1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/hash.h> 14 #include <linux/irq_work.h> 15 #include <linux/jhash.h> 16 #include <linux/kcsan-checks.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/log2.h> 22 #include <linux/memblock.h> 23 #include <linux/moduleparam.h> 24 #include <linux/notifier.h> 25 #include <linux/panic_notifier.h> 26 #include <linux/random.h> 27 #include <linux/rcupdate.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/sysctl.h> 30 #include <linux/seq_file.h> 31 #include <linux/slab.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 35 #include <asm/kfence.h> 36 37 #include "kfence.h" 38 39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 40 #define KFENCE_WARN_ON(cond) \ 41 ({ \ 42 const bool __cond = WARN_ON(cond); \ 43 if (unlikely(__cond)) { \ 44 WRITE_ONCE(kfence_enabled, false); \ 45 disabled_by_warn = true; \ 46 } \ 47 __cond; \ 48 }) 49 50 /* === Data ================================================================= */ 51 52 static bool kfence_enabled __read_mostly; 53 static bool disabled_by_warn __read_mostly; 54 55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */ 57 58 #ifdef MODULE_PARAM_PREFIX 59 #undef MODULE_PARAM_PREFIX 60 #endif 61 #define MODULE_PARAM_PREFIX "kfence." 62 63 static int kfence_enable_late(void); 64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 65 { 66 unsigned long num; 67 int ret = kstrtoul(val, 0, &num); 68 69 if (ret < 0) 70 return ret; 71 72 /* Using 0 to indicate KFENCE is disabled. */ 73 if (!num && READ_ONCE(kfence_enabled)) { 74 pr_info("disabled\n"); 75 WRITE_ONCE(kfence_enabled, false); 76 } 77 78 *((unsigned long *)kp->arg) = num; 79 80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 81 return disabled_by_warn ? -EINVAL : kfence_enable_late(); 82 return 0; 83 } 84 85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 86 { 87 if (!READ_ONCE(kfence_enabled)) 88 return sprintf(buffer, "0\n"); 89 90 return param_get_ulong(buffer, kp); 91 } 92 93 static const struct kernel_param_ops sample_interval_param_ops = { 94 .set = param_set_sample_interval, 95 .get = param_get_sample_interval, 96 }; 97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 98 99 /* Pool usage% threshold when currently covered allocations are skipped. */ 100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75; 101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); 102 103 /* If true, use a deferrable timer. */ 104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE); 105 module_param_named(deferrable, kfence_deferrable, bool, 0444); 106 107 /* If true, check all canary bytes on panic. */ 108 static bool kfence_check_on_panic __read_mostly; 109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444); 110 111 /* The pool of pages used for guard pages and objects. */ 112 char *__kfence_pool __read_mostly; 113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 114 115 /* 116 * Per-object metadata, with one-to-one mapping of object metadata to 117 * backing pages (in __kfence_pool). 118 */ 119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 121 122 /* Freelist with available objects. */ 123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 125 126 /* 127 * The static key to set up a KFENCE allocation; or if static keys are not used 128 * to gate allocations, to avoid a load and compare if KFENCE is disabled. 129 */ 130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 131 132 /* Gates the allocation, ensuring only one succeeds in a given period. */ 133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 134 135 /* 136 * A Counting Bloom filter of allocation coverage: limits currently covered 137 * allocations of the same source filling up the pool. 138 * 139 * Assuming a range of 15%-85% unique allocations in the pool at any point in 140 * time, the below parameters provide a probablity of 0.02-0.33 for false 141 * positive hits respectively: 142 * 143 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM 144 */ 145 #define ALLOC_COVERED_HNUM 2 146 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) 147 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) 148 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) 149 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) 150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; 151 152 /* Stack depth used to determine uniqueness of an allocation. */ 153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) 154 155 /* 156 * Randomness for stack hashes, making the same collisions across reboots and 157 * different machines less likely. 