1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/kcsan-checks.h> 14 #include <linux/kfence.h> 15 #include <linux/list.h> 16 #include <linux/lockdep.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/random.h> 20 #include <linux/rcupdate.h> 21 #include <linux/seq_file.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 26 #include <asm/kfence.h> 27 28 #include "kfence.h" 29 30 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 31 #define KFENCE_WARN_ON(cond) \ 32 ({ \ 33 const bool __cond = WARN_ON(cond); \ 34 if (unlikely(__cond)) \ 35 WRITE_ONCE(kfence_enabled, false); \ 36 __cond; \ 37 }) 38 39 /* === Data ================================================================= */ 40 41 static bool kfence_enabled __read_mostly; 42 43 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 44 45 #ifdef MODULE_PARAM_PREFIX 46 #undef MODULE_PARAM_PREFIX 47 #endif 48 #define MODULE_PARAM_PREFIX "kfence." 49 50 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 51 { 52 unsigned long num; 53 int ret = kstrtoul(val, 0, &num); 54 55 if (ret < 0) 56 return ret; 57 58 if (!num) /* Using 0 to indicate KFENCE is disabled. */ 59 WRITE_ONCE(kfence_enabled, false); 60 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 61 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ 62 63 *((unsigned long *)kp->arg) = num; 64 return 0; 65 } 66 67 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 68 { 69 if (!READ_ONCE(kfence_enabled)) 70 return sprintf(buffer, "0\n"); 71 72 return param_get_ulong(buffer, kp); 73 } 74 75 static const struct kernel_param_ops sample_interval_param_ops = { 76 .set = param_set_sample_interval, 77 .get = param_get_sample_interval, 78 }; 79 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 80 81 /* The pool of pages used for guard pages and objects. */ 82 char *__kfence_pool __ro_after_init; 83 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 84 85 /* 86 * Per-object metadata, with one-to-one mapping of object metadata to 87 * backing pages (in __kfence_pool). 88 */ 89 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 90 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 91 92 /* Freelist with available objects. */ 93 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 94 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 95 96 #ifdef CONFIG_KFENCE_STATIC_KEYS 97 /* The static key to set up a KFENCE allocation. */ 98 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 99 #endif 100 101 /* Gates the allocation, ensuring only one succeeds in a given period. */ 102 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 103 104 /* Statistics counters for debugfs. */ 105 enum kfence_counter_id { 106 KFENCE_COUNTER_ALLOCATED, 107 KFENCE_COUNTER_ALLOCS, 108 KFENCE_COUNTER_FREES, 109 KFENCE_COUNTER_ZOMBIES, 110 KFENCE_COUNTER_BUGS, 111 KFENCE_COUNTER_COUNT, 112 }; 113 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 114 static const char *const counter_names[] = { 115 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 116 [KFENCE_COUNTER_ALLOCS] = "total allocations", 117 [KFENCE_COUNTER_FREES] = "total frees", 118 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 119 [KFENCE_COUNTER_BUGS] = "total bugs", 120 }; 121 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 122 123 /* === Internals ============================================================ */ 124 125 static bool kfence_protect(unsigned long addr) 126 { 127 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 128 } 129 130 static bool kfence_unprotect(unsigned long addr) 131 { 132 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 133 } 134 135 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) 136 { 137 long index; 138 139 /* The checks do not affect performance; only called from slow-paths. */ 140 141 if (!is_kfence_address((void *)addr)) 142 return NULL; 143 144 /* 145 * May be an invalid index if called with an address at the edge of 146 * __kfence_pool, in which case we would report an "invalid access" 147 * error. 148 */ 149 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; 150 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) 151 return NULL; 152 153 return &kfence_metadata[index]; 154 } 155 156 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 157 { 158 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 159 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 160 161 /* The checks do not affect performance; only called from slow-paths. */ 162 163 /* Only call with a pointer into kfence_metadata. */ 164 if (KFENCE_WARN_ON(meta < kfence_metadata || 165 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 166 return 0; 167 168 /* 169 * This metadata object only ever maps to 1 page; verify that the stored 170 * address is in the expected range. 171 */ 172 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 173 return 0; 174 175 return pageaddr; 176 } 177 178 /* 179 * Update the object's metadata state, including updating the alloc/free stacks 180 * depending on the state transition. 