1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 27 enum scan_result { 28 SCAN_FAIL, 29 SCAN_SUCCEED, 30 SCAN_PMD_NULL, 31 SCAN_EXCEED_NONE_PTE, 32 SCAN_EXCEED_SWAP_PTE, 33 SCAN_EXCEED_SHARED_PTE, 34 SCAN_PTE_NON_PRESENT, 35 SCAN_PTE_UFFD_WP, 36 SCAN_PAGE_RO, 37 SCAN_LACK_REFERENCED_PAGE, 38 SCAN_PAGE_NULL, 39 SCAN_SCAN_ABORT, 40 SCAN_PAGE_COUNT, 41 SCAN_PAGE_LRU, 42 SCAN_PAGE_LOCK, 43 SCAN_PAGE_ANON, 44 SCAN_PAGE_COMPOUND, 45 SCAN_ANY_PROCESS, 46 SCAN_VMA_NULL, 47 SCAN_VMA_CHECK, 48 SCAN_ADDRESS_RANGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 151 scan_sleep_millisecs_store); 152 153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 154 struct kobj_attribute *attr, 155 char *buf) 156 { 157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 158 } 159 160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 const char *buf, size_t count) 163 { 164 unsigned int msecs; 165 int err; 166 167 err = kstrtouint(buf, 10, &msecs); 168 if (err) 169 return -EINVAL; 170 171 khugepaged_alloc_sleep_millisecs = msecs; 172 khugepaged_sleep_expire = 0; 173 wake_up_interruptible(&khugepaged_wait); 174 175 return count; 176 } 177 static struct kobj_attribute alloc_sleep_millisecs_attr = 178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 179 alloc_sleep_millisecs_store); 180 181 static ssize_t pages_to_scan_show(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 char *buf) 184 { 185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 186 } 187 static ssize_t pages_to_scan_store(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 const char *buf, size_t count) 190 { 191 unsigned int pages; 192 int err; 193 194 err = kstrtouint(buf, 10, &pages); 195 if (err || !pages) 196 return -EINVAL; 197 198 khugepaged_pages_to_scan = pages; 199 200 return count; 201 } 202 static struct kobj_attribute pages_to_scan_attr = 203 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 204 pages_to_scan_store); 205 206 static ssize_t pages_collapsed_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 211 } 212 static struct kobj_attribute pages_collapsed_attr = 213 __ATTR_RO(pages_collapsed); 214 215 static ssize_t full_scans_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 220 } 221 static struct kobj_attribute full_scans_attr = 222 __ATTR_RO(full_scans); 223 224 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 225 struct kobj_attribute *attr, char *buf) 226 { 227 return single_hugepage_flag_show(kobj, attr, buf, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 231 struct kobj_attribute *attr, 232 const char *buf, size_t count) 233 { 234 return single_hugepage_flag_store(kobj, attr, buf, count, 235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 236 } 237 static struct kobj_attribute khugepaged_defrag_attr = 238 __ATTR(defrag, 0644, khugepaged_defrag_show, 239 khugepaged_defrag_store); 240 241 /* 242 * max_ptes_none controls if khugepaged should collapse hugepages over 243 * any unmapped ptes in turn potentially increasing the memory 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 245 * reduce the available free memory in the system as it 246 * runs. Increasing max_ptes_none will instead potentially reduce the 247 * free memory in the system during the khugepaged scan. 248 */ 249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 250 struct kobj_attribute *attr, 251 char *buf) 252 { 253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 254 } 255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 int err; 260 unsigned long max_ptes_none; 261 262 err = kstrtoul(buf, 10, &max_ptes_none); 263 if (err || max_ptes_none > HPAGE_PMD_NR-1) 264 return -EINVAL; 265 266 khugepaged_max_ptes_none = max_ptes_none; 267 268 return count; 269 } 270 static struct kobj_attribute khugepaged_max_ptes_none_attr = 271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 272 khugepaged_max_ptes_none_store); 273 274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 char *buf) 277 { 278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 279 } 280 281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 int err; 286 unsigned long max_ptes_swap; 287 288 err = kstrtoul(buf, 10, &max_ptes_swap); 289 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 290 return -EINVAL; 291 292 khugepaged_max_ptes_swap = max_ptes_swap; 293 294 return count; 295 } 296 297 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 299 khugepaged_max_ptes_swap_store); 300 301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 302 struct kobj_attribute *attr, 303 char *buf) 304 { 305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 306 } 307 308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 309 struct kobj_attribute *attr, 310 const char *buf, size_t count) 311 { 312 int err; 313 unsigned long max_ptes_shared; 314 315 err = kstrtoul(buf, 10, &max_ptes_shared); 316 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 317 return -EINVAL; 318 319 khugepaged_max_ptes_shared = max_ptes_shared; 320 321 return count; 322 } 323 324 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 326 khugepaged_max_ptes_shared_store); 327 328 static struct attribute *khugepaged_attr[] = { 329 &khugepaged_defrag_attr.attr, 330 &khugepaged_max_ptes_none_attr.attr, 331 &khugepaged_max_ptes_swap_attr.attr, 332 &khugepaged_max_ptes_shared_attr.attr, 333 &pages_to_scan_attr.attr, 334 &pages_collapsed_attr.attr, 335 &full_scans_attr.attr, 336 &scan_sleep_millisecs_attr.attr, 337 &alloc_sleep_millisecs_attr.attr, 338 NULL, 339 }; 340 341 struct attribute_group khugepaged_attr_group = { 342 .attrs = khugepaged_attr, 343 .name = "khugepaged", 344 }; 345 #endif /* CONFIG_SYSFS */ 346 347 int hugepage_madvise(struct vm_area_struct *vma, 348 unsigned long *vm_flags, int advice) 349 { 350 switch (advice) { 351 case MADV_HUGEPAGE: 352 #ifdef CONFIG_S390 353 /* 354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 355 * can't handle this properly after s390_enable_sie, so we simply 356 * ignore the madvise to prevent qemu from causing a SIGSEGV. 357 */ 358 if (mm_has_pgste(vma->vm_mm)) 359 return 0; 360 #endif 361 *vm_flags &= ~VM_NOHUGEPAGE; 362 *vm_flags |= VM_HUGEPAGE; 363 /* 364 * If the vma become good for khugepaged to scan, 365 * register it here without waiting a page fault that 366 * may not happen any time soon. 367 */ 368 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 369 khugepaged_enter_vma_merge(vma, *vm_flags)) 370 return -ENOMEM; 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct mm_slot), 390 __alignof__(struct mm_slot), 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline struct mm_slot *alloc_mm_slot(void) 408 { 409 if (!mm_slot_cache) /* initialization failed */ 410 return NULL; 411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 412 } 413 414 static inline void free_mm_slot(struct mm_slot *mm_slot) 415 { 416 kmem_cache_free(mm_slot_cache, mm_slot); 417 } 418 419 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 420 { 421 struct mm_slot *mm_slot; 422 423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 424 if (mm == mm_slot->mm) 425 return mm_slot; 426 427 return NULL; 428 } 429 430 static void insert_to_mm_slots_hash(struct mm_struct *mm, 431 struct mm_slot *mm_slot) 432 { 433 mm_slot->mm = mm; 434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 435 } 436 437 static inline int khugepaged_test_exit(struct mm_struct *mm) 438 { 439 return atomic_read(&mm->mm_users) == 0; 440 } 441 442 static bool hugepage_vma_check(struct vm_area_struct *vma, 443 unsigned long vm_flags) 444 { 445 if (!transhuge_vma_enabled(vma, vm_flags)) 446 return false; 447 448 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - 449 vma->vm_pgoff, HPAGE_PMD_NR)) 450 return false; 451 452 /* Enabled via shmem mount options or sysfs settings. */ 453 if (shmem_file(vma->vm_file)) 454 return shmem_huge_enabled(vma); 455 456 /* THP settings require madvise. */ 457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) 458 return false; 459 460 /* Only regular file is valid */ 461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file && 462 (vm_flags & VM_EXEC)) { 463 struct inode *inode = vma->vm_file->f_inode; 464 465 return !inode_is_open_for_write(inode) && 466 S_ISREG(inode->i_mode); 467 } 468 469 if (!vma->anon_vma || vma->vm_ops) 470 return false; 471 if (vma_is_temporary_stack(vma)) 472 return false; 473 return !