xref: /openbmc/linux/mm/kfence/core.c (revision e8377f49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/irq_work.h>
14 #include <linux/kcsan-checks.h>
15 #include <linux/kfence.h>
16 #include <linux/kmemleak.h>
17 #include <linux/list.h>
18 #include <linux/lockdep.h>
19 #include <linux/memblock.h>
20 #include <linux/moduleparam.h>
21 #include <linux/random.h>
22 #include <linux/rcupdate.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 
30 #include <asm/kfence.h>
31 
32 #include "kfence.h"
33 
34 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
35 #define KFENCE_WARN_ON(cond)                                                   \
36 	({                                                                     \
37 		const bool __cond = WARN_ON(cond);                             \
38 		if (unlikely(__cond))                                          \
39 			WRITE_ONCE(kfence_enabled, false);                     \
40 		__cond;                                                        \
41 	})
42 
43 /* === Data ================================================================= */
44 
45 static bool kfence_enabled __read_mostly;
46 
47 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
48 
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "kfence."
53 
54 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
55 {
56 	unsigned long num;
57 	int ret = kstrtoul(val, 0, &num);
58 
59 	if (ret < 0)
60 		return ret;
61 
62 	if (!num) /* Using 0 to indicate KFENCE is disabled. */
63 		WRITE_ONCE(kfence_enabled, false);
64 	else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
65 		return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
66 
67 	*((unsigned long *)kp->arg) = num;
68 	return 0;
69 }
70 
71 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
72 {
73 	if (!READ_ONCE(kfence_enabled))
74 		return sprintf(buffer, "0\n");
75 
76 	return param_get_ulong(buffer, kp);
77 }
78 
79 static const struct kernel_param_ops sample_interval_param_ops = {
80 	.set = param_set_sample_interval,
81 	.get = param_get_sample_interval,
82 };
83 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
84 
85 /* The pool of pages used for guard pages and objects. */
86 char *__kfence_pool __ro_after_init;
87 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
88 
89 /*
90  * Per-object metadata, with one-to-one mapping of object metadata to
91  * backing pages (in __kfence_pool).
92  */
93 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
94 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
95 
96 /* Freelist with available objects. */
97 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
98 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
99 
100 #ifdef CONFIG_KFENCE_STATIC_KEYS
101 /* The static key to set up a KFENCE allocation. */
102 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
103 #endif
104 
105 /* Gates the allocation, ensuring only one succeeds in a given period. */
106 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
107 
108 /* Statistics counters for debugfs. */
109 enum kfence_counter_id {
110 	KFENCE_COUNTER_ALLOCATED,
111 	KFENCE_COUNTER_ALLOCS,
112 	KFENCE_COUNTER_FREES,
113 	KFENCE_COUNTER_ZOMBIES,
114 	KFENCE_COUNTER_BUGS,
115 	KFENCE_COUNTER_COUNT,
116 };
117 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
118 static const char *const counter_names[] = {
119 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
120 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
121 	[KFENCE_COUNTER_FREES]		= "total frees",
122 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
123 	[KFENCE_COUNTER_BUGS]		= "total bugs",
124 };
125 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
126 
127 /* === Internals ============================================================ */
128 
129 static bool kfence_protect(unsigned long addr)
130 {
131 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
132 }
133 
134 static bool kfence_unprotect(unsigned long addr)
135 {
136 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
137 }
138 
139 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
140 {
141 	long index;
142 
143 	/* The checks do not affect performance; only called from slow-paths. */
144 
145 	if (!is_kfence_address((void *)addr))
146 		return NULL;
147 
148 	/*
149 	 * May be an invalid index if called with an address at the edge of
150 	 * __kfence_pool, in which case we would report an "invalid access"
151 	 * error.
152 	 */
153 	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
154 	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
155 		return NULL;
156 
157 	return &kfence_metadata[index];
158 }
159 
160 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
161 {
162 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
163 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
164 
165 	/* The checks do not affect performance; only called from slow-paths. */
166 
167 	/* Only call with a pointer into kfence_metadata. */
168 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
169 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
170 		return 0;
171 
172 	/*
173 	 * This metadata object only ever maps to 1 page; verify that the stored
174 	 * address is in the expected range.
