1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/hash.h> 14 #include <linux/irq_work.h> 15 #include <linux/jhash.h> 16 #include <linux/kcsan-checks.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/log2.h> 22 #include <linux/memblock.h> 23 #include <linux/moduleparam.h> 24 #include <linux/random.h> 25 #include <linux/rcupdate.h> 26 #include <linux/sched/clock.h> 27 #include <linux/sched/sysctl.h> 28 #include <linux/seq_file.h> 29 #include <linux/slab.h> 30 #include <linux/spinlock.h> 31 #include <linux/string.h> 32 33 #include <asm/kfence.h> 34 35 #include "kfence.h" 36 37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 38 #define KFENCE_WARN_ON(cond) \ 39 ({ \ 40 const bool __cond = WARN_ON(cond); \ 41 if (unlikely(__cond)) { \ 42 WRITE_ONCE(kfence_enabled, false); \ 43 disabled_by_warn = true; \ 44 } \ 45 __cond; \ 46 }) 47 48 /* === Data ================================================================= */ 49 50 static bool kfence_enabled __read_mostly; 51 static bool disabled_by_warn __read_mostly; 52 53 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 54 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */ 55 56 #ifdef MODULE_PARAM_PREFIX 57 #undef MODULE_PARAM_PREFIX 58 #endif 59 #define MODULE_PARAM_PREFIX "kfence." 60 61 static int kfence_enable_late(void); 62 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 63 { 64 unsigned long num; 65 int ret = kstrtoul(val, 0, &num); 66 67 if (ret < 0) 68 return ret; 69 70 if (!num) /* Using 0 to indicate KFENCE is disabled. */ 71 WRITE_ONCE(kfence_enabled, false); 72 73 *((unsigned long *)kp->arg) = num; 74 75 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 76 return disabled_by_warn ? -EINVAL : kfence_enable_late(); 77 return 0; 78 } 79 80 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 81 { 82 if (!READ_ONCE(kfence_enabled)) 83 return sprintf(buffer, "0\n"); 84 85 return param_get_ulong(buffer, kp); 86 } 87 88 static const struct kernel_param_ops sample_interval_param_ops = { 89 .set = param_set_sample_interval, 90 .get = param_get_sample_interval, 91 }; 92 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 93 94 /* Pool usage% threshold when currently covered allocations are skipped. */ 95 static unsigned long kfence_skip_covered_thresh __read_mostly = 75; 96 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); 97 98 /* If true, use a deferrable timer. */ 99 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE); 100 module_param_named(deferrable, kfence_deferrable, bool, 0444); 101 102 /* The pool of pages used for guard pages and objects. */ 103 char *__kfence_pool __read_mostly; 104 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 105 106 /* 107 * Per-object metadata, with one-to-one mapping of object metadata to 108 * backing pages (in __kfence_pool). 109 */ 110 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 111 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 112 113 /* Freelist with available objects. */ 114 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 115 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 116 117 /* 118 * The static key to set up a KFENCE allocation; or if static keys are not used 119 * to gate allocations, to avoid a load and compare if KFENCE is disabled. 120 */ 121 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 122 123 /* Gates the allocation, ensuring only one succeeds in a given period. */ 124 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 125 126 /* 127 * A Counting Bloom filter of allocation coverage: limits currently covered 128 * allocations of the same source filling up the pool. 129 * 130 * Assuming a range of 15%-85% unique allocations in the pool at any point in 131 * time, the below parameters provide a probablity of 0.02-0.33 for false 132 * positive hits respectively: 133 * 134 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM 135 */ 136 #define ALLOC_COVERED_HNUM 2 137 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) 138 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) 139 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) 140 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) 141 static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; 142 143 /* Stack depth used to determine uniqueness of an allocation. */ 144 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) 145 146 /* 147 * Randomness for stack hashes, making the same collisions across reboots and 148 * different machines less likely. 