xref: /openbmc/linux/mm/kfence/core.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 
33 #include <asm/kfence.h>
34 
35 #include "kfence.h"
36 
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39 	({                                                                     \
40 		const bool __cond = WARN_ON(cond);                             \
41 		if (unlikely(__cond)) {                                        \
42 			WRITE_ONCE(kfence_enabled, false);                     \
43 			disabled_by_warn = true;                               \
44 		}                                                              \
45 		__cond;                                                        \
46 	})
47 
48 /* === Data ================================================================= */
49 
50 static bool kfence_enabled __read_mostly;
51 static bool disabled_by_warn __read_mostly;
52 
53 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
54 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
55 
56 #ifdef MODULE_PARAM_PREFIX
57 #undef MODULE_PARAM_PREFIX
58 #endif
59 #define MODULE_PARAM_PREFIX "kfence."
60 
61 static int kfence_enable_late(void);
62 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
63 {
64 	unsigned long num;
65 	int ret = kstrtoul(val, 0, &num);
66 
67 	if (ret < 0)
68 		return ret;
69 
70 	if (!num) /* Using 0 to indicate KFENCE is disabled. */
71 		WRITE_ONCE(kfence_enabled, false);
72 
73 	*((unsigned long *)kp->arg) = num;
74 
75 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
76 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
77 	return 0;
78 }
79 
80 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
81 {
82 	if (!READ_ONCE(kfence_enabled))
83 		return sprintf(buffer, "0\n");
84 
85 	return param_get_ulong(buffer, kp);
86 }
87 
88 static const struct kernel_param_ops sample_interval_param_ops = {
89 	.set = param_set_sample_interval,
90 	.get = param_get_sample_interval,
91 };
92 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
93 
94 /* Pool usage% threshold when currently covered allocations are skipped. */
95 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
96 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
97 
98 /* If true, use a deferrable timer. */
99 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
100 module_param_named(deferrable, kfence_deferrable, bool, 0444);
101 
102 /* The pool of pages used for guard pages and objects. */
103 char *__kfence_pool __read_mostly;
104 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
105 
106 /*
107  * Per-object metadata, with one-to-one mapping of object metadata to
108  * backing pages (in __kfence_pool).
109  */
110 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
111 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
112 
113 /* Freelist with available objects. */
114 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
115 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
116 
117 /*
118  * The static key to set up a KFENCE allocation; or if static keys are not used
119  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
120  */
121 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
122 
123 /* Gates the allocation, ensuring only one succeeds in a given period. */
124 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
125 
126 /*
127  * A Counting Bloom filter of allocation coverage: limits currently covered
128  * allocations of the same source filling up the pool.
129  *
130  * Assuming a range of 15%-85% unique allocations in the pool at any point in
131  * time, the below parameters provide a probablity of 0.02-0.33 for false
132  * positive hits respectively:
133  *
134  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
135  */
136 #define ALLOC_COVERED_HNUM	2
137 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
138 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
139 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
140 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
141 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
142 
143 /* Stack depth used to determine uniqueness of an allocation. */
144 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
145 
146 /*
147  * Randomness for stack hashes, making the same collisions across reboots and
148  * different machines less likely.
149  */
150 static u32 stack_hash_seed __ro_after_init;
151 
152 /* Statistics counters for debugfs. */
153 enum kfence_counter_id {
154 	KFENCE_COUNTER_ALLOCATED,
155 	KFENCE_COUNTER_ALLOCS,
156 	KFENCE_COUNTER_FREES,
157 	KFENCE_COUNTER_ZOMBIES,
158 	KFENCE_COUNTER_BUGS,
159 	KFENCE_COUNTER_SKIP_INCOMPAT,
160 	KFENCE_COUNTER_SKIP_CAPACITY,
161 	KFENCE_COUNTER_SKIP_COVERED,
162 	KFENCE_COUNTER_COUNT,
163 };
164 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
165 static const char *const counter_names[] = {
166 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
167 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
168 	[KFENCE_COUNTER_FREES]		= "total frees",
169 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
170 	[KFENCE_COUNTER_BUGS]		= "total bugs",
171 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
172 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
173 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
174 };
175 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
176 
177 /* === Internals ============================================================ */
178 
179 static inline bool should_skip_covered(void)
180 {
181 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
182 
183 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
184 }
185 
186 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
187 {
188 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
189 	num_entries = filter_irq_stacks(stack_entries, num_entries);
190 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
191 }
192 
193 /*
194  * Adds (or subtracts) count @val for allocation stack trace hash
195  * @alloc_stack_hash from Counting Bloom filter.