175 	 */
176 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
177 		return 0;
178 
179 	return pageaddr;
180 }
181 
182 /*
183  * Update the object's metadata state, including updating the alloc/free stacks
184  * depending on the state transition.
185  */
186 static noinline void metadata_update_state(struct kfence_metadata *meta,
187 					   enum kfence_object_state next)
188 {
189 	struct kfence_track *track =
190 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
191 
192 	lockdep_assert_held(&meta->lock);
193 
194 	/*
195 	 * Skip over 1 (this) functions; noinline ensures we do not accidentally
196 	 * skip over the caller by never inlining.
197 	 */
198 	track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
199 	track->pid = task_pid_nr(current);
200 	track->cpu = raw_smp_processor_id();
201 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
202 
203 	/*
204 	 * Pairs with READ_ONCE() in
205 	 *	kfence_shutdown_cache(),
206 	 *	kfence_handle_page_fault().
207 	 */
208 	WRITE_ONCE(meta->state, next);
209 }
210 
211 /* Write canary byte to @addr. */
212 static inline bool set_canary_byte(u8 *addr)
213 {
214 	*addr = KFENCE_CANARY_PATTERN(addr);
215 	return true;
216 }
217 
218 /* Check canary byte at @addr. */
219 static inline bool check_canary_byte(u8 *addr)
220 {
221 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
222 		return true;
223 
224 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
225 	kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
226 			    KFENCE_ERROR_CORRUPTION);
227 	return false;
228 }
229 
230 /* __always_inline this to ensure we won't do an indirect call to fn. */
231 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
232 {
233 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
234 	unsigned long addr;
235 
236 	lockdep_assert_held(&meta->lock);
237 
238 	/*
239 	 * We'll iterate over each canary byte per-side until fn() returns
240 	 * false. However, we'll still iterate over the canary bytes to the
241 	 * right of the object even if there was an error in the canary bytes to
242 	 * the left of the object. Specifically, if check_canary_byte()
243 	 * generates an error, showing both sides might give more clues as to
244 	 * what the error is about when displaying which bytes were corrupted.
245 	 */
246 
247 	/* Apply to left of object. */
248 	for (addr = pageaddr; addr < meta->addr; addr++) {
249 		if (!fn((u8 *)addr))
250 			break;
251 	}
252 
253 	/* Apply to right of object. */
254 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
255 		if (!fn((u8 *)addr))
256 			break;
257 	}
258 }
259 
260 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
261 {
262 	struct kfence_metadata *meta = NULL;
263 	unsigned long flags;
264 	struct page *page;
265 	void *addr;
266 
267 	/* Try to obtain a free object. */
268 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
269 	if (!list_empty(&kfence_freelist)) {
270 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
271 		list_del_init(&meta->list);
272 	}
273 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
274 	if (!meta)
275 		return NULL;
276 
277 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
278 		/*
279 		 * This is extremely unlikely -- we are reporting on a
280 		 * use-after-free, which locked meta->lock, and the reporting
281 		 * code via printk calls kmalloc() which ends up in
282 		 * kfence_alloc() and tries to grab the same object that we're
283 		 * reporting on. While it has never been observed, lockdep does
284 		 * report that there is a possibility of deadlock. Fix it by
285 		 * using trylock and bailing out gracefully.
286 		 */
287 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
288 		/* Put the object back on the freelist. */
289 		list_add_tail(&meta->list, &kfence_freelist);
290 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
291 
292 		return NULL;
293 	}
294 
295 	meta->addr = metadata_to_pageaddr(meta);
296 	/* Unprotect if we're reusing this page. */
297 	if (meta->state == KFENCE_OBJECT_FREED)
298 		kfence_unprotect(meta->addr);
299 
300 	/*
301 	 * Note: for allocations made before RNG initialization, will always
302 	 * return zero. We still benefit from enabling KFENCE as early as
303 	 * possible, even when the RNG is not yet available, as this will allow
304 	 * KFENCE to detect bugs due to earlier allocations. The only downside
305 	 * is that the out-of-bounds accesses detected are deterministic for
306 	 * such allocations.
