xref: /openbmc/linux/mm/khugepaged.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27 
28 enum scan_result {
29 	SCAN_FAIL,
30 	SCAN_SUCCEED,
31 	SCAN_PMD_NULL,
32 	SCAN_PMD_NONE,
33 	SCAN_PMD_MAPPED,
34 	SCAN_EXCEED_NONE_PTE,
35 	SCAN_EXCEED_SWAP_PTE,
36 	SCAN_EXCEED_SHARED_PTE,
37 	SCAN_PTE_NON_PRESENT,
38 	SCAN_PTE_UFFD_WP,
39 	SCAN_PTE_MAPPED_HUGEPAGE,
40 	SCAN_PAGE_RO,
41 	SCAN_LACK_REFERENCED_PAGE,
42 	SCAN_PAGE_NULL,
43 	SCAN_SCAN_ABORT,
44 	SCAN_PAGE_COUNT,
45 	SCAN_PAGE_LRU,
46 	SCAN_PAGE_LOCK,
47 	SCAN_PAGE_ANON,
48 	SCAN_PAGE_COMPOUND,
49 	SCAN_ANY_PROCESS,
50 	SCAN_VMA_NULL,
51 	SCAN_VMA_CHECK,
52 	SCAN_ADDRESS_RANGE,
53 	SCAN_DEL_PAGE_LRU,
54 	SCAN_ALLOC_HUGE_PAGE_FAIL,
55 	SCAN_CGROUP_CHARGE_FAIL,
56 	SCAN_TRUNCATED,
57 	SCAN_PAGE_HAS_PRIVATE,
58 	SCAN_STORE_FAILED,
59 	SCAN_COPY_MC,
60 	SCAN_PAGE_FILLED,
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 static struct task_struct *khugepaged_thread __read_mostly;
67 static DEFINE_MUTEX(khugepaged_mutex);
68 
69 /* default scan 8*512 pte (or vmas) every 30 second */
70 static unsigned int khugepaged_pages_to_scan __read_mostly;
71 static unsigned int khugepaged_pages_collapsed;
72 static unsigned int khugepaged_full_scans;
73 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
74 /* during fragmentation poll the hugepage allocator once every minute */
75 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
76 static unsigned long khugepaged_sleep_expire;
77 static DEFINE_SPINLOCK(khugepaged_mm_lock);
78 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
79 /*
80  * default collapse hugepages if there is at least one pte mapped like
81  * it would have happened if the vma was large enough during page
82  * fault.
83  *
84  * Note that these are only respected if collapse was initiated by khugepaged.
85  */
86 static unsigned int khugepaged_max_ptes_none __read_mostly;
87 static unsigned int khugepaged_max_ptes_swap __read_mostly;
88 static unsigned int khugepaged_max_ptes_shared __read_mostly;
89 
90 #define MM_SLOTS_HASH_BITS 10
91 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
92 
93 static struct kmem_cache *mm_slot_cache __read_mostly;
94 
95 #define MAX_PTE_MAPPED_THP 8
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109  * @slot: hash lookup from mm to mm_slot
110  * @nr_pte_mapped_thp: number of pte mapped THP
111  * @pte_mapped_thp: address array corresponding pte mapped THP
112  */
113 struct khugepaged_mm_slot {
114 	struct mm_slot slot;
115 
116 	/* pte-mapped THP in this mm */
117 	int nr_pte_mapped_thp;
118 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
119 };
120 
121 /**
122  * struct khugepaged_scan - cursor for scanning
123  * @mm_head: the head of the mm list to scan
124  * @mm_slot: the current mm_slot we are scanning
125  * @address: the next address inside that to be scanned
126  *
127  * There is only the one khugepaged_scan instance of this cursor structure.
128  */
129 struct khugepaged_scan {
130 	struct list_head mm_head;
131 	struct khugepaged_mm_slot *mm_slot;
132 	unsigned long address;
133 };
134 
135 static struct khugepaged_scan khugepaged_scan = {
136 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
137 };
138 
139 #ifdef CONFIG_SYSFS
140 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
141 					 struct kobj_attribute *attr,
142 					 char *buf)
143 {
144 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
145 }
146 
147 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
148 					  struct kobj_attribute *attr,
149 					  const char *buf, size_t count)
150 {
151 	unsigned int msecs;
152 	int err;
153 
154 	err = kstrtouint(buf, 10, &msecs);
155 	if (err)
156 		return -EINVAL;
157 
158 	khugepaged_scan_sleep_millisecs = msecs;
159 	khugepaged_sleep_expire = 0;
160 	wake_up_interruptible(&khugepaged_wait);
161 
162 	return count;
163 }
164 static struct kobj_attribute scan_sleep_millisecs_attr =
165 	__ATTR_RW(scan_sleep_millisecs);
166 
167 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
168 					  struct kobj_attribute *attr,
169 					  char *buf)
170 {
171 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
172 }
173 
174 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
175 					   struct kobj_attribute *attr,
176 					   const char *buf, size_t count)
177 {
178 	unsigned int msecs;
179 	int err;
180 
181 	err = kstrtouint(buf, 10, &msecs);
182 	if (err)
183 		return -EINVAL;
184 
185 	khugepaged_alloc_sleep_millisecs = msecs;
186 	khugepaged_sleep_expire = 0;
187 	wake_up_interruptible(&khugepaged_wait);
188 
189 	return count;
190 }
191 static struct kobj_attribute alloc_sleep_millisecs_attr =
192 	__ATTR_RW(alloc_sleep_millisecs);
193 
194 static ssize_t pages_to_scan_show(struct kobject *kobj,
195 				  struct kobj_attribute *attr,
196 				  char *buf)
197 {
198 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
199 }
200 static ssize_t pages_to_scan_store(struct kobject *kobj,
201 				   struct kobj_attribute *attr,
202 				   const char *buf, size_t count)
203 {
204 	unsigned int pages;
205 	int err;
206 
207 	err = kstrtouint(buf, 10, &pages);
208 	if (err || !pages)
209 		return -EINVAL;
210 
211 	khugepaged_pages_to_scan = pages;
212 
213 	return count;
214 }
215 static struct kobj_attribute pages_to_scan_attr =
216 	__ATTR_RW(pages_to_scan);
217 
218 static ssize_t pages_collapsed_show(struct kobject *kobj,
219 				    struct kobj_attribute *attr,
220 				    char *buf)
221 {
222 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
223 }
224 static struct kobj_attribute pages_collapsed_attr =
225 	__ATTR_RO(pages_collapsed);
226 
227 static ssize_t full_scans_show(struct kobject *kobj,
228 			       struct kobj_attribute *attr,
229 			       char *buf)
230 {
231 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
232 }
233 static struct kobj_attribute full_scans_attr =
234 	__ATTR_RO(full_scans);
235 
236 static ssize_t defrag_show(struct kobject *kobj,
237 			   struct kobj_attribute *attr, char *buf)
238 {
239 	return single_hugepage_flag_show(kobj, attr, buf,
240 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
241 }
242 static ssize_t defrag_store(struct kobject *kobj,
243 			    struct kobj_attribute *attr,
244 			    const char *buf, size_t count)
245 {
246 	return single_hugepage_flag_store(kobj, attr, buf, count,
247 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
248 }
249 static struct kobj_attribute khugepaged_defrag_attr =
250 	__ATTR_RW(defrag);
251 
252 /*
253  * max_ptes_none controls if khugepaged should collapse hugepages over
254  * any unmapped ptes in turn potentially increasing the memory
255  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
256  * reduce the available free memory in the system as it
257  * runs. Increasing max_ptes_none will instead potentially reduce the
258  * free memory in the system during the khugepaged scan.
259  */
260 static ssize_t max_ptes_none_show(struct kobject *kobj,
261 				  struct kobj_attribute *attr,
262 				  char *buf)
263 {
264 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
265 }
266 static ssize_t max_ptes_none_store(struct kobject *kobj,
267 				   struct kobj_attribute *attr,
268 				   const char *buf, size_t count)
269 {
270 	int err;
271 	unsigned long max_ptes_none;
272 
273 	err = kstrtoul(buf, 10, &max_ptes_none);
274 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
275 		return -EINVAL;
276 
277 	khugepaged_max_ptes_none = max_ptes_none;
278 
279 	return count;
280 }
281 static struct kobj_attribute khugepaged_max_ptes_none_attr =
282 	__ATTR_RW(max_ptes_none);
283 
284 static ssize_t max_ptes_swap_show(struct kobject *kobj,
285 				  struct kobj_attribute *attr,
286 				  char *buf)
287 {
288 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
289 }
290 
291 static ssize_t max_ptes_swap_store(struct kobject *kobj,
292 				   struct kobj_attribute *attr,
293 				   const char *buf, size_t count)
294 {
295 	int err;
296 	unsigned long max_ptes_swap;
297 
298 	err  = kstrtoul(buf, 10, &max_ptes_swap);
299 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
300 		return -EINVAL;
301 
302 	khugepaged_max_ptes_swap = max_ptes_swap;
303 
304 	return count;
305 }
306 
307 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
308 	__ATTR_RW(max_ptes_swap);
309 
310 static ssize_t max_ptes_shared_show(struct kobject *kobj,
311 				    struct kobj_attribute *attr,
312 				    char *buf)
313 {
314 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
315 }
316 
317 static ssize_t max_ptes_shared_store(struct kobject *kobj,
318 				     struct kobj_attribute *attr,
319 				     const char *buf, size_t count)
320 {
321 	int err;
322 	unsigned long max_ptes_shared;
323 
324 	err  = kstrtoul(buf, 10, &max_ptes_shared);
325 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
326 		return -EINVAL;
327 
328 	khugepaged_max_ptes_shared = max_ptes_shared;
329 
330 	return count;
331 }
332 
333 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
334 	__ATTR_RW(max_ptes_shared);
335 
336 static struct attribute *khugepaged_attr[] = {
337 	&khugepaged_defrag_attr.attr,
338 	&khugepaged_max_ptes_none_attr.attr,
339 	&khugepaged_max_ptes_swap_attr.attr,
340 	&khugepaged_max_ptes_shared_attr.attr,
341 	&pages_to_scan_attr.attr,
342 	&pages_collapsed_attr.attr,
343 	&full_scans_attr.attr,
344 	&scan_sleep_millisecs_attr.attr,
345 	&alloc_sleep_millisecs_attr.attr,
346 	NULL,
347 };
348 
349 struct attribute_group khugepaged_attr_group = {
350 	.attrs = khugepaged_attr,
351 	.name = "khugepaged",
352 };
353 #endif /* CONFIG_SYSFS */
354 
355 int hugepage_madvise(struct vm_area_struct *vma,
356 		     unsigned long *vm_flags, int advice)
357 {
358 	switch (advice) {
359 	case MADV_HUGEPAGE:
360 #ifdef CONFIG_S390
361 		/*
362 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
363 		 * can't handle this properly after s390_enable_sie, so we simply
364 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
365 		 */
366 		if (mm_has_pgste(vma->vm_mm))
367 			return 0;
368 #endif
369 		*vm_flags &= ~VM_NOHUGEPAGE;
370 		*vm_flags |= VM_HUGEPAGE;
371 		/*
372 		 * If the vma become good for khugepaged to scan,
373 		 * register it here without waiting a page fault that
374 		 * may not happen any time soon.
375 		 */
376 		khugepaged_enter_vma(vma, *vm_flags);
377 		break;
378 	case MADV_NOHUGEPAGE:
379 		*vm_flags &= ~VM_HUGEPAGE;
380 		*vm_flags |= VM_NOHUGEPAGE;
381 		/*
382 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
383 		 * this vma even if we leave the mm registered in khugepaged if
384 		 * it got registered before VM_NOHUGEPAGE was set.