(vm_flags & VM_NO_KHUGEPAGED); 474 } 475 476 int __khugepaged_enter(struct mm_struct *mm) 477 { 478 struct mm_slot *mm_slot; 479 int wakeup; 480 481 mm_slot = alloc_mm_slot(); 482 if (!mm_slot) 483 return -ENOMEM; 484 485 /* __khugepaged_exit() must not run from under us */ 486 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 487 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 488 free_mm_slot(mm_slot); 489 return 0; 490 } 491 492 spin_lock(&khugepaged_mm_lock); 493 insert_to_mm_slots_hash(mm, mm_slot); 494 /* 495 * Insert just behind the scanning cursor, to let the area settle 496 * down a little. 497 */ 498 wakeup = list_empty(&khugepaged_scan.mm_head); 499 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 500 spin_unlock(&khugepaged_mm_lock); 501 502 mmgrab(mm); 503 if (wakeup) 504 wake_up_interruptible(&khugepaged_wait); 505 506 return 0; 507 } 508 509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 510 unsigned long vm_flags) 511 { 512 unsigned long hstart, hend; 513 514 /* 515 * khugepaged only supports read-only files for non-shmem files. 516 * khugepaged does not yet work on special mappings. And 517 * file-private shmem THP is not supported. 518 */ 519 if (!hugepage_vma_check(vma, vm_flags)) 520 return 0; 521 522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 523 hend = vma->vm_end & HPAGE_PMD_MASK; 524 if (hstart < hend) 525 return khugepaged_enter(vma, vm_flags); 526 return 0; 527 } 528 529 void __khugepaged_exit(struct mm_struct *mm) 530 { 531 struct mm_slot *mm_slot; 532 int free = 0; 533 534 spin_lock(&khugepaged_mm_lock); 535 mm_slot = get_mm_slot(mm); 536 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 537 hash_del(&mm_slot->hash); 538 list_del(&mm_slot->mm_node); 539 free = 1; 540 } 541 spin_unlock(&khugepaged_mm_lock); 542 543 if (free) { 544 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 545 free_mm_slot(mm_slot); 546 mmdrop(mm); 547 } else if (mm_slot) { 548 /* 549 * This is required to serialize against 550 * khugepaged_test_exit() (which is guaranteed to run 551 * under mmap sem read mode). Stop here (after we 552 * return all pagetables will be destroyed) until 553 * khugepaged has finished working on the pagetables 554 * under the mmap_lock. 555 */ 556 mmap_write_lock(mm); 557 mmap_write_unlock(mm); 558 } 559 } 560 561 static void release_pte_page(struct page *page) 562 { 563 mod_node_page_state(page_pgdat(page), 564 NR_ISOLATED_ANON + page_is_file_lru(page), 565 -compound_nr(page)); 566 unlock_page(page); 567 putback_lru_page(page); 568 } 569 570 static void release_pte_pages(pte_t *pte, pte_t *_pte, 571 struct list_head *compound_pagelist) 572 { 573 struct page *page, *tmp; 574 575 while (--_pte >= pte) { 576 pte_t pteval = *_pte; 577 578 page = pte_page(pteval); 579 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 580 !PageCompound(page)) 581 release_pte_page(page); 582 } 583 584 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 585 list_del(&page->lru); 586 release_pte_page(page); 587 } 588 } 589 590 static bool is_refcount_suitable(struct page *page) 591 { 592 int expected_refcount; 593 594 expected_refcount = total_mapcount(page); 595 if (PageSwapCache(page)) 596 expected_refcount += compound_nr(page); 597 598 return page_count(page) == expected_refcount; 599 } 600 601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 602 unsigned long address, 603 pte_t *pte, 604 struct list_head *compound_pagelist) 605 { 606 struct page *page = NULL; 607 pte_t *_pte; 608 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 609 bool writable = false; 610 611 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 612 _pte++, address += PAGE_SIZE) { 613 pte_t pteval = *_pte; 614 if (pte_none(pteval) || (pte_present(pteval) && 615 is_zero_pfn(pte_pfn(pteval)))) { 616 if (!userfaultfd_armed(vma) && 617 ++none_or_zero <= khugepaged_max_ptes_none) { 618 continue; 619 } else { 620 result = SCAN_EXCEED_NONE_PTE; 621 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 622 goto out; 623 } 624 } 625 if (!pte_present(pteval)) { 626 result = SCAN_PTE_NON_PRESENT; 627 goto out; 628 } 629 page = vm_normal_page(vma, address, pteval); 630 if (unlikely(!page)) { 631 result = SCAN_PAGE_NULL; 632 goto out; 633 } 634 635 VM_BUG_ON_PAGE(!PageAnon(page), page); 636 637 if (page_mapcount(page) > 1 && 638 ++shared > khugepaged_max_ptes_shared) { 639 result = SCAN_EXCEED_SHARED_PTE; 640 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 641 goto out; 642 } 643 644 if (PageCompound(page)) { 645 struct page *p; 646 page = compound_head(page); 647 648 /* 649 * Check if we have dealt with the compound page 650 * already 651 */ 652 list_for_each_entry(p, compound_pagelist, lru) { 653 if (page == p) 654 goto next; 655 } 656 } 657 658 /* 659 * We can do it before isolate_lru_page because the 660 * page can't be freed from under us. NOTE: PG_lock 661 * is needed to serialize against split_huge_page 662 * when invoked from the VM. 663 */ 664 if (!trylock_page(page)) { 665 result = SCAN_PAGE_LOCK; 666 goto out; 667 } 668 669 /* 670 * Check if the page has any GUP (or other external) pins. 671 * 672 * The page table that maps the page has been already unlinked 673 * from the page table tree and this process cannot get 674 * an additional pin on the page. 675 * 676 * New pins can come later if the page is shared across fork, 677 * but not from this process. The other process cannot write to 678 * the page, only trigger CoW. 679 */ 680 if (!is_refcount_suitable(page)) { 681 unlock_page(page); 682 result = SCAN_PAGE_COUNT; 683 goto out; 684 } 685 686 /* 687 * Isolate the page to avoid collapsing an hugepage 688 * currently in use by the VM. 689 */ 690 if (isolate_lru_page(page)) { 691 unlock_page(page); 692 result = SCAN_DEL_PAGE_LRU; 693 goto out; 694 } 695 mod_node_page_state(page_pgdat(page), 696 NR_ISOLATED_ANON + page_is_file_lru(page), 697 compound_nr(page)); 698 VM_BUG_ON_PAGE(!PageLocked(page), page); 699 VM_BUG_ON_PAGE(PageLRU(page), page); 700 701 if (PageCompound(page)) 702 list_add_tail(&page->lru, compound_pagelist); 703 next: 704 /* There should be enough young pte to collapse the page */ 705 if (pte_young(pteval) || 706 page_is_young(page) || PageReferenced(page) || 707 mmu_notifier_test_young(vma->vm_mm, address)) 708 referenced++; 709 710 if (pte_write(pteval)) 711 writable = true; 712 } 713 714 if (unlikely(!writable)) { 715 result = SCAN_PAGE_RO; 716 } else if (unlikely(!referenced)) { 717 result = SCAN_LACK_REFERENCED_PAGE; 718 } else { 719 result = SCAN_SUCCEED; 720 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 721 referenced, writable, result); 722 return 1; 723 } 724 out: 725 release_pte_pages(pte, _pte, compound_pagelist); 726 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 727 referenced, writable, result); 728 return 0; 729 } 730 731 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 732 struct vm_area_struct *vma, 733 unsigned long address, 734 spinlock_t *ptl, 735 struct list_head *compound_pagelist) 736 { 737 struct page *src_page, *tmp; 738 pte_t *_pte; 739 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 740 _pte++, page++, address += PAGE_SIZE) { 741 pte_t pteval = *_pte; 742 743 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 744 clear_user_highpage(page, address); 745 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 746 if (is_zero_pfn(pte_pfn(pteval))) { 747 /* 748 * ptl mostly unnecessary. 