307 	 */
308 	if (prandom_u32_max(2)) {
309 		/* Allocate on the "right" side, re-calculate address. */
310 		meta->addr += PAGE_SIZE - size;
311 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
312 	}
313 
314 	addr = (void *)meta->addr;
315 
316 	/* Update remaining metadata. */
317 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
318 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
319 	WRITE_ONCE(meta->cache, cache);
320 	meta->size = size;
321 	for_each_canary(meta, set_canary_byte);
322 
323 	/* Set required struct page fields. */
324 	page = virt_to_page(meta->addr);
325 	page->slab_cache = cache;
326 	if (IS_ENABLED(CONFIG_SLUB))
327 		page->objects = 1;
328 	if (IS_ENABLED(CONFIG_SLAB))
329 		page->s_mem = addr;
330 
331 	raw_spin_unlock_irqrestore(&meta->lock, flags);
332 
333 	/* Memory initialization. */
334 
335 	/*
336 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
337 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
338 	 * redzone.
339 	 */
340 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
341 		memzero_explicit(addr, size);
342 	if (cache->ctor)
343 		cache->ctor(addr);
344 
345 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
346 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
347 
348 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
349 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
350 
351 	return addr;
352 }
353 
354 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
355 {
356 	struct kcsan_scoped_access assert_page_exclusive;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&meta->lock, flags);
360 
361 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
362 		/* Invalid or double-free, bail out. */
363 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
364 		kfence_report_error((unsigned long)addr, false, NULL, meta,
365 				    KFENCE_ERROR_INVALID_FREE);
366 		raw_spin_unlock_irqrestore(&meta->lock, flags);
367 		return;
368 	}
369 
370 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
371 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
372 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
373 				  &assert_page_exclusive);
374 
375 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
376 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
377 
378 	/* Restore page protection if there was an OOB access. */
379 	if (meta->unprotected_page) {
380 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
381 		kfence_protect(meta->unprotected_page);
382 		meta->unprotected_page = 0;
383 	}
384 
385 	/* Check canary bytes for memory corruption. */
386 	for_each_canary(meta, check_canary_byte);
387 
388 	/*
389 	 * Clear memory if init-on-free is set. While we protect the page, the
390 	 * data is still there, and after a use-after-free is detected, we
391 	 * unprotect the page, so the data is still accessible.
392 	 */
393 	if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
394 		memzero_explicit(addr, meta->size);
395 
396 	/* Mark the object as freed. */
397 	metadata_update_state(meta, KFENCE_OBJECT_FREED);
398 
399 	raw_spin_unlock_irqrestore(&meta->lock, flags);
400 
401 	/* Protect to detect use-after-frees. */
402 	kfence_protect((unsigned long)addr);
403 
404 	kcsan_end_scoped_access(&assert_page_exclusive);
405 	if (!zombie) {
406 		/* Add it to the tail of the freelist for reuse. */
407 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
408 		KFENCE_WARN_ON(!list_empty(&meta->list));
409 		list_add_tail(&meta->list, &kfence_freelist);
410 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
411 
412 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
413 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
414 	} else {
415 		/* See kfence_shutdown_cache(). */
416 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
417 	}
418 }
419 
420 static void rcu_guarded_free(struct rcu_head *h)
421 {
422 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
423 
424 	kfence_guarded_free((void *)meta->addr, meta, false);
425 }
426 
427 static bool __init kfence_init_pool(void)
428 {
429 	unsigned long addr = (unsigned long)__kfence_pool;
430 	struct page *pages;
431 	int i;
432 
433 	if (!__kfence_pool)
434 		return false;
435 
436 	if (!arch_kfence_init_pool())
437 		goto err;
438 
439 	pages = virt_to_page(addr);
440 
441 	/*
442 	 * Set up object pages: they must have PG_slab set, to avoid freeing
443 	 * these as real pages.
444 	 *
445 	 * We also want to avoid inserting kfence_free() in the kfree()
446 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
447 	 * enters __slab_free() slow-path.
448 	 */
449 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
450 		if (!i || (i % 2))
451 			continue;
452 
453 		/* Verify we do not have a compound head page. */
454 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
455 			goto err;
456 
457 		__SetPageSlab(&pages[i]);
458 	}
459 
460 	/*
461 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
462 	 * merely serves as an extended guard page. However, adding one
463 	 * additional page in the beginning gives us an even number of pages,
464 	 * which simplifies the mapping of address to metadata index.
