xref: /openbmc/linux/mm/kfence/core.c (revision 6846d656)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 
33 #include <asm/kfence.h>
34 
35 #include "kfence.h"
36 
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39 	({                                                                     \
40 		const bool __cond = WARN_ON(cond);                             \
41 		if (unlikely(__cond)) {                                        \
42 			WRITE_ONCE(kfence_enabled, false);                     \
43 			disabled_by_warn = true;                               \
44 		}                                                              \
45 		__cond;                                                        \
46 	})
47 
48 /* === Data ================================================================= */
49 
50 static bool kfence_enabled __read_mostly;
51 static bool disabled_by_warn __read_mostly;
52 
53 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
54 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
55 
56 #ifdef MODULE_PARAM_PREFIX
57 #undef MODULE_PARAM_PREFIX
58 #endif
59 #define MODULE_PARAM_PREFIX "kfence."
60 
61 static int kfence_enable_late(void);
62 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
63 {
64 	unsigned long num;
65 	int ret = kstrtoul(val, 0, &num);
66 
67 	if (ret < 0)
68 		return ret;
69 
70 	if (!num) /* Using 0 to indicate KFENCE is disabled. */
71 		WRITE_ONCE(kfence_enabled, false);
72 
73 	*((unsigned long *)kp->arg) = num;
74 
75 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
76 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
77 	return 0;
78 }
79 
80 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
81 {
82 	if (!READ_ONCE(kfence_enabled))
83 		return sprintf(buffer, "0\n");
84 
85 	return param_get_ulong(buffer, kp);
86 }
87 
88 static const struct kernel_param_ops sample_interval_param_ops = {
89 	.set = param_set_sample_interval,
90 	.get = param_get_sample_interval,
91 };
92 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
93 
94 /* Pool usage% threshold when currently covered allocations are skipped. */
95 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
96 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
97 
98 /* If true, use a deferrable timer. */
99 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
100 module_param_named(deferrable, kfence_deferrable, bool, 0444);
101 
102 /* The pool of pages used for guard pages and objects. */
103 char *__kfence_pool __read_mostly;
104 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
105 
106 /*
107  * Per-object metadata, with one-to-one mapping of object metadata to
108  * backing pages (in __kfence_pool).
109  */
110 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
111 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
112 
113 /* Freelist with available objects. */
114 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
115 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
116 
117 /*
118  * The static key to set up a KFENCE allocation; or if static keys are not used
119  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
120  */
121 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
122 
123 /* Gates the allocation, ensuring only one succeeds in a given period. */
124 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
125 
126 /*
127  * A Counting Bloom filter of allocation coverage: limits currently covered
128  * allocations of the same source filling up the pool.
129  *
130  * Assuming a range of 15%-85% unique allocations in the pool at any point in
131  * time, the below parameters provide a probablity of 0.02-0.33 for false
132  * positive hits respectively:
133  *
134  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
135  */
136 #define ALLOC_COVERED_HNUM	2
137 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
138 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
139 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
140 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
141 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
142 
143 /* Stack depth used to determine uniqueness of an allocation. */
144 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
145 
146 /*
147  * Randomness for stack hashes, making the same collisions across reboots and
148  * different machines less likely.
149  */
150 static u32 stack_hash_seed __ro_after_init;
151 
152 /* Statistics counters for debugfs. */
153 enum kfence_counter_id {
154 	KFENCE_COUNTER_ALLOCATED,
155 	KFENCE_COUNTER_ALLOCS,
156 	KFENCE_COUNTER_FREES,
157 	KFENCE_COUNTER_ZOMBIES,
158 	KFENCE_COUNTER_BUGS,
159 	KFENCE_COUNTER_SKIP_INCOMPAT,
160 	KFENCE_COUNTER_SKIP_CAPACITY,
161 	KFENCE_COUNTER_SKIP_COVERED,
162 	KFENCE_COUNTER_COUNT,
163 };
164 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
165 static const char *const counter_names[] = {
166 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
167 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
168 	[KFENCE_COUNTER_FREES]		= "total frees",
169 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
170 	[KFENCE_COUNTER_BUGS]		= "total bugs",
171 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
172 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
173 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
174 };
175 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
176 
177 /* === Internals ============================================================ */
178 
179 static inline bool should_skip_covered(void)
180 {
181 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
182 
183 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
184 }
185 
186 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
187 {
188 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
189 	num_entries = filter_irq_stacks(stack_entries, num_entries);
190 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
191 }
192 
193 /*
194  * Adds (or subtracts) count @val for allocation stack trace hash
195  * @alloc_stack_hash from Counting Bloom filter.
