xref: /openbmc/linux/mm/kfence/core.c (revision 6342a20e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 
34 #include <asm/kfence.h>
35 
36 #include "kfence.h"
37 
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond)                                                   \
40 	({                                                                     \
41 		const bool __cond = WARN_ON(cond);                             \
42 		if (unlikely(__cond)) {                                        \
43 			WRITE_ONCE(kfence_enabled, false);                     \
44 			disabled_by_warn = true;                               \
45 		}                                                              \
46 		__cond;                                                        \
47 	})
48 
49 /* === Data ================================================================= */
50 
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
53 
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56 
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "kfence."
61 
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64 {
65 	unsigned long num;
66 	int ret = kstrtoul(val, 0, &num);
67 
68 	if (ret < 0)
69 		return ret;
70 
71 	/* Using 0 to indicate KFENCE is disabled. */
72 	if (!num && READ_ONCE(kfence_enabled)) {
73 		pr_info("disabled\n");
74 		WRITE_ONCE(kfence_enabled, false);
75 	}
76 
77 	*((unsigned long *)kp->arg) = num;
78 
79 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
81 	return 0;
82 }
83 
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85 {
86 	if (!READ_ONCE(kfence_enabled))
87 		return sprintf(buffer, "0\n");
88 
89 	return param_get_ulong(buffer, kp);
90 }
91 
92 static const struct kernel_param_ops sample_interval_param_ops = {
93 	.set = param_set_sample_interval,
94 	.get = param_get_sample_interval,
95 };
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97 
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101 
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
105 
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109 
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113 
114 /*
115  * Per-object metadata, with one-to-one mapping of object metadata to
116  * backing pages (in __kfence_pool).
117  */
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
120 
121 /* Freelist with available objects. */
122 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
123 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
124 
125 /*
126  * The static key to set up a KFENCE allocation; or if static keys are not used
127  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
128  */
129 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
130 
131 /* Gates the allocation, ensuring only one succeeds in a given period. */
132 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
133 
134 /*
135  * A Counting Bloom filter of allocation coverage: limits currently covered
136  * allocations of the same source filling up the pool.
137  *
138  * Assuming a range of 15%-85% unique allocations in the pool at any point in
139  * time, the below parameters provide a probablity of 0.02-0.33 for false
140  * positive hits respectively:
141  *
142  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
143  */
144 #define ALLOC_COVERED_HNUM	2
145 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
146 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
147 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
149 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
150 
151 /* Stack depth used to determine uniqueness of an allocation. */
152 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
153 
154 /*
155  * Randomness for stack hashes, making the same collisions across reboots and
156  * different machines less likely.
157  */
158 static u32 stack_hash_seed __ro_after_init;
159 
160 /* Statistics counters for debugfs. */
161 enum kfence_counter_id {
162 	KFENCE_COUNTER_ALLOCATED,
163 	KFENCE_COUNTER_ALLOCS,
164 	KFENCE_COUNTER_FREES,
165 	KFENCE_COUNTER_ZOMBIES,
166 	KFENCE_COUNTER_BUGS,
167 	KFENCE_COUNTER_SKIP_INCOMPAT,
168 	KFENCE_COUNTER_SKIP_CAPACITY,
169 	KFENCE_COUNTER_SKIP_COVERED,
170 	KFENCE_COUNTER_COUNT,
171 };
172 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
173 static const char *const counter_names[] = {
174 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
175 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
176 	[KFENCE_COUNTER_FREES]		= "total frees",
177 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
178 	[KFENCE_COUNTER_BUGS]		= "total bugs",
179 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
180 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
181 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
182 };
183 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
184 
185 /* === Internals ============================================================ */
186 
187 static inline bool should_skip_covered(void)
188 {
189 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
190 
191 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
192 }
193 
194 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
195 {
196 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
197 	num_entries = filter_irq_stacks(stack_entries, num_entries);
198 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
199 }
200 
201 /*
202  * Adds (or subtracts) count @val for allocation stack trace hash
203  * @alloc_stack_hash from Counting Bloom filter.
204  */
205 static void alloc_covered_add(u32 alloc_stack_hash, int val)
206 {
207 	int i;
208 
209 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
210 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
211 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
212 	}
213 }
214 
215 /*
216  * Returns true if the allocation stack trace hash @alloc_stack_hash is
217  * currently contained (non-zero count) in Counting Bloom filter.