149 */ 150 static u32 stack_hash_seed __ro_after_init; 151 152 /* Statistics counters for debugfs. */ 153 enum kfence_counter_id { 154 KFENCE_COUNTER_ALLOCATED, 155 KFENCE_COUNTER_ALLOCS, 156 KFENCE_COUNTER_FREES, 157 KFENCE_COUNTER_ZOMBIES, 158 KFENCE_COUNTER_BUGS, 159 KFENCE_COUNTER_SKIP_INCOMPAT, 160 KFENCE_COUNTER_SKIP_CAPACITY, 161 KFENCE_COUNTER_SKIP_COVERED, 162 KFENCE_COUNTER_COUNT, 163 }; 164 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 165 static const char *const counter_names[] = { 166 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 167 [KFENCE_COUNTER_ALLOCS] = "total allocations", 168 [KFENCE_COUNTER_FREES] = "total frees", 169 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 170 [KFENCE_COUNTER_BUGS] = "total bugs", 171 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", 172 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", 173 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", 174 }; 175 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 176 177 /* === Internals ============================================================ */ 178 179 static inline bool should_skip_covered(void) 180 { 181 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; 182 183 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; 184 } 185 186 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) 187 { 188 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); 189 num_entries = filter_irq_stacks(stack_entries, num_entries); 190 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); 191 } 192 193 /* 194 * Adds (or subtracts) count @val for allocation stack trace hash 195 * @alloc_stack_hash from Counting Bloom filter. 196 */ 197 static void alloc_covered_add(u32 alloc_stack_hash, int val) 198 { 199 int i; 200 201 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 202 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); 203 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 204 } 205 } 206 207 /* 208 * Returns true if the allocation stack trace hash @alloc_stack_hash is 209 * currently contained (non-zero count) in Counting Bloom filter. 210 */ 211 static bool alloc_covered_contains(u32 alloc_stack_hash) 212 { 213 int i; 214 215 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 216 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) 217 return false; 218 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 219 } 220 221 return true; 222 } 223 224 static bool kfence_protect(unsigned long addr) 225 { 226 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 227 } 228 229 static bool kfence_unprotect(unsigned long addr) 230 { 231 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 232 } 233 234 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) 235 { 236 long index; 237 238 /* The checks do not affect performance; only called from slow-paths. */ 239 240 if (!is_kfence_address((void *)addr)) 241 return NULL; 242 243 /* 244 * May be an invalid index if called with an address at the edge of 245 * __kfence_pool, in which case we would report an "invalid access" 246 * error. 247 */ 248 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; 249 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) 250 return NULL; 251 252 return &kfence_metadata[index]; 253 } 254 255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 256 { 257 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 258 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 259 260 /* The checks do not affect performance; only called from slow-paths. */ 261 262 /* Only call with a pointer into kfence_metadata. */ 263 if (KFENCE_WARN_ON(meta < kfence_metadata || 264 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 265 return 0; 266 267 /* 268 * This metadata object only ever maps to 1 page; verify that the stored 269 * address is in the expected range. 270 */ 271 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 272 return 0; 273 274 return pageaddr; 275 } 276 277 /* 278 * Update the object's metadata state, including updating the alloc/free stacks 279 * depending on the state transition. 280 */ 281 static noinline void 282 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, 283 unsigned long *stack_entries, size_t num_stack_entries) 284 { 285 struct kfence_track *track = 286 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 287 288 lockdep_assert_held(&meta->lock); 289 290 if (stack_entries) { 291 memcpy(track->stack_entries, stack_entries, 292 num_stack_entries * sizeof(stack_entries[0])); 293 } else { 294 /* 295 * Skip over 1 (this) functions; noinline ensures we do not 296 * accidentally skip over the caller by never inlining. 297 */ 298 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 299 } 300 track->num_stack_entries = num_stack_entries; 301 track->pid = task_pid_nr(current); 302 track->cpu = raw_smp_processor_id(); 303 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ 304 305 /* 306 * Pairs with READ_ONCE() in 307 * kfence_shutdown_cache(), 308 * kfence_handle_page_fault(). 