196  */
197 static void alloc_covered_add(u32 alloc_stack_hash, int val)
198 {
199 	int i;
200 
201 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
202 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
203 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
204 	}
205 }
206 
207 /*
208  * Returns true if the allocation stack trace hash @alloc_stack_hash is
209  * currently contained (non-zero count) in Counting Bloom filter.
210  */
211 static bool alloc_covered_contains(u32 alloc_stack_hash)
212 {
213 	int i;
214 
215 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
216 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
217 			return false;
218 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
219 	}
220 
221 	return true;
222 }
223 
224 static bool kfence_protect(unsigned long addr)
225 {
226 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
227 }
228 
229 static bool kfence_unprotect(unsigned long addr)
230 {
231 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
232 }
233 
234 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
235 {
236 	long index;
237 
238 	/* The checks do not affect performance; only called from slow-paths. */
239 
240 	if (!is_kfence_address((void *)addr))
241 		return NULL;
242 
243 	/*
244 	 * May be an invalid index if called with an address at the edge of
245 	 * __kfence_pool, in which case we would report an "invalid access"
246 	 * error.
247 	 */
248 	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
249 	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
250 		return NULL;
251 
252 	return &kfence_metadata[index];
253 }
254 
255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256 {
257 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259 
260 	/* The checks do not affect performance; only called from slow-paths. */
261 
262 	/* Only call with a pointer into kfence_metadata. */
263 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
264 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265 		return 0;
266 
267 	/*
268 	 * This metadata object only ever maps to 1 page; verify that the stored
269 	 * address is in the expected range.
270 	 */
271 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272 		return 0;
273 
274 	return pageaddr;
275 }
276 
277 /*
278  * Update the object's metadata state, including updating the alloc/free stacks
279  * depending on the state transition.
280  */
281 static noinline void
282 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
283 		      unsigned long *stack_entries, size_t num_stack_entries)
284 {
285 	struct kfence_track *track =
286 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
287 
288 	lockdep_assert_held(&meta->lock);
289 
290 	if (stack_entries) {
291 		memcpy(track->stack_entries, stack_entries,
292 		       num_stack_entries * sizeof(stack_entries[0]));
293 	} else {
294 		/*
295 		 * Skip over 1 (this) functions; noinline ensures we do not
296 		 * accidentally skip over the caller by never inlining.
297 		 */
298 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
299 	}
300 	track->num_stack_entries = num_stack_entries;
301 	track->pid = task_pid_nr(current);
302 	track->cpu = raw_smp_processor_id();
303 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
304 
305 	/*
306 	 * Pairs with READ_ONCE() in
307 	 *	kfence_shutdown_cache(),
308 	 *	kfence_handle_page_fault().