158 */ 159 static u32 stack_hash_seed __ro_after_init; 160 161 /* Statistics counters for debugfs. */ 162 enum kfence_counter_id { 163 KFENCE_COUNTER_ALLOCATED, 164 KFENCE_COUNTER_ALLOCS, 165 KFENCE_COUNTER_FREES, 166 KFENCE_COUNTER_ZOMBIES, 167 KFENCE_COUNTER_BUGS, 168 KFENCE_COUNTER_SKIP_INCOMPAT, 169 KFENCE_COUNTER_SKIP_CAPACITY, 170 KFENCE_COUNTER_SKIP_COVERED, 171 KFENCE_COUNTER_COUNT, 172 }; 173 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 174 static const char *const counter_names[] = { 175 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 176 [KFENCE_COUNTER_ALLOCS] = "total allocations", 177 [KFENCE_COUNTER_FREES] = "total frees", 178 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 179 [KFENCE_COUNTER_BUGS] = "total bugs", 180 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", 181 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", 182 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", 183 }; 184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 185 186 /* === Internals ============================================================ */ 187 188 static inline bool should_skip_covered(void) 189 { 190 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; 191 192 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; 193 } 194 195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) 196 { 197 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); 198 num_entries = filter_irq_stacks(stack_entries, num_entries); 199 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); 200 } 201 202 /* 203 * Adds (or subtracts) count @val for allocation stack trace hash 204 * @alloc_stack_hash from Counting Bloom filter. 205 */ 206 static void alloc_covered_add(u32 alloc_stack_hash, int val) 207 { 208 int i; 209 210 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 211 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); 212 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 213 } 214 } 215 216 /* 217 * Returns true if the allocation stack trace hash @alloc_stack_hash is 218 * currently contained (non-zero count) in Counting Bloom filter. 219 */ 220 static bool alloc_covered_contains(u32 alloc_stack_hash) 221 { 222 int i; 223 224 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 225 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) 226 return false; 227 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 228 } 229 230 return true; 231 } 232 233 static bool kfence_protect(unsigned long addr) 234 { 235 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 236 } 237 238 static bool kfence_unprotect(unsigned long addr) 239 { 240 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 241 } 242 243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 244 { 245 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 246 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 247 248 /* The checks do not affect performance; only called from slow-paths. */ 249 250 /* Only call with a pointer into kfence_metadata. */ 251 if (KFENCE_WARN_ON(meta < kfence_metadata || 252 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 253 return 0; 254 255 /* 256 * This metadata object only ever maps to 1 page; verify that the stored 257 * address is in the expected range. 258 */ 259 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 260 return 0; 261 262 return pageaddr; 263 } 264 265 /* 266 * Update the object's metadata state, including updating the alloc/free stacks 267 * depending on the state transition. 268 */ 269 static noinline void 270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, 271 unsigned long *stack_entries, size_t num_stack_entries) 272 { 273 struct kfence_track *track = 274 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 275 276 lockdep_assert_held(&meta->lock); 277 278 if (stack_entries) { 279 memcpy(track->stack_entries, stack_entries, 280 num_stack_entries * sizeof(stack_entries[0])); 281 } else { 282 /* 283 * Skip over 1 (this) functions; noinline ensures we do not 284 * accidentally skip over the caller by never inlining. 285 */ 286 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 287 } 288 track->num_stack_entries = num_stack_entries; 289 track->pid = task_pid_nr(current); 290 track->cpu = raw_smp_processor_id(); 291 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ 292 293 /* 294 * Pairs with READ_ONCE() in 295 * kfence_shutdown_cache(), 296 * kfence_handle_page_fault(). 