309 */ 310 WRITE_ONCE(meta->state, next); 311 } 312 313 /* Write canary byte to @addr. */ 314 static inline bool set_canary_byte(u8 *addr) 315 { 316 *addr = KFENCE_CANARY_PATTERN(addr); 317 return true; 318 } 319 320 /* Check canary byte at @addr. */ 321 static inline bool check_canary_byte(u8 *addr) 322 { 323 struct kfence_metadata *meta; 324 unsigned long flags; 325 326 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 327 return true; 328 329 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 330 331 meta = addr_to_metadata((unsigned long)addr); 332 raw_spin_lock_irqsave(&meta->lock, flags); 333 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); 334 raw_spin_unlock_irqrestore(&meta->lock, flags); 335 336 return false; 337 } 338 339 /* __always_inline this to ensure we won't do an indirect call to fn. */ 340 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 341 { 342 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 343 unsigned long addr; 344 345 /* 346 * We'll iterate over each canary byte per-side until fn() returns 347 * false. However, we'll still iterate over the canary bytes to the 348 * right of the object even if there was an error in the canary bytes to 349 * the left of the object. Specifically, if check_canary_byte() 350 * generates an error, showing both sides might give more clues as to 351 * what the error is about when displaying which bytes were corrupted. 352 */ 353 354 /* Apply to left of object. */ 355 for (addr = pageaddr; addr < meta->addr; addr++) { 356 if (!fn((u8 *)addr)) 357 break; 358 } 359 360 /* Apply to right of object. */ 361 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 362 if (!fn((u8 *)addr)) 363 break; 364 } 365 } 366 367 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, 368 unsigned long *stack_entries, size_t num_stack_entries, 369 u32 alloc_stack_hash) 370 { 371 struct kfence_metadata *meta = NULL; 372 unsigned long flags; 373 struct slab *slab; 374 void *addr; 375 376 /* Try to obtain a free object. */ 377 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 378 if (!list_empty(&kfence_freelist)) { 379 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 380 list_del_init(&meta->list); 381 } 382 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 383 if (!meta) { 384 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); 385 return NULL; 386 } 387 388 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 389 /* 390 * This is extremely unlikely -- we are reporting on a 391 * use-after-free, which locked meta->lock, and the reporting 392 * code via printk calls kmalloc() which ends up in 393 * kfence_alloc() and tries to grab the same object that we're 394 * reporting on. While it has never been observed, lockdep does 395 * report that there is a possibility of deadlock. Fix it by 396 * using trylock and bailing out gracefully. 397 */ 398 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 399 /* Put the object back on the freelist. */ 400 list_add_tail(&meta->list, &kfence_freelist); 401 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 402 403 return NULL; 404 } 405 406 meta->addr = metadata_to_pageaddr(meta); 407 /* Unprotect if we're reusing this page. */ 408 if (meta->state == KFENCE_OBJECT_FREED) 409 kfence_unprotect(meta->addr); 410 411 /* 412 * Note: for allocations made before RNG initialization, will always 413 * return zero. We still benefit from enabling KFENCE as early as 414 * possible, even when the RNG is not yet available, as this will allow 415 * KFENCE to detect bugs due to earlier allocations. The only downside 416 * is that the out-of-bounds accesses detected are deterministic for 417 * such allocations. 418 */ 419 if (prandom_u32_max(2)) { 420 /* Allocate on the "right" side, re-calculate address. */ 421 meta->addr += PAGE_SIZE - size; 422 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 423 } 424 425 addr = (void *)meta->addr; 426 427 /* Update remaining metadata. */ 428 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); 429 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 430 WRITE_ONCE(meta->cache, cache); 431 meta->size = size; 432 meta->alloc_stack_hash = alloc_stack_hash; 433 raw_spin_unlock_irqrestore(&meta->lock, flags); 434 435 alloc_covered_add(alloc_stack_hash, 1); 436 437 /* Set required slab fields. */ 438 slab = virt_to_slab((void *)meta->addr); 439 slab->slab_cache = cache; 440 #if defined(CONFIG_SLUB) 441 slab->objects = 1; 442 #elif defined(CONFIG_SLAB) 443 slab->s_mem = addr; 444 #endif 445 446 /* Memory initialization. */ 447 for_each_canary(meta, set_canary_byte); 448 449 /* 450 * We check slab_want_init_on_alloc() ourselves, rather than letting 451 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 452 * redzone. 