181 */ 182 static noinline void metadata_update_state(struct kfence_metadata *meta, 183 enum kfence_object_state next) 184 { 185 struct kfence_track *track = 186 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 187 188 lockdep_assert_held(&meta->lock); 189 190 /* 191 * Skip over 1 (this) functions; noinline ensures we do not accidentally 192 * skip over the caller by never inlining. 193 */ 194 track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 195 track->pid = task_pid_nr(current); 196 197 /* 198 * Pairs with READ_ONCE() in 199 * kfence_shutdown_cache(), 200 * kfence_handle_page_fault(). 201 */ 202 WRITE_ONCE(meta->state, next); 203 } 204 205 /* Write canary byte to @addr. */ 206 static inline bool set_canary_byte(u8 *addr) 207 { 208 *addr = KFENCE_CANARY_PATTERN(addr); 209 return true; 210 } 211 212 /* Check canary byte at @addr. */ 213 static inline bool check_canary_byte(u8 *addr) 214 { 215 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 216 return true; 217 218 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 219 kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr), 220 KFENCE_ERROR_CORRUPTION); 221 return false; 222 } 223 224 /* __always_inline this to ensure we won't do an indirect call to fn. */ 225 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 226 { 227 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 228 unsigned long addr; 229 230 lockdep_assert_held(&meta->lock); 231 232 /* 233 * We'll iterate over each canary byte per-side until fn() returns 234 * false. However, we'll still iterate over the canary bytes to the 235 * right of the object even if there was an error in the canary bytes to 236 * the left of the object. Specifically, if check_canary_byte() 237 * generates an error, showing both sides might give more clues as to 238 * what the error is about when displaying which bytes were corrupted. 239 */ 240 241 /* Apply to left of object. */ 242 for (addr = pageaddr; addr < meta->addr; addr++) { 243 if (!fn((u8 *)addr)) 244 break; 245 } 246 247 /* Apply to right of object. */ 248 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 249 if (!fn((u8 *)addr)) 250 break; 251 } 252 } 253 254 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) 255 { 256 struct kfence_metadata *meta = NULL; 257 unsigned long flags; 258 struct page *page; 259 void *addr; 260 261 /* Try to obtain a free object. */ 262 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 263 if (!list_empty(&kfence_freelist)) { 264 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 265 list_del_init(&meta->list); 266 } 267 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 268 if (!meta) 269 return NULL; 270 271 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 272 /* 273 * This is extremely unlikely -- we are reporting on a 274 * use-after-free, which locked meta->lock, and the reporting 275 * code via printk calls kmalloc() which ends up in 276 * kfence_alloc() and tries to grab the same object that we're 277 * reporting on. While it has never been observed, lockdep does 278 * report that there is a possibility of deadlock. Fix it by 279 * using trylock and bailing out gracefully. 280 */ 281 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 282 /* Put the object back on the freelist. */ 283 list_add_tail(&meta->list, &kfence_freelist); 284 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 285 286 return NULL; 287 } 288 289 meta->addr = metadata_to_pageaddr(meta); 290 /* Unprotect if we're reusing this page. */ 291 if (meta->state == KFENCE_OBJECT_FREED) 292 kfence_unprotect(meta->addr); 293 294 /* 295 * Note: for allocations made before RNG initialization, will always 296 * return zero. We still benefit from enabling KFENCE as early as 297 * possible, even when the RNG is not yet available, as this will allow 298 * KFENCE to detect bugs due to earlier allocations. The only downside 299 * is that the out-of-bounds accesses detected are deterministic for 300 * such allocations. 301 */ 302 if (prandom_u32_max(2)) { 303 /* Allocate on the "right" side, re-calculate address. */ 304 meta->addr += PAGE_SIZE - size; 305 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 306 } 307 308 addr = (void *)meta->addr; 309 310 /* Update remaining metadata. */ 311 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); 312 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 313 WRITE_ONCE(meta->cache, cache); 314 meta->size = size; 315 for_each_canary(meta, set_canary_byte); 316 317 /* Set required struct page fields. */ 318 page = virt_to_page(meta->addr); 319 page->slab_cache = cache; 320 if (IS_ENABLED(CONFIG_SLUB)) 321 page->objects = 1; 322 if (IS_ENABLED(CONFIG_SLAB)) 323 page->s_mem = addr; 324 325 raw_spin_unlock_irqrestore(&meta->lock, flags); 326 327 /* Memory initialization. */ 328 329 /* 330 * We check slab_want_init_on_alloc() ourselves, rather than letting 331 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 332 * redzone. 