309 	 */
310 	WRITE_ONCE(meta->state, next);
311 }
312 
313 /* Write canary byte to @addr. */
314 static inline bool set_canary_byte(u8 *addr)
315 {
316 	*addr = KFENCE_CANARY_PATTERN(addr);
317 	return true;
318 }
319 
320 /* Check canary byte at @addr. */
321 static inline bool check_canary_byte(u8 *addr)
322 {
323 	struct kfence_metadata *meta;
324 	unsigned long flags;
325 
326 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
327 		return true;
328 
329 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
330 
331 	meta = addr_to_metadata((unsigned long)addr);
332 	raw_spin_lock_irqsave(&meta->lock, flags);
333 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
334 	raw_spin_unlock_irqrestore(&meta->lock, flags);
335 
336 	return false;
337 }
338 
339 /* __always_inline this to ensure we won't do an indirect call to fn. */
340 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
341 {
342 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
343 	unsigned long addr;
344 
345 	/*
346 	 * We'll iterate over each canary byte per-side until fn() returns
347 	 * false. However, we'll still iterate over the canary bytes to the
348 	 * right of the object even if there was an error in the canary bytes to
349 	 * the left of the object. Specifically, if check_canary_byte()
350 	 * generates an error, showing both sides might give more clues as to
351 	 * what the error is about when displaying which bytes were corrupted.
352 	 */
353 
354 	/* Apply to left of object. */
355 	for (addr = pageaddr; addr < meta->addr; addr++) {
356 		if (!fn((u8 *)addr))
357 			break;
358 	}
359 
360 	/* Apply to right of object. */
361 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
362 		if (!fn((u8 *)addr))
363 			break;
364 	}
365 }
366 
367 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
368 				  unsigned long *stack_entries, size_t num_stack_entries,
369 				  u32 alloc_stack_hash)
370 {
371 	struct kfence_metadata *meta = NULL;
372 	unsigned long flags;
373 	struct slab *slab;
374 	void *addr;
375 
376 	/* Try to obtain a free object. */
377 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
378 	if (!list_empty(&kfence_freelist)) {
379 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
380 		list_del_init(&meta->list);
381 	}
382 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
383 	if (!meta) {
384 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
385 		return NULL;
386 	}
387 
388 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
389 		/*
390 		 * This is extremely unlikely -- we are reporting on a
391 		 * use-after-free, which locked meta->lock, and the reporting
392 		 * code via printk calls kmalloc() which ends up in
393 		 * kfence_alloc() and tries to grab the same object that we're
394 		 * reporting on. While it has never been observed, lockdep does
395 		 * report that there is a possibility of deadlock. Fix it by
396 		 * using trylock and bailing out gracefully.
397 		 */
398 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
399 		/* Put the object back on the freelist. */
400 		list_add_tail(&meta->list, &kfence_freelist);
401 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
402 
403 		return NULL;
404 	}
405 
406 	meta->addr = metadata_to_pageaddr(meta);
407 	/* Unprotect if we're reusing this page. */
408 	if (meta->state == KFENCE_OBJECT_FREED)
409 		kfence_unprotect(meta->addr);
410 
411 	/*
412 	 * Note: for allocations made before RNG initialization, will always
413 	 * return zero. We still benefit from enabling KFENCE as early as
414 	 * possible, even when the RNG is not yet available, as this will allow
415 	 * KFENCE to detect bugs due to earlier allocations. The only downside
416 	 * is that the out-of-bounds accesses detected are deterministic for
417 	 * such allocations.
418 	 */
419 	if (prandom_u32_max(2)) {
420 		/* Allocate on the "right" side, re-calculate address. */
421 		meta->addr += PAGE_SIZE - size;
422 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
423 	}
424 
425 	addr = (void *)meta->addr;
426 
427 	/* Update remaining metadata. */
428 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
429 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
430 	WRITE_ONCE(meta->cache, cache);
431 	meta->size = size;
432 	meta->alloc_stack_hash = alloc_stack_hash;
433 	raw_spin_unlock_irqrestore(&meta->lock, flags);
434 
435 	alloc_covered_add(alloc_stack_hash, 1);
436 
437 	/* Set required slab fields. */
438 	slab = virt_to_slab((void *)meta->addr);
439 	slab->slab_cache = cache;
440 #if defined(CONFIG_SLUB)
441 	slab->objects = 1;
442 #elif defined(CONFIG_SLAB)
443 	slab->s_mem = addr;
444 #endif
445 
446 	/* Memory initialization. */
447 	for_each_canary(meta, set_canary_byte);
448 
449 	/*
450 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
451 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
452 	 * redzone.