453 */ 454 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 455 memzero_explicit(addr, size); 456 if (cache->ctor) 457 cache->ctor(addr); 458 459 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) 460 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 461 462 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 463 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 464 465 return addr; 466 } 467 468 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 469 { 470 struct kcsan_scoped_access assert_page_exclusive; 471 unsigned long flags; 472 bool init; 473 474 raw_spin_lock_irqsave(&meta->lock, flags); 475 476 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 477 /* Invalid or double-free, bail out. */ 478 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 479 kfence_report_error((unsigned long)addr, false, NULL, meta, 480 KFENCE_ERROR_INVALID_FREE); 481 raw_spin_unlock_irqrestore(&meta->lock, flags); 482 return; 483 } 484 485 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 486 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 487 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 488 &assert_page_exclusive); 489 490 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 491 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 492 493 /* Restore page protection if there was an OOB access. */ 494 if (meta->unprotected_page) { 495 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 496 kfence_protect(meta->unprotected_page); 497 meta->unprotected_page = 0; 498 } 499 500 /* Mark the object as freed. */ 501 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); 502 init = slab_want_init_on_free(meta->cache); 503 raw_spin_unlock_irqrestore(&meta->lock, flags); 504 505 alloc_covered_add(meta->alloc_stack_hash, -1); 506 507 /* Check canary bytes for memory corruption. */ 508 for_each_canary(meta, check_canary_byte); 509 510 /* 511 * Clear memory if init-on-free is set. While we protect the page, the 512 * data is still there, and after a use-after-free is detected, we 513 * unprotect the page, so the data is still accessible. 514 */ 515 if (!zombie && unlikely(init)) 516 memzero_explicit(addr, meta->size); 517 518 /* Protect to detect use-after-frees. */ 519 kfence_protect((unsigned long)addr); 520 521 kcsan_end_scoped_access(&assert_page_exclusive); 522 if (!zombie) { 523 /* Add it to the tail of the freelist for reuse. */ 524 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 525 KFENCE_WARN_ON(!list_empty(&meta->list)); 526 list_add_tail(&meta->list, &kfence_freelist); 527 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 528 529 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 530 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 531 } else { 532 /* See kfence_shutdown_cache(). */ 533 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 534 } 535 } 536 537 static void rcu_guarded_free(struct rcu_head *h) 538 { 539 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 540 541 kfence_guarded_free((void *)meta->addr, meta, false); 542 } 543 544 /* 545 * Initialization of the KFENCE pool after its allocation. 546 * Returns 0 on success; otherwise returns the address up to 547 * which partial initialization succeeded. 548 */ 549 static unsigned long kfence_init_pool(void) 550 { 551 unsigned long addr = (unsigned long)__kfence_pool; 552 struct page *pages; 553 int i; 554 555 if (!arch_kfence_init_pool()) 556 return addr; 557 558 pages = virt_to_page(addr); 559 560 /* 561 * Set up object pages: they must have PG_slab set, to avoid freeing 562 * these as real pages. 563 * 564 * We also want to avoid inserting kfence_free() in the kfree() 565 * fast-path in SLUB, and therefore need to ensure kfree() correctly 566 * enters __slab_free() slow-path. 567 */ 568 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 569 if (!i || (i % 2)) 570 continue; 571 572 /* Verify we do not have a compound head page. */ 573 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 574 return addr; 575 576 __SetPageSlab(&pages[i]); 577 } 578 579 /* 580 * Protect the first 2 pages. The first page is mostly unnecessary, and 581 * merely serves as an extended guard page. However, adding one 582 * additional page in the beginning gives us an even number of pages, 583 * which simplifies the mapping of address to metadata index. 584 */ 585 for (i = 0; i < 2; i++) { 586 if (unlikely(!kfence_protect(addr))) 587 return addr; 588 589 addr += PAGE_SIZE; 590 } 591 592 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 593 struct kfence_metadata *meta = &kfence_metadata[i]; 594 595 /* Initialize metadata. */ 596 INIT_LIST_HEAD(&meta->list); 597 raw_spin_lock_init(&meta->lock); 598 meta->state = KFENCE_OBJECT_UNUSED; 599 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 600 list_add_tail(&meta->list, &kfence_freelist); 601 602 /* Protect the right redzone. */ 603 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 604 return addr; 605 606 addr += 2 * PAGE_SIZE; 607 } 608 609 /* 610 * The pool is live and will never be deallocated from this point on. 611 * Remove the pool object from the kmemleak object tree, as it would 612 * otherwise overlap with allocations returned by kfence_alloc(), which 613 * are registered with kmemleak through the slab post-alloc hook. 614 */ 615 kmemleak_free(__kfence_pool); 616 617 return 0; 618 } 619 620 static bool __init kfence_init_pool_early(void) 621 { 622 unsigned long addr; 623 624 if (!