749 */ 750 spin_lock(ptl); 751 ptep_clear(vma->vm_mm, address, _pte); 752 spin_unlock(ptl); 753 } 754 } else { 755 src_page = pte_page(pteval); 756 copy_user_highpage(page, src_page, address, vma); 757 if (!PageCompound(src_page)) 758 release_pte_page(src_page); 759 /* 760 * ptl mostly unnecessary, but preempt has to 761 * be disabled to update the per-cpu stats 762 * inside page_remove_rmap(). 763 */ 764 spin_lock(ptl); 765 ptep_clear(vma->vm_mm, address, _pte); 766 page_remove_rmap(src_page, vma, false); 767 spin_unlock(ptl); 768 free_page_and_swap_cache(src_page); 769 } 770 } 771 772 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 773 list_del(&src_page->lru); 774 release_pte_page(src_page); 775 } 776 } 777 778 static void khugepaged_alloc_sleep(void) 779 { 780 DEFINE_WAIT(wait); 781 782 add_wait_queue(&khugepaged_wait, &wait); 783 freezable_schedule_timeout_interruptible( 784 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 785 remove_wait_queue(&khugepaged_wait, &wait); 786 } 787 788 static int khugepaged_node_load[MAX_NUMNODES]; 789 790 static bool khugepaged_scan_abort(int nid) 791 { 792 int i; 793 794 /* 795 * If node_reclaim_mode is disabled, then no extra effort is made to 796 * allocate memory locally. 797 */ 798 if (!node_reclaim_enabled()) 799 return false; 800 801 /* If there is a count for this node already, it must be acceptable */ 802 if (khugepaged_node_load[nid]) 803 return false; 804 805 for (i = 0; i < MAX_NUMNODES; i++) { 806 if (!khugepaged_node_load[i]) 807 continue; 808 if (node_distance(nid, i) > node_reclaim_distance) 809 return true; 810 } 811 return false; 812 } 813 814 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 815 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 816 { 817 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 818 } 819 820 #ifdef CONFIG_NUMA 821 static int khugepaged_find_target_node(void) 822 { 823 static int last_khugepaged_target_node = NUMA_NO_NODE; 824 int nid, target_node = 0, max_value = 0; 825 826 /* find first node with max normal pages hit */ 827 for (nid = 0; nid < MAX_NUMNODES; nid++) 828 if (khugepaged_node_load[nid] > max_value) { 829 max_value = khugepaged_node_load[nid]; 830 target_node = nid; 831 } 832 833 /* do some balance if several nodes have the same hit record */ 834 if (target_node <= last_khugepaged_target_node) 835 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 836 nid++) 837 if (max_value == khugepaged_node_load[nid]) { 838 target_node = nid; 839 break; 840 } 841 842 last_khugepaged_target_node = target_node; 843 return target_node; 844 } 845 846 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 847 { 848 if (IS_ERR(*hpage)) { 849 if (!*wait) 850 return false; 851 852 *wait = false; 853 *hpage = NULL; 854 khugepaged_alloc_sleep(); 855 } else if (*hpage) { 856 put_page(*hpage); 857 *hpage = NULL; 858 } 859 860 return true; 861 } 862 863 static struct page * 864 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 865 { 866 VM_BUG_ON_PAGE(*hpage, *hpage); 867 868 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 869 if (unlikely(!*hpage)) { 870 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 871 *hpage = ERR_PTR(-ENOMEM); 872 return NULL; 873 } 874 875 prep_transhuge_page(*hpage); 876 count_vm_event(THP_COLLAPSE_ALLOC); 877 return *hpage; 878 } 879 #else 880 static int khugepaged_find_target_node(void) 881 { 882 return 0; 883 } 884 885 static inline struct page *alloc_khugepaged_hugepage(void) 886 { 887 struct page *page; 888 889 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 890 HPAGE_PMD_ORDER); 891 if (page) 892 prep_transhuge_page(page); 893 return page; 894 } 895 896 static struct page *khugepaged_alloc_hugepage(bool *wait) 897 { 898 struct page *hpage; 899 900 do { 901 hpage = alloc_khugepaged_hugepage(); 902 if (!hpage) { 903 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 904 if (!*wait) 905 return NULL; 906 907 *wait = false; 908 khugepaged_alloc_sleep(); 909 } else 910 count_vm_event(THP_COLLAPSE_ALLOC); 911 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 912 913 return hpage; 914 } 915 916 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 917 { 918 /* 919 * If the hpage allocated earlier was briefly exposed in page cache 920 * before collapse_file() failed, it is possible that racing lookups 921 * have not yet completed, and would then be unpleasantly surprised by 922 * finding the hpage reused for the same mapping at a different offset. 923 * Just release the previous allocation if there is any danger of that. 924 */ 925 if (*hpage && page_count(*hpage) > 1) { 926 put_page(*hpage); 927 *hpage = NULL; 928 } 929 930 if (!*hpage) 931 *hpage = khugepaged_alloc_hugepage(wait); 932 933 if (unlikely(!*hpage)) 934 return false; 935 936 return true; 937 } 938 939 static struct page * 940 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 941 { 942 VM_BUG_ON(!*hpage); 943 944 return *hpage; 945 } 946 #endif 947 948 /* 949 * If mmap_lock temporarily dropped, revalidate vma 950 * before taking mmap_lock. 951 * Return 0 if succeeds, otherwise return none-zero 952 * value (scan code). 953 */ 954 955 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 956 struct vm_area_struct **vmap) 957 { 958 struct vm_area_struct *vma; 959 unsigned long hstart, hend; 960 961 if (unlikely(khugepaged_test_exit(mm))) 962 return SCAN_ANY_PROCESS; 963 964 *vmap = vma = find_vma(mm, address); 965 if (!vma) 966 return SCAN_VMA_NULL; 967 968 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 969 hend = vma->vm_end & HPAGE_PMD_MASK; 970 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 971 return SCAN_ADDRESS_RANGE; 972 if (!hugepage_vma_check(vma, vma->vm_flags)) 973 return SCAN_VMA_CHECK; 974 /* Anon VMA expected */ 975 if (!vma->anon_vma || vma->vm_ops) 976 return SCAN_VMA_CHECK; 977 return 0; 978 } 979 980 /* 981 * Bring missing pages in from swap, to complete THP collapse. 982 * Only done if khugepaged_scan_pmd believes it is worthwhile. 983 * 984 * Called and returns without pte mapped or spinlocks held, 985 * but with mmap_lock held to protect against vma changes. 986 */ 987 988 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 989 struct vm_area_struct *vma, 990 unsigned long haddr, pmd_t *pmd, 991 int referenced) 992 { 993 int swapped_in = 0; 994 vm_fault_t ret = 0; 995 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 996 997 for (address = haddr; address < end; address += PAGE_SIZE) { 998 struct vm_fault vmf = { 999 .vma = vma, 1000 .address = address, 1001 .pgoff = linear_page_index(vma, haddr), 1002 .flags = FAULT_FLAG_ALLOW_RETRY, 1003 .pmd = pmd, 1004 }; 1005 1006 vmf.pte = pte_offset_map(pmd, address); 1007 vmf.orig_pte = *vmf.pte; 1008 if (!is_swap_pte(vmf.orig_pte)) { 1009 pte_unmap(vmf.pte); 1010 continue; 1011 } 1012 swapped_in++; 1013 ret = do_swap_page(&vmf); 1014 1015 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1016 if (ret & VM_FAULT_RETRY) { 1017 mmap_read_lock(mm); 1018 if (hugepage_vma_revalidate(mm, haddr, &vma)) { 1019 /* vma is no longer available, don't continue to swapin */ 1020 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1021 return false; 1022 } 1023 /* check if the pmd is still valid */ 1024 if (mm_find_pmd(mm, haddr) != pmd) { 1025 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1026 return false; 1027 } 1028 } 1029 if (ret & VM_FAULT_ERROR) { 