385 		 */
386 		break;
387 	}
388 
389 	return 0;
390 }
391 
392 int __init khugepaged_init(void)
393 {
394 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
395 					  sizeof(struct khugepaged_mm_slot),
396 					  __alignof__(struct khugepaged_mm_slot),
397 					  0, NULL);
398 	if (!mm_slot_cache)
399 		return -ENOMEM;
400 
401 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
402 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
403 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
404 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
405 
406 	return 0;
407 }
408 
409 void __init khugepaged_destroy(void)
410 {
411 	kmem_cache_destroy(mm_slot_cache);
412 }
413 
414 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
415 {
416 	return atomic_read(&mm->mm_users) == 0;
417 }
418 
419 void __khugepaged_enter(struct mm_struct *mm)
420 {
421 	struct khugepaged_mm_slot *mm_slot;
422 	struct mm_slot *slot;
423 	int wakeup;
424 
425 	mm_slot = mm_slot_alloc(mm_slot_cache);
426 	if (!mm_slot)
427 		return;
428 
429 	slot = &mm_slot->slot;
430 
431 	/* __khugepaged_exit() must not run from under us */
432 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
433 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
434 		mm_slot_free(mm_slot_cache, mm_slot);
435 		return;
436 	}
437 
438 	spin_lock(&khugepaged_mm_lock);
439 	mm_slot_insert(mm_slots_hash, mm, slot);
440 	/*
441 	 * Insert just behind the scanning cursor, to let the area settle
442 	 * down a little.
443 	 */
444 	wakeup = list_empty(&khugepaged_scan.mm_head);
445 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
446 	spin_unlock(&khugepaged_mm_lock);
447 
448 	mmgrab(mm);
449 	if (wakeup)
450 		wake_up_interruptible(&khugepaged_wait);
451 }
452 
453 void khugepaged_enter_vma(struct vm_area_struct *vma,
454 			  unsigned long vm_flags)
455 {
456 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
457 	    hugepage_flags_enabled()) {
458 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
459 			__khugepaged_enter(vma->vm_mm);
460 	}
461 }
462 
463 void __khugepaged_exit(struct mm_struct *mm)
464 {
465 	struct khugepaged_mm_slot *mm_slot;
466 	struct mm_slot *slot;
467 	int free = 0;
468 
469 	spin_lock(&khugepaged_mm_lock);
470 	slot = mm_slot_lookup(mm_slots_hash, mm);
471 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
472 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
473 		hash_del(&slot->hash);
474 		list_del(&slot->mm_node);
475 		free = 1;
476 	}
477 	spin_unlock(&khugepaged_mm_lock);
478 
479 	if (free) {
480 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
481 		mm_slot_free(mm_slot_cache, mm_slot);
482 		mmdrop(mm);
483 	} else if (mm_slot) {
484 		/*
485 		 * This is required to serialize against
486 		 * hpage_collapse_test_exit() (which is guaranteed to run
487 		 * under mmap sem read mode). Stop here (after we return all
488 		 * pagetables will be destroyed) until khugepaged has finished
489 		 * working on the pagetables under the mmap_lock.
490 		 */
491 		mmap_write_lock(mm);
492 		mmap_write_unlock(mm);
493 	}
494 }
495 
496 static void release_pte_folio(struct folio *folio)
497 {
498 	node_stat_mod_folio(folio,
499 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
500 			-folio_nr_pages(folio));
501 	folio_unlock(folio);
502 	folio_putback_lru(folio);
503 }
504 
505 static void release_pte_page(struct page *page)
506 {
507 	release_pte_folio(page_folio(page));
508 }
509 
510 static void release_pte_pages(pte_t *pte, pte_t *_pte,
511 		struct list_head *compound_pagelist)
512 {
513 	struct folio *folio, *tmp;
514 
515 	while (--_pte >= pte) {
516 		pte_t pteval = *_pte;
517 		unsigned long pfn;
518 
519 		if (pte_none(pteval))
520 			continue;
521 		pfn = pte_pfn(pteval);
522 		if (is_zero_pfn(pfn))
523 			continue;
524 		folio = pfn_folio(pfn);
525 		if (folio_test_large(folio))
526 			continue;
527 		release_pte_folio(folio);
528 	}
529 
530 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
531 		list_del(&folio->lru);
532 		release_pte_folio(folio);
533 	}
534 }
535 
536 static bool is_refcount_suitable(struct page *page)
537 {
538 	int expected_refcount;
539 
540 	expected_refcount = total_mapcount(page);
541 	if (PageSwapCache(page))
542 		expected_refcount += compound_nr(page);
543 
544 	return page_count(page) == expected_refcount;
545 }
546 
547 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
548 					unsigned long address,
549 					pte_t *pte,
550 					struct collapse_control *cc,
551 					struct list_head *compound_pagelist)
552 {
553 	struct page *page = NULL;
554 	pte_t *_pte;
555 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
556 	bool writable = false;
557 
558 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
559 	     _pte++, address += PAGE_SIZE) {
560 		pte_t pteval = *_pte;
561 		if (pte_none(pteval) || (pte_present(pteval) &&
562 				is_zero_pfn(pte_pfn(pteval)))) {
563 			++none_or_zero;
564 			if (!userfaultfd_armed(vma) &&
565 			    (!cc->is_khugepaged ||
566 			     none_or_zero <= khugepaged_max_ptes_none)) {
567 				continue;
568 			} else {
569 				result = SCAN_EXCEED_NONE_PTE;
570 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
571 				goto out;
572 			}
573 		}
574 		if (!pte_present(pteval)) {
575 			result = SCAN_PTE_NON_PRESENT;
576 			goto out;
577 		}
578 		if (pte_uffd_wp(pteval)) {
579 			result = SCAN_PTE_UFFD_WP;
580 			goto out;
581 		}
582 		page = vm_normal_page(vma, address, pteval);
583 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
584 			result = SCAN_PAGE_NULL;
585 			goto out;
586 		}
587 
588 		VM_BUG_ON_PAGE(!PageAnon(page), page);
589 
590 		if (page_mapcount(page) > 1) {
591 			++shared;
592 			if (cc->is_khugepaged &&
593 			    shared > khugepaged_max_ptes_shared) {
594 				result = SCAN_EXCEED_SHARED_PTE;
595 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
596 				goto out;
597 			}
598 		}
599 
600 		if (PageCompound(page)) {
601 			struct page *p;
602 			page = compound_head(page);
603 
604 			/*
605 			 * Check if we have dealt with the compound page
606 			 * already
607 			 */
608 			list_for_each_entry(p, compound_pagelist, lru) {
609 				if (page == p)
610 					goto next;
611 			}
612 		}
613 
614 		/*
615 		 * We can do it before isolate_lru_page because the
616 		 * page can't be freed from under us. NOTE: PG_lock
617 		 * is needed to serialize against split_huge_page
618 		 * when invoked from the VM.
619 		 */
620 		if (!trylock_page(page)) {
621 			result = SCAN_PAGE_LOCK;
622 			goto out;
623 		}
624 
625 		/*
626 		 * Check if the page has any GUP (or other external) pins.
627 		 *
628 		 * The page table that maps the page has been already unlinked
629 		 * from the page table tree and this process cannot get
630 		 * an additional pin on the page.
631 		 *
632 		 * New pins can come later if the page is shared across fork,
633 		 * but not from this process. The other process cannot write to
634 		 * the page, only trigger CoW.
635 		 */
636 		if (!is_refcount_suitable(page)) {
637 			unlock_page(page);
638 			result = SCAN_PAGE_COUNT;
639 			goto out;
640 		}
641 
642 		/*
643 		 * Isolate the page to avoid collapsing an hugepage
644 		 * currently in use by the VM.
645 		 */
646 		if (!isolate_lru_page(page)) {
647 			unlock_page(page);
648 			result = SCAN_DEL_PAGE_LRU;
649 			goto out;
650 		}
651 		mod_node_page_state(page_pgdat(page),
652 				NR_ISOLATED_ANON + page_is_file_lru(page),
653 				compound_nr(page));
654 		VM_BUG_ON_PAGE(!PageLocked(page), page);
655 		VM_BUG_ON_PAGE(PageLRU(page), page);
656 
657 		if (PageCompound(page))
658 			list_add_tail(&page->lru, compound_pagelist);
659 next:
660 		/*
661 		 * If collapse was initiated by khugepaged, check that there is
662 		 * enough young pte to justify collapsing the page
663 		 */
664 		if (cc->is_khugepaged &&
665 		    (pte_young(pteval) || page_is_young(page) ||
666 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
667 								     address)))
668 			referenced++;
669 
670 		if (pte_write(pteval))
671 			writable = true;
672 	}
673 
674 	if (unlikely(!writable)) {
675 		result = SCAN_PAGE_RO;
676 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
677 		result = SCAN_LACK_REFERENCED_PAGE;
678 	} else {
679 		result = SCAN_SUCCEED;
680 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
681 						    referenced, writable, result);
682 		return result;
683 	}
684 out:
685 	release_pte_pages(pte, _pte, compound_pagelist);
686 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
687 					    referenced, writable, result);
688 	return result;
689 }
690 
691 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
692 						struct vm_area_struct *vma,
693 						unsigned long address,
694 						spinlock_t *ptl,
695 						struct list_head *compound_pagelist)
696 {
697 	struct page *src_page;
698 	struct page *tmp;
699 	pte_t *_pte;
700 	pte_t pteval;
701 
702 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
703 	     _pte++, address += PAGE_SIZE) {
704 		pteval = *_pte;
705 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
706 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
707 			if (is_zero_pfn(pte_pfn(pteval))) {
708 				/*
709 				 * ptl mostly unnecessary.
710 				 */
711 				spin_lock(ptl);
712 				ptep_clear(vma->vm_mm, address, _pte);
713 				spin_unlock(ptl);
714 			}
715 		} else {
716 			src_page = pte_page(pteval);
717 			if (!PageCompound(src_page))
718 				release_pte_page(src_page);
719 			/*
720 			 * ptl mostly unnecessary, but preempt has to
721 			 * be disabled to update the per-cpu stats
722 			 * inside page_remove_rmap().
723 			 */
724 			spin_lock(ptl);
725 			ptep_clear(vma->vm_mm, address, _pte);
726 			page_remove_rmap(src_page, vma, false);
727 			spin_unlock(ptl);
728 			free_page_and_swap_cache(src_page);
729 		}
730 	}
731 
732 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
733 		list_del(&src_page->lru);
734 		mod_node_page_state(page_pgdat(src_page),
735 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
736 				    -compound_nr(src_page));
737 		unlock_page(src_page);
738 		free_swap_cache(src_page);
739 		putback_lru_page(src_page);
740 	}
741 }
742 
743 static void __collapse_huge_page_copy_failed(pte_t *pte,
744 					     pmd_t *pmd,
745 					     pmd_t orig_pmd,
746 					     struct vm_area_struct *vma,
747 					     struct list_head *compound_pagelist)
748 {
749 	spinlock_t *pmd_ptl;
750 
751 	/*
752 	 * Re-establish the PMD to point to the original page table
753 	 * entry. Restoring PMD needs to be done prior to releasing
754 	 * pages. Since pages are still isolated and locked here,
755 	 * acquiring anon_vma_lock_write is unnecessary.
756 	 */
757 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
758 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
759 	spin_unlock(pmd_ptl);
760 	/*
761 	 * Release both raw and compound pages isolated
762 	 * in __collapse_huge_page_isolate.
763 	 */
764 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
765 }
766 
767 /*
768  * __collapse_huge_page_copy - attempts to copy memory contents from raw
769  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
770  * otherwise restores the original page table and releases isolated raw pages.