196  */
197 static void alloc_covered_add(u32 alloc_stack_hash, int val)
198 {
199 	int i;
200 
201 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
202 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
203 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
204 	}
205 }
206 
207 /*
208  * Returns true if the allocation stack trace hash @alloc_stack_hash is
209  * currently contained (non-zero count) in Counting Bloom filter.
210  */
211 static bool alloc_covered_contains(u32 alloc_stack_hash)
212 {
213 	int i;
214 
215 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
216 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
217 			return false;
218 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
219 	}
220 
221 	return true;
222 }
223 
224 static bool kfence_protect(unsigned long addr)
225 {
226 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
227 }
228 
229 static bool kfence_unprotect(unsigned long addr)
230 {
231 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
232 }
233 
234 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
235 {
236 	long index;
237 
238 	/* The checks do not affect performance; only called from slow-paths. */
239 
240 	if (!is_kfence_address((void *)addr))
241 		return NULL;
242 
243 	/*
244 	 * May be an invalid index if called with an address at the edge of
245 	 * __kfence_pool, in which case we would report an "invalid access"
246 	 * error.
247 	 */
248 	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
249 	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
250 		return NULL;
251 
252 	return &kfence_metadata[index];
253 }
254 
255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256 {
257 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259 
260 	/* The checks do not affect performance; only called from slow-paths. */
261 
262 	/* Only call with a pointer into kfence_metadata. */
263 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
264 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265 		return 0;
266 
267 	/*
268 	 * This metadata object only ever maps to 1 page; verify that the stored
269 	 * address is in the expected range.
270 	 */
271 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272 		return 0;
273 
274 	return pageaddr;
275 }
276 
277 /*
278  * Update the object's metadata state, including updating the alloc/free stacks
279  * depending on the state transition.
280  */
281 static noinline void
282 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
283 		      unsigned long *stack_entries, size_t num_stack_entries)
284 {
285 	struct kfence_track *track =
286 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
287 
288 	lockdep_assert_held(&meta->lock);
289 
290 	if (stack_entries) {
291 		memcpy(track->stack_entries, stack_entries,
292 		       num_stack_entries * sizeof(stack_entries[0]));
293 	} else {
294 		/*
295 		 * Skip over 1 (this) functions; noinline ensures we do not
296 		 * accidentally skip over the caller by never inlining.
297 		 */
298 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
299 	}
300 	track->num_stack_entries = num_stack_entries;
301 	track->pid = task_pid_nr(current);
302 	track->cpu = raw_smp_processor_id();
303 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
304 
305 	/*
306 	 * Pairs with READ_ONCE() in
307 	 *	kfence_shutdown_cache(),
308 	 *	kfence_handle_page_fault().
309 	 */
310 	WRITE_ONCE(meta->state, next);
311 }
312 
313 /* Write canary byte to @addr. */
314 static inline bool set_canary_byte(u8 *addr)
315 {
316 	*addr = KFENCE_CANARY_PATTERN(addr);
317 	return true;
318 }
319 
320 /* Check canary byte at @addr. */
321 static inline bool check_canary_byte(u8 *addr)
322 {
323 	struct kfence_metadata *meta;
324 	unsigned long flags;
325 
326 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
327 		return true;
328 
329 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
330 
331 	meta = addr_to_metadata((unsigned long)addr);
332 	raw_spin_lock_irqsave(&meta->lock, flags);
333 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
334 	raw_spin_unlock_irqrestore(&meta->lock, flags);
335 
336 	return false;
337 }
338 
339 /* __always_inline this to ensure we won't do an indirect call to fn. */
340 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
341 {
342 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
343 	unsigned long addr;
344 
345 	/*
346 	 * We'll iterate over each canary byte per-side until fn() returns
347 	 * false. However, we'll still iterate over the canary bytes to the
348 	 * right of the object even if there was an error in the canary bytes to
349 	 * the left of the object. Specifically, if check_canary_byte()
350 	 * generates an error, showing both sides might give more clues as to
351 	 * what the error is about when displaying which bytes were corrupted.