1030 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1031 return false; 1032 } 1033 } 1034 1035 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1036 if (swapped_in) 1037 lru_add_drain(); 1038 1039 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1040 return true; 1041 } 1042 1043 static void collapse_huge_page(struct mm_struct *mm, 1044 unsigned long address, 1045 struct page **hpage, 1046 int node, int referenced, int unmapped) 1047 { 1048 LIST_HEAD(compound_pagelist); 1049 pmd_t *pmd, _pmd; 1050 pte_t *pte; 1051 pgtable_t pgtable; 1052 struct page *new_page; 1053 spinlock_t *pmd_ptl, *pte_ptl; 1054 int isolated = 0, result = 0; 1055 struct vm_area_struct *vma; 1056 struct mmu_notifier_range range; 1057 gfp_t gfp; 1058 1059 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1060 1061 /* Only allocate from the target node */ 1062 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1063 1064 /* 1065 * Before allocating the hugepage, release the mmap_lock read lock. 1066 * The allocation can take potentially a long time if it involves 1067 * sync compaction, and we do not need to hold the mmap_lock during 1068 * that. We will recheck the vma after taking it again in write mode. 1069 */ 1070 mmap_read_unlock(mm); 1071 new_page = khugepaged_alloc_page(hpage, gfp, node); 1072 if (!new_page) { 1073 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1074 goto out_nolock; 1075 } 1076 1077 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1078 result = SCAN_CGROUP_CHARGE_FAIL; 1079 goto out_nolock; 1080 } 1081 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1082 1083 mmap_read_lock(mm); 1084 result = hugepage_vma_revalidate(mm, address, &vma); 1085 if (result) { 1086 mmap_read_unlock(mm); 1087 goto out_nolock; 1088 } 1089 1090 pmd = mm_find_pmd(mm, address); 1091 if (!pmd) { 1092 result = SCAN_PMD_NULL; 1093 mmap_read_unlock(mm); 1094 goto out_nolock; 1095 } 1096 1097 /* 1098 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1099 * If it fails, we release mmap_lock and jump out_nolock. 1100 * Continuing to collapse causes inconsistency. 1101 */ 1102 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1103 pmd, referenced)) { 1104 mmap_read_unlock(mm); 1105 goto out_nolock; 1106 } 1107 1108 mmap_read_unlock(mm); 1109 /* 1110 * Prevent all access to pagetables with the exception of 1111 * gup_fast later handled by the ptep_clear_flush and the VM 1112 * handled by the anon_vma lock + PG_lock. 1113 */ 1114 mmap_write_lock(mm); 1115 result = hugepage_vma_revalidate(mm, address, &vma); 1116 if (result) 1117 goto out_up_write; 1118 /* check if the pmd is still valid */ 1119 if (mm_find_pmd(mm, address) != pmd) 1120 goto out_up_write; 1121 1122 anon_vma_lock_write(vma->anon_vma); 1123 1124 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1125 address, address + HPAGE_PMD_SIZE); 1126 mmu_notifier_invalidate_range_start(&range); 1127 1128 pte = pte_offset_map(pmd, address); 1129 pte_ptl = pte_lockptr(mm, pmd); 1130 1131 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1132 /* 1133 * After this gup_fast can't run anymore. This also removes 1134 * any huge TLB entry from the CPU so we won't allow 1135 * huge and small TLB entries for the same virtual address 1136 * to avoid the risk of CPU bugs in that area. 1137 */ 1138 _pmd = pmdp_collapse_flush(vma, address, pmd); 1139 spin_unlock(pmd_ptl); 1140 mmu_notifier_invalidate_range_end(&range); 1141 1142 spin_lock(pte_ptl); 1143 isolated = __collapse_huge_page_isolate(vma, address, pte, 1144 &compound_pagelist); 1145 spin_unlock(pte_ptl); 1146 1147 if (unlikely(!isolated)) { 1148 pte_unmap(pte); 1149 spin_lock(pmd_ptl); 1150 BUG_ON(!pmd_none(*pmd)); 1151 /* 1152 * We can only use set_pmd_at when establishing 1153 * hugepmds and never for establishing regular pmds that 1154 * points to regular pagetables. Use pmd_populate for that 1155 */ 1156 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1157 spin_unlock(pmd_ptl); 1158 anon_vma_unlock_write(vma->anon_vma); 1159 result = SCAN_FAIL; 1160 goto out_up_write; 1161 } 1162 1163 /* 1164 * All pages are isolated and locked so anon_vma rmap 1165 * can't run anymore. 1166 */ 1167 anon_vma_unlock_write(vma->anon_vma); 1168 1169 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1170 &compound_pagelist); 1171 pte_unmap(pte); 1172 /* 1173 * spin_lock() below is not the equivalent of smp_wmb(), but 1174 * the smp_wmb() inside __SetPageUptodate() can be reused to 1175 * avoid the copy_huge_page writes to become visible after 1176 * the set_pmd_at() write. 1177 */ 1178 __SetPageUptodate(new_page); 1179 pgtable = pmd_pgtable(_pmd); 1180 1181 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1182 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1183 1184 spin_lock(pmd_ptl); 1185 BUG_ON(!pmd_none(*pmd)); 1186 page_add_new_anon_rmap(new_page, vma, address, true); 1187 lru_cache_add_inactive_or_unevictable(new_page, vma); 1188 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1189 set_pmd_at(mm, address, pmd, _pmd); 1190 update_mmu_cache_pmd(vma, address, pmd); 1191 spin_unlock(pmd_ptl); 1192 1193 *hpage = NULL; 1194 1195 khugepaged_pages_collapsed++; 1196 result = SCAN_SUCCEED; 1197 out_up_write: 1198 mmap_write_unlock(mm); 1199 out_nolock: 1200 if (!IS_ERR_OR_NULL(*hpage)) 1201 mem_cgroup_uncharge(page_folio(*hpage)); 1202 trace_mm_collapse_huge_page(mm, isolated, result); 1203 return; 1204 } 1205 1206 static int khugepaged_scan_pmd(struct mm_struct *mm, 1207 struct vm_area_struct *vma, 1208 unsigned long address, 1209 struct page **hpage) 1210 { 1211 pmd_t *pmd; 1212 pte_t *pte, *_pte; 1213 int ret = 0, result = 0, referenced = 0; 1214 int none_or_zero = 0, shared = 0; 1215 struct page *page = NULL; 1216 unsigned long _address; 1217 spinlock_t *ptl; 1218 int node = NUMA_NO_NODE, unmapped = 0; 1219 bool writable = false; 1220 1221 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1222 1223 pmd = mm_find_pmd(mm, address); 1224 if (!pmd) { 1225 result = SCAN_PMD_NULL; 1226 goto out; 1227 } 1228 1229 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1230 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1231 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1232 _pte++, _address += PAGE_SIZE) { 1233 pte_t pteval = *_pte; 1234 if (is_swap_pte(pteval)) { 1235 if (++unmapped <= khugepaged_max_ptes_swap) { 1236 /* 1237 * Always be strict with uffd-wp 1238 * enabled swap entries. Please see 1239 * comment below for pte_uffd_wp(). 1240 */ 1241 if (pte_swp_uffd_wp(pteval)) { 1242 result = SCAN_PTE_UFFD_WP; 1243 goto out_unmap; 1244 } 1245 continue; 1246 } else { 1247 result = SCAN_EXCEED_SWAP_PTE; 1248 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1249 goto out_unmap; 1250 } 1251 } 1252 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1253 if (!userfaultfd_armed(vma) && 1254 ++none_or_zero <= khugepaged_max_ptes_none) { 1255 continue; 1256 } else { 1257 result = SCAN_EXCEED_NONE_PTE; 1258 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1259 goto out_unmap; 1260 } 1261 } 1262 if (pte_uffd_wp(pteval)) { 1263 /* 1264 * Don't collapse the page if any of the small 1265 * PTEs are armed with uffd write protection. 1266 * Here we can also mark the new huge pmd as 1267 * write protected if any of the small ones is 1268 * marked but that could bring unknown 1269 * userfault messages that falls outside of 1270 * the registered range. So, just be simple. 