__kfence_pool) 625 return false; 626 627 addr = kfence_init_pool(); 628 629 if (!addr) 630 return true; 631 632 /* 633 * Only release unprotected pages, and do not try to go back and change 634 * page attributes due to risk of failing to do so as well. If changing 635 * page attributes for some pages fails, it is very likely that it also 636 * fails for the first page, and therefore expect addr==__kfence_pool in 637 * most failure cases. 638 */ 639 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 640 __kfence_pool = NULL; 641 return false; 642 } 643 644 static bool kfence_init_pool_late(void) 645 { 646 unsigned long addr, free_size; 647 648 addr = kfence_init_pool(); 649 650 if (!addr) 651 return true; 652 653 /* Same as above. */ 654 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool); 655 #ifdef CONFIG_CONTIG_ALLOC 656 free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE); 657 #else 658 free_pages_exact((void *)addr, free_size); 659 #endif 660 __kfence_pool = NULL; 661 return false; 662 } 663 664 /* === DebugFS Interface ==================================================== */ 665 666 static int stats_show(struct seq_file *seq, void *v) 667 { 668 int i; 669 670 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 671 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 672 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 673 674 return 0; 675 } 676 DEFINE_SHOW_ATTRIBUTE(stats); 677 678 /* 679 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 680 * start_object() and next_object() return the object index + 1, because NULL is used 681 * to stop iteration. 682 */ 683 static void *start_object(struct seq_file *seq, loff_t *pos) 684 { 685 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 686 return (void *)((long)*pos + 1); 687 return NULL; 688 } 689 690 static void stop_object(struct seq_file *seq, void *v) 691 { 692 } 693 694 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 695 { 696 ++*pos; 697 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 698 return (void *)((long)*pos + 1); 699 return NULL; 700 } 701 702 static int show_object(struct seq_file *seq, void *v) 703 { 704 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 705 unsigned long flags; 706 707 raw_spin_lock_irqsave(&meta->lock, flags); 708 kfence_print_object(seq, meta); 709 raw_spin_unlock_irqrestore(&meta->lock, flags); 710 seq_puts(seq, "---------------------------------\n"); 711 712 return 0; 713 } 714 715 static const struct seq_operations object_seqops = { 716 .start = start_object, 717 .next = next_object, 718 .stop = stop_object, 719 .show = show_object, 720 }; 721 722 static int open_objects(struct inode *inode, struct file *file) 723 { 724 return seq_open(file, &object_seqops); 725 } 726 727 static const struct file_operations objects_fops = { 728 .open = open_objects, 729 .read = seq_read, 730 .llseek = seq_lseek, 731 .release = seq_release, 732 }; 733 734 static int __init kfence_debugfs_init(void) 735 { 736 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 737 738 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 739 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 740 return 0; 741 } 742 743 late_initcall(kfence_debugfs_init); 744 745 /* === Allocation Gate Timer ================================================ */ 746 747 static struct delayed_work kfence_timer; 748 749 #ifdef CONFIG_KFENCE_STATIC_KEYS 750 /* Wait queue to wake up allocation-gate timer task. */ 751 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 752 753 static void wake_up_kfence_timer(struct irq_work *work) 754 { 755 wake_up(&allocation_wait); 756 } 757 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 758 #endif 759 760 /* 761 * Set up delayed work, which will enable and disable the static key. We need to 762 * use a work queue (rather than a simple timer), since enabling and disabling a 763 * static key cannot be done from an interrupt. 764 * 765 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 766 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 767 * more aggressive sampling intervals), we could get away with a variant that 768 * avoids IPIs, at the cost of not immediately capturing allocations if the 769 * instructions remain cached. 770 */ 771 static void toggle_allocation_gate(struct work_struct *work) 772 { 773 if (!READ_ONCE(kfence_enabled)) 774 return; 775 776 atomic_set(&kfence_allocation_gate, 0); 777 #ifdef CONFIG_KFENCE_STATIC_KEYS 778 /* Enable static key, and await allocation to happen. */ 779 static_branch_enable(&kfence_allocation_key); 780 781 if (sysctl_hung_task_timeout_secs) { 782 /* 783 * During low activity with no allocations we might wait a 784 * while; let's avoid the hung task warning. 785 */ 786 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), 787 sysctl_hung_task_timeout_secs * HZ / 2); 788 } else { 789 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); 790 } 791 792 /* Disable static key and reset timer. */ 793 static_branch_disable(&kfence_allocation_key); 794 #endif 795 queue_delayed_work(system_unbound_wq, &kfence_timer, 796 msecs_to_jiffies(kfence_sample_interval)); 797 } 798 799 /* === Public interface ===================================================== */ 800 801 void __init kfence_alloc_pool(void) 802 { 803 if (!kfence_sample_interval) 804 return; 805 806 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 807 808 if (!