453 	 */
454 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
455 		memzero_explicit(addr, size);
456 	if (cache->ctor)
457 		cache->ctor(addr);
458 
459 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
460 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
461 
462 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
463 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
464 
465 	return addr;
466 }
467 
468 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
469 {
470 	struct kcsan_scoped_access assert_page_exclusive;
471 	unsigned long flags;
472 	bool init;
473 
474 	raw_spin_lock_irqsave(&meta->lock, flags);
475 
476 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
477 		/* Invalid or double-free, bail out. */
478 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
479 		kfence_report_error((unsigned long)addr, false, NULL, meta,
480 				    KFENCE_ERROR_INVALID_FREE);
481 		raw_spin_unlock_irqrestore(&meta->lock, flags);
482 		return;
483 	}
484 
485 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
486 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
487 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
488 				  &assert_page_exclusive);
489 
490 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
491 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
492 
493 	/* Restore page protection if there was an OOB access. */
494 	if (meta->unprotected_page) {
495 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
496 		kfence_protect(meta->unprotected_page);
497 		meta->unprotected_page = 0;
498 	}
499 
500 	/* Mark the object as freed. */
501 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
502 	init = slab_want_init_on_free(meta->cache);
503 	raw_spin_unlock_irqrestore(&meta->lock, flags);
504 
505 	alloc_covered_add(meta->alloc_stack_hash, -1);
506 
507 	/* Check canary bytes for memory corruption. */
508 	for_each_canary(meta, check_canary_byte);
509 
510 	/*
511 	 * Clear memory if init-on-free is set. While we protect the page, the
512 	 * data is still there, and after a use-after-free is detected, we
513 	 * unprotect the page, so the data is still accessible.
514 	 */
515 	if (!zombie && unlikely(init))
516 		memzero_explicit(addr, meta->size);
517 
518 	/* Protect to detect use-after-frees. */
519 	kfence_protect((unsigned long)addr);
520 
521 	kcsan_end_scoped_access(&assert_page_exclusive);
522 	if (!zombie) {
523 		/* Add it to the tail of the freelist for reuse. */
524 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
525 		KFENCE_WARN_ON(!list_empty(&meta->list));
526 		list_add_tail(&meta->list, &kfence_freelist);
527 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
528 
529 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
530 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
531 	} else {
532 		/* See kfence_shutdown_cache(). */
533 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
534 	}
535 }
536 
537 static void rcu_guarded_free(struct rcu_head *h)
538 {
539 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
540 
541 	kfence_guarded_free((void *)meta->addr, meta, false);
542 }
543 
544 /*
545  * Initialization of the KFENCE pool after its allocation.
546  * Returns 0 on success; otherwise returns the address up to
547  * which partial initialization succeeded.
548  */
549 static unsigned long kfence_init_pool(void)
550 {
551 	unsigned long addr = (unsigned long)__kfence_pool;
552 	struct page *pages;
553 	int i;
554 
555 	if (!arch_kfence_init_pool())
556 		return addr;
557 
558 	pages = virt_to_page(addr);
559 
560 	/*
561 	 * Set up object pages: they must have PG_slab set, to avoid freeing
562 	 * these as real pages.
563 	 *
564 	 * We also want to avoid inserting kfence_free() in the kfree()
565 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
566 	 * enters __slab_free() slow-path.
567 	 */
568 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
569 		struct slab *slab = page_slab(&pages[i]);
570 
571 		if (!i || (i % 2))
572 			continue;
573 
574 		/* Verify we do not have a compound head page. */
575 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
576 			return addr;
577 
578 		__folio_set_slab(slab_folio(slab));
579 #ifdef CONFIG_MEMCG
580 		slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
581 				   MEMCG_DATA_OBJCGS;
582 #endif
583 	}
584 
585 	/*
586 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
587 	 * merely serves as an extended guard page. However, adding one
588 	 * additional page in the beginning gives us an even number of pages,
589 	 * which simplifies the mapping of address to metadata index.