1271 */ 1272 result = SCAN_PTE_UFFD_WP; 1273 goto out_unmap; 1274 } 1275 if (pte_write(pteval)) 1276 writable = true; 1277 1278 page = vm_normal_page(vma, _address, pteval); 1279 if (unlikely(!page)) { 1280 result = SCAN_PAGE_NULL; 1281 goto out_unmap; 1282 } 1283 1284 if (page_mapcount(page) > 1 && 1285 ++shared > khugepaged_max_ptes_shared) { 1286 result = SCAN_EXCEED_SHARED_PTE; 1287 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1288 goto out_unmap; 1289 } 1290 1291 page = compound_head(page); 1292 1293 /* 1294 * Record which node the original page is from and save this 1295 * information to khugepaged_node_load[]. 1296 * Khugepaged will allocate hugepage from the node has the max 1297 * hit record. 1298 */ 1299 node = page_to_nid(page); 1300 if (khugepaged_scan_abort(node)) { 1301 result = SCAN_SCAN_ABORT; 1302 goto out_unmap; 1303 } 1304 khugepaged_node_load[node]++; 1305 if (!PageLRU(page)) { 1306 result = SCAN_PAGE_LRU; 1307 goto out_unmap; 1308 } 1309 if (PageLocked(page)) { 1310 result = SCAN_PAGE_LOCK; 1311 goto out_unmap; 1312 } 1313 if (!PageAnon(page)) { 1314 result = SCAN_PAGE_ANON; 1315 goto out_unmap; 1316 } 1317 1318 /* 1319 * Check if the page has any GUP (or other external) pins. 1320 * 1321 * Here the check is racy it may see totmal_mapcount > refcount 1322 * in some cases. 1323 * For example, one process with one forked child process. 1324 * The parent has the PMD split due to MADV_DONTNEED, then 1325 * the child is trying unmap the whole PMD, but khugepaged 1326 * may be scanning the parent between the child has 1327 * PageDoubleMap flag cleared and dec the mapcount. So 1328 * khugepaged may see total_mapcount > refcount. 1329 * 1330 * But such case is ephemeral we could always retry collapse 1331 * later. However it may report false positive if the page 1332 * has excessive GUP pins (i.e. 512). Anyway the same check 1333 * will be done again later the risk seems low. 1334 */ 1335 if (!is_refcount_suitable(page)) { 1336 result = SCAN_PAGE_COUNT; 1337 goto out_unmap; 1338 } 1339 if (pte_young(pteval) || 1340 page_is_young(page) || PageReferenced(page) || 1341 mmu_notifier_test_young(vma->vm_mm, address)) 1342 referenced++; 1343 } 1344 if (!writable) { 1345 result = SCAN_PAGE_RO; 1346 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1347 result = SCAN_LACK_REFERENCED_PAGE; 1348 } else { 1349 result = SCAN_SUCCEED; 1350 ret = 1; 1351 } 1352 out_unmap: 1353 pte_unmap_unlock(pte, ptl); 1354 if (ret) { 1355 node = khugepaged_find_target_node(); 1356 /* collapse_huge_page will return with the mmap_lock released */ 1357 collapse_huge_page(mm, address, hpage, node, 1358 referenced, unmapped); 1359 } 1360 out: 1361 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1362 none_or_zero, result, unmapped); 1363 return ret; 1364 } 1365 1366 static void collect_mm_slot(struct mm_slot *mm_slot) 1367 { 1368 struct mm_struct *mm = mm_slot->mm; 1369 1370 lockdep_assert_held(&khugepaged_mm_lock); 1371 1372 if (khugepaged_test_exit(mm)) { 1373 /* free mm_slot */ 1374 hash_del(&mm_slot->hash); 1375 list_del(&mm_slot->mm_node); 1376 1377 /* 1378 * Not strictly needed because the mm exited already. 1379 * 1380 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1381 */ 1382 1383 /* khugepaged_mm_lock actually not necessary for the below */ 1384 free_mm_slot(mm_slot); 1385 mmdrop(mm); 1386 } 1387 } 1388 1389 #ifdef CONFIG_SHMEM 1390 /* 1391 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1392 * khugepaged should try to collapse the page table. 1393 */ 1394 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1395 unsigned long addr) 1396 { 1397 struct mm_slot *mm_slot; 1398 1399 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1400 1401 spin_lock(&khugepaged_mm_lock); 1402 mm_slot = get_mm_slot(mm); 1403 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1404 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1405 spin_unlock(&khugepaged_mm_lock); 1406 return 0; 1407 } 1408 1409 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1410 unsigned long addr, pmd_t *pmdp) 1411 { 1412 spinlock_t *ptl; 1413 pmd_t pmd; 1414 1415 mmap_assert_write_locked(mm); 1416 ptl = pmd_lock(vma->vm_mm, pmdp); 1417 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1418 spin_unlock(ptl); 1419 mm_dec_nr_ptes(mm); 1420 page_table_check_pte_clear_range(mm, addr, pmd); 1421 pte_free(mm, pmd_pgtable(pmd)); 1422 } 1423 1424 /** 1425 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1426 * address haddr. 1427 * 1428 * @mm: process address space where collapse happens 1429 * @addr: THP collapse address 1430 * 1431 * This function checks whether all the PTEs in the PMD are pointing to the 1432 * right THP. If so, retract the page table so the THP can refault in with 1433 * as pmd-mapped. 1434 */ 1435 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1436 { 1437 unsigned long haddr = addr & HPAGE_PMD_MASK; 1438 struct vm_area_struct *vma = find_vma(mm, haddr); 1439 struct page *hpage; 1440 pte_t *start_pte, *pte; 1441 pmd_t *pmd; 1442 spinlock_t *ptl; 1443 int count = 0; 1444 int i; 1445 1446 if (!vma || !vma->vm_file || 1447 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1448 return; 1449 1450 /* 1451 * This vm_flags may not have VM_HUGEPAGE if the page was not 1452 * collapsed by this mm. But we can still collapse if the page is 1453 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1454 * will not fail the vma for missing VM_HUGEPAGE 1455 */ 1456 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1457 return; 1458 1459 hpage = find_lock_page(vma->vm_file->f_mapping, 1460 linear_page_index(vma, haddr)); 1461 if (!hpage) 1462 return; 1463 1464 if (!PageHead(hpage)) 1465 goto drop_hpage; 1466 1467 pmd = mm_find_pmd(mm, haddr); 1468 if (!pmd) 1469 goto drop_hpage; 1470 1471 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1472 1473 /* step 1: check all mapped PTEs are to the right huge page */ 1474 for (i = 0, addr = haddr, pte = start_pte; 1475 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1476 struct page *page; 1477 1478 /* empty pte, skip */ 1479 if (pte_none(*pte)) 1480 continue; 1481 1482 /* page swapped out, abort */ 1483 if (!pte_present(*pte)) 1484 goto abort; 1485 1486 page = vm_normal_page(vma, addr, *pte); 1487 1488 /* 1489 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1490 * page table, but the new page will not be a subpage of hpage. 1491 */ 1492 if (hpage + i != page) 1493 goto abort; 1494 count++; 1495 } 1496 1497 /* step 2: adjust rmap */ 1498 for (i = 0, addr = haddr, pte = start_pte; 1499 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1500 struct page *page; 1501 1502 if (pte_none(*pte)) 1503 continue; 1504 page = vm_normal_page(vma, addr, *pte); 1505 page_remove_rmap(page, vma, false); 1506 } 1507 1508 pte_unmap_unlock(start_pte, ptl); 1509 1510 /* step 3: set proper refcount and mm_counters. */ 1511 if (count) { 1512 page_ref_sub(hpage, count); 1513 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1514 } 1515 1516 /* step 4: collapse pmd */ 1517 collapse_and_free_pmd(mm, vma, haddr, pmd); 1518 drop_hpage: 1519 unlock_page(hpage); 1520 put_page(hpage); 1521 return; 1522 1523 abort: 1524 pte_unmap_unlock(start_pte, ptl); 1525 goto drop_hpage; 1526 } 1527 1528 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1529 { 1530 struct mm_struct *mm = mm_slot->mm; 1531 int i; 1532 1533 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1534 return; 1535 1536 if (!mmap_write_trylock(mm)) 1537 return; 1538 1539 if (unlikely(khugepaged_test_exit(mm))) 1540 goto out; 1541 1542 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1543 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1544 1545 out: 1546 mm_slot->nr_pte_mapped_thp = 0; 1547 mmap_write_unlock(mm); 1548 } 1549 1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1551 { 1552 struct vm_area_struct *vma; 1553 struct mm_struct *mm; 1554 unsigned long addr; 1555 pmd_t *pmd; 1556 1557 i_mmap_lock_write(mapping); 1558 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1559 /* 1560 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1561 * got written to. These VMAs are likely not worth investing 1562 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1563 * later. 