771  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
772  *
773  * @pte: starting of the PTEs to copy from
774  * @page: the new hugepage to copy contents to
775  * @pmd: pointer to the new hugepage's PMD
776  * @orig_pmd: the original raw pages' PMD
777  * @vma: the original raw pages' virtual memory area
778  * @address: starting address to copy
779  * @ptl: lock on raw pages' PTEs
780  * @compound_pagelist: list that stores compound pages
781  */
782 static int __collapse_huge_page_copy(pte_t *pte,
783 				     struct page *page,
784 				     pmd_t *pmd,
785 				     pmd_t orig_pmd,
786 				     struct vm_area_struct *vma,
787 				     unsigned long address,
788 				     spinlock_t *ptl,
789 				     struct list_head *compound_pagelist)
790 {
791 	struct page *src_page;
792 	pte_t *_pte;
793 	pte_t pteval;
794 	unsigned long _address;
795 	int result = SCAN_SUCCEED;
796 
797 	/*
798 	 * Copying pages' contents is subject to memory poison at any iteration.
799 	 */
800 	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
801 	     _pte++, page++, _address += PAGE_SIZE) {
802 		pteval = *_pte;
803 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
804 			clear_user_highpage(page, _address);
805 			continue;
806 		}
807 		src_page = pte_page(pteval);
808 		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
809 			result = SCAN_COPY_MC;
810 			break;
811 		}
812 	}
813 
814 	if (likely(result == SCAN_SUCCEED))
815 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
816 						    compound_pagelist);
817 	else
818 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
819 						 compound_pagelist);
820 
821 	return result;
822 }
823 
824 static void khugepaged_alloc_sleep(void)
825 {
826 	DEFINE_WAIT(wait);
827 
828 	add_wait_queue(&khugepaged_wait, &wait);
829 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
830 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
831 	remove_wait_queue(&khugepaged_wait, &wait);
832 }
833 
834 struct collapse_control khugepaged_collapse_control = {
835 	.is_khugepaged = true,
836 };
837 
838 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
839 {
840 	int i;
841 
842 	/*
843 	 * If node_reclaim_mode is disabled, then no extra effort is made to
844 	 * allocate memory locally.
845 	 */
846 	if (!node_reclaim_enabled())
847 		return false;
848 
849 	/* If there is a count for this node already, it must be acceptable */
850 	if (cc->node_load[nid])
851 		return false;
852 
853 	for (i = 0; i < MAX_NUMNODES; i++) {
854 		if (!cc->node_load[i])
855 			continue;
856 		if (node_distance(nid, i) > node_reclaim_distance)
857 			return true;
858 	}
859 	return false;
860 }
861 
862 #define khugepaged_defrag()					\
863 	(transparent_hugepage_flags &				\
864 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
865 
866 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
867 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
868 {
869 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
870 }
871 
872 #ifdef CONFIG_NUMA
873 static int hpage_collapse_find_target_node(struct collapse_control *cc)
874 {
875 	int nid, target_node = 0, max_value = 0;
876 
877 	/* find first node with max normal pages hit */
878 	for (nid = 0; nid < MAX_NUMNODES; nid++)
879 		if (cc->node_load[nid] > max_value) {
880 			max_value = cc->node_load[nid];
881 			target_node = nid;
882 		}
883 
884 	for_each_online_node(nid) {
885 		if (max_value == cc->node_load[nid])
886 			node_set(nid, cc->alloc_nmask);
887 	}
888 
889 	return target_node;
890 }
891 #else
892 static int hpage_collapse_find_target_node(struct collapse_control *cc)
893 {
894 	return 0;
895 }
896 #endif
897 
898 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
899 				      nodemask_t *nmask)
900 {
901 	*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
902 	if (unlikely(!*hpage)) {
903 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
904 		return false;
905 	}
906 
907 	prep_transhuge_page(*hpage);
908 	count_vm_event(THP_COLLAPSE_ALLOC);
909 	return true;
910 }
911 
912 /*
913  * If mmap_lock temporarily dropped, revalidate vma
914  * before taking mmap_lock.
915  * Returns enum scan_result value.
916  */
917 
918 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
919 				   bool expect_anon,
920 				   struct vm_area_struct **vmap,
921 				   struct collapse_control *cc)
922 {
923 	struct vm_area_struct *vma;
924 
925 	if (unlikely(hpage_collapse_test_exit(mm)))
926 		return SCAN_ANY_PROCESS;
927 
928 	*vmap = vma = find_vma(mm, address);
929 	if (!vma)
930 		return SCAN_VMA_NULL;
931 
932 	if (!transhuge_vma_suitable(vma, address))
933 		return SCAN_ADDRESS_RANGE;
934 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
935 				cc->is_khugepaged))
936 		return SCAN_VMA_CHECK;
937 	/*
938 	 * Anon VMA expected, the address may be unmapped then
939 	 * remapped to file after khugepaged reaquired the mmap_lock.
940 	 *
941 	 * hugepage_vma_check may return true for qualified file
942 	 * vmas.
943 	 */
944 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
945 		return SCAN_PAGE_ANON;
946 	return SCAN_SUCCEED;
947 }
948 
949 /*
950  * See pmd_trans_unstable() for how the result may change out from
951  * underneath us, even if we hold mmap_lock in read.
952  */
953 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
954 				   unsigned long address,
955 				   pmd_t **pmd)
956 {
957 	pmd_t pmde;
958 
959 	*pmd = mm_find_pmd(mm, address);
960 	if (!*pmd)
961 		return SCAN_PMD_NULL;
962 
963 	pmde = pmdp_get_lockless(*pmd);
964 
965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
966 	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
967 	barrier();
968 #endif
969 	if (pmd_none(pmde))
970 		return SCAN_PMD_NONE;
971 	if (!pmd_present(pmde))
972 		return SCAN_PMD_NULL;
973 	if (pmd_trans_huge(pmde))
974 		return SCAN_PMD_MAPPED;
975 	if (pmd_devmap(pmde))
976 		return SCAN_PMD_NULL;
977 	if (pmd_bad(pmde))
978 		return SCAN_PMD_NULL;
979 	return SCAN_SUCCEED;
980 }
981 
982 static int check_pmd_still_valid(struct mm_struct *mm,
983 				 unsigned long address,
984 				 pmd_t *pmd)
985 {
986 	pmd_t *new_pmd;
987 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
988 
989 	if (result != SCAN_SUCCEED)
990 		return result;
991 	if (new_pmd != pmd)
992 		return SCAN_FAIL;
993 	return SCAN_SUCCEED;
994 }
995 
996 /*
997  * Bring missing pages in from swap, to complete THP collapse.
998  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
999  *
1000  * Called and returns without pte mapped or spinlocks held.
1001  * Note that if false is returned, mmap_lock will be released.
1002  */
1003 
1004 static int __collapse_huge_page_swapin(struct mm_struct *mm,
1005 				       struct vm_area_struct *vma,
1006 				       unsigned long haddr, pmd_t *pmd,
1007 				       int referenced)
1008 {
1009 	int swapped_in = 0;
1010 	vm_fault_t ret = 0;
1011 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1012 
1013 	for (address = haddr; address < end; address += PAGE_SIZE) {
1014 		struct vm_fault vmf = {
1015 			.vma = vma,
1016 			.address = address,
1017 			.pgoff = linear_page_index(vma, haddr),
1018 			.flags = FAULT_FLAG_ALLOW_RETRY,
1019 			.pmd = pmd,
1020 		};
1021 
1022 		vmf.pte = pte_offset_map(pmd, address);
1023 		vmf.orig_pte = *vmf.pte;
1024 		if (!is_swap_pte(vmf.orig_pte)) {
1025 			pte_unmap(vmf.pte);
1026 			continue;
1027 		}
1028 		ret = do_swap_page(&vmf);
1029 
1030 		/*
1031 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1032 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1033 		 * we do not retry here and swap entry will remain in pagetable
1034 		 * resulting in later failure.
1035 		 */
1036 		if (ret & VM_FAULT_RETRY) {
1037 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1038 			/* Likely, but not guaranteed, that page lock failed */
1039 			return SCAN_PAGE_LOCK;
1040 		}
1041 		if (ret & VM_FAULT_ERROR) {
1042 			mmap_read_unlock(mm);
1043 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1044 			return SCAN_FAIL;
1045 		}
1046 		swapped_in++;
1047 	}
1048 
1049 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1050 	if (swapped_in)
1051 		lru_add_drain();
1052 
1053 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1054 	return SCAN_SUCCEED;
1055 }
1056 
1057 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1058 			      struct collapse_control *cc)
1059 {
1060 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1061 		     GFP_TRANSHUGE);
1062 	int node = hpage_collapse_find_target_node(cc);
1063 	struct folio *folio;
1064 
1065 	if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
1066 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1067 
1068 	folio = page_folio(*hpage);
1069 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1070 		folio_put(folio);
1071 		*hpage = NULL;
1072 		return SCAN_CGROUP_CHARGE_FAIL;
1073 	}
1074 	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
1075 
1076 	return SCAN_SUCCEED;
1077 }
1078 
1079 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1080 			      int referenced, int unmapped,
1081 			      struct collapse_control *cc)
1082 {
1083 	LIST_HEAD(compound_pagelist);
1084 	pmd_t *pmd, _pmd;
1085 	pte_t *pte;
1086 	pgtable_t pgtable;
1087 	struct page *hpage;
1088 	spinlock_t *pmd_ptl, *pte_ptl;
1089 	int result = SCAN_FAIL;
1090 	struct vm_area_struct *vma;
1091 	struct mmu_notifier_range range;
1092 
1093 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1094 
1095 	/*
1096 	 * Before allocating the hugepage, release the mmap_lock read lock.
1097 	 * The allocation can take potentially a long time if it involves
1098 	 * sync compaction, and we do not need to hold the mmap_lock during
1099 	 * that. We will recheck the vma after taking it again in write mode.
1100 	 */
1101 	mmap_read_unlock(mm);
1102 
1103 	result = alloc_charge_hpage(&hpage, mm, cc);
1104 	if (result != SCAN_SUCCEED)
1105 		goto out_nolock;
1106 
1107 	mmap_read_lock(mm);
1108 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1109 	if (result != SCAN_SUCCEED) {
1110 		mmap_read_unlock(mm);
1111 		goto out_nolock;
1112 	}
1113 
1114 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1115 	if (result != SCAN_SUCCEED) {
1116 		mmap_read_unlock(mm);
1117 		goto out_nolock;
1118 	}
1119 
1120 	if (unmapped) {
1121 		/*
1122 		 * __collapse_huge_page_swapin will return with mmap_lock
1123 		 * released when it fails. So we jump out_nolock directly in
1124 		 * that case.  Continuing to collapse causes inconsistency.
1125 		 */
1126 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1127 						     referenced);
1128 		if (result != SCAN_SUCCEED)
1129 			goto out_nolock;
1130 	}
1131 
1132 	mmap_read_unlock(mm);
1133 	/*
1134 	 * Prevent all access to pagetables with the exception of
1135 	 * gup_fast later handled by the ptep_clear_flush and the VM
1136 	 * handled by the anon_vma lock + PG_lock.
1137 	 */
1138 	mmap_write_lock(mm);
1139 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1140 	if (result != SCAN_SUCCEED)
1141 		goto out_up_write;
1142 	/* check if the pmd is still valid */
1143 	result = check_pmd_still_valid(mm, address, pmd);
1144 	if (result != SCAN_SUCCEED)
1145 		goto out_up_write;
1146 
1147 	vma_start_write(vma);
1148 	anon_vma_lock_write(vma->anon_vma);
1149 
1150 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1151 				address + HPAGE_PMD_SIZE);
1152 	mmu_notifier_invalidate_range_start(&range);
1153 
1154 	pte = pte_offset_map(pmd, address);
1155 	pte_ptl = pte_lockptr(mm, pmd);
1156 
1157 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1158 	/*
1159 	 * This removes any huge TLB entry from the CPU so we won't allow
1160 	 * huge and small TLB entries for the same virtual address to
1161 	 * avoid the risk of CPU bugs in that area.
