slot->mm;
2289 	/*
2290 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2291 	 * the next mm on the list.
2292 	 */
2293 	vma = NULL;
2294 	if (unlikely(!mmap_read_trylock(mm)))
2295 		goto breakouterloop_mmap_lock;
2296 
2297 	progress++;
2298 	if (unlikely(hpage_collapse_test_exit(mm)))
2299 		goto breakouterloop;
2300 
2301 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2302 	for_each_vma(vmi, vma) {
2303 		unsigned long hstart, hend;
2304 
2305 		cond_resched();
2306 		if (unlikely(hpage_collapse_test_exit(mm))) {
2307 			progress++;
2308 			break;
2309 		}
2310 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2311 skip:
2312 			progress++;
2313 			continue;
2314 		}
2315 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2316 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2317 		if (khugepaged_scan.address > hend)
2318 			goto skip;
2319 		if (khugepaged_scan.address < hstart)
2320 			khugepaged_scan.address = hstart;
2321 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2322 
2323 		while (khugepaged_scan.address < hend) {
2324 			bool mmap_locked = true;
2325 
2326 			cond_resched();
2327 			if (unlikely(hpage_collapse_test_exit(mm)))
2328 				goto breakouterloop;
2329 
2330 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2331 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2332 				  hend);
2333 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2334 				struct file *file = get_file(vma->vm_file);
2335 				pgoff_t pgoff = linear_page_index(vma,
2336 						khugepaged_scan.address);
2337 
2338 				mmap_read_unlock(mm);
2339 				*result = hpage_collapse_scan_file(mm,
2340 								   khugepaged_scan.address,
2341 								   file, pgoff, cc);
2342 				mmap_locked = false;
2343 				fput(file);
2344 			} else {
2345 				*result = hpage_collapse_scan_pmd(mm, vma,
2346 								  khugepaged_scan.address,
2347 								  &mmap_locked,
2348 								  cc);
2349 			}
2350 			switch (*result) {
2351 			case SCAN_PTE_MAPPED_HUGEPAGE: {
2352 				pmd_t *pmd;
2353 
2354 				*result = find_pmd_or_thp_or_none(mm,
2355 								  khugepaged_scan.address,
2356 								  &pmd);
2357 				if (*result != SCAN_SUCCEED)
2358 					break;
2359 				if (!khugepaged_add_pte_mapped_thp(mm,
2360 								   khugepaged_scan.address))
2361 					break;
2362 			} fallthrough;
2363 			case SCAN_SUCCEED:
2364 				++khugepaged_pages_collapsed;
2365 				break;
2366 			default:
2367 				break;
2368 			}
2369 
2370 			/* move to next address */
2371 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2372 			progress += HPAGE_PMD_NR;
2373 			if (!mmap_locked)
2374 				/*
2375 				 * We released mmap_lock so break loop.  Note
2376 				 * that we drop mmap_lock before all hugepage
2377 				 * allocations, so if allocation fails, we are
2378 				 * guaranteed to break here and report the
2379 				 * correct result back to caller.
2380 				 */
2381 				goto breakouterloop_mmap_lock;
2382 			if (progress >= pages)
2383 				goto breakouterloop;
2384 		}
2385 	}
2386 breakouterloop:
2387 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2388 breakouterloop_mmap_lock:
2389 
2390 	spin_lock(&khugepaged_mm_lock);
2391 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2392 	/*
2393 	 * Release the current mm_slot if this mm is about to die, or
2394 	 * if we scanned all vmas of this mm.
2395 	 */
2396 	if (hpage_collapse_test_exit(mm) || !vma) {
2397 		/*
2398 		 * Make sure that if mm_users is reaching zero while
2399 		 * khugepaged runs here, khugepaged_exit will find
2400 		 * mm_slot not pointing to the exiting mm.
2401 		 */
2402 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2403 			slot = list_entry(slot->mm_node.next,
2404 					  struct mm_slot, mm_node);
2405 			khugepaged_scan.mm_slot =
2406 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2407 			khugepaged_scan.address = 0;
2408 		} else {
2409 			khugepaged_scan.mm_slot = NULL;
2410 			khugepaged_full_scans++;
2411 		}
2412 
2413 		collect_mm_slot(mm_slot);
2414 	}
2415 
2416 	return progress;
2417 }
2418 
2419 static int khugepaged_has_work(void)
2420 {
2421 	return !list_empty(&khugepaged_scan.mm_head) &&
2422 		hugepage_flags_enabled();
2423 }
2424 
2425 static int khugepaged_wait_event(void)
2426 {
2427 	return !list_empty(&khugepaged_scan.mm_head) ||
2428 		kthread_should_stop();
2429 }
2430 
2431 static void khugepaged_do_scan(struct collapse_control *cc)
2432 {
2433 	unsigned int progress = 0, pass_through_head = 0;
2434 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2435 	bool wait = true;
2436 	int result = SCAN_SUCCEED;
2437 
2438 	lru_add_drain_all();
2439 
2440 	while (true) {
2441 		cond_resched();
2442 
2443 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2444 			break;
2445 
2446 		spin_lock(&khugepaged_mm_lock);
2447 		if (!khugepaged_scan.mm_slot)
2448 			pass_through_head++;
2449 		if (khugepaged_has_work() &&
2450 		    pass_through_head < 2)
2451 			progress += khugepaged_scan_mm_slot(pages - progress,
2452 							    &result, cc);
2453 		else
2454 			progress = pages;
2455 		spin_unlock(&khugepaged_mm_lock);
2456 
2457 		if (progress >= pages)
2458 			break;
2459 
2460 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2461 			/*
2462 			 * If fail to allocate the first time, try to sleep for
2463 			 * a while.  When hit again, cancel the scan.