1564 * 1565 * Not that vma->anon_vma check is racy: it can be set up after 1566 * the check but before we took mmap_lock by the fault path. 1567 * But page lock would prevent establishing any new ptes of the 1568 * page, so we are safe. 1569 * 1570 * An alternative would be drop the check, but check that page 1571 * table is clear before calling pmdp_collapse_flush() under 1572 * ptl. It has higher chance to recover THP for the VMA, but 1573 * has higher cost too. 1574 */ 1575 if (vma->anon_vma) 1576 continue; 1577 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1578 if (addr & ~HPAGE_PMD_MASK) 1579 continue; 1580 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1581 continue; 1582 mm = vma->vm_mm; 1583 pmd = mm_find_pmd(mm, addr); 1584 if (!pmd) 1585 continue; 1586 /* 1587 * We need exclusive mmap_lock to retract page table. 1588 * 1589 * We use trylock due to lock inversion: we need to acquire 1590 * mmap_lock while holding page lock. Fault path does it in 1591 * reverse order. Trylock is a way to avoid deadlock. 1592 */ 1593 if (mmap_write_trylock(mm)) { 1594 if (!khugepaged_test_exit(mm)) 1595 collapse_and_free_pmd(mm, vma, addr, pmd); 1596 mmap_write_unlock(mm); 1597 } else { 1598 /* Try again later */ 1599 khugepaged_add_pte_mapped_thp(mm, addr); 1600 } 1601 } 1602 i_mmap_unlock_write(mapping); 1603 } 1604 1605 /** 1606 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1607 * 1608 * @mm: process address space where collapse happens 1609 * @file: file that collapse on 1610 * @start: collapse start address 1611 * @hpage: new allocated huge page for collapse 1612 * @node: appointed node the new huge page allocate from 1613 * 1614 * Basic scheme is simple, details are more complex: 1615 * - allocate and lock a new huge page; 1616 * - scan page cache replacing old pages with the new one 1617 * + swap/gup in pages if necessary; 1618 * + fill in gaps; 1619 * + keep old pages around in case rollback is required; 1620 * - if replacing succeeds: 1621 * + copy data over; 1622 * + free old pages; 1623 * + unlock huge page; 1624 * - if replacing failed; 1625 * + put all pages back and unfreeze them; 1626 * + restore gaps in the page cache; 1627 * + unlock and free huge page; 1628 */ 1629 static void collapse_file(struct mm_struct *mm, 1630 struct file *file, pgoff_t start, 1631 struct page **hpage, int node) 1632 { 1633 struct address_space *mapping = file->f_mapping; 1634 gfp_t gfp; 1635 struct page *new_page; 1636 pgoff_t index, end = start + HPAGE_PMD_NR; 1637 LIST_HEAD(pagelist); 1638 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1639 int nr_none = 0, result = SCAN_SUCCEED; 1640 bool is_shmem = shmem_file(file); 1641 int nr; 1642 1643 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1644 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1645 1646 /* Only allocate from the target node */ 1647 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1648 1649 new_page = khugepaged_alloc_page(hpage, gfp, node); 1650 if (!new_page) { 1651 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1652 goto out; 1653 } 1654 1655 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1656 result = SCAN_CGROUP_CHARGE_FAIL; 1657 goto out; 1658 } 1659 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1660 1661 /* 1662 * Ensure we have slots for all the pages in the range. This is 1663 * almost certainly a no-op because most of the pages must be present 1664 */ 1665 do { 1666 xas_lock_irq(&xas); 1667 xas_create_range(&xas); 1668 if (!xas_error(&xas)) 1669 break; 1670 xas_unlock_irq(&xas); 1671 if (!xas_nomem(&xas, GFP_KERNEL)) { 1672 result = SCAN_FAIL; 1673 goto out; 1674 } 1675 } while (1); 1676 1677 __SetPageLocked(new_page); 1678 if (is_shmem) 1679 __SetPageSwapBacked(new_page); 1680 new_page->index = start; 1681 new_page->mapping = mapping; 1682 1683 /* 1684 * At this point the new_page is locked and not up-to-date. 1685 * It's safe to insert it into the page cache, because nobody would 1686 * be able to map it or use it in another way until we unlock it. 1687 */ 1688 1689 xas_set(&xas, start); 1690 for (index = start; index < end; index++) { 1691 struct page *page = xas_next(&xas); 1692 1693 VM_BUG_ON(index != xas.xa_index); 1694 if (is_shmem) { 1695 if (!page) { 1696 /* 1697 * Stop if extent has been truncated or 1698 * hole-punched, and is now completely 1699 * empty. 1700 */ 1701 if (index == start) { 1702 if (!xas_next_entry(&xas, end - 1)) { 1703 result = SCAN_TRUNCATED; 1704 goto xa_locked; 1705 } 1706 xas_set(&xas, index); 1707 } 1708 if (!shmem_charge(mapping->host, 1)) { 1709 result = SCAN_FAIL; 1710 goto xa_locked; 1711 } 1712 xas_store(&xas, new_page); 1713 nr_none++; 1714 continue; 1715 } 1716 1717 if (xa_is_value(page) || !PageUptodate(page)) { 1718 xas_unlock_irq(&xas); 1719 /* swap in or instantiate fallocated page */ 1720 if (shmem_getpage(mapping->host, index, &page, 1721 SGP_NOALLOC)) { 1722 result = SCAN_FAIL; 1723 goto xa_unlocked; 1724 } 1725 } else if (trylock_page(page)) { 1726 get_page(page); 1727 xas_unlock_irq(&xas); 1728 } else { 1729 result = SCAN_PAGE_LOCK; 1730 goto xa_locked; 1731 } 1732 } else { /* !is_shmem */ 1733 if (!page || xa_is_value(page)) { 1734 xas_unlock_irq(&xas); 1735 page_cache_sync_readahead(mapping, &file->f_ra, 1736 file, index, 1737 end - index); 1738 /* drain pagevecs to help isolate_lru_page() */ 1739 lru_add_drain(); 1740 page = find_lock_page(mapping, index); 1741 if (unlikely(page == NULL)) { 1742 result = SCAN_FAIL; 1743 goto xa_unlocked; 1744 } 1745 } else if (PageDirty(page)) { 1746 /* 1747 * khugepaged only works on read-only fd, 1748 * so this page is dirty because it hasn't 1749 * been flushed since first write. There 1750 * won't be new dirty pages. 1751 * 1752 * Trigger async flush here and hope the 1753 * writeback is done when khugepaged 1754 * revisits this page. 1755 * 1756 * This is a one-off situation. We are not 1757 * forcing writeback in loop. 1758 */ 1759 xas_unlock_irq(&xas); 1760 filemap_flush(mapping); 1761 result = SCAN_FAIL; 1762 goto xa_unlocked; 1763 } else if (PageWriteback(page)) { 1764 xas_unlock_irq(&xas); 1765 result = SCAN_FAIL; 1766 goto xa_unlocked; 1767 } else if (trylock_page(page)) { 1768 get_page(page); 1769 xas_unlock_irq(&xas); 1770 } else { 1771 result = SCAN_PAGE_LOCK; 1772 goto xa_locked; 1773 } 1774 } 1775 1776 /* 1777 * The page must be locked, so we can drop the i_pages lock 1778 * without racing with truncate. 1779 */ 1780 VM_BUG_ON_PAGE(!PageLocked(page), page); 1781 1782 /* make sure the page is up to date */ 1783 if (unlikely(!PageUptodate(page))) { 1784 result = SCAN_FAIL; 1785 goto out_unlock; 1786 } 1787 1788 /* 1789 * If file was truncated then extended, or hole-punched, before 1790 * we locked the first page, then a THP might be there already. 1791 */ 1792 if (PageTransCompound(page)) { 1793 result = SCAN_PAGE_COMPOUND; 1794 goto out_unlock; 1795 } 1796 1797 if (page_mapping(page) != mapping) { 1798 result = SCAN_TRUNCATED; 1799 goto out_unlock; 1800 } 1801 1802 if (!is_shmem && (PageDirty(page) || 1803 PageWriteback(page))) { 1804 /* 1805 * khugepaged only works on read-only fd, so this 1806 * page is dirty because it hasn't been flushed 1807 * since first write. 