218  */
219 static bool alloc_covered_contains(u32 alloc_stack_hash)
220 {
221 	int i;
222 
223 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
224 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
225 			return false;
226 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
227 	}
228 
229 	return true;
230 }
231 
232 static bool kfence_protect(unsigned long addr)
233 {
234 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
235 }
236 
237 static bool kfence_unprotect(unsigned long addr)
238 {
239 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
240 }
241 
242 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
243 {
244 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
245 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
246 
247 	/* The checks do not affect performance; only called from slow-paths. */
248 
249 	/* Only call with a pointer into kfence_metadata. */
250 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
251 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
252 		return 0;
253 
254 	/*
255 	 * This metadata object only ever maps to 1 page; verify that the stored
256 	 * address is in the expected range.
257 	 */
258 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
259 		return 0;
260 
261 	return pageaddr;
262 }
263 
264 /*
265  * Update the object's metadata state, including updating the alloc/free stacks
266  * depending on the state transition.
267  */
268 static noinline void
269 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
270 		      unsigned long *stack_entries, size_t num_stack_entries)
271 {
272 	struct kfence_track *track =
273 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
274 
275 	lockdep_assert_held(&meta->lock);
276 
277 	if (stack_entries) {
278 		memcpy(track->stack_entries, stack_entries,
279 		       num_stack_entries * sizeof(stack_entries[0]));
280 	} else {
281 		/*
282 		 * Skip over 1 (this) functions; noinline ensures we do not
283 		 * accidentally skip over the caller by never inlining.
284 		 */
285 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
286 	}
287 	track->num_stack_entries = num_stack_entries;
288 	track->pid = task_pid_nr(current);
289 	track->cpu = raw_smp_processor_id();
290 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
291 
292 	/*
293 	 * Pairs with READ_ONCE() in
294 	 *	kfence_shutdown_cache(),
295 	 *	kfence_handle_page_fault().
296 	 */
297 	WRITE_ONCE(meta->state, next);
298 }
299 
300 /* Check canary byte at @addr. */
301 static inline bool check_canary_byte(u8 *addr)
302 {
303 	struct kfence_metadata *meta;
304 	unsigned long flags;
305 
306 	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
307 		return true;
308 
309 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
310 
311 	meta = addr_to_metadata((unsigned long)addr);
312 	raw_spin_lock_irqsave(&meta->lock, flags);
313 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
314 	raw_spin_unlock_irqrestore(&meta->lock, flags);
315 
316 	return false;
317 }
318 
319 static inline void set_canary(const struct kfence_metadata *meta)
320 {
321 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
322 	unsigned long addr = pageaddr;
323 
324 	/*
325 	 * The canary may be written to part of the object memory, but it does
326 	 * not affect it. The user should initialize the object before using it.
327 	 */
328 	for (; addr < meta->addr; addr += sizeof(u64))
329 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
330 
331 	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
332 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
333 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
334 }
335 
336 static inline void check_canary(const struct kfence_metadata *meta)
337 {
338 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
339 	unsigned long addr = pageaddr;
340 
341 	/*
342 	 * We'll iterate over each canary byte per-side until a corrupted byte
343 	 * is found. However, we'll still iterate over the canary bytes to the
344 	 * right of the object even if there was an error in the canary bytes to
345 	 * the left of the object. Specifically, if check_canary_byte()
346 	 * generates an error, showing both sides might give more clues as to
347 	 * what the error is about when displaying which bytes were corrupted.
348 	 */
349 
350 	/* Apply to left of object. */
351 	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
352 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
353 			break;
354 	}
355 
356 	/*
357 	 * If the canary is corrupted in a certain 64 bytes, or the canary
358 	 * memory cannot be completely covered by multiple consecutive 64 bytes,
359 	 * it needs to be checked one by one.
360 	 */
361 	for (; addr < meta->addr; addr++) {
362 		if (unlikely(!check_canary_byte((u8 *)addr)))
363 			break;
364 	}
365 
366 	/* Apply to right of object. */
367 	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
368 		if (unlikely(!check_canary_byte((u8 *)addr)))
369 			return;
370 	}
371 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
372 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
373 
374 			for (; addr - pageaddr < PAGE_SIZE; addr++) {
375 				if (!check_canary_byte((u8 *)addr))
376 					return;
377 			}
378 		}
379 	}
380 }
381 
382 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
383 				  unsigned long *stack_entries, size_t num_stack_entries,
384 				  u32 alloc_stack_hash)
385 {
386 	struct kfence_metadata *meta = NULL;
387 	unsigned long flags;
388 	struct slab *slab;
389 	void *addr;
390 	const bool random_right_allocate = get_random_u32_below(2);
391 	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
392 				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
393 
394 	/* Try to obtain a free object. */
395 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
396 	if (!list_empty(&kfence_freelist)) {
397 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
398 		list_del_init(&meta->list);
399 	}
400 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
401 	if (!meta) {
402 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
403 		return NULL;
404 	}
405 
406 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
407 		/*
408 		 * This is extremely unlikely -- we are reporting on a
409 		 * use-after-free, which locked meta->lock, and the reporting
410 		 * code via printk calls kmalloc() which ends up in
411 		 * kfence_alloc() and tries to grab the same object that we're
412 		 * reporting on. While it has never been observed, lockdep does
413 		 * report that there is a possibility of deadlock. Fix it by
414 		 * using trylock and bailing out gracefully.