465 	 */
466 	for (i = 0; i < 2; i++) {
467 		if (unlikely(!kfence_protect(addr)))
468 			goto err;
469 
470 		addr += PAGE_SIZE;
471 	}
472 
473 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
474 		struct kfence_metadata *meta = &kfence_metadata[i];
475 
476 		/* Initialize metadata. */
477 		INIT_LIST_HEAD(&meta->list);
478 		raw_spin_lock_init(&meta->lock);
479 		meta->state = KFENCE_OBJECT_UNUSED;
480 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
481 		list_add_tail(&meta->list, &kfence_freelist);
482 
483 		/* Protect the right redzone. */
484 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
485 			goto err;
486 
487 		addr += 2 * PAGE_SIZE;
488 	}
489 
490 	/*
491 	 * The pool is live and will never be deallocated from this point on.
492 	 * Remove the pool object from the kmemleak object tree, as it would
493 	 * otherwise overlap with allocations returned by kfence_alloc(), which
494 	 * are registered with kmemleak through the slab post-alloc hook.
495 	 */
496 	kmemleak_free(__kfence_pool);
497 
498 	return true;
499 
500 err:
501 	/*
502 	 * Only release unprotected pages, and do not try to go back and change
503 	 * page attributes due to risk of failing to do so as well. If changing
504 	 * page attributes for some pages fails, it is very likely that it also
505 	 * fails for the first page, and therefore expect addr==__kfence_pool in
506 	 * most failure cases.
507 	 */
508 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
509 	__kfence_pool = NULL;
510 	return false;
511 }
512 
513 /* === DebugFS Interface ==================================================== */
514 
515 static int stats_show(struct seq_file *seq, void *v)
516 {
517 	int i;
518 
519 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
520 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
521 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
522 
523 	return 0;
524 }
525 DEFINE_SHOW_ATTRIBUTE(stats);
526 
527 /*
528  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
529  * start_object() and next_object() return the object index + 1, because NULL is used
530  * to stop iteration.
531  */
532 static void *start_object(struct seq_file *seq, loff_t *pos)
533 {
534 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
535 		return (void *)((long)*pos + 1);
536 	return NULL;
537 }
538 
539 static void stop_object(struct seq_file *seq, void *v)
540 {
541 }
542 
543 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
544 {
545 	++*pos;
546 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
547 		return (void *)((long)*pos + 1);
548 	return NULL;
549 }
550 
551 static int show_object(struct seq_file *seq, void *v)
552 {
553 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
554 	unsigned long flags;
555 
556 	raw_spin_lock_irqsave(&meta->lock, flags);
557 	kfence_print_object(seq, meta);
558 	raw_spin_unlock_irqrestore(&meta->lock, flags);
559 	seq_puts(seq, "---------------------------------\n");
560 
561 	return 0;
562 }
563 
564 static const struct seq_operations object_seqops = {
565 	.start = start_object,
566 	.next = next_object,
567 	.stop = stop_object,
568 	.show = show_object,
569 };
570 
571 static int open_objects(struct inode *inode, struct file *file)
572 {
573 	return seq_open(file, &object_seqops);
574 }
575 
576 static const struct file_operations objects_fops = {
577 	.open = open_objects,
578 	.read = seq_read,
579 	.llseek = seq_lseek,
580 };
581 
582 static int __init kfence_debugfs_init(void)
583 {
584 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
585 
586 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
587 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
588 	return 0;
589 }
590 
591 late_initcall(kfence_debugfs_init);
592 
593 /* === Allocation Gate Timer ================================================ */
594 
595 #ifdef CONFIG_KFENCE_STATIC_KEYS
596 /* Wait queue to wake up allocation-gate timer task. */
597 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
598 
599 static void wake_up_kfence_timer(struct irq_work *work)
600 {
601 	wake_up(&allocation_wait);
602 }
603 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
604 #endif
605 
606 /*
607  * Set up delayed work, which will enable and disable the static key. We need to
608  * use a work queue (rather than a simple timer), since enabling and disabling a
609  * static key cannot be done from an interrupt.