590 	 */
591 	for (i = 0; i < 2; i++) {
592 		if (unlikely(!kfence_protect(addr)))
593 			return addr;
594 
595 		addr += PAGE_SIZE;
596 	}
597 
598 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
599 		struct kfence_metadata *meta = &kfence_metadata[i];
600 
601 		/* Initialize metadata. */
602 		INIT_LIST_HEAD(&meta->list);
603 		raw_spin_lock_init(&meta->lock);
604 		meta->state = KFENCE_OBJECT_UNUSED;
605 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
606 		list_add_tail(&meta->list, &kfence_freelist);
607 
608 		/* Protect the right redzone. */
609 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
610 			return addr;
611 
612 		addr += 2 * PAGE_SIZE;
613 	}
614 
615 	/*
616 	 * The pool is live and will never be deallocated from this point on.
617 	 * Remove the pool object from the kmemleak object tree, as it would
618 	 * otherwise overlap with allocations returned by kfence_alloc(), which
619 	 * are registered with kmemleak through the slab post-alloc hook.
620 	 */
621 	kmemleak_free(__kfence_pool);
622 
623 	return 0;
624 }
625 
626 static bool __init kfence_init_pool_early(void)
627 {
628 	unsigned long addr;
629 
630 	if (!__kfence_pool)
631 		return false;
632 
633 	addr = kfence_init_pool();
634 
635 	if (!addr)
636 		return true;
637 
638 	/*
639 	 * Only release unprotected pages, and do not try to go back and change
640 	 * page attributes due to risk of failing to do so as well. If changing
641 	 * page attributes for some pages fails, it is very likely that it also
642 	 * fails for the first page, and therefore expect addr==__kfence_pool in
643 	 * most failure cases.
644 	 */
645 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
646 	__kfence_pool = NULL;
647 	return false;
648 }
649 
650 static bool kfence_init_pool_late(void)
651 {
652 	unsigned long addr, free_size;
653 
654 	addr = kfence_init_pool();
655 
656 	if (!addr)
657 		return true;
658 
659 	/* Same as above. */
660 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
661 #ifdef CONFIG_CONTIG_ALLOC
662 	free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
663 #else
664 	free_pages_exact((void *)addr, free_size);
665 #endif
666 	__kfence_pool = NULL;
667 	return false;
668 }
669 
670 /* === DebugFS Interface ==================================================== */
671 
672 static int stats_show(struct seq_file *seq, void *v)
673 {
674 	int i;
675 
676 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
677 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
678 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
679 
680 	return 0;
681 }
682 DEFINE_SHOW_ATTRIBUTE(stats);
683 
684 /*
685  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
686  * start_object() and next_object() return the object index + 1, because NULL is used
687  * to stop iteration.