352 	 */
353 
354 	/* Apply to left of object. */
355 	for (addr = pageaddr; addr < meta->addr; addr++) {
356 		if (!fn((u8 *)addr))
357 			break;
358 	}
359 
360 	/* Apply to right of object. */
361 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
362 		if (!fn((u8 *)addr))
363 			break;
364 	}
365 }
366 
367 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
368 				  unsigned long *stack_entries, size_t num_stack_entries,
369 				  u32 alloc_stack_hash)
370 {
371 	struct kfence_metadata *meta = NULL;
372 	unsigned long flags;
373 	struct slab *slab;
374 	void *addr;
375 
376 	/* Try to obtain a free object. */
377 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
378 	if (!list_empty(&kfence_freelist)) {
379 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
380 		list_del_init(&meta->list);
381 	}
382 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
383 	if (!meta) {
384 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
385 		return NULL;
386 	}
387 
388 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
389 		/*
390 		 * This is extremely unlikely -- we are reporting on a
391 		 * use-after-free, which locked meta->lock, and the reporting
392 		 * code via printk calls kmalloc() which ends up in
393 		 * kfence_alloc() and tries to grab the same object that we're
394 		 * reporting on. While it has never been observed, lockdep does
395 		 * report that there is a possibility of deadlock. Fix it by
396 		 * using trylock and bailing out gracefully.
397 		 */
398 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
399 		/* Put the object back on the freelist. */
400 		list_add_tail(&meta->list, &kfence_freelist);
401 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
402 
403 		return NULL;
404 	}
405 
406 	meta->addr = metadata_to_pageaddr(meta);
407 	/* Unprotect if we're reusing this page. */
408 	if (meta->state == KFENCE_OBJECT_FREED)
409 		kfence_unprotect(meta->addr);
410 
411 	/*
412 	 * Note: for allocations made before RNG initialization, will always
413 	 * return zero. We still benefit from enabling KFENCE as early as
414 	 * possible, even when the RNG is not yet available, as this will allow
415 	 * KFENCE to detect bugs due to earlier allocations. The only downside
416 	 * is that the out-of-bounds accesses detected are deterministic for
417 	 * such allocations.
418 	 */
419 	if (prandom_u32_max(2)) {
420 		/* Allocate on the "right" side, re-calculate address. */
421 		meta->addr += PAGE_SIZE - size;
422 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
423 	}
424 
425 	addr = (void *)meta->addr;
426 
427 	/* Update remaining metadata. */
428 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
429 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
430 	WRITE_ONCE(meta->cache, cache);
431 	meta->size = size;
432 	meta->alloc_stack_hash = alloc_stack_hash;
433 	raw_spin_unlock_irqrestore(&meta->lock, flags);
434 
435 	alloc_covered_add(alloc_stack_hash, 1);
436 
437 	/* Set required slab fields. */
438 	slab = virt_to_slab((void *)meta->addr);
439 	slab->slab_cache = cache;
440 #if defined(CONFIG_SLUB)
441 	slab->objects = 1;
442 #elif defined(CONFIG_SLAB)
443 	slab->s_mem = addr;
444 #endif
445 
446 	/* Memory initialization. */
447 	for_each_canary(meta, set_canary_byte);
448 
449 	/*
450 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
451 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
452 	 * redzone.
453 	 */
454 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
455 		memzero_explicit(addr, size);
456 	if (cache->ctor)
457 		cache->ctor(addr);
458 
459 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
460 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
461 
462 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
463 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
464 
465 	return addr;
466 }
467 
468 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
469 {
470 	struct kcsan_scoped_access assert_page_exclusive;
471 	unsigned long flags;
472 	bool init;
473 
474 	raw_spin_lock_irqsave(&meta->lock, flags);
475 
476 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
477 		/* Invalid or double-free, bail out. */
478 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
479 		kfence_report_error((unsigned long)addr, false, NULL, meta,
480 				    KFENCE_ERROR_INVALID_FREE);
481 		raw_spin_unlock_irqrestore(&meta->lock, flags);
482 		return;
483 	}
484 
485 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
486 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
487 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
488 				  &assert_page_exclusive);
489 
490 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
491 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
492 
493 	/* Restore page protection if there was an OOB access. */
494 	if (meta->unprotected_page) {
495 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
496 		kfence_protect(meta->unprotected_page);
497 		meta->unprotected_page = 0;
498 	}
499 
500 	/* Mark the object as freed. */
501 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
502 	init = slab_want_init_on_free(meta->cache);
503 	raw_spin_unlock_irqrestore(&meta->lock, flags);
504 
505 	alloc_covered_add(meta->alloc_stack_hash, -1);
506 
507 	/* Check canary bytes for memory corruption. */
508 	for_each_canary(meta, check_canary_byte);
509 
510 	/*
511 	 * Clear memory if init-on-free is set. While we protect the page, the
512 	 * data is still there, and after a use-after-free is detected, we
513 	 * unprotect the page, so the data is still accessible.