610  *
611  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
612  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
613  * more aggressive sampling intervals), we could get away with a variant that
614  * avoids IPIs, at the cost of not immediately capturing allocations if the
615  * instructions remain cached.
616  */
617 static struct delayed_work kfence_timer;
618 static void toggle_allocation_gate(struct work_struct *work)
619 {
620 	if (!READ_ONCE(kfence_enabled))
621 		return;
622 
623 	atomic_set(&kfence_allocation_gate, 0);
624 #ifdef CONFIG_KFENCE_STATIC_KEYS
625 	/* Enable static key, and await allocation to happen. */
626 	static_branch_enable(&kfence_allocation_key);
627 
628 	if (sysctl_hung_task_timeout_secs) {
629 		/*
630 		 * During low activity with no allocations we might wait a
631 		 * while; let's avoid the hung task warning.
632 		 */
633 		wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
634 					sysctl_hung_task_timeout_secs * HZ / 2);
635 	} else {
636 		wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
637 	}
638 
639 	/* Disable static key and reset timer. */
640 	static_branch_disable(&kfence_allocation_key);
641 #endif
642 	queue_delayed_work(system_unbound_wq, &kfence_timer,
643 			   msecs_to_jiffies(kfence_sample_interval));
644 }
645 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
646 
647 /* === Public interface ===================================================== */
648 
649 void __init kfence_alloc_pool(void)
650 {
651 	if (!kfence_sample_interval)
652 		return;
653 
654 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
655 
656 	if (!__kfence_pool)
657 		pr_err("failed to allocate pool\n");
658 }
659 
660 void __init kfence_init(void)
661 {
662 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
663 	if (!kfence_sample_interval)
664 		return;
665 
666 	if (!kfence_init_pool()) {
667 		pr_err("%s failed\n", __func__);
668 		return;
669 	}
670 
671 	WRITE_ONCE(kfence_enabled, true);
672 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
673 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
674 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
675 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
676 }
677 
678 void kfence_shutdown_cache(struct kmem_cache *s)
679 {
680 	unsigned long flags;
681 	struct kfence_metadata *meta;
682 	int i;
683 
684 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
685 		bool in_use;
686 
687 		meta = &kfence_metadata[i];
688 
689 		/*
690 		 * If we observe some inconsistent cache and state pair where we
691 		 * should have returned false here, cache destruction is racing
692 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
693 		 * the lock will not help, as different critical section
694 		 * serialization will have the same outcome.
695 		 */
696 		if (READ_ONCE(meta->cache) != s ||
697 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
698 			continue;
699 
700 		raw_spin_lock_irqsave(&meta->lock, flags);
701 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
702 		raw_spin_unlock_irqrestore(&meta->lock, flags);
703 
704 		if (in_use) {
705 			/*
706 			 * This cache still has allocations, and we should not
707 			 * release them back into the freelist so they can still
708 			 * safely be used and retain the kernel's default
709 			 * behaviour of keeping the allocations alive (leak the
710 			 * cache); however, they effectively become "zombie
711 			 * allocations" as the KFENCE objects are the only ones
712 			 * still in use and the owning cache is being destroyed.
713 			 *
714 			 * We mark them freed, so that any subsequent use shows
715 			 * more useful error messages that will include stack
716 			 * traces of the user of the object, the original
717 			 * allocation, and caller to shutdown_cache().
718 			 */
719 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
720 		}
721 	}
722 
723 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
724 		meta = &kfence_metadata[i];
725 
726 		/* See above. */
727 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
728 			continue;
729 
730 		raw_spin_lock_irqsave(&meta->lock, flags);
731 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
732 			meta->cache = NULL;
733 		raw_spin_unlock_irqrestore(&meta->lock, flags);
734 	}
735 }
736 
737 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
738 {
739 	/*
740 	 * Perform size check before switching kfence_allocation_gate, so that
741 	 * we don't disable KFENCE without making an allocation.
742 	 */
743 	if (size > PAGE_SIZE)
744 		return NULL;
745 
746 	/*
747 	 * Skip allocations from non-default zones, including DMA. We cannot
748 	 * guarantee that pages in the KFENCE pool will have the requested
749 	 * properties (e.g. reside in DMAable memory).