297 */ 298 WRITE_ONCE(meta->state, next); 299 } 300 301 /* Write canary byte to @addr. */ 302 static inline bool set_canary_byte(u8 *addr) 303 { 304 *addr = KFENCE_CANARY_PATTERN(addr); 305 return true; 306 } 307 308 /* Check canary byte at @addr. */ 309 static inline bool check_canary_byte(u8 *addr) 310 { 311 struct kfence_metadata *meta; 312 unsigned long flags; 313 314 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 315 return true; 316 317 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 318 319 meta = addr_to_metadata((unsigned long)addr); 320 raw_spin_lock_irqsave(&meta->lock, flags); 321 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); 322 raw_spin_unlock_irqrestore(&meta->lock, flags); 323 324 return false; 325 } 326 327 /* __always_inline this to ensure we won't do an indirect call to fn. */ 328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 329 { 330 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 331 unsigned long addr; 332 333 /* 334 * We'll iterate over each canary byte per-side until fn() returns 335 * false. However, we'll still iterate over the canary bytes to the 336 * right of the object even if there was an error in the canary bytes to 337 * the left of the object. Specifically, if check_canary_byte() 338 * generates an error, showing both sides might give more clues as to 339 * what the error is about when displaying which bytes were corrupted. 340 */ 341 342 /* Apply to left of object. */ 343 for (addr = pageaddr; addr < meta->addr; addr++) { 344 if (!fn((u8 *)addr)) 345 break; 346 } 347 348 /* Apply to right of object. */ 349 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 350 if (!fn((u8 *)addr)) 351 break; 352 } 353 } 354 355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, 356 unsigned long *stack_entries, size_t num_stack_entries, 357 u32 alloc_stack_hash) 358 { 359 struct kfence_metadata *meta = NULL; 360 unsigned long flags; 361 struct slab *slab; 362 void *addr; 363 const bool random_right_allocate = prandom_u32_max(2); 364 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS && 365 !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS); 366 367 /* Try to obtain a free object. */ 368 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 369 if (!list_empty(&kfence_freelist)) { 370 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 371 list_del_init(&meta->list); 372 } 373 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 374 if (!meta) { 375 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); 376 return NULL; 377 } 378 379 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 380 /* 381 * This is extremely unlikely -- we are reporting on a 382 * use-after-free, which locked meta->lock, and the reporting 383 * code via printk calls kmalloc() which ends up in 384 * kfence_alloc() and tries to grab the same object that we're 385 * reporting on. While it has never been observed, lockdep does 386 * report that there is a possibility of deadlock. Fix it by 387 * using trylock and bailing out gracefully. 388 */ 389 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 390 /* Put the object back on the freelist. */ 391 list_add_tail(&meta->list, &kfence_freelist); 392 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 393 394 return NULL; 395 } 396 397 meta->addr = metadata_to_pageaddr(meta); 398 /* Unprotect if we're reusing this page. */ 399 if (meta->state == KFENCE_OBJECT_FREED) 400 kfence_unprotect(meta->addr); 401 402 /* 403 * Note: for allocations made before RNG initialization, will always 404 * return zero. We still benefit from enabling KFENCE as early as 405 * possible, even when the RNG is not yet available, as this will allow 406 * KFENCE to detect bugs due to earlier allocations. The only downside 407 * is that the out-of-bounds accesses detected are deterministic for 408 * such allocations. 