1162 	 *
1163 	 * Parallel fast GUP is fine since fast GUP will back off when
1164 	 * it detects PMD is changed.
1165 	 */
1166 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1167 	spin_unlock(pmd_ptl);
1168 	mmu_notifier_invalidate_range_end(&range);
1169 	tlb_remove_table_sync_one();
1170 
1171 	spin_lock(pte_ptl);
1172 	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1173 					       &compound_pagelist);
1174 	spin_unlock(pte_ptl);
1175 
1176 	if (unlikely(result != SCAN_SUCCEED)) {
1177 		pte_unmap(pte);
1178 		spin_lock(pmd_ptl);
1179 		BUG_ON(!pmd_none(*pmd));
1180 		/*
1181 		 * We can only use set_pmd_at when establishing
1182 		 * hugepmds and never for establishing regular pmds that
1183 		 * points to regular pagetables. Use pmd_populate for that
1184 		 */
1185 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1186 		spin_unlock(pmd_ptl);
1187 		anon_vma_unlock_write(vma->anon_vma);
1188 		goto out_up_write;
1189 	}
1190 
1191 	/*
1192 	 * All pages are isolated and locked so anon_vma rmap
1193 	 * can't run anymore.
1194 	 */
1195 	anon_vma_unlock_write(vma->anon_vma);
1196 
1197 	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1198 					   vma, address, pte_ptl,
1199 					   &compound_pagelist);
1200 	pte_unmap(pte);
1201 	if (unlikely(result != SCAN_SUCCEED))
1202 		goto out_up_write;
1203 
1204 	/*
1205 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1206 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1207 	 * avoid the copy_huge_page writes to become visible after
1208 	 * the set_pmd_at() write.
1209 	 */
1210 	__SetPageUptodate(hpage);
1211 	pgtable = pmd_pgtable(_pmd);
1212 
1213 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1214 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1215 
1216 	spin_lock(pmd_ptl);
1217 	BUG_ON(!pmd_none(*pmd));
1218 	page_add_new_anon_rmap(hpage, vma, address);
1219 	lru_cache_add_inactive_or_unevictable(hpage, vma);
1220 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1221 	set_pmd_at(mm, address, pmd, _pmd);
1222 	update_mmu_cache_pmd(vma, address, pmd);
1223 	spin_unlock(pmd_ptl);
1224 
1225 	hpage = NULL;
1226 
1227 	result = SCAN_SUCCEED;
1228 out_up_write:
1229 	mmap_write_unlock(mm);
1230 out_nolock:
1231 	if (hpage)
1232 		put_page(hpage);
1233 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1234 	return result;
1235 }
1236 
1237 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1238 				   struct vm_area_struct *vma,
1239 				   unsigned long address, bool *mmap_locked,
1240 				   struct collapse_control *cc)
1241 {
1242 	pmd_t *pmd;
1243 	pte_t *pte, *_pte;
1244 	int result = SCAN_FAIL, referenced = 0;
1245 	int none_or_zero = 0, shared = 0;
1246 	struct page *page = NULL;
1247 	unsigned long _address;
1248 	spinlock_t *ptl;
1249 	int node = NUMA_NO_NODE, unmapped = 0;
1250 	bool writable = false;
1251 
1252 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1253 
1254 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1255 	if (result != SCAN_SUCCEED)
1256 		goto out;
1257 
1258 	memset(cc->node_load, 0, sizeof(cc->node_load));
1259 	nodes_clear(cc->alloc_nmask);
1260 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1261 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1262 	     _pte++, _address += PAGE_SIZE) {
1263 		pte_t pteval = *_pte;
1264 		if (is_swap_pte(pteval)) {
1265 			++unmapped;
1266 			if (!cc->is_khugepaged ||
1267 			    unmapped <= khugepaged_max_ptes_swap) {
1268 				/*
1269 				 * Always be strict with uffd-wp
1270 				 * enabled swap entries.  Please see
1271 				 * comment below for pte_uffd_wp().
1272 				 */
1273 				if (pte_swp_uffd_wp_any(pteval)) {
1274 					result = SCAN_PTE_UFFD_WP;
1275 					goto out_unmap;
1276 				}
1277 				continue;
1278 			} else {
1279 				result = SCAN_EXCEED_SWAP_PTE;
1280 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1281 				goto out_unmap;
1282 			}
1283 		}
1284 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1285 			++none_or_zero;
1286 			if (!userfaultfd_armed(vma) &&
1287 			    (!cc->is_khugepaged ||
1288 			     none_or_zero <= khugepaged_max_ptes_none)) {
1289 				continue;
1290 			} else {
1291 				result = SCAN_EXCEED_NONE_PTE;
1292 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1293 				goto out_unmap;
1294 			}
1295 		}
1296 		if (pte_uffd_wp(pteval)) {
1297 			/*
1298 			 * Don't collapse the page if any of the small
1299 			 * PTEs are armed with uffd write protection.
1300 			 * Here we can also mark the new huge pmd as
1301 			 * write protected if any of the small ones is
1302 			 * marked but that could bring unknown
1303 			 * userfault messages that falls outside of
1304 			 * the registered range.  So, just be simple.
1305 			 */
1306 			result = SCAN_PTE_UFFD_WP;
1307 			goto out_unmap;
1308 		}
1309 		if (pte_write(pteval))
1310 			writable = true;
1311 
1312 		page = vm_normal_page(vma, _address, pteval);
1313 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1314 			result = SCAN_PAGE_NULL;
1315 			goto out_unmap;
1316 		}
1317 
1318 		if (page_mapcount(page) > 1) {
1319 			++shared;
1320 			if (cc->is_khugepaged &&
1321 			    shared > khugepaged_max_ptes_shared) {
1322 				result = SCAN_EXCEED_SHARED_PTE;
1323 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1324 				goto out_unmap;
1325 			}
1326 		}
1327 
1328 		page = compound_head(page);
1329 
1330 		/*
1331 		 * Record which node the original page is from and save this
1332 		 * information to cc->node_load[].
1333 		 * Khugepaged will allocate hugepage from the node has the max
1334 		 * hit record.
1335 		 */
1336 		node = page_to_nid(page);
1337 		if (hpage_collapse_scan_abort(node, cc)) {
1338 			result = SCAN_SCAN_ABORT;
1339 			goto out_unmap;
1340 		}
1341 		cc->node_load[node]++;
1342 		if (!PageLRU(page)) {
1343 			result = SCAN_PAGE_LRU;
1344 			goto out_unmap;
1345 		}
1346 		if (PageLocked(page)) {
1347 			result = SCAN_PAGE_LOCK;
1348 			goto out_unmap;
1349 		}
1350 		if (!PageAnon(page)) {
1351 			result = SCAN_PAGE_ANON;
1352 			goto out_unmap;
1353 		}
1354 
1355 		/*
1356 		 * Check if the page has any GUP (or other external) pins.
1357 		 *
1358 		 * Here the check may be racy:
1359 		 * it may see total_mapcount > refcount in some cases?
1360 		 * But such case is ephemeral we could always retry collapse
1361 		 * later.  However it may report false positive if the page
1362 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1363 		 * will be done again later the risk seems low.
1364 		 */
1365 		if (!is_refcount_suitable(page)) {
1366 			result = SCAN_PAGE_COUNT;
1367 			goto out_unmap;
1368 		}
1369 
1370 		/*
1371 		 * If collapse was initiated by khugepaged, check that there is
1372 		 * enough young pte to justify collapsing the page
1373 		 */
1374 		if (cc->is_khugepaged &&
1375 		    (pte_young(pteval) || page_is_young(page) ||
1376 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1377 								     address)))
1378 			referenced++;
1379 	}
1380 	if (!writable) {
1381 		result = SCAN_PAGE_RO;
1382 	} else if (cc->is_khugepaged &&
1383 		   (!referenced ||
1384 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1385 		result = SCAN_LACK_REFERENCED_PAGE;
1386 	} else {
1387 		result = SCAN_SUCCEED;
1388 	}
1389 out_unmap:
1390 	pte_unmap_unlock(pte, ptl);
1391 	if (result == SCAN_SUCCEED) {
1392 		result = collapse_huge_page(mm, address, referenced,
1393 					    unmapped, cc);
1394 		/* collapse_huge_page will return with the mmap_lock released */
1395 		*mmap_locked = false;
1396 	}
1397 out:
1398 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1399 				     none_or_zero, result, unmapped);
1400 	return result;
1401 }
1402 
1403 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1404 {
1405 	struct mm_slot *slot = &mm_slot->slot;
1406 	struct mm_struct *mm = slot->mm;
1407 
1408 	lockdep_assert_held(&khugepaged_mm_lock);
1409 
1410 	if (hpage_collapse_test_exit(mm)) {
1411 		/* free mm_slot */
1412 		hash_del(&slot->hash);
1413 		list_del(&slot->mm_node);
1414 
1415 		/*
1416 		 * Not strictly needed because the mm exited already.
1417 		 *
1418 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1419 		 */
1420 
1421 		/* khugepaged_mm_lock actually not necessary for the below */
1422 		mm_slot_free(mm_slot_cache, mm_slot);
1423 		mmdrop(mm);
1424 	}
1425 }
1426 
1427 #ifdef CONFIG_SHMEM
1428 /*
1429  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1430  * khugepaged should try to collapse the page table.
1431  *
1432  * Note that following race exists:
1433  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1434  *     emptying the A's ->pte_mapped_thp[] array.
1435  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1436  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1437  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1438  *     ->pte-mapped_thp[] array.
1439  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1440  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1441  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1442  * Thus, it's possible the same address is added multiple times for the same
1443  * mm_struct.  Should this happen, we'll simply attempt
1444  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1445  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1446  * attempts will return quickly (without grabbing any additional locks) when
1447  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1448  * check, and since this is a rare occurrence, the cost of preventing this
1449  * "multiple-add" is thought to be more expensive than just handling it, should
1450  * it occur.
1451  */
1452 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1453 					  unsigned long addr)
1454 {
1455 	struct khugepaged_mm_slot *mm_slot;
1456 	struct mm_slot *slot;
1457 	bool ret = false;
1458 
1459 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1460 
1461 	spin_lock(&khugepaged_mm_lock);
1462 	slot = mm_slot_lookup(mm_slots_hash, mm);
1463 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1464 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1465 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1466 		ret = true;
1467 	}
1468 	spin_unlock(&khugepaged_mm_lock);
1469 	return ret;
1470 }
1471 
1472 /* hpage must be locked, and mmap_lock must be held in write */
1473 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1474 			pmd_t *pmdp, struct page *hpage)
1475 {
1476 	struct vm_fault vmf = {
1477 		.vma = vma,
1478 		.address = addr,
1479 		.flags = 0,
1480 		.pmd = pmdp,
1481 	};
1482 
1483 	VM_BUG_ON(!PageTransHuge(hpage));
1484 	mmap_assert_write_locked(vma->vm_mm);
1485 
1486 	if (do_set_pmd(&vmf, hpage))
1487 		return SCAN_FAIL;
1488 
1489 	get_page(hpage);
1490 	return SCAN_SUCCEED;
1491 }
1492 
1493 /*
1494  * A note about locking:
1495  * Trying to take the page table spinlocks would be useless here because those
1496  * are only used to synchronize:
1497  *
1498  *  - modifying terminal entries (ones that point to a data page, not to another
1499  *    page table)
1500  *  - installing *new* non-terminal entries
1501  *
1502  * Instead, we need roughly the same kind of protection as free_pgtables() or
1503  * mm_take_all_locks() (but only for a single VMA):
1504  * The mmap lock together with this VMA's rmap locks covers all paths towards
1505  * the page table entries we're messing with here, except for hardware page
1506  * table walks and lockless_pages_from_mm().