1808 */ 1809 result = SCAN_FAIL; 1810 goto out_unlock; 1811 } 1812 1813 if (isolate_lru_page(page)) { 1814 result = SCAN_DEL_PAGE_LRU; 1815 goto out_unlock; 1816 } 1817 1818 if (page_has_private(page) && 1819 !try_to_release_page(page, GFP_KERNEL)) { 1820 result = SCAN_PAGE_HAS_PRIVATE; 1821 putback_lru_page(page); 1822 goto out_unlock; 1823 } 1824 1825 if (page_mapped(page)) 1826 try_to_unmap(page_folio(page), 1827 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1828 1829 xas_lock_irq(&xas); 1830 xas_set(&xas, index); 1831 1832 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1833 1834 /* 1835 * The page is expected to have page_count() == 3: 1836 * - we hold a pin on it; 1837 * - one reference from page cache; 1838 * - one from isolate_lru_page; 1839 */ 1840 if (!page_ref_freeze(page, 3)) { 1841 result = SCAN_PAGE_COUNT; 1842 xas_unlock_irq(&xas); 1843 putback_lru_page(page); 1844 goto out_unlock; 1845 } 1846 1847 /* 1848 * Add the page to the list to be able to undo the collapse if 1849 * something go wrong. 1850 */ 1851 list_add_tail(&page->lru, &pagelist); 1852 1853 /* Finally, replace with the new page. */ 1854 xas_store(&xas, new_page); 1855 continue; 1856 out_unlock: 1857 unlock_page(page); 1858 put_page(page); 1859 goto xa_unlocked; 1860 } 1861 nr = thp_nr_pages(new_page); 1862 1863 if (is_shmem) 1864 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); 1865 else { 1866 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); 1867 filemap_nr_thps_inc(mapping); 1868 /* 1869 * Paired with smp_mb() in do_dentry_open() to ensure 1870 * i_writecount is up to date and the update to nr_thps is 1871 * visible. Ensures the page cache will be truncated if the 1872 * file is opened writable. 1873 */ 1874 smp_mb(); 1875 if (inode_is_open_for_write(mapping->host)) { 1876 result = SCAN_FAIL; 1877 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); 1878 filemap_nr_thps_dec(mapping); 1879 goto xa_locked; 1880 } 1881 } 1882 1883 if (nr_none) { 1884 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1885 if (is_shmem) 1886 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1887 } 1888 1889 /* Join all the small entries into a single multi-index entry */ 1890 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 1891 xas_store(&xas, new_page); 1892 xa_locked: 1893 xas_unlock_irq(&xas); 1894 xa_unlocked: 1895 1896 /* 1897 * If collapse is successful, flush must be done now before copying. 1898 * If collapse is unsuccessful, does flush actually need to be done? 1899 * Do it anyway, to clear the state. 1900 */ 1901 try_to_unmap_flush(); 1902 1903 if (result == SCAN_SUCCEED) { 1904 struct page *page, *tmp; 1905 1906 /* 1907 * Replacing old pages with new one has succeeded, now we 1908 * need to copy the content and free the old pages. 1909 */ 1910 index = start; 1911 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1912 while (index < page->index) { 1913 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1914 index++; 1915 } 1916 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1917 page); 1918 list_del(&page->lru); 1919 page->mapping = NULL; 1920 page_ref_unfreeze(page, 1); 1921 ClearPageActive(page); 1922 ClearPageUnevictable(page); 1923 unlock_page(page); 1924 put_page(page); 1925 index++; 1926 } 1927 while (index < end) { 1928 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1929 index++; 1930 } 1931 1932 SetPageUptodate(new_page); 1933 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1934 if (is_shmem) 1935 set_page_dirty(new_page); 1936 lru_cache_add(new_page); 1937 1938 /* 1939 * Remove pte page tables, so we can re-fault the page as huge. 1940 */ 1941 retract_page_tables(mapping, start); 1942 *hpage = NULL; 1943 1944 khugepaged_pages_collapsed++; 1945 } else { 1946 struct page *page; 1947 1948 /* Something went wrong: roll back page cache changes */ 1949 xas_lock_irq(&xas); 1950 mapping->nrpages -= nr_none; 1951 1952 if (is_shmem) 1953 shmem_uncharge(mapping->host, nr_none); 1954 1955 xas_set(&xas, start); 1956 xas_for_each(&xas, page, end - 1) { 1957 page = list_first_entry_or_null(&pagelist, 1958 struct page, lru); 1959 if (!page || xas.xa_index < page->index) { 1960 if (!nr_none) 1961 break; 1962 nr_none--; 1963 /* Put holes back where they were */ 1964 xas_store(&xas, NULL); 1965 continue; 1966 } 1967 1968 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1969 1970 /* Unfreeze the page. */ 1971 list_del(&page->lru); 1972 page_ref_unfreeze(page, 2); 1973 xas_store(&xas, page); 1974 xas_pause(&xas); 1975 xas_unlock_irq(&xas); 1976 unlock_page(page); 1977 putback_lru_page(page); 1978 xas_lock_irq(&xas); 1979 } 1980 VM_BUG_ON(nr_none); 1981 xas_unlock_irq(&xas); 1982 1983 new_page->mapping = NULL; 1984 } 1985 1986 unlock_page(new_page); 1987 out: 1988 VM_BUG_ON(!list_empty(&pagelist)); 1989 if (!IS_ERR_OR_NULL(*hpage)) 1990 mem_cgroup_uncharge(page_folio(*hpage)); 1991 /* TODO: tracepoints */ 1992 } 1993 1994 static void khugepaged_scan_file(struct mm_struct *mm, 1995 struct file *file, pgoff_t start, struct page **hpage) 1996 { 1997 struct page *page = NULL; 1998 struct address_space *mapping = file->f_mapping; 1999 XA_STATE(xas, &mapping->i_pages, start); 2000 int present, swap; 2001 int node = NUMA_NO_NODE; 2002 int result = SCAN_SUCCEED; 2003 2004 present = 0; 2005 swap = 0; 2006 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2007 rcu_read_lock(); 2008 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2009 if (xas_retry(&xas, page)) 2010 continue; 2011 2012 if (xa_is_value(page)) { 2013 if (++swap > khugepaged_max_ptes_swap) { 2014 result = SCAN_EXCEED_SWAP_PTE; 2015 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2016 break; 2017 } 2018 continue; 2019 } 2020 2021 /* 2022 * XXX: khugepaged should compact smaller compound pages 2023 * into a PMD sized page 2024 */ 2025 if (PageTransCompound(page)) { 2026 result = SCAN_PAGE_COMPOUND; 2027 break; 2028 } 2029 2030 node = page_to_nid(page); 2031 if (khugepaged_scan_abort(node)) { 2032 result = SCAN_SCAN_ABORT; 2033 break; 2034 } 2035 khugepaged_node_load[node]++; 2036 2037 if (!PageLRU(page)) { 2038 result = SCAN_PAGE_LRU; 2039 break; 2040 } 2041 2042 if (page_count(page) != 2043 1 + page_mapcount(page) + page_has_private(page)) { 2044 result = SCAN_PAGE_COUNT; 2045 break; 2046 } 2047 2048 /* 2049 * We probably should check if the page is referenced here, but 2050 * nobody would transfer pte_young() to PageReferenced() for us. 2051 * And rmap walk here is just too costly... 2052 */ 2053 2054 present++; 2055 2056 if (need_resched()) { 2057 xas_pause(&xas); 2058 cond_resched_rcu(); 2059 } 2060 } 2061 rcu_read_unlock(); 2062 2063 if (result == SCAN_SUCCEED) { 2064 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2065 result = SCAN_EXCEED_NONE_PTE; 2066 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2067 } else { 2068 node = khugepaged_find_target_node(); 2069 collapse_file(mm, file, start, hpage, node); 2070 } 2071 } 2072 2073 /* TODO: tracepoints */ 2074 } 2075 #else 2076 static void khugepaged_scan_file(struct mm_struct *mm, 2077 struct file *file, pgoff_t start, struct page **hpage) 2078 { 2079 BUILD_BUG(); 2080 } 2081 2082 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2083 { 2084 } 2085 #endif 2086 2087 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2088 struct page **hpage) 2089 __releases(&khugepaged_mm_lock) 2090 __acquires(&khugepaged_mm_lock) 2091 { 2092 struct mm_slot *mm_slot; 2093 struct mm_struct *mm; 2094 struct vm_area_struct *vma; 2095 int progress = 0; 2096 2097 VM_BUG_ON(!pages); 2098 lockdep_assert_held(&khugepaged_mm_lock); 2099 2100 if (khugepaged_scan.mm_slot) 2101 mm_slot = khugepaged_scan.mm_slot; 2102 else { 2103 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2104 struct mm_slot, mm_node); 2105 khugepaged_scan.address = 0; 2106 khugepaged_scan.mm_slot = mm_slot; 2107 } 2108 spin_unlock(&khugepaged_mm_lock); 2109 khugepaged_collapse_pte_mapped_thps(mm_slot); 2110 2111 mm = mm_slot->mm; 2112 /* 2113 * Don't wait for semaphore (to avoid long wait times). Just move to 2114 * the next mm on the list. 2115 */ 2116 vma = NULL; 2117 if (unlikely(!mmap_read_trylock(mm))) 2118 goto breakouterloop_mmap_lock; 2119 if (likely(!khugepaged_test_exit(mm))) 2120 vma = find_vma(mm, khugepaged_scan.address); 2121 2122 progress++; 2123 for (; vma; vma = vma->vm_next) { 2124 unsigned long hstart, hend; 2125 2126 cond_resched(); 2127 if (unlikely(khugepaged_test_exit(mm))) { 2128 progress++; 2129 break; 2130 } 2131 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2132 skip: 2133 progress++; 2134 continue; 2135 } 2136 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2137 hend = vma->vm_end & HPAGE_PMD_MASK; 2138 if (hstart >= hend) 2139 goto skip; 2140 if (khugepaged_scan.address > hend) 2141 goto skip; 2142 if (khugepaged_scan.address < hstart) 2143 khugepaged_scan.address = hstart; 2144 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2145 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2146 goto skip; 2147 2148 while (khugepaged_scan.address < hend) { 2149 int ret; 2150 cond_resched(); 2151 if (unlikely(khugepaged_test_exit(mm))) 2152 goto breakouterloop; 2153 2154 VM_BUG_ON(khugepaged_scan.address < hstart || 2155 khugepaged_scan.address + HPAGE_PMD_SIZE > 2156 hend); 2157 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2158 struct file *file = get_file(vma->vm_file); 2159 pgoff_t pgoff = linear_page_index(vma, 2160 khugepaged_scan.address); 2161 2162 mmap_read_unlock(mm); 2163 ret = 1; 2164 khugepaged_scan_file(mm, file, pgoff, hpage); 2165 fput(file); 2166 } else { 2167 ret = khugepaged_scan_pmd(mm, vma, 2168 khugepaged_scan.address, 2169 hpage); 2170 } 2171 /* move to next address */ 2172 khugepaged_scan.address += HPAGE_PMD_SIZE; 2173 progress += HPAGE_PMD_NR; 2174 if (ret) 2175 /* we released mmap_lock so break loop */ 2176 goto breakouterloop_mmap_lock; 2177 if (progress >= pages) 2178 goto breakouterloop; 2179 } 2180 } 2181 breakouterloop: 2182 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2183 breakouterloop_mmap_lock: 2184 2185 spin_lock(&khugepaged_mm_lock); 2186 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2187 /* 2188 * Release the current mm_slot if this mm is about to die, or 2189 * if we scanned all vmas of this mm. 2190 */ 2191 if (khugepaged_test_exit(mm) || !vma) { 2192 /* 2193 * Make sure that if mm_users is reaching zero while 2194 * khugepaged runs here, khugepaged_exit will find 2195 * mm_slot not pointing to the exiting mm. 2196 */ 2197 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2198 khugepaged_scan.mm_slot = list_entry( 2199 mm_slot->mm_node.next, 2200 struct mm_slot, mm_node); 2201 khugepaged_scan.address = 0; 2202 } else { 2203 khugepaged_scan.mm_slot = NULL; 2204 khugepaged_full_scans++; 2205 } 2206 2207 collect_mm_slot(mm_slot); 2208 } 2209 2210 return progress; 2211 } 2212 2213 static int khugepaged_has_work(void) 2214 { 2215 return !list_empty(&khugepaged_scan.mm_head) && 2216 khugepaged_enabled(); 2217 } 2218 2219 static int khugepaged_wait_event(void) 2220 { 2221 return !list_empty(&khugepaged_scan.mm_head) || 2222 kthread_should_stop(); 2223 } 2224 2225 static void khugepaged_do_scan(void) 2226 { 2227 struct page *hpage = NULL; 2228 unsigned int progress = 0, pass_through_head = 0; 2229 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2230 bool wait = true; 2231 2232 lru_add_drain_all(); 2233 2234 while (progress < pages) { 2235 if (!khugepaged_prealloc_page(&hpage, &wait)) 2236 break; 2237 2238 cond_resched(); 2239 2240 if (unlikely(kthread_should_stop() || try_to_freeze())) 2241 break; 2242 2243 spin_lock(&khugepaged_mm_lock); 2244 if (!khugepaged_scan.mm_slot) 2245 pass_through_head++; 2246 if (khugepaged_has_work() && 2247 pass_through_head < 2) 2248 progress += khugepaged_scan_mm_slot(pages - progress, 2249 &hpage); 2250 else 2251 progress = pages; 2252 spin_unlock(&khugepaged_mm_lock); 2253 } 2254 2255 if (!IS_ERR_OR_NULL(hpage)) 2256 put_page(hpage); 2257 } 2258 2259 static bool khugepaged_should_wakeup(void) 2260 { 2261 return kthread_should_stop() || 2262 time_after_eq(jiffies, khugepaged_sleep_expire); 2263 } 2264 2265 static void khugepaged_wait_work(void) 2266 { 2267 if (khugepaged_has_work()) { 2268 const unsigned long scan_sleep_jiffies = 2269 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2270 2271 if (!scan_sleep_jiffies) 2272 return; 2273 2274 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2275 wait_event_freezable_timeout(khugepaged_wait, 2276 khugepaged_should_wakeup(), 2277 scan_sleep_jiffies); 2278 return; 2279 } 2280 2281 if (khugepaged_enabled()) 2282 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2283 } 2284 2285 static int khugepaged(void *none) 2286 { 2287 struct mm_slot *mm_slot; 2288 2289 set_freezable(); 2290 set_user_nice(current, MAX_NICE); 2291 2292 while (!kthread_should_stop()) { 2293 khugepaged_do_scan(); 2294 khugepaged_wait_work(); 2295 } 2296 2297 spin_lock(&khugepaged_mm_lock); 2298 mm_slot = khugepaged_scan.mm_slot; 2299 khugepaged_scan.mm_slot = NULL; 2300 if (mm_slot) 2301 collect_mm_slot(mm_slot); 2302 spin_unlock(&khugepaged_mm_lock); 2303 return 0; 2304 } 2305 2306 static void set_recommended_min_free_kbytes(void) 2307 { 2308 struct zone *zone; 2309 int nr_zones = 0; 2310 unsigned long recommended_min; 2311 2312 if (!khugepaged_enabled()) { 2313 calculate_min_free_kbytes(); 2314 goto update_wmarks; 2315 } 2316 2317 for_each_populated_zone(zone) { 2318 /* 2319 * We don't need to worry about fragmentation of 2320 * ZONE_MOVABLE since it only has movable pages. 2321 */ 2322 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2323 continue; 2324 2325 nr_zones++; 2326 } 2327 2328 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2329 recommended_min = pageblock_nr_pages * nr_zones * 2; 2330 2331 /* 2332 * Make sure that on average at least two pageblocks are almost free 2333 * of another type, one for a migratetype to fall back to and a 2334 * second to avoid subsequent fallbacks of other types There are 3 2335 * MIGRATE_TYPES we care about. 2336 */ 2337 recommended_min += pageblock_nr_pages * nr_zones * 2338 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2339 2340 /* don't ever allow to reserve more than 5% of the lowmem */ 2341 recommended_min = min(recommended_min, 2342 (unsigned long) nr_free_buffer_pages() / 20); 2343 recommended_min <<= (PAGE_SHIFT-10); 2344 2345 if (recommended_min > min_free_kbytes) { 2346 if (user_min_free_kbytes >= 0) 2347 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2348 min_free_kbytes, recommended_min); 2349 2350 min_free_kbytes = recommended_min; 2351 } 2352 2353 update_wmarks: 2354 setup_per_zone_wmarks(); 2355 } 2356 2357 int start_stop_khugepaged(void) 2358 { 2359 int err = 0; 2360 2361 mutex_lock(&khugepaged_mutex); 2362 if (khugepaged_enabled()) { 2363 if (!khugepaged_thread) 2364 khugepaged_thread = kthread_run(khugepaged, NULL, 2365 "khugepaged"); 2366 if (IS_ERR(khugepaged_thread)) { 2367 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2368 err = PTR_ERR(khugepaged_thread); 2369 khugepaged_thread = NULL; 2370 goto fail; 2371 } 2372 2373 if (!list_empty(&khugepaged_scan.mm_head)) 2374 wake_up_interruptible(&khugepaged_wait); 2375 } else if (khugepaged_thread) { 2376 kthread_stop(khugepaged_thread); 2377 khugepaged_thread = NULL; 2378 } 2379 set_recommended_min_free_kbytes(); 2380 fail: 2381 mutex_unlock(&khugepaged_mutex); 2382 return err; 2383 } 2384 2385 void khugepaged_min_free_kbytes_update(void) 2386 { 2387 mutex_lock(&khugepaged_mutex); 2388 if (khugepaged_enabled() && khugepaged_thread) 2389 set_recommended_min_free_kbytes(); 2390 mutex_unlock(&khugepaged_mutex); 2391 } 2392