409 */ 410 if (random_right_allocate) { 411 /* Allocate on the "right" side, re-calculate address. */ 412 meta->addr += PAGE_SIZE - size; 413 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 414 } 415 416 addr = (void *)meta->addr; 417 418 /* Update remaining metadata. */ 419 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); 420 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 421 WRITE_ONCE(meta->cache, cache); 422 meta->size = size; 423 meta->alloc_stack_hash = alloc_stack_hash; 424 raw_spin_unlock_irqrestore(&meta->lock, flags); 425 426 alloc_covered_add(alloc_stack_hash, 1); 427 428 /* Set required slab fields. */ 429 slab = virt_to_slab((void *)meta->addr); 430 slab->slab_cache = cache; 431 #if defined(CONFIG_SLUB) 432 slab->objects = 1; 433 #elif defined(CONFIG_SLAB) 434 slab->s_mem = addr; 435 #endif 436 437 /* Memory initialization. */ 438 for_each_canary(meta, set_canary_byte); 439 440 /* 441 * We check slab_want_init_on_alloc() ourselves, rather than letting 442 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 443 * redzone. 444 */ 445 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 446 memzero_explicit(addr, size); 447 if (cache->ctor) 448 cache->ctor(addr); 449 450 if (random_fault) 451 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 452 453 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 454 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 455 456 return addr; 457 } 458 459 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 460 { 461 struct kcsan_scoped_access assert_page_exclusive; 462 unsigned long flags; 463 bool init; 464 465 raw_spin_lock_irqsave(&meta->lock, flags); 466 467 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 468 /* Invalid or double-free, bail out. */ 469 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 470 kfence_report_error((unsigned long)addr, false, NULL, meta, 471 KFENCE_ERROR_INVALID_FREE); 472 raw_spin_unlock_irqrestore(&meta->lock, flags); 473 return; 474 } 475 476 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 477 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 478 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 479 &assert_page_exclusive); 480 481 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 482 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 483 484 /* Restore page protection if there was an OOB access. */ 485 if (meta->unprotected_page) { 486 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 487 kfence_protect(meta->unprotected_page); 488 meta->unprotected_page = 0; 489 } 490 491 /* Mark the object as freed. */ 492 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); 493 init = slab_want_init_on_free(meta->cache); 494 raw_spin_unlock_irqrestore(&meta->lock, flags); 495 496 alloc_covered_add(meta->alloc_stack_hash, -1); 497 498 /* Check canary bytes for memory corruption. */ 499 for_each_canary(meta, check_canary_byte); 500 501 /* 502 * Clear memory if init-on-free is set. While we protect the page, the 503 * data is still there, and after a use-after-free is detected, we 504 * unprotect the page, so the data is still accessible. 505 */ 506 if (!zombie && unlikely(init)) 507 memzero_explicit(addr, meta->size); 508 509 /* Protect to detect use-after-frees. */ 510 kfence_protect((unsigned long)addr); 511 512 kcsan_end_scoped_access(&assert_page_exclusive); 513 if (!zombie) { 514 /* Add it to the tail of the freelist for reuse. */ 515 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 516 KFENCE_WARN_ON(!list_empty(&meta->list)); 517 list_add_tail(&meta->list, &kfence_freelist); 518 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 519 520 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 521 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 522 } else { 523 /* See kfence_shutdown_cache(). */ 524 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 525 } 526 } 527 528 static void rcu_guarded_free(struct rcu_head *h) 529 { 530 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 531 532 kfence_guarded_free((void *)meta->addr, meta, false); 533 } 534 535 /* 536 * Initialization of the KFENCE pool after its allocation. 537 * Returns 0 on success; otherwise returns the address up to 538 * which partial initialization succeeded. 539 */ 540 static unsigned long kfence_init_pool(void) 541 { 542 unsigned long addr = (unsigned long)__kfence_pool; 543 struct page *pages; 544 int i; 545 546 if (!arch_kfence_init_pool()) 547 return addr; 548 549 pages = virt_to_page(__kfence_pool); 550 551 /* 552 * Set up object pages: they must have PG_slab set, to avoid freeing 553 * these as real pages. 