2464 			 */
2465 			if (!wait)
2466 				break;
2467 			wait = false;
2468 			khugepaged_alloc_sleep();
2469 		}
2470 	}
2471 }
2472 
2473 static bool khugepaged_should_wakeup(void)
2474 {
2475 	return kthread_should_stop() ||
2476 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2477 }
2478 
2479 static void khugepaged_wait_work(void)
2480 {
2481 	if (khugepaged_has_work()) {
2482 		const unsigned long scan_sleep_jiffies =
2483 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2484 
2485 		if (!scan_sleep_jiffies)
2486 			return;
2487 
2488 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2489 		wait_event_freezable_timeout(khugepaged_wait,
2490 					     khugepaged_should_wakeup(),
2491 					     scan_sleep_jiffies);
2492 		return;
2493 	}
2494 
2495 	if (hugepage_flags_enabled())
2496 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2497 }
2498 
2499 static int khugepaged(void *none)
2500 {
2501 	struct khugepaged_mm_slot *mm_slot;
2502 
2503 	set_freezable();
2504 	set_user_nice(current, MAX_NICE);
2505 
2506 	while (!kthread_should_stop()) {
2507 		khugepaged_do_scan(&khugepaged_collapse_control);
2508 		khugepaged_wait_work();
2509 	}
2510 
2511 	spin_lock(&khugepaged_mm_lock);
2512 	mm_slot = khugepaged_scan.mm_slot;
2513 	khugepaged_scan.mm_slot = NULL;
2514 	if (mm_slot)
2515 		collect_mm_slot(mm_slot);
2516 	spin_unlock(&khugepaged_mm_lock);
2517 	return 0;
2518 }
2519 
2520 static void set_recommended_min_free_kbytes(void)
2521 {
2522 	struct zone *zone;
2523 	int nr_zones = 0;
2524 	unsigned long recommended_min;
2525 
2526 	if (!hugepage_flags_enabled()) {
2527 		calculate_min_free_kbytes();
2528 		goto update_wmarks;
2529 	}
2530 
2531 	for_each_populated_zone(zone) {
2532 		/*
2533 		 * We don't need to worry about fragmentation of
2534 		 * ZONE_MOVABLE since it only has movable pages.
2535 		 */
2536 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2537 			continue;
2538 
2539 		nr_zones++;
2540 	}
2541 
2542 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2543 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2544 
2545 	/*
2546 	 * Make sure that on average at least two pageblocks are almost free
2547 	 * of another type, one for a migratetype to fall back to and a
2548 	 * second to avoid subsequent fallbacks of other types There are 3
2549 	 * MIGRATE_TYPES we care about.
2550 	 */
2551 	recommended_min += pageblock_nr_pages * nr_zones *
2552 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2553 
2554 	/* don't ever allow to reserve more than 5% of the lowmem */
2555 	recommended_min = min(recommended_min,
2556 			      (unsigned long) nr_free_buffer_pages() / 20);
2557 	recommended_min <<= (PAGE_SHIFT-10);
2558 
2559 	if (recommended_min > min_free_kbytes) {
2560 		if (user_min_free_kbytes >= 0)
2561 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2562 				min_free_kbytes, recommended_min);
2563 
2564 		min_free_kbytes = recommended_min;
2565 	}
2566 
2567 update_wmarks:
2568 	setup_per_zone_wmarks();
2569 }
2570 
2571 int start_stop_khugepaged(void)
2572 {
2573 	int err = 0;
2574 
2575 	mutex_lock(&khugepaged_mutex);
2576 	if (hugepage_flags_enabled()) {
2577 		if (!khugepaged_thread)
2578 			khugepaged_thread = kthread_run(khugepaged, NULL,
2579 							"khugepaged");
2580 		if (IS_ERR(khugepaged_thread)) {
2581 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2582 			err = PTR_ERR(khugepaged_thread);
2583 			khugepaged_thread = NULL;
2584 			goto fail;
2585 		}
2586 
2587 		if (!list_empty(&khugepaged_scan.mm_head))
2588 			wake_up_interruptible(&khugepaged_wait);
2589 	} else if (khugepaged_thread) {
2590 		kthread_stop(khugepaged_thread);
2591 		khugepaged_thread = NULL;
2592 	}
2593 	set_recommended_min_free_kbytes();
2594 fail:
2595 	mutex_unlock(&khugepaged_mutex);
2596 	return err;
2597 }
2598 
2599 void khugepaged_min_free_kbytes_update(void)
2600 {
2601 	mutex_lock(&khugepaged_mutex);
2602 	if (hugepage_flags_enabled() && khugepaged_thread)
2603 		set_recommended_min_free_kbytes();
2604 	mutex_unlock(&khugepaged_mutex);
2605 }
2606 
2607 bool current_is_khugepaged(void)
2608 {
2609 	return kthread_func(current) == khugepaged;
2610 }
2611 
2612 static int madvise_collapse_errno(enum scan_result r)
2613 {
2614 	/*
2615 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2616 	 * actionable feedback to caller, so they may take an appropriate
2617 	 * fallback measure depending on the nature of the failure.