1507  */
1508 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1509 				  unsigned long addr, pmd_t *pmdp)
1510 {
1511 	pmd_t pmd;
1512 	struct mmu_notifier_range range;
1513 
1514 	mmap_assert_write_locked(mm);
1515 	if (vma->vm_file)
1516 		lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1517 	/*
1518 	 * All anon_vmas attached to the VMA have the same root and are
1519 	 * therefore locked by the same lock.
1520 	 */
1521 	if (vma->anon_vma)
1522 		lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1523 
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1525 				addr + HPAGE_PMD_SIZE);
1526 	mmu_notifier_invalidate_range_start(&range);
1527 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1528 	tlb_remove_table_sync_one();
1529 	mmu_notifier_invalidate_range_end(&range);
1530 	mm_dec_nr_ptes(mm);
1531 	page_table_check_pte_clear_range(mm, addr, pmd);
1532 	pte_free(mm, pmd_pgtable(pmd));
1533 }
1534 
1535 /**
1536  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1537  * address haddr.
1538  *
1539  * @mm: process address space where collapse happens
1540  * @addr: THP collapse address
1541  * @install_pmd: If a huge PMD should be installed
1542  *
1543  * This function checks whether all the PTEs in the PMD are pointing to the
1544  * right THP. If so, retract the page table so the THP can refault in with
1545  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1546  */
1547 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1548 			    bool install_pmd)
1549 {
1550 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1551 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1552 	struct page *hpage;
1553 	pte_t *start_pte, *pte;
1554 	pmd_t *pmd;
1555 	spinlock_t *ptl;
1556 	int count = 0, result = SCAN_FAIL;
1557 	int i;
1558 
1559 	mmap_assert_write_locked(mm);
1560 
1561 	/* Fast check before locking page if already PMD-mapped */
1562 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1563 	if (result == SCAN_PMD_MAPPED)
1564 		return result;
1565 
1566 	if (!vma || !vma->vm_file ||
1567 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1568 		return SCAN_VMA_CHECK;
1569 
1570 	/*
1571 	 * If we are here, we've succeeded in replacing all the native pages
1572 	 * in the page cache with a single hugepage. If a mm were to fault-in
1573 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1574 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1575 	 * analogously elide sysfs THP settings here.
1576 	 */
1577 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1578 		return SCAN_VMA_CHECK;
1579 
1580 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1581 	if (userfaultfd_wp(vma))
1582 		return SCAN_PTE_UFFD_WP;
1583 
1584 	hpage = find_lock_page(vma->vm_file->f_mapping,
1585 			       linear_page_index(vma, haddr));
1586 	if (!hpage)
1587 		return SCAN_PAGE_NULL;
1588 
1589 	if (!PageHead(hpage)) {
1590 		result = SCAN_FAIL;
1591 		goto drop_hpage;
1592 	}
1593 
1594 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1595 		result = SCAN_PAGE_COMPOUND;
1596 		goto drop_hpage;
1597 	}
1598 
1599 	switch (result) {
1600 	case SCAN_SUCCEED:
1601 		break;
1602 	case SCAN_PMD_NONE:
1603 		/*
1604 		 * In MADV_COLLAPSE path, possible race with khugepaged where
1605 		 * all pte entries have been removed and pmd cleared.  If so,
1606 		 * skip all the pte checks and just update the pmd mapping.
1607 		 */
1608 		goto maybe_install_pmd;
1609 	default:
1610 		goto drop_hpage;
1611 	}
1612 
1613 	/* Lock the vma before taking i_mmap and page table locks */
1614 	vma_start_write(vma);
1615 
1616 	/*
1617 	 * We need to lock the mapping so that from here on, only GUP-fast and
1618 	 * hardware page walks can access the parts of the page tables that
1619 	 * we're operating on.
1620 	 * See collapse_and_free_pmd().
1621 	 */
1622 	i_mmap_lock_write(vma->vm_file->f_mapping);
1623 
1624 	/*
1625 	 * This spinlock should be unnecessary: Nobody else should be accessing
1626 	 * the page tables under spinlock protection here, only
1627 	 * lockless_pages_from_mm() and the hardware page walker can access page
1628 	 * tables while all the high-level locks are held in write mode.
1629 	 */
1630 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1631 	result = SCAN_FAIL;
1632 
1633 	/* step 1: check all mapped PTEs are to the right huge page */
1634 	for (i = 0, addr = haddr, pte = start_pte;
1635 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1636 		struct page *page;
1637 
1638 		/* empty pte, skip */
1639 		if (pte_none(*pte))
1640 			continue;
1641 
1642 		/* page swapped out, abort */
1643 		if (!pte_present(*pte)) {
1644 			result = SCAN_PTE_NON_PRESENT;
1645 			goto abort;
1646 		}
1647 
1648 		page = vm_normal_page(vma, addr, *pte);
1649 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1650 			page = NULL;
1651 		/*
1652 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1653 		 * page table, but the new page will not be a subpage of hpage.
1654 		 */
1655 		if (hpage + i != page)
1656 			goto abort;
1657 		count++;
1658 	}
1659 
1660 	/* step 2: adjust rmap */
1661 	for (i = 0, addr = haddr, pte = start_pte;
1662 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1663 		struct page *page;
1664 
1665 		if (pte_none(*pte))
1666 			continue;
1667 		page = vm_normal_page(vma, addr, *pte);
1668 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1669 			goto abort;
1670 		page_remove_rmap(page, vma, false);
1671 	}
1672 
1673 	pte_unmap_unlock(start_pte, ptl);
1674 
1675 	/* step 3: set proper refcount and mm_counters. */
1676 	if (count) {
1677 		page_ref_sub(hpage, count);
1678 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1679 	}
1680 
1681 	/* step 4: remove pte entries */
1682 	/* we make no change to anon, but protect concurrent anon page lookup */
1683 	if (vma->anon_vma)
1684 		anon_vma_lock_write(vma->anon_vma);
1685 
1686 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1687 
1688 	if (vma->anon_vma)
1689 		anon_vma_unlock_write(vma->anon_vma);
1690 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1691 
1692 maybe_install_pmd:
1693 	/* step 5: install pmd entry */
1694 	result = install_pmd
1695 			? set_huge_pmd(vma, haddr, pmd, hpage)
1696 			: SCAN_SUCCEED;
1697 
1698 drop_hpage:
1699 	unlock_page(hpage);
1700 	put_page(hpage);
1701 	return result;
1702 
1703 abort:
1704 	pte_unmap_unlock(start_pte, ptl);
1705 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1706 	goto drop_hpage;
1707 }
1708 
1709 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1710 {
1711 	struct mm_slot *slot = &mm_slot->slot;
1712 	struct mm_struct *mm = slot->mm;
1713 	int i;
1714 
1715 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1716 		return;
1717 
1718 	if (!mmap_write_trylock(mm))
1719 		return;
1720 
1721 	if (unlikely(hpage_collapse_test_exit(mm)))
1722 		goto out;
1723 
1724 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1725 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1726 
1727 out:
1728 	mm_slot->nr_pte_mapped_thp = 0;
1729 	mmap_write_unlock(mm);
1730 }
1731 
1732 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1733 			       struct mm_struct *target_mm,
1734 			       unsigned long target_addr, struct page *hpage,
1735 			       struct collapse_control *cc)
1736 {
1737 	struct vm_area_struct *vma;
1738 	int target_result = SCAN_FAIL;
1739 
1740 	i_mmap_lock_write(mapping);
1741 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1742 		int result = SCAN_FAIL;
1743 		struct mm_struct *mm = NULL;
1744 		unsigned long addr = 0;
1745 		pmd_t *pmd;
1746 		bool is_target = false;
1747 
1748 		/*
1749 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1750 		 * got written to. These VMAs are likely not worth investing
1751 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1752 		 * later.
1753 		 *
1754 		 * Note that vma->anon_vma check is racy: it can be set up after
1755 		 * the check but before we took mmap_lock by the fault path.
1756 		 * But page lock would prevent establishing any new ptes of the
1757 		 * page, so we are safe.
1758 		 *
1759 		 * An alternative would be drop the check, but check that page
1760 		 * table is clear before calling pmdp_collapse_flush() under
1761 		 * ptl. It has higher chance to recover THP for the VMA, but
1762 		 * has higher cost too. It would also probably require locking
1763 		 * the anon_vma.
1764 		 */
1765 		if (READ_ONCE(vma->anon_vma)) {
1766 			result = SCAN_PAGE_ANON;
1767 			goto next;
1768 		}
1769 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1770 		if (addr & ~HPAGE_PMD_MASK ||
1771 		    vma->vm_end < addr + HPAGE_PMD_SIZE) {
1772 			result = SCAN_VMA_CHECK;
1773 			goto next;
1774 		}
1775 		mm = vma->vm_mm;
1776 		is_target = mm == target_mm && addr == target_addr;
1777 		result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1778 		if (result != SCAN_SUCCEED)
1779 			goto next;
1780 		/*
1781 		 * We need exclusive mmap_lock to retract page table.
1782 		 *
1783 		 * We use trylock due to lock inversion: we need to acquire
1784 		 * mmap_lock while holding page lock. Fault path does it in
1785 		 * reverse order. Trylock is a way to avoid deadlock.
1786 		 *
1787 		 * Also, it's not MADV_COLLAPSE's job to collapse other
1788 		 * mappings - let khugepaged take care of them later.
1789 		 */
1790 		result = SCAN_PTE_MAPPED_HUGEPAGE;
1791 		if ((cc->is_khugepaged || is_target) &&
1792 		    mmap_write_trylock(mm)) {
1793 			/* trylock for the same lock inversion as above */
1794 			if (!vma_try_start_write(vma))
1795 				goto unlock_next;
1796 
1797 			/*
1798 			 * Re-check whether we have an ->anon_vma, because
1799 			 * collapse_and_free_pmd() requires that either no
1800 			 * ->anon_vma exists or the anon_vma is locked.
1801 			 * We already checked ->anon_vma above, but that check
1802 			 * is racy because ->anon_vma can be populated under the
1803 			 * mmap lock in read mode.
1804 			 */
1805 			if (vma->anon_vma) {
1806 				result = SCAN_PAGE_ANON;
1807 				goto unlock_next;
1808 			}
1809 			/*
1810 			 * When a vma is registered with uffd-wp, we can't
1811 			 * recycle the pmd pgtable because there can be pte
1812 			 * markers installed.  Skip it only, so the rest mm/vma
1813 			 * can still have the same file mapped hugely, however
1814 			 * it'll always mapped in small page size for uffd-wp
1815 			 * registered ranges.
1816 			 */
1817 			if (hpage_collapse_test_exit(mm)) {
1818 				result = SCAN_ANY_PROCESS;
1819 				goto unlock_next;
1820 			}
1821 			if (userfaultfd_wp(vma)) {
1822 				result = SCAN_PTE_UFFD_WP;
1823 				goto unlock_next;
1824 			}
1825 			collapse_and_free_pmd(mm, vma, addr, pmd);
1826 			if (!cc->is_khugepaged && is_target)
1827 				result = set_huge_pmd(vma, addr, pmd, hpage);
1828 			else
1829 				result = SCAN_SUCCEED;
1830 
1831 unlock_next:
1832 			mmap_write_unlock(mm);
1833 			goto next;
1834 		}
1835 		/*
1836 		 * Calling context will handle target mm/addr. Otherwise, let
1837 		 * khugepaged try again later.