750 	 */
751 	if ((flags & GFP_ZONEMASK) ||
752 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32)))
753 		return NULL;
754 
755 	/*
756 	 * allocation_gate only needs to become non-zero, so it doesn't make
757 	 * sense to continue writing to it and pay the associated contention
758 	 * cost, in case we have a large number of concurrent allocations.
759 	 */
760 	if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
761 		return NULL;
762 #ifdef CONFIG_KFENCE_STATIC_KEYS
763 	/*
764 	 * waitqueue_active() is fully ordered after the update of
765 	 * kfence_allocation_gate per atomic_inc_return().
766 	 */
767 	if (waitqueue_active(&allocation_wait)) {
768 		/*
769 		 * Calling wake_up() here may deadlock when allocations happen
770 		 * from within timer code. Use an irq_work to defer it.
771 		 */
772 		irq_work_queue(&wake_up_kfence_timer_work);
773 	}
774 #endif
775 
776 	if (!READ_ONCE(kfence_enabled))
777 		return NULL;
778 
779 	return kfence_guarded_alloc(s, size, flags);
780 }
781 
782 size_t kfence_ksize(const void *addr)
783 {
784 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
785 
786 	/*
787 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
788 	 * either a use-after-free or invalid access.
789 	 */
790 	return meta ? meta->size : 0;
791 }
792 
793 void *kfence_object_start(const void *addr)
794 {
795 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
796 
797 	/*
798 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
799 	 * either a use-after-free or invalid access.
800 	 */
801 	return meta ? (void *)meta->addr : NULL;
802 }
803 
804 void __kfence_free(void *addr)
805 {
806 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
807 
808 	/*
809 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
810 	 * the object, as the object page may be recycled for other-typed
811 	 * objects once it has been freed. meta->cache may be NULL if the cache
812 	 * was destroyed.
813 	 */
814 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
815 		call_rcu(&meta->rcu_head, rcu_guarded_free);
816 	else
817 		kfence_guarded_free(addr, meta, false);
818 }
819 
820 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
821 {
822 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
823 	struct kfence_metadata *to_report = NULL;
824 	enum kfence_error_type error_type;
825 	unsigned long flags;
826 
827 	if (!is_kfence_address((void *)addr))
828 		return false;
829 
830 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
831 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
832 
833 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
834 
835 	if (page_index % 2) {
836 		/* This is a redzone, report a buffer overflow. */
837 		struct kfence_metadata *meta;
838 		int distance = 0;
839 
840 		meta = addr_to_metadata(addr - PAGE_SIZE);
841 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
842 			to_report = meta;
843 			/* Data race ok; distance calculation approximate. */
844 			distance = addr - data_race(meta->addr + meta->size);
845 		}
846 
847 		meta = addr_to_metadata(addr + PAGE_SIZE);
848 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
849 			/* Data race ok; distance calculation approximate. */
850 			if (!to_report || distance > data_race(meta->addr) - addr)
851 				to_report = meta;
852 		}
853 
854 		if (!to_report)
855 			goto out;
856 
857 		raw_spin_lock_irqsave(&to_report->lock, flags);
858 		to_report->unprotected_page = addr;
859 		error_type = KFENCE_ERROR_OOB;
860 
861 		/*
862 		 * If the object was freed before we took the look we can still
863 		 * report this as an OOB -- the report will simply show the
864 		 * stacktrace of the free as well.
865 		 */
866 	} else {
867 		to_report = addr_to_metadata(addr);
868 		if (!to_report)
869 			goto out;
870 
871 		raw_spin_lock_irqsave(&to_report->lock, flags);
872 		error_type = KFENCE_ERROR_UAF;
873 		/*
874 		 * We may race with __kfence_alloc(), and it is possible that a
875 		 * freed object may be reallocated. We simply report this as a
876 		 * use-after-free, with the stack trace showing the place where
877 		 * the object was re-allocated.
878 		 */
879 	}
880 
881 out:
882 	if (to_report) {
883 		kfence_report_error(addr, is_write, regs, to_report, error_type);
884 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
885 	} else {
886 		/* This may be a UAF or OOB access, but we can't be sure. */
887 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
888 	}
889 
890 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
891 }
892