688  */
689 static void *start_object(struct seq_file *seq, loff_t *pos)
690 {
691 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
692 		return (void *)((long)*pos + 1);
693 	return NULL;
694 }
695 
696 static void stop_object(struct seq_file *seq, void *v)
697 {
698 }
699 
700 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
701 {
702 	++*pos;
703 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
704 		return (void *)((long)*pos + 1);
705 	return NULL;
706 }
707 
708 static int show_object(struct seq_file *seq, void *v)
709 {
710 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
711 	unsigned long flags;
712 
713 	raw_spin_lock_irqsave(&meta->lock, flags);
714 	kfence_print_object(seq, meta);
715 	raw_spin_unlock_irqrestore(&meta->lock, flags);
716 	seq_puts(seq, "---------------------------------\n");
717 
718 	return 0;
719 }
720 
721 static const struct seq_operations object_seqops = {
722 	.start = start_object,
723 	.next = next_object,
724 	.stop = stop_object,
725 	.show = show_object,
726 };
727 
728 static int open_objects(struct inode *inode, struct file *file)
729 {
730 	return seq_open(file, &object_seqops);
731 }
732 
733 static const struct file_operations objects_fops = {
734 	.open = open_objects,
735 	.read = seq_read,
736 	.llseek = seq_lseek,
737 	.release = seq_release,
738 };
739 
740 static int __init kfence_debugfs_init(void)
741 {
742 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
743 
744 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
745 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
746 	return 0;
747 }
748 
749 late_initcall(kfence_debugfs_init);
750 
751 /* === Allocation Gate Timer ================================================ */
752 
753 static struct delayed_work kfence_timer;
754 
755 #ifdef CONFIG_KFENCE_STATIC_KEYS
756 /* Wait queue to wake up allocation-gate timer task. */
757 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
758 
759 static void wake_up_kfence_timer(struct irq_work *work)
760 {
761 	wake_up(&allocation_wait);
762 }
763 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
764 #endif
765 
766 /*
767  * Set up delayed work, which will enable and disable the static key. We need to
768  * use a work queue (rather than a simple timer), since enabling and disabling a
769  * static key cannot be done from an interrupt.
770  *
771  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
772  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
773  * more aggressive sampling intervals), we could get away with a variant that
774  * avoids IPIs, at the cost of not immediately capturing allocations if the
775  * instructions remain cached.
776  */
777 static void toggle_allocation_gate(struct work_struct *work)
778 {
779 	if (!READ_ONCE(kfence_enabled))
780 		return;
781 
782 	atomic_set(&kfence_allocation_gate, 0);
783 #ifdef CONFIG_KFENCE_STATIC_KEYS
784 	/* Enable static key, and await allocation to happen. */
785 	static_branch_enable(&kfence_allocation_key);
786 
787 	if (sysctl_hung_task_timeout_secs) {
788 		/*
789 		 * During low activity with no allocations we might wait a
790 		 * while; let's avoid the hung task warning.
791 		 */
792 		wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
793 					sysctl_hung_task_timeout_secs * HZ / 2);
794 	} else {
795 		wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
796 	}
797 
798 	/* Disable static key and reset timer. */
799 	static_branch_disable(&kfence_allocation_key);
800 #endif
801 	queue_delayed_work(system_unbound_wq, &kfence_timer,
802 			   msecs_to_jiffies(kfence_sample_interval));
803 }
804 
805 /* === Public interface ===================================================== */
806 
807 void __init kfence_alloc_pool(void)
808 {
809 	if (!kfence_sample_interval)
810 		return;
811 
812 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
813 
814 	if (!__kfence_pool)
815 		pr_err("failed to allocate pool\n");
816 }
817 
818 static void kfence_init_enable(void)
819 {
820 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
821 		static_branch_enable(&kfence_allocation_key);
822 
823 	if (kfence_deferrable)
824 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
825 	else
826 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
827 
828 	WRITE_ONCE(kfence_enabled, true);
829 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
830 
831 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
832 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
833 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
834 }
835 
836 void __init kfence_init(void)
837 {
838 	stack_hash_seed = (u32)random_get_entropy();
839 
840 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
841 	if (!kfence_sample_interval)
842 		return;
843 
844 	if (!kfence_init_pool_early()) {
845 		pr_err("%s failed\n", __func__);
846 		return;
847 	}
848 
849 	kfence_init_enable();
850 }
851 
852 static int kfence_init_late(void)
853 {
854 	const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
855 #ifdef CONFIG_CONTIG_ALLOC
856 	struct page *pages;
857 
858 	pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
859 	if (!pages)
860 		return -ENOMEM;
861 	__kfence_pool = page_to_virt(pages);
862 #else
863 	if (nr_pages > MAX_ORDER_NR_PAGES) {
864 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
865 		return -EINVAL;
866 	}
867 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
868 	if (!__kfence_pool)
869 		return -ENOMEM;
870 #endif
871 
872 	if (!kfence_init_pool_late()) {
873 		pr_err("%s failed\n", __func__);
874 		return -EBUSY;
875 	}
876 
877 	kfence_init_enable();
878 	return 0;
879 }
880 
881 static int kfence_enable_late(void)
882 {
883 	if (!__kfence_pool)
884 		return kfence_init_late();
885 
886 	WRITE_ONCE(kfence_enabled, true);
887 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
888 	return 0;
889 }
890 
891 void kfence_shutdown_cache(struct kmem_cache *s)
892 {
893 	unsigned long flags;
894 	struct kfence_metadata *meta;
895 	int i;
896 
897 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
898 		bool in_use;
899 
900 		meta = &kfence_metadata[i];
901 
902 		/*
903 		 * If we observe some inconsistent cache and state pair where we
904 		 * should have returned false here, cache destruction is racing
905 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
906 		 * the lock will not help, as different critical section
907 		 * serialization will have the same outcome.