333 */ 334 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 335 memzero_explicit(addr, size); 336 if (cache->ctor) 337 cache->ctor(addr); 338 339 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) 340 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 341 342 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 343 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 344 345 return addr; 346 } 347 348 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 349 { 350 struct kcsan_scoped_access assert_page_exclusive; 351 unsigned long flags; 352 353 raw_spin_lock_irqsave(&meta->lock, flags); 354 355 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 356 /* Invalid or double-free, bail out. */ 357 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 358 kfence_report_error((unsigned long)addr, false, NULL, meta, 359 KFENCE_ERROR_INVALID_FREE); 360 raw_spin_unlock_irqrestore(&meta->lock, flags); 361 return; 362 } 363 364 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 365 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 366 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 367 &assert_page_exclusive); 368 369 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 370 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 371 372 /* Restore page protection if there was an OOB access. */ 373 if (meta->unprotected_page) { 374 kfence_protect(meta->unprotected_page); 375 meta->unprotected_page = 0; 376 } 377 378 /* Check canary bytes for memory corruption. */ 379 for_each_canary(meta, check_canary_byte); 380 381 /* 382 * Clear memory if init-on-free is set. While we protect the page, the 383 * data is still there, and after a use-after-free is detected, we 384 * unprotect the page, so the data is still accessible. 385 */ 386 if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) 387 memzero_explicit(addr, meta->size); 388 389 /* Mark the object as freed. */ 390 metadata_update_state(meta, KFENCE_OBJECT_FREED); 391 392 raw_spin_unlock_irqrestore(&meta->lock, flags); 393 394 /* Protect to detect use-after-frees. */ 395 kfence_protect((unsigned long)addr); 396 397 kcsan_end_scoped_access(&assert_page_exclusive); 398 if (!zombie) { 399 /* Add it to the tail of the freelist for reuse. */ 400 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 401 KFENCE_WARN_ON(!list_empty(&meta->list)); 402 list_add_tail(&meta->list, &kfence_freelist); 403 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 404 405 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 406 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 407 } else { 408 /* See kfence_shutdown_cache(). */ 409 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 410 } 411 } 412 413 static void rcu_guarded_free(struct rcu_head *h) 414 { 415 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 416 417 kfence_guarded_free((void *)meta->addr, meta, false); 418 } 419 420 static bool __init kfence_init_pool(void) 421 { 422 unsigned long addr = (unsigned long)__kfence_pool; 423 struct page *pages; 424 int i; 425 426 if (!__kfence_pool) 427 return false; 428 429 if (!arch_kfence_init_pool()) 430 goto err; 431 432 pages = virt_to_page(addr); 433 434 /* 435 * Set up object pages: they must have PG_slab set, to avoid freeing 436 * these as real pages. 437 * 438 * We also want to avoid inserting kfence_free() in the kfree() 439 * fast-path in SLUB, and therefore need to ensure kfree() correctly 440 * enters __slab_free() slow-path. 441 */ 442 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 443 if (!i || (i % 2)) 444 continue; 445 446 /* Verify we do not have a compound head page. */ 447 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 448 goto err; 449 450 __SetPageSlab(&pages[i]); 451 } 452 453 /* 454 * Protect the first 2 pages. The first page is mostly unnecessary, and 455 * merely serves as an extended guard page. However, adding one 456 * additional page in the beginning gives us an even number of pages, 457 * which simplifies the mapping of address to metadata index. 458 */ 459 for (i = 0; i < 2; i++) { 460 if (unlikely(!kfence_protect(addr))) 461 goto err; 462 463 addr += PAGE_SIZE; 464 } 465 466 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 467 struct kfence_metadata *meta = &kfence_metadata[i]; 468 469 /* Initialize metadata. */ 470 INIT_LIST_HEAD(&meta->list); 471 raw_spin_lock_init(&meta->lock); 472 meta->state = KFENCE_OBJECT_UNUSED; 473 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 474 list_add_tail(&meta->list, &kfence_freelist); 475 476 /* Protect the right redzone. */ 477 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 478 goto err; 479 480 addr += 2 * PAGE_SIZE; 481 } 482 483 return true; 484 485 err: 486 /* 487 * Only release unprotected pages, and do not try to go back and change 488 * page attributes due to risk of failing to do so as well. If changing 489 * page attributes for some pages fails, it is very likely that it also 490 * fails for the first page, and therefore expect addr==__kfence_pool in 491 * most failure cases. 492 */ 493 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 494 __kfence_pool = NULL; 495 return false; 496 } 497 498 /* === DebugFS Interface ==================================================== */ 499 500 static int stats_show(struct seq_file *seq, void *v) 501 { 502 int i; 503 504 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 505 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 506 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 507 508 return 0; 509 } 510 DEFINE_SHOW_ATTRIBUTE(stats); 511 512 /* 513 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 514 * start_object() and next_object() return the object index + 1, because NULL is used 515 * to stop iteration. 