1838 		 */
1839 		if (!is_target) {
1840 			khugepaged_add_pte_mapped_thp(mm, addr);
1841 			continue;
1842 		}
1843 next:
1844 		if (is_target)
1845 			target_result = result;
1846 	}
1847 	i_mmap_unlock_write(mapping);
1848 	return target_result;
1849 }
1850 
1851 /**
1852  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1853  *
1854  * @mm: process address space where collapse happens
1855  * @addr: virtual collapse start address
1856  * @file: file that collapse on
1857  * @start: collapse start address
1858  * @cc: collapse context and scratchpad
1859  *
1860  * Basic scheme is simple, details are more complex:
1861  *  - allocate and lock a new huge page;
1862  *  - scan page cache, locking old pages
1863  *    + swap/gup in pages if necessary;
1864  *  - copy data to new page
1865  *  - handle shmem holes
1866  *    + re-validate that holes weren't filled by someone else
1867  *    + check for userfaultfd
1868  *  - finalize updates to the page cache;
1869  *  - if replacing succeeds:
1870  *    + unlock huge page;
1871  *    + free old pages;
1872  *  - if replacing failed;
1873  *    + unlock old pages
1874  *    + unlock and free huge page;
1875  */
1876 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1877 			 struct file *file, pgoff_t start,
1878 			 struct collapse_control *cc)
1879 {
1880 	struct address_space *mapping = file->f_mapping;
1881 	struct page *hpage;
1882 	struct page *page;
1883 	struct page *tmp;
1884 	struct folio *folio;
1885 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1886 	LIST_HEAD(pagelist);
1887 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1888 	int nr_none = 0, result = SCAN_SUCCEED;
1889 	bool is_shmem = shmem_file(file);
1890 	int nr = 0;
1891 
1892 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1893 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1894 
1895 	result = alloc_charge_hpage(&hpage, mm, cc);
1896 	if (result != SCAN_SUCCEED)
1897 		goto out;
1898 
1899 	__SetPageLocked(hpage);
1900 	if (is_shmem)
1901 		__SetPageSwapBacked(hpage);
1902 	hpage->index = start;
1903 	hpage->mapping = mapping;
1904 
1905 	/*
1906 	 * Ensure we have slots for all the pages in the range.  This is
1907 	 * almost certainly a no-op because most of the pages must be present
1908 	 */
1909 	do {
1910 		xas_lock_irq(&xas);
1911 		xas_create_range(&xas);
1912 		if (!xas_error(&xas))
1913 			break;
1914 		xas_unlock_irq(&xas);
1915 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1916 			result = SCAN_FAIL;
1917 			goto rollback;
1918 		}
1919 	} while (1);
1920 
1921 	xas_set(&xas, start);
1922 	for (index = start; index < end; index++) {
1923 		page = xas_next(&xas);
1924 
1925 		VM_BUG_ON(index != xas.xa_index);
1926 		if (is_shmem) {
1927 			if (!page) {
1928 				/*
1929 				 * Stop if extent has been truncated or
1930 				 * hole-punched, and is now completely
1931 				 * empty.
1932 				 */
1933 				if (index == start) {
1934 					if (!xas_next_entry(&xas, end - 1)) {
1935 						result = SCAN_TRUNCATED;
1936 						goto xa_locked;
1937 					}
1938 					xas_set(&xas, index + 1);
1939 				}
1940 				if (!shmem_charge(mapping->host, 1)) {
1941 					result = SCAN_FAIL;
1942 					goto xa_locked;
1943 				}
1944 				nr_none++;
1945 				continue;
1946 			}
1947 
1948 			if (xa_is_value(page) || !PageUptodate(page)) {
1949 				xas_unlock_irq(&xas);
1950 				/* swap in or instantiate fallocated page */
1951 				if (shmem_get_folio(mapping->host, index,
1952 						&folio, SGP_NOALLOC)) {
1953 					result = SCAN_FAIL;
1954 					goto xa_unlocked;
1955 				}
1956 				/* drain pagevecs to help isolate_lru_page() */
1957 				lru_add_drain();
1958 				page = folio_file_page(folio, index);
1959 			} else if (trylock_page(page)) {
1960 				get_page(page);
1961 				xas_unlock_irq(&xas);
1962 			} else {
1963 				result = SCAN_PAGE_LOCK;
1964 				goto xa_locked;
1965 			}
1966 		} else {	/* !is_shmem */
1967 			if (!page || xa_is_value(page)) {
1968 				xas_unlock_irq(&xas);
1969 				page_cache_sync_readahead(mapping, &file->f_ra,
1970 							  file, index,
1971 							  end - index);
1972 				/* drain pagevecs to help isolate_lru_page() */
1973 				lru_add_drain();
1974 				page = find_lock_page(mapping, index);
1975 				if (unlikely(page == NULL)) {
1976 					result = SCAN_FAIL;
1977 					goto xa_unlocked;
1978 				}
1979 			} else if (PageDirty(page)) {
1980 				/*
1981 				 * khugepaged only works on read-only fd,
1982 				 * so this page is dirty because it hasn't
1983 				 * been flushed since first write. There
1984 				 * won't be new dirty pages.
1985 				 *
1986 				 * Trigger async flush here and hope the
1987 				 * writeback is done when khugepaged
1988 				 * revisits this page.
1989 				 *
1990 				 * This is a one-off situation. We are not
1991 				 * forcing writeback in loop.
1992 				 */
1993 				xas_unlock_irq(&xas);
1994 				filemap_flush(mapping);
1995 				result = SCAN_FAIL;
1996 				goto xa_unlocked;
1997 			} else if (PageWriteback(page)) {
1998 				xas_unlock_irq(&xas);
1999 				result = SCAN_FAIL;
2000 				goto xa_unlocked;
2001 			} else if (trylock_page(page)) {
2002 				get_page(page);
2003 				xas_unlock_irq(&xas);
2004 			} else {
2005 				result = SCAN_PAGE_LOCK;
2006 				goto xa_locked;
2007 			}
2008 		}
2009 
2010 		/*
2011 		 * The page must be locked, so we can drop the i_pages lock
2012 		 * without racing with truncate.
2013 		 */
2014 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2015 
2016 		/* make sure the page is up to date */
2017 		if (unlikely(!PageUptodate(page))) {
2018 			result = SCAN_FAIL;
2019 			goto out_unlock;
2020 		}
2021 
2022 		/*
2023 		 * If file was truncated then extended, or hole-punched, before
2024 		 * we locked the first page, then a THP might be there already.
2025 		 * This will be discovered on the first iteration.
2026 		 */
2027 		if (PageTransCompound(page)) {
2028 			struct page *head = compound_head(page);
2029 
2030 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2031 					head->index == start
2032 					/* Maybe PMD-mapped */
2033 					? SCAN_PTE_MAPPED_HUGEPAGE
2034 					: SCAN_PAGE_COMPOUND;
2035 			goto out_unlock;
2036 		}
2037 
2038 		folio = page_folio(page);
2039 
2040 		if (folio_mapping(folio) != mapping) {
2041 			result = SCAN_TRUNCATED;
2042 			goto out_unlock;
2043 		}
2044 
2045 		if (!is_shmem && (folio_test_dirty(folio) ||
2046 				  folio_test_writeback(folio))) {
2047 			/*
2048 			 * khugepaged only works on read-only fd, so this
2049 			 * page is dirty because it hasn't been flushed
2050 			 * since first write.
2051 			 */
2052 			result = SCAN_FAIL;
2053 			goto out_unlock;
2054 		}
2055 
2056 		if (!folio_isolate_lru(folio)) {
2057 			result = SCAN_DEL_PAGE_LRU;
2058 			goto out_unlock;
2059 		}
2060 
2061 		if (folio_has_private(folio) &&
2062 		    !filemap_release_folio(folio, GFP_KERNEL)) {
2063 			result = SCAN_PAGE_HAS_PRIVATE;
2064 			folio_putback_lru(folio);
2065 			goto out_unlock;
2066 		}
2067 
2068 		if (folio_mapped(folio))
2069 			try_to_unmap(folio,
2070 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2071 
2072 		xas_lock_irq(&xas);
2073 		xas_set(&xas, index);
2074 
2075 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
2076 
2077 		/*
2078 		 * We control three references to the page:
2079 		 *  - we hold a pin on it;
2080 		 *  - one reference from page cache;
2081 		 *  - one from isolate_lru_page;
2082 		 * If those are the only references, then any new usage of the
2083 		 * page will have to fetch it from the page cache. That requires
2084 		 * locking the page to handle truncate, so any new usage will be
2085 		 * blocked until we unlock page after collapse/during rollback.
2086 		 */
2087 		if (page_count(page) != 3) {
2088 			result = SCAN_PAGE_COUNT;
2089 			xas_unlock_irq(&xas);
2090 			putback_lru_page(page);
2091 			goto out_unlock;
2092 		}
2093 
2094 		/*
2095 		 * Accumulate the pages that are being collapsed.
2096 		 */
2097 		list_add_tail(&page->lru, &pagelist);
2098 		continue;
2099 out_unlock:
2100 		unlock_page(page);
2101 		put_page(page);
2102 		goto xa_unlocked;
2103 	}
2104 
2105 	if (!is_shmem) {
2106 		filemap_nr_thps_inc(mapping);
2107 		/*
2108 		 * Paired with smp_mb() in do_dentry_open() to ensure
2109 		 * i_writecount is up to date and the update to nr_thps is
2110 		 * visible. Ensures the page cache will be truncated if the
2111 		 * file is opened writable.
2112 		 */
2113 		smp_mb();
2114 		if (inode_is_open_for_write(mapping->host)) {
2115 			result = SCAN_FAIL;
2116 			filemap_nr_thps_dec(mapping);
2117 		}
2118 	}
2119 
2120 xa_locked:
2121 	xas_unlock_irq(&xas);
2122 xa_unlocked:
2123 
2124 	/*
2125 	 * If collapse is successful, flush must be done now before copying.
2126 	 * If collapse is unsuccessful, does flush actually need to be done?
2127 	 * Do it anyway, to clear the state.
2128 	 */
2129 	try_to_unmap_flush();
2130 
2131 	if (result != SCAN_SUCCEED)
2132 		goto rollback;
2133 
2134 	/*
2135 	 * The old pages are locked, so they won't change anymore.
2136 	 */
2137 	index = start;
2138 	list_for_each_entry(page, &pagelist, lru) {
2139 		while (index < page->index) {
2140 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2141 			index++;
2142 		}
2143 		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2144 			result = SCAN_COPY_MC;
2145 			goto rollback;
2146 		}
2147 		index++;
2148 	}
2149 	while (index < end) {
2150 		clear_highpage(hpage + (index % HPAGE_PMD_NR));
2151 		index++;
2152 	}
2153 
2154 	if (nr_none) {
2155 		struct vm_area_struct *vma;
2156 		int nr_none_check = 0;
2157 
2158 		i_mmap_lock_read(mapping);
2159 		xas_lock_irq(&xas);
2160 
2161 		xas_set(&xas, start);
2162 		for (index = start; index < end; index++) {
2163 			if (!xas_next(&xas)) {
2164 				xas_store(&xas, XA_RETRY_ENTRY);
2165 				if (xas_error(&xas)) {
2166 					result = SCAN_STORE_FAILED;
2167 					goto immap_locked;
2168 				}
2169 				nr_none_check++;
2170 			}
2171 		}
2172 
2173 		if (nr_none != nr_none_check) {
2174 			result = SCAN_PAGE_FILLED;
2175 			goto immap_locked;
2176 		}
2177 
2178 		/*
2179 		 * If userspace observed a missing page in a VMA with a MODE_MISSING
2180 		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2181 		 * page. If so, we need to roll back to avoid suppressing such an
2182 		 * event. Since wp/minor userfaultfds don't give userspace any
2183 		 * guarantees that the kernel doesn't fill a missing page with a zero
2184 		 * page, so they don't matter here.