2618 	 */
2619 	switch (r) {
2620 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2621 		return -ENOMEM;
2622 	case SCAN_CGROUP_CHARGE_FAIL:
2623 		return -EBUSY;
2624 	/* Resource temporary unavailable - trying again might succeed */
2625 	case SCAN_PAGE_COUNT:
2626 	case SCAN_PAGE_LOCK:
2627 	case SCAN_PAGE_LRU:
2628 	case SCAN_DEL_PAGE_LRU:
2629 		return -EAGAIN;
2630 	/*
2631 	 * Other: Trying again likely not to succeed / error intrinsic to
2632 	 * specified memory range. khugepaged likely won't be able to collapse
2633 	 * either.
2634 	 */
2635 	default:
2636 		return -EINVAL;
2637 	}
2638 }
2639 
2640 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2641 		     unsigned long start, unsigned long end)
2642 {
2643 	struct collapse_control *cc;
2644 	struct mm_struct *mm = vma->vm_mm;
2645 	unsigned long hstart, hend, addr;
2646 	int thps = 0, last_fail = SCAN_FAIL;
2647 	bool mmap_locked = true;
2648 
2649 	BUG_ON(vma->vm_start > start);
2650 	BUG_ON(vma->vm_end < end);
2651 
2652 	*prev = vma;
2653 
2654 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2655 		return -EINVAL;
2656 
2657 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2658 	if (!cc)
2659 		return -ENOMEM;
2660 	cc->is_khugepaged = false;
2661 
2662 	mmgrab(mm);
2663 	lru_add_drain_all();
2664 
2665 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2666 	hend = end & HPAGE_PMD_MASK;
2667 
2668 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2669 		int result = SCAN_FAIL;
2670 
2671 		if (!mmap_locked) {
2672 			cond_resched();
2673 			mmap_read_lock(mm);
2674 			mmap_locked = true;
2675 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2676 							 cc);
2677 			if (result  != SCAN_SUCCEED) {
2678 				last_fail = result;
2679 				goto out_nolock;
2680 			}
2681 
2682 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2683 		}
2684 		mmap_assert_locked(mm);
2685 		memset(cc->node_load, 0, sizeof(cc->node_load));
2686 		nodes_clear(cc->alloc_nmask);
2687 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2688 			struct file *file = get_file(vma->vm_file);
2689 			pgoff_t pgoff = linear_page_index(vma, addr);
2690 
2691 			mmap_read_unlock(mm);
2692 			mmap_locked = false;
2693 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2694 							  cc);
2695 			fput(file);
2696 		} else {
2697 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2698 							 &mmap_locked, cc);
2699 		}
2700 		if (!mmap_locked)
2701 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2702 
2703 handle_result:
2704 		switch (result) {
2705 		case SCAN_SUCCEED:
2706 		case SCAN_PMD_MAPPED:
2707 			++thps;
2708 			break;
2709 		case SCAN_PTE_MAPPED_HUGEPAGE:
2710 			BUG_ON(mmap_locked);
2711 			BUG_ON(*prev);
2712 			mmap_write_lock(mm);
2713 			result = collapse_pte_mapped_thp(mm, addr, true);
2714 			mmap_write_unlock(mm);
2715 			goto handle_result;
2716 		/* Whitelisted set of results where continuing OK */
2717 		case SCAN_PMD_NULL:
2718 		case SCAN_PTE_NON_PRESENT:
2719 		case SCAN_PTE_UFFD_WP:
2720 		case SCAN_PAGE_RO:
2721 		case SCAN_LACK_REFERENCED_PAGE:
2722 		case SCAN_PAGE_NULL:
2723 		case SCAN_PAGE_COUNT:
2724 		case SCAN_PAGE_LOCK:
2725 		case SCAN_PAGE_COMPOUND:
2726 		case SCAN_PAGE_LRU:
2727 		case SCAN_DEL_PAGE_LRU:
2728 			last_fail = result;
2729 			break;
2730 		default:
2731 			last_fail = result;
2732 			/* Other error, exit */
2733 			goto out_maybelock;
2734 		}
2735 	}
2736 
2737 out_maybelock:
2738 	/* Caller expects us to hold mmap_lock on return */
2739 	if (!mmap_locked)
2740 		mmap_read_lock(mm);
2741 out_nolock:
2742 	mmap_assert_locked(mm);
2743 	mmdrop(mm);
2744 	kfree(cc);
2745 
2746 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2747 			: madvise_collapse_errno(last_fail);
2748 }
2749