516 */ 517 static void *start_object(struct seq_file *seq, loff_t *pos) 518 { 519 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 520 return (void *)((long)*pos + 1); 521 return NULL; 522 } 523 524 static void stop_object(struct seq_file *seq, void *v) 525 { 526 } 527 528 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 529 { 530 ++*pos; 531 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 532 return (void *)((long)*pos + 1); 533 return NULL; 534 } 535 536 static int show_object(struct seq_file *seq, void *v) 537 { 538 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 539 unsigned long flags; 540 541 raw_spin_lock_irqsave(&meta->lock, flags); 542 kfence_print_object(seq, meta); 543 raw_spin_unlock_irqrestore(&meta->lock, flags); 544 seq_puts(seq, "---------------------------------\n"); 545 546 return 0; 547 } 548 549 static const struct seq_operations object_seqops = { 550 .start = start_object, 551 .next = next_object, 552 .stop = stop_object, 553 .show = show_object, 554 }; 555 556 static int open_objects(struct inode *inode, struct file *file) 557 { 558 return seq_open(file, &object_seqops); 559 } 560 561 static const struct file_operations objects_fops = { 562 .open = open_objects, 563 .read = seq_read, 564 .llseek = seq_lseek, 565 }; 566 567 static int __init kfence_debugfs_init(void) 568 { 569 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 570 571 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 572 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 573 return 0; 574 } 575 576 late_initcall(kfence_debugfs_init); 577 578 /* === Allocation Gate Timer ================================================ */ 579 580 /* 581 * Set up delayed work, which will enable and disable the static key. We need to 582 * use a work queue (rather than a simple timer), since enabling and disabling a 583 * static key cannot be done from an interrupt. 584 * 585 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 586 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 587 * more aggressive sampling intervals), we could get away with a variant that 588 * avoids IPIs, at the cost of not immediately capturing allocations if the 589 * instructions remain cached. 590 */ 591 static struct delayed_work kfence_timer; 592 static void toggle_allocation_gate(struct work_struct *work) 593 { 594 if (!READ_ONCE(kfence_enabled)) 595 return; 596 597 /* Enable static key, and await allocation to happen. */ 598 atomic_set(&kfence_allocation_gate, 0); 599 #ifdef CONFIG_KFENCE_STATIC_KEYS 600 static_branch_enable(&kfence_allocation_key); 601 /* 602 * Await an allocation. Timeout after 1 second, in case the kernel stops 603 * doing allocations, to avoid stalling this worker task for too long. 604 */ 605 { 606 unsigned long end_wait = jiffies + HZ; 607 608 do { 609 set_current_state(TASK_UNINTERRUPTIBLE); 610 if (atomic_read(&kfence_allocation_gate) != 0) 611 break; 612 schedule_timeout(1); 613 } while (time_before(jiffies, end_wait)); 614 __set_current_state(TASK_RUNNING); 615 } 616 /* Disable static key and reset timer. */ 617 static_branch_disable(&kfence_allocation_key); 618 #endif 619 schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval)); 620 } 621 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); 622 623 /* === Public interface ===================================================== */ 624 625 void __init kfence_alloc_pool(void) 626 { 627 if (!kfence_sample_interval) 628 return; 629 630 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 631 632 if (!__kfence_pool) 633 pr_err("failed to allocate pool\n"); 634 } 635 636 void __init kfence_init(void) 637 { 638 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 639 if (!kfence_sample_interval) 640 return; 641 642 if (!kfence_init_pool()) { 643 pr_err("%s failed\n", __func__); 644 return; 645 } 646 647 WRITE_ONCE(kfence_enabled, true); 648 schedule_delayed_work(&kfence_timer, 0); 649 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 650 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 651 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 652 } 653 654 void kfence_shutdown_cache(struct kmem_cache *s) 655 { 656 unsigned long flags; 657 struct kfence_metadata *meta; 658 int i; 659 660 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 661 bool in_use; 662 663 meta = &kfence_metadata[i]; 664 665 /* 666 * If we observe some inconsistent cache and state pair where we 667 * should have returned false here, cache destruction is racing 668 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 669 * the lock will not help, as different critical section 670 * serialization will have the same outcome. 