554 * 555 * We also want to avoid inserting kfence_free() in the kfree() 556 * fast-path in SLUB, and therefore need to ensure kfree() correctly 557 * enters __slab_free() slow-path. 558 */ 559 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 560 struct slab *slab = page_slab(&pages[i]); 561 562 if (!i || (i % 2)) 563 continue; 564 565 /* Verify we do not have a compound head page. */ 566 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 567 return addr; 568 569 __folio_set_slab(slab_folio(slab)); 570 #ifdef CONFIG_MEMCG 571 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg | 572 MEMCG_DATA_OBJCGS; 573 #endif 574 } 575 576 /* 577 * Protect the first 2 pages. The first page is mostly unnecessary, and 578 * merely serves as an extended guard page. However, adding one 579 * additional page in the beginning gives us an even number of pages, 580 * which simplifies the mapping of address to metadata index. 581 */ 582 for (i = 0; i < 2; i++) { 583 if (unlikely(!kfence_protect(addr))) 584 return addr; 585 586 addr += PAGE_SIZE; 587 } 588 589 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 590 struct kfence_metadata *meta = &kfence_metadata[i]; 591 592 /* Initialize metadata. */ 593 INIT_LIST_HEAD(&meta->list); 594 raw_spin_lock_init(&meta->lock); 595 meta->state = KFENCE_OBJECT_UNUSED; 596 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 597 list_add_tail(&meta->list, &kfence_freelist); 598 599 /* Protect the right redzone. */ 600 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 601 return addr; 602 603 addr += 2 * PAGE_SIZE; 604 } 605 606 return 0; 607 } 608 609 static bool __init kfence_init_pool_early(void) 610 { 611 unsigned long addr; 612 613 if (!__kfence_pool) 614 return false; 615 616 addr = kfence_init_pool(); 617 618 if (!addr) { 619 /* 620 * The pool is live and will never be deallocated from this point on. 621 * Ignore the pool object from the kmemleak phys object tree, as it would 622 * otherwise overlap with allocations returned by kfence_alloc(), which 623 * are registered with kmemleak through the slab post-alloc hook. 624 */ 625 kmemleak_ignore_phys(__pa(__kfence_pool)); 626 return true; 627 } 628 629 /* 630 * Only release unprotected pages, and do not try to go back and change 631 * page attributes due to risk of failing to do so as well. If changing 632 * page attributes for some pages fails, it is very likely that it also 633 * fails for the first page, and therefore expect addr==__kfence_pool in 634 * most failure cases. 635 */ 636 for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) { 637 struct slab *slab = virt_to_slab(p); 638 639 if (!slab) 640 continue; 641 #ifdef CONFIG_MEMCG 642 slab->memcg_data = 0; 643 #endif 644 __folio_clear_slab(slab_folio(slab)); 645 } 646 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 647 __kfence_pool = NULL; 648 return false; 649 } 650 651 static bool kfence_init_pool_late(void) 652 { 653 unsigned long addr, free_size; 654 655 addr = kfence_init_pool(); 656 657 if (!addr) 658 return true; 659 660 /* Same as above. */ 661 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool); 662 #ifdef CONFIG_CONTIG_ALLOC 663 free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE); 664 #else 665 free_pages_exact((void *)addr, free_size); 666 #endif 667 __kfence_pool = NULL; 668 return false; 669 } 670 671 /* === DebugFS Interface ==================================================== */ 672 673 static int stats_show(struct seq_file *seq, void *v) 674 { 675 int i; 676 677 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 678 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 679 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 680 681 return 0; 682 } 683 DEFINE_SHOW_ATTRIBUTE(stats); 684 685 /* 686 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 687 * start_object() and next_object() return the object index + 1, because NULL is used 688 * to stop iteration. 689 */ 690 static void *start_object(struct seq_file *seq, loff_t *pos) 691 { 692 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 693 return (void *)((long)*pos + 1); 694 return NULL; 695 } 696 697 static void stop_object(struct seq_file *seq, void *v) 698 { 699 } 700 701 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 702 { 703 ++*pos; 704 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 705 return (void *)((long)*pos + 1); 706 return NULL; 707 } 708 709 static int show_object(struct seq_file *seq, void *v) 710 { 711 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 712 unsigned long flags; 713 714 raw_spin_lock_irqsave(&meta->lock, flags); 715 kfence_print_object(seq, meta); 716 raw_spin_unlock_irqrestore(&meta->lock, flags); 717 seq_puts(seq, "---------------------------------\n"); 718 719 