__kfence_pool) 809 pr_err("failed to allocate pool\n"); 810 } 811 812 static void kfence_init_enable(void) 813 { 814 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) 815 static_branch_enable(&kfence_allocation_key); 816 817 if (kfence_deferrable) 818 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate); 819 else 820 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate); 821 822 WRITE_ONCE(kfence_enabled, true); 823 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 824 825 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 826 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 827 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 828 } 829 830 void __init kfence_init(void) 831 { 832 stack_hash_seed = (u32)random_get_entropy(); 833 834 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 835 if (!kfence_sample_interval) 836 return; 837 838 if (!kfence_init_pool_early()) { 839 pr_err("%s failed\n", __func__); 840 return; 841 } 842 843 kfence_init_enable(); 844 } 845 846 static int kfence_init_late(void) 847 { 848 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE; 849 #ifdef CONFIG_CONTIG_ALLOC 850 struct page *pages; 851 852 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL); 853 if (!pages) 854 return -ENOMEM; 855 __kfence_pool = page_to_virt(pages); 856 #else 857 if (nr_pages > MAX_ORDER_NR_PAGES) { 858 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n"); 859 return -EINVAL; 860 } 861 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL); 862 if (!__kfence_pool) 863 return -ENOMEM; 864 #endif 865 866 if (!kfence_init_pool_late()) { 867 pr_err("%s failed\n", __func__); 868 return -EBUSY; 869 } 870 871 kfence_init_enable(); 872 return 0; 873 } 874 875 static int kfence_enable_late(void) 876 { 877 if (!__kfence_pool) 878 return kfence_init_late(); 879 880 WRITE_ONCE(kfence_enabled, true); 881 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 882 return 0; 883 } 884 885 void kfence_shutdown_cache(struct kmem_cache *s) 886 { 887 unsigned long flags; 888 struct kfence_metadata *meta; 889 int i; 890 891 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 892 bool in_use; 893 894 meta = &kfence_metadata[i]; 895 896 /* 897 * If we observe some inconsistent cache and state pair where we 898 * should have returned false here, cache destruction is racing 899 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 900 * the lock will not help, as different critical section 901 * serialization will have the same outcome. 902 */ 903 if (READ_ONCE(meta->cache) != s || 904 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 905 continue; 906 907 raw_spin_lock_irqsave(&meta->lock, flags); 908 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 909 raw_spin_unlock_irqrestore(&meta->lock, flags); 910 911 if (in_use) { 912 /* 913 * This cache still has allocations, and we should not 914 * release them back into the freelist so they can still 915 * safely be used and retain the kernel's default 916 * behaviour of keeping the allocations alive (leak the 917 * cache); however, they effectively become "zombie 918 * allocations" as the KFENCE objects are the only ones 919 * still in use and the owning cache is being destroyed. 920 * 921 * We mark them freed, so that any subsequent use shows 922 * more useful error messages that will include stack 923 * traces of the user of the object, the original 924 * allocation, and caller to shutdown_cache(). 925 */ 926 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 927 } 928 } 929 930 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 931 meta = &kfence_metadata[i]; 932 933 /* See above. */ 934 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 935 continue; 936 937 raw_spin_lock_irqsave(&meta->lock, flags); 938 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 939 meta->cache = NULL; 940 raw_spin_unlock_irqrestore(&meta->lock, flags); 941 } 942 } 943 944 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 945 { 946 unsigned long stack_entries[KFENCE_STACK_DEPTH]; 947 size_t num_stack_entries; 948 u32 alloc_stack_hash; 949 950 /* 951 * Perform size check before switching kfence_allocation_gate, so that 952 * we don't disable KFENCE without making an allocation. 953 */ 954 if (size > PAGE_SIZE) { 955 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 956 return NULL; 957 } 958 959 /* 960 * Skip allocations from non-default zones, including DMA. We cannot 961 * guarantee that pages in the KFENCE pool will have the requested 962 * properties (e.g. reside in DMAable memory). 