671 */ 672 if (READ_ONCE(meta->cache) != s || 673 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 674 continue; 675 676 raw_spin_lock_irqsave(&meta->lock, flags); 677 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 678 raw_spin_unlock_irqrestore(&meta->lock, flags); 679 680 if (in_use) { 681 /* 682 * This cache still has allocations, and we should not 683 * release them back into the freelist so they can still 684 * safely be used and retain the kernel's default 685 * behaviour of keeping the allocations alive (leak the 686 * cache); however, they effectively become "zombie 687 * allocations" as the KFENCE objects are the only ones 688 * still in use and the owning cache is being destroyed. 689 * 690 * We mark them freed, so that any subsequent use shows 691 * more useful error messages that will include stack 692 * traces of the user of the object, the original 693 * allocation, and caller to shutdown_cache(). 694 */ 695 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 696 } 697 } 698 699 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 700 meta = &kfence_metadata[i]; 701 702 /* See above. */ 703 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 704 continue; 705 706 raw_spin_lock_irqsave(&meta->lock, flags); 707 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 708 meta->cache = NULL; 709 raw_spin_unlock_irqrestore(&meta->lock, flags); 710 } 711 } 712 713 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 714 { 715 /* 716 * allocation_gate only needs to become non-zero, so it doesn't make 717 * sense to continue writing to it and pay the associated contention 718 * cost, in case we have a large number of concurrent allocations. 719 */ 720 if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) 721 return NULL; 722 723 if (!READ_ONCE(kfence_enabled)) 724 return NULL; 725 726 if (size > PAGE_SIZE) 727 return NULL; 728 729 return kfence_guarded_alloc(s, size, flags); 730 } 731 732 size_t kfence_ksize(const void *addr) 733 { 734 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 735 736 /* 737 * Read locklessly -- if there is a race with __kfence_alloc(), this is 738 * either a use-after-free or invalid access. 739 */ 740 return meta ? meta->size : 0; 741 } 742 743 void *kfence_object_start(const void *addr) 744 { 745 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 746 747 /* 748 * Read locklessly -- if there is a race with __kfence_alloc(), this is 749 * either a use-after-free or invalid access. 750 */ 751 return meta ? (void *)meta->addr : NULL; 752 } 753 754 void __kfence_free(void *addr) 755 { 756 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 757 758 /* 759 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 760 * the object, as the object page may be recycled for other-typed 761 * objects once it has been freed. meta->cache may be NULL if the cache 762 * was destroyed. 763 */ 764 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 765 call_rcu(&meta->rcu_head, rcu_guarded_free); 766 else 767 kfence_guarded_free(addr, meta, false); 768 } 769 770 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 771 { 772 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 773 struct kfence_metadata *to_report = NULL; 774 enum kfence_error_type error_type; 775 unsigned long flags; 776 777 if (!is_kfence_address((void *)addr)) 778 return false; 779 780 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 781 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 782 783 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 784 785 if (page_index % 2) { 786 /* This is a redzone, report a buffer overflow. */ 787 struct kfence_metadata *meta; 788 int distance = 0; 789 790 meta = addr_to_metadata(addr - PAGE_SIZE); 791 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 792 to_report = meta; 793 /* Data race ok; distance calculation approximate. */ 794 distance = addr - data_race(meta->addr + meta->size); 795 } 796 797 meta = addr_to_metadata(addr + PAGE_SIZE); 798 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 799 /* Data race ok; distance calculation approximate. */ 800 if (!to_report || distance > data_race(meta->addr) - addr) 801 to_report = meta; 802 } 803 804 if (!to_report) 805 goto out; 806 807 raw_spin_lock_irqsave(&to_report->lock, flags); 808 to_report->unprotected_page = addr; 809 error_type = KFENCE_ERROR_OOB; 810 811 /* 812 * If the object was freed before we took the look we can still 813 * report this as an OOB -- the report will simply show the 814 * stacktrace of the free as well. 815 */ 816 } else { 817 to_report = addr_to_metadata(addr); 818 if (!to_report) 819 goto out; 820 821 raw_spin_lock_irqsave(&to_report->lock, flags); 822 error_type = KFENCE_ERROR_UAF; 823 /* 824 * We may race with __kfence_alloc(), and it is possible that a 825 * freed object may be reallocated. We simply report this as a 826 * use-after-free, with the stack trace showing the place where 827 * the object was re-allocated. 828 */ 829 } 830 831 out: 832 if (to_report) { 833 kfence_report_error(addr, is_write, regs, to_report, error_type); 834 raw_spin_unlock_irqrestore(&to_report->lock, flags); 835 } else { 836 /* This may be a UAF or OOB access, but we can't be sure. */ 837 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 838 } 839 840 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 841 } 842