908 		 */
909 		if (READ_ONCE(meta->cache) != s ||
910 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
911 			continue;
912 
913 		raw_spin_lock_irqsave(&meta->lock, flags);
914 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
915 		raw_spin_unlock_irqrestore(&meta->lock, flags);
916 
917 		if (in_use) {
918 			/*
919 			 * This cache still has allocations, and we should not
920 			 * release them back into the freelist so they can still
921 			 * safely be used and retain the kernel's default
922 			 * behaviour of keeping the allocations alive (leak the
923 			 * cache); however, they effectively become "zombie
924 			 * allocations" as the KFENCE objects are the only ones
925 			 * still in use and the owning cache is being destroyed.
926 			 *
927 			 * We mark them freed, so that any subsequent use shows
928 			 * more useful error messages that will include stack
929 			 * traces of the user of the object, the original
930 			 * allocation, and caller to shutdown_cache().
931 			 */
932 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
933 		}
934 	}
935 
936 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
937 		meta = &kfence_metadata[i];
938 
939 		/* See above. */
940 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
941 			continue;
942 
943 		raw_spin_lock_irqsave(&meta->lock, flags);
944 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
945 			meta->cache = NULL;
946 		raw_spin_unlock_irqrestore(&meta->lock, flags);
947 	}
948 }
949 
950 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
951 {
952 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
953 	size_t num_stack_entries;
954 	u32 alloc_stack_hash;
955 
956 	/*
957 	 * Perform size check before switching kfence_allocation_gate, so that
958 	 * we don't disable KFENCE without making an allocation.
959 	 */
960 	if (size > PAGE_SIZE) {
961 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
962 		return NULL;
963 	}
964 
965 	/*
966 	 * Skip allocations from non-default zones, including DMA. We cannot
967 	 * guarantee that pages in the KFENCE pool will have the requested
968 	 * properties (e.g. reside in DMAable memory).
969 	 */
970 	if ((flags & GFP_ZONEMASK) ||
971 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
972 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
973 		return NULL;
974 	}
975 
976 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
977 		return NULL;
978 #ifdef CONFIG_KFENCE_STATIC_KEYS
979 	/*
980 	 * waitqueue_active() is fully ordered after the update of
981 	 * kfence_allocation_gate per atomic_inc_return().
982 	 */
983 	if (waitqueue_active(&allocation_wait)) {
984 		/*
985 		 * Calling wake_up() here may deadlock when allocations happen
986 		 * from within timer code. Use an irq_work to defer it.
987 		 */
988 		irq_work_queue(&wake_up_kfence_timer_work);
989 	}
990 #endif
991 
992 	if (!READ_ONCE(kfence_enabled))
993 		return NULL;
994 
995 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
996 
997 	/*
998 	 * Do expensive check for coverage of allocation in slow-path after
999 	 * allocation_gate has already become non-zero, even though it might
1000 	 * mean not making any allocation within a given sample interval.