514 	 */
515 	if (!zombie && unlikely(init))
516 		memzero_explicit(addr, meta->size);
517 
518 	/* Protect to detect use-after-frees. */
519 	kfence_protect((unsigned long)addr);
520 
521 	kcsan_end_scoped_access(&assert_page_exclusive);
522 	if (!zombie) {
523 		/* Add it to the tail of the freelist for reuse. */
524 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
525 		KFENCE_WARN_ON(!list_empty(&meta->list));
526 		list_add_tail(&meta->list, &kfence_freelist);
527 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
528 
529 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
530 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
531 	} else {
532 		/* See kfence_shutdown_cache(). */
533 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
534 	}
535 }
536 
537 static void rcu_guarded_free(struct rcu_head *h)
538 {
539 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
540 
541 	kfence_guarded_free((void *)meta->addr, meta, false);
542 }
543 
544 /*
545  * Initialization of the KFENCE pool after its allocation.
546  * Returns 0 on success; otherwise returns the address up to
547  * which partial initialization succeeded.
548  */
549 static unsigned long kfence_init_pool(void)
550 {
551 	unsigned long addr = (unsigned long)__kfence_pool;
552 	struct page *pages;
553 	int i;
554 
555 	if (!arch_kfence_init_pool())
556 		return addr;
557 
558 	pages = virt_to_page(addr);
559 
560 	/*
561 	 * Set up object pages: they must have PG_slab set, to avoid freeing
562 	 * these as real pages.
563 	 *
564 	 * We also want to avoid inserting kfence_free() in the kfree()
565 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
566 	 * enters __slab_free() slow-path.
567 	 */
568 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
569 		if (!i || (i % 2))
570 			continue;
571 
572 		/* Verify we do not have a compound head page. */
573 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
574 			return addr;
575 
576 		__SetPageSlab(&pages[i]);
577 	}
578 
579 	/*
580 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
581 	 * merely serves as an extended guard page. However, adding one
582 	 * additional page in the beginning gives us an even number of pages,
583 	 * which simplifies the mapping of address to metadata index.
584 	 */
585 	for (i = 0; i < 2; i++) {
586 		if (unlikely(!kfence_protect(addr)))
587 			return addr;
588 
589 		addr += PAGE_SIZE;
590 	}
591 
592 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
593 		struct kfence_metadata *meta = &kfence_metadata[i];
594 
595 		/* Initialize metadata. */
596 		INIT_LIST_HEAD(&meta->list);
597 		raw_spin_lock_init(&meta->lock);
598 		meta->state = KFENCE_OBJECT_UNUSED;
599 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
600 		list_add_tail(&meta->list, &kfence_freelist);
601 
602 		/* Protect the right redzone. */
603 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
604 			return addr;
605 
606 		addr += 2 * PAGE_SIZE;
607 	}
608 
609 	/*
610 	 * The pool is live and will never be deallocated from this point on.
611 	 * Remove the pool object from the kmemleak object tree, as it would
612 	 * otherwise overlap with allocations returned by kfence_alloc(), which
613 	 * are registered with kmemleak through the slab post-alloc hook.
614 	 */
615 	kmemleak_free(__kfence_pool);
616 
617 	return 0;
618 }
619 
620 static bool __init kfence_init_pool_early(void)
621 {
622 	unsigned long addr;
623 
624 	if (!__kfence_pool)
625 		return false;
626 
627 	addr = kfence_init_pool();
628 
629 	if (!addr)
630 		return true;
631 
632 	/*
633 	 * Only release unprotected pages, and do not try to go back and change
634 	 * page attributes due to risk of failing to do so as well. If changing
635 	 * page attributes for some pages fails, it is very likely that it also
636 	 * fails for the first page, and therefore expect addr==__kfence_pool in
637 	 * most failure cases.