return 0; 720 } 721 722 static const struct seq_operations objects_sops = { 723 .start = start_object, 724 .next = next_object, 725 .stop = stop_object, 726 .show = show_object, 727 }; 728 DEFINE_SEQ_ATTRIBUTE(objects); 729 730 static int __init kfence_debugfs_init(void) 731 { 732 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 733 734 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 735 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 736 return 0; 737 } 738 739 late_initcall(kfence_debugfs_init); 740 741 /* === Panic Notifier ====================================================== */ 742 743 static void kfence_check_all_canary(void) 744 { 745 int i; 746 747 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 748 struct kfence_metadata *meta = &kfence_metadata[i]; 749 750 if (meta->state == KFENCE_OBJECT_ALLOCATED) 751 for_each_canary(meta, check_canary_byte); 752 } 753 } 754 755 static int kfence_check_canary_callback(struct notifier_block *nb, 756 unsigned long reason, void *arg) 757 { 758 kfence_check_all_canary(); 759 return NOTIFY_OK; 760 } 761 762 static struct notifier_block kfence_check_canary_notifier = { 763 .notifier_call = kfence_check_canary_callback, 764 }; 765 766 /* === Allocation Gate Timer ================================================ */ 767 768 static struct delayed_work kfence_timer; 769 770 #ifdef CONFIG_KFENCE_STATIC_KEYS 771 /* Wait queue to wake up allocation-gate timer task. */ 772 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 773 774 static void wake_up_kfence_timer(struct irq_work *work) 775 { 776 wake_up(&allocation_wait); 777 } 778 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 779 #endif 780 781 /* 782 * Set up delayed work, which will enable and disable the static key. We need to 783 * use a work queue (rather than a simple timer), since enabling and disabling a 784 * static key cannot be done from an interrupt. 785 * 786 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 787 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 788 * more aggressive sampling intervals), we could get away with a variant that 789 * avoids IPIs, at the cost of not immediately capturing allocations if the 790 * instructions remain cached. 791 */ 792 static void toggle_allocation_gate(struct work_struct *work) 793 { 794 if (!READ_ONCE(kfence_enabled)) 795 return; 796 797 atomic_set(&kfence_allocation_gate, 0); 798 #ifdef CONFIG_KFENCE_STATIC_KEYS 799 /* Enable static key, and await allocation to happen. */ 800 static_branch_enable(&kfence_allocation_key); 801 802 if (sysctl_hung_task_timeout_secs) { 803 /* 804 * During low activity with no allocations we might wait a 805 * while; let's avoid the hung task warning. 806 */ 807 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), 808 sysctl_hung_task_timeout_secs * HZ / 2); 809 } else { 810 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); 811 } 812 813 /* Disable static key and reset timer. */ 814 static_branch_disable(&kfence_allocation_key); 815 #endif 816 queue_delayed_work(system_unbound_wq, &kfence_timer, 817 msecs_to_jiffies(kfence_sample_interval)); 818 } 819 820 /* === Public interface ===================================================== */ 821 822 void __init kfence_alloc_pool(void) 823 { 824 if (!kfence_sample_interval) 825 return; 826 827 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 828 829 if (!__kfence_pool) 830 pr_err("failed to allocate pool\n"); 831 } 832 833 static void kfence_init_enable(void) 834 { 835 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) 836 static_branch_enable(&kfence_allocation_key); 837 838 if (kfence_deferrable) 839 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate); 840 else 841 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate); 842 843 if (kfence_check_on_panic) 844 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier); 845 846 WRITE_ONCE(kfence_enabled, true); 847 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 848 849 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 850 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 851 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 852 } 853 854 void __init kfence_init(void) 855 { 856 stack_hash_seed = get_random_u32(); 857 858 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 859 if (!kfence_sample_interval) 860 return; 861 862 if (!kfence_init_pool_early()) { 863 pr_err("%s failed\n", __func__); 864 return; 865 } 866 867 kfence_init_enable(); 868 } 869 870 static int kfence_init_late(void) 871 { 872 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE; 873 #ifdef CONFIG_CONTIG_ALLOC 874 struct page *pages; 875 876 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL); 877 if (!pages) 878 return -ENOMEM; 879 __kfence_pool = page_to_virt(pages); 880 #else 881 if (nr_pages > MAX_ORDER_NR_PAGES) { 882 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n"); 883 return -EINVAL; 884 } 885 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL); 886 if (!