963 */ 964 if ((flags & GFP_ZONEMASK) || 965 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { 966 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 967 return NULL; 968 } 969 970 if (atomic_inc_return(&kfence_allocation_gate) > 1) 971 return NULL; 972 #ifdef CONFIG_KFENCE_STATIC_KEYS 973 /* 974 * waitqueue_active() is fully ordered after the update of 975 * kfence_allocation_gate per atomic_inc_return(). 976 */ 977 if (waitqueue_active(&allocation_wait)) { 978 /* 979 * Calling wake_up() here may deadlock when allocations happen 980 * from within timer code. Use an irq_work to defer it. 981 */ 982 irq_work_queue(&wake_up_kfence_timer_work); 983 } 984 #endif 985 986 if (!READ_ONCE(kfence_enabled)) 987 return NULL; 988 989 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); 990 991 /* 992 * Do expensive check for coverage of allocation in slow-path after 993 * allocation_gate has already become non-zero, even though it might 994 * mean not making any allocation within a given sample interval. 995 * 996 * This ensures reasonable allocation coverage when the pool is almost 997 * full, including avoiding long-lived allocations of the same source 998 * filling up the pool (e.g. pagecache allocations). 999 */ 1000 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); 1001 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { 1002 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); 1003 return NULL; 1004 } 1005 1006 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, 1007 alloc_stack_hash); 1008 } 1009 1010 size_t kfence_ksize(const void *addr) 1011 { 1012 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1013 1014 /* 1015 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1016 * either a use-after-free or invalid access. 1017 */ 1018 return meta ? meta->size : 0; 1019 } 1020 1021 void *kfence_object_start(const void *addr) 1022 { 1023 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1024 1025 /* 1026 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1027 * either a use-after-free or invalid access. 1028 */ 1029 return meta ? (void *)meta->addr : NULL; 1030 } 1031 1032 void __kfence_free(void *addr) 1033 { 1034 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1035 1036 /* 1037 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 1038 * the object, as the object page may be recycled for other-typed 1039 * objects once it has been freed. meta->cache may be NULL if the cache 1040 * was destroyed. 1041 */ 1042 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 1043 call_rcu(&meta->rcu_head, rcu_guarded_free); 1044 else 1045 kfence_guarded_free(addr, meta, false); 1046 } 1047 1048 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 1049 { 1050 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 1051 struct kfence_metadata *to_report = NULL; 1052 enum kfence_error_type error_type; 1053 unsigned long flags; 1054 1055 if (!is_kfence_address((void *)addr)) 1056 return false; 1057 1058 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 1059 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 1060 1061 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 1062 1063 if (page_index % 2) { 1064 /* This is a redzone, report a buffer overflow. */ 1065 struct kfence_metadata *meta; 1066 int distance = 0; 1067 1068 meta = addr_to_metadata(addr - PAGE_SIZE); 1069 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1070 to_report = meta; 1071 /* Data race ok; distance calculation approximate. */ 1072 distance = addr - data_race(meta->addr + meta->size); 1073 } 1074 1075 meta = addr_to_metadata(addr + PAGE_SIZE); 1076 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1077 /* Data race ok; distance calculation approximate. */ 1078 if (!to_report || distance > data_race(meta->addr) - addr) 1079 to_report = meta; 1080 } 1081 1082 if (!to_report) 1083 goto out; 1084 1085 raw_spin_lock_irqsave(&to_report->lock, flags); 1086 to_report->unprotected_page = addr; 1087 error_type = KFENCE_ERROR_OOB; 1088 1089 /* 1090 * If the object was freed before we took the look we can still 1091 * report this as an OOB -- the report will simply show the 1092 * stacktrace of the free as well. 1093 */ 1094 } else { 1095 to_report = addr_to_metadata(addr); 1096 if (!to_report) 1097 goto out; 1098 1099 raw_spin_lock_irqsave(&to_report->lock, flags); 1100 error_type = KFENCE_ERROR_UAF; 1101 /* 1102 * We may race with __kfence_alloc(), and it is possible that a 1103 * freed object may be reallocated. We simply report this as a 1104 * use-after-free, with the stack trace showing the place where 1105 * the object was re-allocated. 1106 */ 1107 } 1108 1109 out: 1110 if (to_report) { 1111 kfence_report_error(addr, is_write, regs, to_report, error_type); 1112 raw_spin_unlock_irqrestore(&to_report->lock, flags); 1113 } else { 1114 /* This may be a UAF or OOB access, but we can't be sure. */ 1115 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 1116 } 1117 1118 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 1119 } 1120