638 	 */
639 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
640 	__kfence_pool = NULL;
641 	return false;
642 }
643 
644 static bool kfence_init_pool_late(void)
645 {
646 	unsigned long addr, free_size;
647 
648 	addr = kfence_init_pool();
649 
650 	if (!addr)
651 		return true;
652 
653 	/* Same as above. */
654 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
655 #ifdef CONFIG_CONTIG_ALLOC
656 	free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
657 #else
658 	free_pages_exact((void *)addr, free_size);
659 #endif
660 	__kfence_pool = NULL;
661 	return false;
662 }
663 
664 /* === DebugFS Interface ==================================================== */
665 
666 static int stats_show(struct seq_file *seq, void *v)
667 {
668 	int i;
669 
670 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
671 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
672 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
673 
674 	return 0;
675 }
676 DEFINE_SHOW_ATTRIBUTE(stats);
677 
678 /*
679  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
680  * start_object() and next_object() return the object index + 1, because NULL is used
681  * to stop iteration.
682  */
683 static void *start_object(struct seq_file *seq, loff_t *pos)
684 {
685 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
686 		return (void *)((long)*pos + 1);
687 	return NULL;
688 }
689 
690 static void stop_object(struct seq_file *seq, void *v)
691 {
692 }
693 
694 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
695 {
696 	++*pos;
697 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
698 		return (void *)((long)*pos + 1);
699 	return NULL;
700 }
701 
702 static int show_object(struct seq_file *seq, void *v)
703 {
704 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
705 	unsigned long flags;
706 
707 	raw_spin_lock_irqsave(&meta->lock, flags);
708 	kfence_print_object(seq, meta);
709 	raw_spin_unlock_irqrestore(&meta->lock, flags);
710 	seq_puts(seq, "---------------------------------\n");
711 
712 	return 0;
713 }
714 
715 static const struct seq_operations object_seqops = {
716 	.start = start_object,
717 	.next = next_object,
718 	.stop = stop_object,
719 	.show = show_object,
720 };
721 
722 static int open_objects(struct inode *inode, struct file *file)
723 {
724 	return seq_open(file, &object_seqops);
725 }
726 
727 static const struct file_operations objects_fops = {
728 	.open = open_objects,
729 	.read = seq_read,
730 	.llseek = seq_lseek,
731 	.release = seq_release,
732 };
733 
734 static int __init kfence_debugfs_init(void)
735 {
736 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
737 
738 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
739 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
740 	return 0;
741 }
742 
743 late_initcall(kfence_debugfs_init);
744 
745 /* === Allocation Gate Timer ================================================ */
746 
747 static struct delayed_work kfence_timer;
748 
749 #ifdef CONFIG_KFENCE_STATIC_KEYS
750 /* Wait queue to wake up allocation-gate timer task. */
751 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
752 
753 static void wake_up_kfence_timer(struct irq_work *work)
754 {
755 	wake_up(&allocation_wait);
756 }
757 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
758 #endif
759 
760 /*
761  * Set up delayed work, which will enable and disable the static key. We need to
762  * use a work queue (rather than a simple timer), since enabling and disabling a
763  * static key cannot be done from an interrupt.
764  *
765  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
766  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
767  * more aggressive sampling intervals), we could get away with a variant that
768  * avoids IPIs, at the cost of not immediately capturing allocations if the
769  * instructions remain cached.
770  */
771 static void toggle_allocation_gate(struct work_struct *work)
772 {
773 	if (!READ_ONCE(kfence_enabled))
774 		return;
775 
776 	atomic_set(&kfence_allocation_gate, 0);
777 #ifdef CONFIG_KFENCE_STATIC_KEYS
778 	/* Enable static key, and await allocation to happen. */
779 	static_branch_enable(&kfence_allocation_key);
780 
781 	if (sysctl_hung_task_timeout_secs) {
782 		/*
783 		 * During low activity with no allocations we might wait a
784 		 * while; let's avoid the hung task warning.