2185 		 *
2186 		 * Any userfaultfds registered after this point will not be able to
2187 		 * observe any missing pages due to the previously inserted retry
2188 		 * entries.
2189 		 */
2190 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2191 			if (userfaultfd_missing(vma)) {
2192 				result = SCAN_EXCEED_NONE_PTE;
2193 				goto immap_locked;
2194 			}
2195 		}
2196 
2197 immap_locked:
2198 		i_mmap_unlock_read(mapping);
2199 		if (result != SCAN_SUCCEED) {
2200 			xas_set(&xas, start);
2201 			for (index = start; index < end; index++) {
2202 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2203 					xas_store(&xas, NULL);
2204 			}
2205 
2206 			xas_unlock_irq(&xas);
2207 			goto rollback;
2208 		}
2209 	} else {
2210 		xas_lock_irq(&xas);
2211 	}
2212 
2213 	nr = thp_nr_pages(hpage);
2214 	if (is_shmem)
2215 		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
2216 	else
2217 		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
2218 
2219 	if (nr_none) {
2220 		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2221 		/* nr_none is always 0 for non-shmem. */
2222 		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2223 	}
2224 
2225 	/*
2226 	 * Mark hpage as uptodate before inserting it into the page cache so
2227 	 * that it isn't mistaken for an fallocated but unwritten page.
2228 	 */
2229 	folio = page_folio(hpage);
2230 	folio_mark_uptodate(folio);
2231 	folio_ref_add(folio, HPAGE_PMD_NR - 1);
2232 
2233 	if (is_shmem)
2234 		folio_mark_dirty(folio);
2235 	folio_add_lru(folio);
2236 
2237 	/* Join all the small entries into a single multi-index entry. */
2238 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2239 	xas_store(&xas, hpage);
2240 	WARN_ON_ONCE(xas_error(&xas));
2241 	xas_unlock_irq(&xas);
2242 
2243 	/*
2244 	 * Remove pte page tables, so we can re-fault the page as huge.
2245 	 */
2246 	result = retract_page_tables(mapping, start, mm, addr, hpage,
2247 				     cc);
2248 	unlock_page(hpage);
2249 
2250 	/*
2251 	 * The collapse has succeeded, so free the old pages.
2252 	 */
2253 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2254 		list_del(&page->lru);
2255 		page->mapping = NULL;
2256 		ClearPageActive(page);
2257 		ClearPageUnevictable(page);
2258 		unlock_page(page);
2259 		folio_put_refs(page_folio(page), 3);
2260 	}
2261 
2262 	goto out;
2263 
2264 rollback:
2265 	/* Something went wrong: roll back page cache changes */
2266 	if (nr_none) {
2267 		xas_lock_irq(&xas);
2268 		mapping->nrpages -= nr_none;
2269 		shmem_uncharge(mapping->host, nr_none);
2270 		xas_unlock_irq(&xas);
2271 	}
2272 
2273 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2274 		list_del(&page->lru);
2275 		unlock_page(page);
2276 		putback_lru_page(page);
2277 		put_page(page);
2278 	}
2279 	/*
2280 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2281 	 * file only. This undo is not needed unless failure is
2282 	 * due to SCAN_COPY_MC.
2283 	 */
2284 	if (!is_shmem && result == SCAN_COPY_MC) {
2285 		filemap_nr_thps_dec(mapping);
2286 		/*
2287 		 * Paired with smp_mb() in do_dentry_open() to
2288 		 * ensure the update to nr_thps is visible.
2289 		 */
2290 		smp_mb();
2291 	}
2292 
2293 	hpage->mapping = NULL;
2294 
2295 	unlock_page(hpage);
2296 	put_page(hpage);
2297 out:
2298 	VM_BUG_ON(!list_empty(&pagelist));
2299 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2300 	return result;
2301 }
2302 
2303 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2304 				    struct file *file, pgoff_t start,
2305 				    struct collapse_control *cc)
2306 {
2307 	struct page *page = NULL;
2308 	struct address_space *mapping = file->f_mapping;
2309 	XA_STATE(xas, &mapping->i_pages, start);
2310 	int present, swap;
2311 	int node = NUMA_NO_NODE;
2312 	int result = SCAN_SUCCEED;
2313 
2314 	present = 0;
2315 	swap = 0;
2316 	memset(cc->node_load, 0, sizeof(cc->node_load));
2317 	nodes_clear(cc->alloc_nmask);
2318 	rcu_read_lock();
2319 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2320 		if (xas_retry(&xas, page))
2321 			continue;
2322 
2323 		if (xa_is_value(page)) {
2324 			++swap;
2325 			if (cc->is_khugepaged &&
2326 			    swap > khugepaged_max_ptes_swap) {
2327 				result = SCAN_EXCEED_SWAP_PTE;
2328 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2329 				break;
2330 			}
2331 			continue;
2332 		}
2333 
2334 		/*
2335 		 * TODO: khugepaged should compact smaller compound pages
2336 		 * into a PMD sized page
2337 		 */
2338 		if (PageTransCompound(page)) {
2339 			struct page *head = compound_head(page);
2340 
2341 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2342 					head->index == start
2343 					/* Maybe PMD-mapped */
2344 					? SCAN_PTE_MAPPED_HUGEPAGE
2345 					: SCAN_PAGE_COMPOUND;
2346 			/*
2347 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2348 			 * by the caller won't touch the page cache, and so
2349 			 * it's safe to skip LRU and refcount checks before
2350 			 * returning.
2351 			 */
2352 			break;
2353 		}
2354 
2355 		node = page_to_nid(page);
2356 		if (hpage_collapse_scan_abort(node, cc)) {
2357 			result = SCAN_SCAN_ABORT;
2358 			break;
2359 		}
2360 		cc->node_load[node]++;
2361 
2362 		if (!PageLRU(page)) {
2363 			result = SCAN_PAGE_LRU;
2364 			break;
2365 		}
2366 
2367 		if (page_count(page) !=
2368 		    1 + page_mapcount(page) + page_has_private(page)) {
2369 			result = SCAN_PAGE_COUNT;
2370 			break;
2371 		}
2372 
2373 		/*
2374 		 * We probably should check if the page is referenced here, but
2375 		 * nobody would transfer pte_young() to PageReferenced() for us.
2376 		 * And rmap walk here is just too costly...
2377 		 */
2378 
2379 		present++;
2380 
2381 		if (need_resched()) {
2382 			xas_pause(&xas);
2383 			cond_resched_rcu();
2384 		}
2385 	}
2386 	rcu_read_unlock();
2387 
2388 	if (result == SCAN_SUCCEED) {
2389 		if (cc->is_khugepaged &&
2390 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2391 			result = SCAN_EXCEED_NONE_PTE;
2392 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2393 		} else {
2394 			result = collapse_file(mm, addr, file, start, cc);
2395 		}
2396 	}
2397 
2398 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2399 	return result;
2400 }
2401 #else
2402 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2403 				    struct file *file, pgoff_t start,
2404 				    struct collapse_control *cc)
2405 {
2406 	BUILD_BUG();
2407 }
2408 
2409 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2410 {
2411 }
2412 
2413 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2414 					  unsigned long addr)
2415 {
2416 	return false;
2417 }
2418 #endif
2419 
2420 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2421 					    struct collapse_control *cc)
2422 	__releases(&khugepaged_mm_lock)
2423 	__acquires(&khugepaged_mm_lock)
2424 {
2425 	struct vma_iterator vmi;
2426 	struct khugepaged_mm_slot *mm_slot;
2427 	struct mm_slot *slot;
2428 	struct mm_struct *mm;
2429 	struct vm_area_struct *vma;
2430 	int progress = 0;
2431 
2432 	VM_BUG_ON(!pages);
2433 	lockdep_assert_held(&khugepaged_mm_lock);
2434 	*result = SCAN_FAIL;
2435 
2436 	if (khugepaged_scan.mm_slot) {
2437 		mm_slot = khugepaged_scan.mm_slot;
2438 		slot = &mm_slot->slot;
2439 	} else {
2440 		slot = list_entry(khugepaged_scan.mm_head.next,
2441 				     struct mm_slot, mm_node);
2442 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2443 		khugepaged_scan.address = 0;
2444 		khugepaged_scan.mm_slot = mm_slot;
2445 	}
2446 	spin_unlock(&khugepaged_mm_lock);
2447 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2448 
2449 	mm = slot->mm;
2450 	/*
2451 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2452 	 * the next mm on the list.
2453 	 */
2454 	vma = NULL;
2455 	if (unlikely(!mmap_read_trylock(mm)))
2456 		goto breakouterloop_mmap_lock;
2457 
2458 	progress++;
2459 	if (unlikely(hpage_collapse_test_exit(mm)))
2460 		goto breakouterloop;
2461 
2462 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2463 	for_each_vma(vmi, vma) {
2464 		unsigned long hstart, hend;
2465 
2466 		cond_resched();
2467 		if (unlikely(hpage_collapse_test_exit(mm))) {
2468 			progress++;
2469 			break;
2470 		}
2471 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2472 skip:
2473 			progress++;
2474 			continue;
2475 		}
2476 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2477 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2478 		if (khugepaged_scan.address > hend)
2479 			goto skip;
2480 		if (khugepaged_scan.address < hstart)
2481 			khugepaged_scan.address = hstart;
2482 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2483 
2484 		while (khugepaged_scan.address < hend) {
2485 			bool mmap_locked = true;
2486 
2487 			cond_resched();
2488 			if (unlikely(hpage_collapse_test_exit(mm)))
2489 				goto breakouterloop;
2490 
2491 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2492 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2493 				  hend);
2494 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2495 				struct file *file = get_file(vma->vm_file);
2496 				pgoff_t pgoff = linear_page_index(vma,
2497 						khugepaged_scan.address);
2498 
2499 				mmap_read_unlock(mm);
2500 				*result = hpage_collapse_scan_file(mm,
2501 								   khugepaged_scan.address,
2502 								   file, pgoff, cc);
2503 				mmap_locked = false;
2504 				fput(file);
2505 			} else {
2506 				*result = hpage_collapse_scan_pmd(mm, vma,
2507 								  khugepaged_scan.address,
2508 								  &mmap_locked,
2509 								  cc);
2510 			}
2511 			switch (*result) {
2512 			case SCAN_PTE_MAPPED_HUGEPAGE: {
2513 				pmd_t *pmd;
2514 
2515 				*result = find_pmd_or_thp_or_none(mm,
2516 								  khugepaged_scan.address,
2517 								  &pmd);
2518 				if (*result != SCAN_SUCCEED)
2519 					break;
2520 				if (!khugepaged_add_pte_mapped_thp(mm,
2521 								   khugepaged_scan.address))
2522 					break;
2523 			} fallthrough;
2524 			case SCAN_SUCCEED:
2525 				++khugepaged_pages_collapsed;
2526 				break;
2527 			default:
2528 				break;
2529 			}
2530 
2531 			/* move to next address */
2532 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2533 			progress += HPAGE_PMD_NR;
2534 			if (!mmap_locked)
2535 				/*
2536 				 * We released mmap_lock so break loop.  Note
2537 				 * that we drop mmap_lock before all hugepage
2538 				 * allocations, so if allocation fails, we are
2539 				 * guaranteed to break here and report the
2540 				 * correct result back to caller.
2541 				 */
2542 				goto breakouterloop_mmap_lock;
2543 			if (progress >= pages)
2544 				goto breakouterloop;
2545 		}
2546 	}
2547 breakouterloop:
2548 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2549 breakouterloop_mmap_lock:
2550 
2551 	spin_lock(&khugepaged_mm_lock);
2552 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2553 	/*
2554 	 * Release the current mm_slot if this mm is about to die, or
2555 	 * if we scanned all vmas of this mm.