__kfence_pool) 887 return -ENOMEM; 888 #endif 889 890 if (!kfence_init_pool_late()) { 891 pr_err("%s failed\n", __func__); 892 return -EBUSY; 893 } 894 895 kfence_init_enable(); 896 return 0; 897 } 898 899 static int kfence_enable_late(void) 900 { 901 if (!__kfence_pool) 902 return kfence_init_late(); 903 904 WRITE_ONCE(kfence_enabled, true); 905 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 906 pr_info("re-enabled\n"); 907 return 0; 908 } 909 910 void kfence_shutdown_cache(struct kmem_cache *s) 911 { 912 unsigned long flags; 913 struct kfence_metadata *meta; 914 int i; 915 916 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 917 bool in_use; 918 919 meta = &kfence_metadata[i]; 920 921 /* 922 * If we observe some inconsistent cache and state pair where we 923 * should have returned false here, cache destruction is racing 924 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 925 * the lock will not help, as different critical section 926 * serialization will have the same outcome. 927 */ 928 if (READ_ONCE(meta->cache) != s || 929 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 930 continue; 931 932 raw_spin_lock_irqsave(&meta->lock, flags); 933 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 934 raw_spin_unlock_irqrestore(&meta->lock, flags); 935 936 if (in_use) { 937 /* 938 * This cache still has allocations, and we should not 939 * release them back into the freelist so they can still 940 * safely be used and retain the kernel's default 941 * behaviour of keeping the allocations alive (leak the 942 * cache); however, they effectively become "zombie 943 * allocations" as the KFENCE objects are the only ones 944 * still in use and the owning cache is being destroyed. 945 * 946 * We mark them freed, so that any subsequent use shows 947 * more useful error messages that will include stack 948 * traces of the user of the object, the original 949 * allocation, and caller to shutdown_cache(). 950 */ 951 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 952 } 953 } 954 955 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 956 meta = &kfence_metadata[i]; 957 958 /* See above. */ 959 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 960 continue; 961 962 raw_spin_lock_irqsave(&meta->lock, flags); 963 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 964 meta->cache = NULL; 965 raw_spin_unlock_irqrestore(&meta->lock, flags); 966 } 967 } 968 969 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 970 { 971 unsigned long stack_entries[KFENCE_STACK_DEPTH]; 972 size_t num_stack_entries; 973 u32 alloc_stack_hash; 974 975 /* 976 * Perform size check before switching kfence_allocation_gate, so that 977 * we don't disable KFENCE without making an allocation. 978 */ 979 if (size > PAGE_SIZE) { 980 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 981 return NULL; 982 } 983 984 /* 985 * Skip allocations from non-default zones, including DMA. We cannot 986 * guarantee that pages in the KFENCE pool will have the requested 987 * properties (e.g. reside in DMAable memory). 988 */ 989 if ((flags & GFP_ZONEMASK) || 990 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { 991 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 992 return NULL; 993 } 994 995 /* 996 * Skip allocations for this slab, if KFENCE has been disabled for 997 * this slab. 998 */ 999 if (s->flags & SLAB_SKIP_KFENCE) 1000 return NULL; 1001 1002 if (atomic_inc_return(&kfence_allocation_gate) > 1) 1003 return NULL; 1004 #ifdef CONFIG_KFENCE_STATIC_KEYS 1005 /* 1006 * waitqueue_active() is fully ordered after the update of 1007 * kfence_allocation_gate per atomic_inc_return(). 