785 		 */
786 		wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
787 					sysctl_hung_task_timeout_secs * HZ / 2);
788 	} else {
789 		wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
790 	}
791 
792 	/* Disable static key and reset timer. */
793 	static_branch_disable(&kfence_allocation_key);
794 #endif
795 	queue_delayed_work(system_unbound_wq, &kfence_timer,
796 			   msecs_to_jiffies(kfence_sample_interval));
797 }
798 
799 /* === Public interface ===================================================== */
800 
801 void __init kfence_alloc_pool(void)
802 {
803 	if (!kfence_sample_interval)
804 		return;
805 
806 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
807 
808 	if (!__kfence_pool)
809 		pr_err("failed to allocate pool\n");
810 }
811 
812 static void kfence_init_enable(void)
813 {
814 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
815 		static_branch_enable(&kfence_allocation_key);
816 
817 	if (kfence_deferrable)
818 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
819 	else
820 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
821 
822 	WRITE_ONCE(kfence_enabled, true);
823 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
824 
825 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
826 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
827 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
828 }
829 
830 void __init kfence_init(void)
831 {
832 	stack_hash_seed = (u32)random_get_entropy();
833 
834 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
835 	if (!kfence_sample_interval)
836 		return;
837 
838 	if (!kfence_init_pool_early()) {
839 		pr_err("%s failed\n", __func__);
840 		return;
841 	}
842 
843 	kfence_init_enable();
844 }
845 
846 static int kfence_init_late(void)
847 {
848 	const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
849 #ifdef CONFIG_CONTIG_ALLOC
850 	struct page *pages;
851 
852 	pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
853 	if (!pages)
854 		return -ENOMEM;
855 	__kfence_pool = page_to_virt(pages);
856 #else
857 	if (nr_pages > MAX_ORDER_NR_PAGES) {
858 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
859 		return -EINVAL;
860 	}
861 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
862 	if (!__kfence_pool)
863 		return -ENOMEM;
864 #endif
865 
866 	if (!kfence_init_pool_late()) {
867 		pr_err("%s failed\n", __func__);
868 		return -EBUSY;
869 	}
870 
871 	kfence_init_enable();
872 	return 0;
873 }
874 
875 static int kfence_enable_late(void)
876 {
877 	if (!__kfence_pool)
878 		return kfence_init_late();
879 
880 	WRITE_ONCE(kfence_enabled, true);
881 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
882 	return 0;
883 }
884 
885 void kfence_shutdown_cache(struct kmem_cache *s)
886 {
887 	unsigned long flags;
888 	struct kfence_metadata *meta;
889 	int i;
890 
891 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
892 		bool in_use;
893 
894 		meta = &kfence_metadata[i];
895 
896 		/*
897 		 * If we observe some inconsistent cache and state pair where we
898 		 * should have returned false here, cache destruction is racing
899 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
900 		 * the lock will not help, as different critical section
901 		 * serialization will have the same outcome.
902 		 */
903 		if (READ_ONCE(meta->cache) != s ||
904 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
905 			continue;
906 
907 		raw_spin_lock_irqsave(&meta->lock, flags);
908 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
909 		raw_spin_unlock_irqrestore(&meta->lock, flags);
910 
911 		if (in_use) {
912 			/*
913 			 * This cache still has allocations, and we should not
914 			 * release them back into the freelist so they can still
915 			 * safely be used and retain the kernel's default
916 			 * behaviour of keeping the allocations alive (leak the
917 			 * cache); however, they effectively become "zombie
918 			 * allocations" as the KFENCE objects are the only ones
919 			 * still in use and the owning cache is being destroyed.
920 			 *
921 			 * We mark them freed, so that any subsequent use shows
922 			 * more useful error messages that will include stack
923 			 * traces of the user of the object, the original
924 			 * allocation, and caller to shutdown_cache().
925 			 */
926 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
927 		}
928 	}
929 
930 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
931 		meta = &kfence_metadata[i];
932 
933 		/* See above. */
934 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
935 			continue;
936 
937 		raw_spin_lock_irqsave(&meta->lock, flags);
938 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
939 			meta->cache = NULL;
940 		raw_spin_unlock_irqrestore(&meta->lock, flags);
941 	}
942 }
943 
944 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
945 {
946 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
947 	size_t num_stack_entries;
948 	u32 alloc_stack_hash;
949 
950 	/*
951 	 * Perform size check before switching kfence_allocation_gate, so that
952 	 * we don't disable KFENCE without making an allocation.
953 	 */
954 	if (size > PAGE_SIZE) {
955 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
956 		return NULL;
957 	}
958 
959 	/*
960 	 * Skip allocations from non-default zones, including DMA. We cannot
961 	 * guarantee that pages in the KFENCE pool will have the requested
962 	 * properties (e.g. reside in DMAable memory).