2556 	 */
2557 	if (hpage_collapse_test_exit(mm) || !vma) {
2558 		/*
2559 		 * Make sure that if mm_users is reaching zero while
2560 		 * khugepaged runs here, khugepaged_exit will find
2561 		 * mm_slot not pointing to the exiting mm.
2562 		 */
2563 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2564 			slot = list_entry(slot->mm_node.next,
2565 					  struct mm_slot, mm_node);
2566 			khugepaged_scan.mm_slot =
2567 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2568 			khugepaged_scan.address = 0;
2569 		} else {
2570 			khugepaged_scan.mm_slot = NULL;
2571 			khugepaged_full_scans++;
2572 		}
2573 
2574 		collect_mm_slot(mm_slot);
2575 	}
2576 
2577 	return progress;
2578 }
2579 
2580 static int khugepaged_has_work(void)
2581 {
2582 	return !list_empty(&khugepaged_scan.mm_head) &&
2583 		hugepage_flags_enabled();
2584 }
2585 
2586 static int khugepaged_wait_event(void)
2587 {
2588 	return !list_empty(&khugepaged_scan.mm_head) ||
2589 		kthread_should_stop();
2590 }
2591 
2592 static void khugepaged_do_scan(struct collapse_control *cc)
2593 {
2594 	unsigned int progress = 0, pass_through_head = 0;
2595 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2596 	bool wait = true;
2597 	int result = SCAN_SUCCEED;
2598 
2599 	lru_add_drain_all();
2600 
2601 	while (true) {
2602 		cond_resched();
2603 
2604 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2605 			break;
2606 
2607 		spin_lock(&khugepaged_mm_lock);
2608 		if (!khugepaged_scan.mm_slot)
2609 			pass_through_head++;
2610 		if (khugepaged_has_work() &&
2611 		    pass_through_head < 2)
2612 			progress += khugepaged_scan_mm_slot(pages - progress,
2613 							    &result, cc);
2614 		else
2615 			progress = pages;
2616 		spin_unlock(&khugepaged_mm_lock);
2617 
2618 		if (progress >= pages)
2619 			break;
2620 
2621 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2622 			/*
2623 			 * If fail to allocate the first time, try to sleep for
2624 			 * a while.  When hit again, cancel the scan.
2625 			 */
2626 			if (!wait)
2627 				break;
2628 			wait = false;
2629 			khugepaged_alloc_sleep();
2630 		}
2631 	}
2632 }
2633 
2634 static bool khugepaged_should_wakeup(void)
2635 {
2636 	return kthread_should_stop() ||
2637 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2638 }
2639 
2640 static void khugepaged_wait_work(void)
2641 {
2642 	if (khugepaged_has_work()) {
2643 		const unsigned long scan_sleep_jiffies =
2644 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2645 
2646 		if (!scan_sleep_jiffies)
2647 			return;
2648 
2649 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2650 		wait_event_freezable_timeout(khugepaged_wait,
2651 					     khugepaged_should_wakeup(),
2652 					     scan_sleep_jiffies);
2653 		return;
2654 	}
2655 
2656 	if (hugepage_flags_enabled())
2657 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2658 }
2659 
2660 static int khugepaged(void *none)
2661 {
2662 	struct khugepaged_mm_slot *mm_slot;
2663 
2664 	set_freezable();
2665 	set_user_nice(current, MAX_NICE);
2666 
2667 	while (!kthread_should_stop()) {
2668 		khugepaged_do_scan(&khugepaged_collapse_control);
2669 		khugepaged_wait_work();
2670 	}
2671 
2672 	spin_lock(&khugepaged_mm_lock);
2673 	mm_slot = khugepaged_scan.mm_slot;
2674 	khugepaged_scan.mm_slot = NULL;
2675 	if (mm_slot)
2676 		collect_mm_slot(mm_slot);
2677 	spin_unlock(&khugepaged_mm_lock);
2678 	return 0;
2679 }
2680 
2681 static void set_recommended_min_free_kbytes(void)
2682 {
2683 	struct zone *zone;
2684 	int nr_zones = 0;
2685 	unsigned long recommended_min;
2686 
2687 	if (!hugepage_flags_enabled()) {
2688 		calculate_min_free_kbytes();
2689 		goto update_wmarks;
2690 	}
2691 
2692 	for_each_populated_zone(zone) {
2693 		/*
2694 		 * We don't need to worry about fragmentation of
2695 		 * ZONE_MOVABLE since it only has movable pages.
2696 		 */
2697 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2698 			continue;
2699 
2700 		nr_zones++;
2701 	}
2702 
2703 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2704 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2705 
2706 	/*
2707 	 * Make sure that on average at least two pageblocks are almost free
2708 	 * of another type, one for a migratetype to fall back to and a
2709 	 * second to avoid subsequent fallbacks of other types There are 3
2710 	 * MIGRATE_TYPES we care about.
2711 	 */
2712 	recommended_min += pageblock_nr_pages * nr_zones *
2713 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2714 
2715 	/* don't ever allow to reserve more than 5% of the lowmem */
2716 	recommended_min = min(recommended_min,
2717 			      (unsigned long) nr_free_buffer_pages() / 20);
2718 	recommended_min <<= (PAGE_SHIFT-10);
2719 
2720 	if (recommended_min > min_free_kbytes) {
2721 		if (user_min_free_kbytes >= 0)
2722 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2723 				min_free_kbytes, recommended_min);
2724 
2725 		min_free_kbytes = recommended_min;
2726 	}
2727 
2728 update_wmarks:
2729 	setup_per_zone_wmarks();
2730 }
2731 
2732 int start_stop_khugepaged(void)
2733 {
2734 	int err = 0;
2735 
2736 	mutex_lock(&khugepaged_mutex);
2737 	if (hugepage_flags_enabled()) {
2738 		if (!khugepaged_thread)
2739 			khugepaged_thread = kthread_run(khugepaged, NULL,
2740 							"khugepaged");
2741 		if (IS_ERR(khugepaged_thread)) {
2742 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2743 			err = PTR_ERR(khugepaged_thread);
2744 			khugepaged_thread = NULL;
2745 			goto fail;
2746 		}
2747 
2748 		if (!list_empty(&khugepaged_scan.mm_head))
2749 			wake_up_interruptible(&khugepaged_wait);
2750 	} else if (khugepaged_thread) {
2751 		kthread_stop(khugepaged_thread);
2752 		khugepaged_thread = NULL;
2753 	}
2754 	set_recommended_min_free_kbytes();
2755 fail:
2756 	mutex_unlock(&khugepaged_mutex);
2757 	return err;
2758 }
2759 
2760 void khugepaged_min_free_kbytes_update(void)
2761 {
2762 	mutex_lock(&khugepaged_mutex);
2763 	if (hugepage_flags_enabled() && khugepaged_thread)
2764 		set_recommended_min_free_kbytes();
2765 	mutex_unlock(&khugepaged_mutex);
2766 }
2767 
2768 bool current_is_khugepaged(void)
2769 {
2770 	return kthread_func(current) == khugepaged;
2771 }
2772 
2773 static int madvise_collapse_errno(enum scan_result r)
2774 {
2775 	/*
2776 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2777 	 * actionable feedback to caller, so they may take an appropriate
2778 	 * fallback measure depending on the nature of the failure.
2779 	 */
2780 	switch (r) {
2781 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2782 		return -ENOMEM;
2783 	case SCAN_CGROUP_CHARGE_FAIL:
2784 	case SCAN_EXCEED_NONE_PTE:
2785 		return -EBUSY;
2786 	/* Resource temporary unavailable - trying again might succeed */
2787 	case SCAN_PAGE_COUNT:
2788 	case SCAN_PAGE_LOCK:
2789 	case SCAN_PAGE_LRU:
2790 	case SCAN_DEL_PAGE_LRU:
2791 	case SCAN_PAGE_FILLED:
2792 		return -EAGAIN;
2793 	/*
2794 	 * Other: Trying again likely not to succeed / error intrinsic to
2795 	 * specified memory range. khugepaged likely won't be able to collapse
2796 	 * either.
2797 	 */
2798 	default:
2799 		return -EINVAL;
2800 	}
2801 }
2802 
2803 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2804 		     unsigned long start, unsigned long end)
2805 {
2806 	struct collapse_control *cc;
2807 	struct mm_struct *mm = vma->vm_mm;
2808 	unsigned long hstart, hend, addr;
2809 	int thps = 0, last_fail = SCAN_FAIL;
2810 	bool mmap_locked = true;
2811 
2812 	BUG_ON(vma->vm_start > start);
2813 	BUG_ON(vma->vm_end < end);
2814 
2815 	*prev = vma;
2816 
2817 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2818 		return -EINVAL;
2819 
2820 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2821 	if (!cc)
2822 		return -ENOMEM;
2823 	cc->is_khugepaged = false;
2824 
2825 	mmgrab(mm);
2826 	lru_add_drain_all();
2827 
2828 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2829 	hend = end & HPAGE_PMD_MASK;
2830 
2831 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2832 		int result = SCAN_FAIL;
2833 
2834 		if (!mmap_locked) {
2835 			cond_resched();
2836 			mmap_read_lock(mm);
2837 			mmap_locked = true;
2838 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2839 							 cc);
2840 			if (result  != SCAN_SUCCEED) {
2841 				last_fail = result;
2842 				goto out_nolock;
2843 			}
2844 
2845 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2846 		}
2847 		mmap_assert_locked(mm);
2848 		memset(cc->node_load, 0, sizeof(cc->node_load));
2849 		nodes_clear(cc->alloc_nmask);
2850 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2851 			struct file *file = get_file(vma->vm_file);
2852 			pgoff_t pgoff = linear_page_index(vma, addr);
2853 
2854 			mmap_read_unlock(mm);
2855 			mmap_locked = false;
2856 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2857 							  cc);
2858 			fput(file);
2859 		} else {
2860 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2861 							 &mmap_locked, cc);
2862 		}
2863 		if (!mmap_locked)
2864 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2865 
2866 handle_result:
2867 		switch (result) {
2868 		case SCAN_SUCCEED:
2869 		case SCAN_PMD_MAPPED:
2870 			++thps;
2871 			break;
2872 		case SCAN_PTE_MAPPED_HUGEPAGE:
2873 			BUG_ON(mmap_locked);
2874 			BUG_ON(*prev);
2875 			mmap_write_lock(mm);
2876 			result = collapse_pte_mapped_thp(mm, addr, true);
2877 			mmap_write_unlock(mm);
2878 			goto handle_result;
2879 		/* Whitelisted set of results where continuing OK */
2880 		case SCAN_PMD_NULL:
2881 		case SCAN_PTE_NON_PRESENT:
2882 		case SCAN_PTE_UFFD_WP:
2883 		case SCAN_PAGE_RO:
2884 		case SCAN_LACK_REFERENCED_PAGE:
2885 		case SCAN_PAGE_NULL:
2886 		case SCAN_PAGE_COUNT:
2887 		case SCAN_PAGE_LOCK:
2888 		case SCAN_PAGE_COMPOUND:
2889 		case SCAN_PAGE_LRU:
2890 		case SCAN_DEL_PAGE_LRU:
2891 			last_fail = result;
2892 			break;
2893 		default:
2894 			last_fail = result;
2895 			/* Other error, exit */
2896 			goto out_maybelock;
2897 		}
2898 	}
2899 
2900 out_maybelock:
2901 	/* Caller expects us to hold mmap_lock on return */
2902 	if (!mmap_locked)
2903 		mmap_read_lock(mm);
2904 out_nolock:
2905 	mmap_assert_locked(mm);
2906 	mmdrop(mm);
2907 	kfree(cc);
2908 
2909 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2910 			: madvise_collapse_errno(last_fail);
2911 }
2912