1001 	 *
1002 	 * This ensures reasonable allocation coverage when the pool is almost
1003 	 * full, including avoiding long-lived allocations of the same source
1004 	 * filling up the pool (e.g. pagecache allocations).
1005 	 */
1006 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1007 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1008 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1009 		return NULL;
1010 	}
1011 
1012 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1013 				    alloc_stack_hash);
1014 }
1015 
1016 size_t kfence_ksize(const void *addr)
1017 {
1018 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1019 
1020 	/*
1021 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1022 	 * either a use-after-free or invalid access.
1023 	 */
1024 	return meta ? meta->size : 0;
1025 }
1026 
1027 void *kfence_object_start(const void *addr)
1028 {
1029 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1030 
1031 	/*
1032 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1033 	 * either a use-after-free or invalid access.
1034 	 */
1035 	return meta ? (void *)meta->addr : NULL;
1036 }
1037 
1038 void __kfence_free(void *addr)
1039 {
1040 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1041 
1042 #ifdef CONFIG_MEMCG
1043 	KFENCE_WARN_ON(meta->objcg);
1044 #endif
1045 	/*
1046 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1047 	 * the object, as the object page may be recycled for other-typed
1048 	 * objects once it has been freed. meta->cache may be NULL if the cache
1049 	 * was destroyed.
1050 	 */
1051 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1052 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1053 	else
1054 		kfence_guarded_free(addr, meta, false);
1055 }
1056 
1057 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1058 {
1059 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1060 	struct kfence_metadata *to_report = NULL;
1061 	enum kfence_error_type error_type;
1062 	unsigned long flags;
1063 
1064 	if (!is_kfence_address((void *)addr))
1065 		return false;
1066 
1067 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1068 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1069 
1070 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1071 
1072 	if (page_index % 2) {
1073 		/* This is a redzone, report a buffer overflow. */
1074 		struct kfence_metadata *meta;
1075 		int distance = 0;
1076 
1077 		meta = addr_to_metadata(addr - PAGE_SIZE);
1078 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1079 			to_report = meta;
1080 			/* Data race ok; distance calculation approximate. */
1081 			distance = addr - data_race(meta->addr + meta->size);
1082 		}
1083 
1084 		meta = addr_to_metadata(addr + PAGE_SIZE);
1085 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1086 			/* Data race ok; distance calculation approximate. */
1087 			if (!to_report || distance > data_race(meta->addr) - addr)
1088 				to_report = meta;
1089 		}
1090 
1091 		if (!to_report)
1092 			goto out;
1093 
1094 		raw_spin_lock_irqsave(&to_report->lock, flags);
1095 		to_report->unprotected_page = addr;
1096 		error_type = KFENCE_ERROR_OOB;
1097 
1098 		/*
1099 		 * If the object was freed before we took the look we can still
1100 		 * report this as an OOB -- the report will simply show the
1101 		 * stacktrace of the free as well.
1102 		 */
1103 	} else {
1104 		to_report = addr_to_metadata(addr);
1105 		if (!to_report)
1106 			goto out;
1107 
1108 		raw_spin_lock_irqsave(&to_report->lock, flags);
1109 		error_type = KFENCE_ERROR_UAF;
1110 		/*
1111 		 * We may race with __kfence_alloc(), and it is possible that a
1112 		 * freed object may be reallocated. We simply report this as a
1113 		 * use-after-free, with the stack trace showing the place where
1114 		 * the object was re-allocated.
1115 		 */
1116 	}
1117 
1118 out:
1119 	if (to_report) {
1120 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1121 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1122 	} else {
1123 		/* This may be a UAF or OOB access, but we can't be sure. */
1124 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1125 	}
1126 
1127 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1128 }
1129