963 	 */
964 	if ((flags & GFP_ZONEMASK) ||
965 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
966 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
967 		return NULL;
968 	}
969 
970 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
971 		return NULL;
972 #ifdef CONFIG_KFENCE_STATIC_KEYS
973 	/*
974 	 * waitqueue_active() is fully ordered after the update of
975 	 * kfence_allocation_gate per atomic_inc_return().
976 	 */
977 	if (waitqueue_active(&allocation_wait)) {
978 		/*
979 		 * Calling wake_up() here may deadlock when allocations happen
980 		 * from within timer code. Use an irq_work to defer it.
981 		 */
982 		irq_work_queue(&wake_up_kfence_timer_work);
983 	}
984 #endif
985 
986 	if (!READ_ONCE(kfence_enabled))
987 		return NULL;
988 
989 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
990 
991 	/*
992 	 * Do expensive check for coverage of allocation in slow-path after
993 	 * allocation_gate has already become non-zero, even though it might
994 	 * mean not making any allocation within a given sample interval.
995 	 *
996 	 * This ensures reasonable allocation coverage when the pool is almost
997 	 * full, including avoiding long-lived allocations of the same source
998 	 * filling up the pool (e.g. pagecache allocations).
999 	 */
1000 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1001 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1002 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1003 		return NULL;
1004 	}
1005 
1006 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1007 				    alloc_stack_hash);
1008 }
1009 
1010 size_t kfence_ksize(const void *addr)
1011 {
1012 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1013 
1014 	/*
1015 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1016 	 * either a use-after-free or invalid access.
1017 	 */
1018 	return meta ? meta->size : 0;
1019 }
1020 
1021 void *kfence_object_start(const void *addr)
1022 {
1023 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1024 
1025 	/*
1026 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1027 	 * either a use-after-free or invalid access.
1028 	 */
1029 	return meta ? (void *)meta->addr : NULL;
1030 }
1031 
1032 void __kfence_free(void *addr)
1033 {
1034 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1035 
1036 	/*
1037 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1038 	 * the object, as the object page may be recycled for other-typed
1039 	 * objects once it has been freed. meta->cache may be NULL if the cache
1040 	 * was destroyed.
1041 	 */
1042 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1043 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1044 	else
1045 		kfence_guarded_free(addr, meta, false);
1046 }
1047 
1048 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1049 {
1050 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1051 	struct kfence_metadata *to_report = NULL;
1052 	enum kfence_error_type error_type;
1053 	unsigned long flags;
1054 
1055 	if (!is_kfence_address((void *)addr))
1056 		return false;
1057 
1058 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1059 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1060 
1061 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1062 
1063 	if (page_index % 2) {
1064 		/* This is a redzone, report a buffer overflow. */
1065 		struct kfence_metadata *meta;
1066 		int distance = 0;
1067 
1068 		meta = addr_to_metadata(addr - PAGE_SIZE);
1069 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1070 			to_report = meta;
1071 			/* Data race ok; distance calculation approximate. */
1072 			distance = addr - data_race(meta->addr + meta->size);
1073 		}
1074 
1075 		meta = addr_to_metadata(addr + PAGE_SIZE);
1076 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1077 			/* Data race ok; distance calculation approximate. */
1078 			if (!to_report || distance > data_race(meta->addr) - addr)
1079 				to_report = meta;
1080 		}
1081 
1082 		if (!to_report)
1083 			goto out;
1084 
1085 		raw_spin_lock_irqsave(&to_report->lock, flags);
1086 		to_report->unprotected_page = addr;
1087 		error_type = KFENCE_ERROR_OOB;
1088 
1089 		/*
1090 		 * If the object was freed before we took the look we can still
1091 		 * report this as an OOB -- the report will simply show the
1092 		 * stacktrace of the free as well.
1093 		 */
1094 	} else {
1095 		to_report = addr_to_metadata(addr);
1096 		if (!to_report)
1097 			goto out;
1098 
1099 		raw_spin_lock_irqsave(&to_report->lock, flags);
1100 		error_type = KFENCE_ERROR_UAF;
1101 		/*
1102 		 * We may race with __kfence_alloc(), and it is possible that a
1103 		 * freed object may be reallocated. We simply report this as a
1104 		 * use-after-free, with the stack trace showing the place where
1105 		 * the object was re-allocated.
1106 		 */
1107 	}
1108 
1109 out:
1110 	if (to_report) {
1111 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1112 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1113 	} else {
1114 		/* This may be a UAF or OOB access, but we can't be sure. */
1115 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1116 	}
1117 
1118 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1119 }
1120