1008 */ 1009 if (waitqueue_active(&allocation_wait)) { 1010 /* 1011 * Calling wake_up() here may deadlock when allocations happen 1012 * from within timer code. Use an irq_work to defer it. 1013 */ 1014 irq_work_queue(&wake_up_kfence_timer_work); 1015 } 1016 #endif 1017 1018 if (!READ_ONCE(kfence_enabled)) 1019 return NULL; 1020 1021 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); 1022 1023 /* 1024 * Do expensive check for coverage of allocation in slow-path after 1025 * allocation_gate has already become non-zero, even though it might 1026 * mean not making any allocation within a given sample interval. 1027 * 1028 * This ensures reasonable allocation coverage when the pool is almost 1029 * full, including avoiding long-lived allocations of the same source 1030 * filling up the pool (e.g. pagecache allocations). 1031 */ 1032 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); 1033 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { 1034 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); 1035 return NULL; 1036 } 1037 1038 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, 1039 alloc_stack_hash); 1040 } 1041 1042 size_t kfence_ksize(const void *addr) 1043 { 1044 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1045 1046 /* 1047 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1048 * either a use-after-free or invalid access. 1049 */ 1050 return meta ? meta->size : 0; 1051 } 1052 1053 void *kfence_object_start(const void *addr) 1054 { 1055 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1056 1057 /* 1058 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1059 * either a use-after-free or invalid access. 1060 */ 1061 return meta ? (void *)meta->addr : NULL; 1062 } 1063 1064 void __kfence_free(void *addr) 1065 { 1066 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1067 1068 #ifdef CONFIG_MEMCG 1069 KFENCE_WARN_ON(meta->objcg); 1070 #endif 1071 /* 1072 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 1073 * the object, as the object page may be recycled for other-typed 1074 * objects once it has been freed. meta->cache may be NULL if the cache 1075 * was destroyed. 1076 */ 1077 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 1078 call_rcu(&meta->rcu_head, rcu_guarded_free); 1079 else 1080 kfence_guarded_free(addr, meta, false); 1081 } 1082 1083 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 1084 { 1085 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 1086 struct kfence_metadata *to_report = NULL; 1087 enum kfence_error_type error_type; 1088 unsigned long flags; 1089 1090 if (!is_kfence_address((void *)addr)) 1091 return false; 1092 1093 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 1094 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 1095 1096 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 1097 1098 if (page_index % 2) { 1099 /* This is a redzone, report a buffer overflow. */ 1100 struct kfence_metadata *meta; 1101 int distance = 0; 1102 1103 meta = addr_to_metadata(addr - PAGE_SIZE); 1104 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1105 to_report = meta; 1106 /* Data race ok; distance calculation approximate. */ 1107 distance = addr - data_race(meta->addr + meta->size); 1108 } 1109 1110 meta = addr_to_metadata(addr + PAGE_SIZE); 1111 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1112 /* Data race ok; distance calculation approximate. */ 1113 if (!to_report || distance > data_race(meta->addr) - addr) 1114 to_report = meta; 1115 } 1116 1117 if (!to_report) 1118 goto out; 1119 1120 raw_spin_lock_irqsave(&to_report->lock, flags); 1121 to_report->unprotected_page = addr; 1122 error_type = KFENCE_ERROR_OOB; 1123 1124 /* 1125 * If the object was freed before we took the look we can still 1126 * report this as an OOB -- the report will simply show the 1127 * stacktrace of the free as well. 1128 */ 1129 } else { 1130 to_report = addr_to_metadata(addr); 1131 if (!to_report) 1132 goto out; 1133 1134 raw_spin_lock_irqsave(&to_report->lock, flags); 1135 error_type = KFENCE_ERROR_UAF; 1136 /* 1137 * We may race with __kfence_alloc(), and it is possible that a 1138 * freed object may be reallocated. We simply report this as a 1139 * use-after-free, with the stack trace showing the place where 1140 * the object was re-allocated. 1141 */ 1142 } 1143 1144 out: 1145 if (to_report) { 1146 kfence_report_error(addr, is_write, regs, to_report, error_type); 1147 raw_spin_unlock_irqrestore(&to_report->lock, flags); 1148 } else { 1149 /* This may be a UAF or OOB access, but we can't be sure. */ 1150 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 1151 } 1152 1153 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 1154 } 1155