415 		 */
416 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
417 		/* Put the object back on the freelist. */
418 		list_add_tail(&meta->list, &kfence_freelist);
419 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
420 
421 		return NULL;
422 	}
423 
424 	meta->addr = metadata_to_pageaddr(meta);
425 	/* Unprotect if we're reusing this page. */
426 	if (meta->state == KFENCE_OBJECT_FREED)
427 		kfence_unprotect(meta->addr);
428 
429 	/*
430 	 * Note: for allocations made before RNG initialization, will always
431 	 * return zero. We still benefit from enabling KFENCE as early as
432 	 * possible, even when the RNG is not yet available, as this will allow
433 	 * KFENCE to detect bugs due to earlier allocations. The only downside
434 	 * is that the out-of-bounds accesses detected are deterministic for
435 	 * such allocations.
436 	 */
437 	if (random_right_allocate) {
438 		/* Allocate on the "right" side, re-calculate address. */
439 		meta->addr += PAGE_SIZE - size;
440 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
441 	}
442 
443 	addr = (void *)meta->addr;
444 
445 	/* Update remaining metadata. */
446 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
447 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
448 	WRITE_ONCE(meta->cache, cache);
449 	meta->size = size;
450 	meta->alloc_stack_hash = alloc_stack_hash;
451 	raw_spin_unlock_irqrestore(&meta->lock, flags);
452 
453 	alloc_covered_add(alloc_stack_hash, 1);
454 
455 	/* Set required slab fields. */
456 	slab = virt_to_slab((void *)meta->addr);
457 	slab->slab_cache = cache;
458 #if defined(CONFIG_SLUB)
459 	slab->objects = 1;
460 #elif defined(CONFIG_SLAB)
461 	slab->s_mem = addr;
462 #endif
463 
464 	/* Memory initialization. */
465 	set_canary(meta);
466 
467 	/*
468 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
469 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
470 	 * redzone.
471 	 */
472 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
473 		memzero_explicit(addr, size);
474 	if (cache->ctor)
475 		cache->ctor(addr);
476 
477 	if (random_fault)
478 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
479 
480 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
481 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
482 
483 	return addr;
484 }
485 
486 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
487 {
488 	struct kcsan_scoped_access assert_page_exclusive;
489 	unsigned long flags;
490 	bool init;
491 
492 	raw_spin_lock_irqsave(&meta->lock, flags);
493 
494 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
495 		/* Invalid or double-free, bail out. */
496 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
497 		kfence_report_error((unsigned long)addr, false, NULL, meta,
498 				    KFENCE_ERROR_INVALID_FREE);
499 		raw_spin_unlock_irqrestore(&meta->lock, flags);
500 		return;
501 	}
502 
503 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
504 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
505 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
506 				  &assert_page_exclusive);
507 
508 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
509 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
510 
511 	/* Restore page protection if there was an OOB access. */
512 	if (meta->unprotected_page) {
513 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
514 		kfence_protect(meta->unprotected_page);
515 		meta->unprotected_page = 0;
516 	}
517 
518 	/* Mark the object as freed. */
519 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
520 	init = slab_want_init_on_free(meta->cache);
521 	raw_spin_unlock_irqrestore(&meta->lock, flags);
522 
523 	alloc_covered_add(meta->alloc_stack_hash, -1);
524 
525 	/* Check canary bytes for memory corruption. */
526 	check_canary(meta);
527 
528 	/*
529 	 * Clear memory if init-on-free is set. While we protect the page, the
530 	 * data is still there, and after a use-after-free is detected, we
531 	 * unprotect the page, so the data is still accessible.
532 	 */
533 	if (!zombie && unlikely(init))
534 		memzero_explicit(addr, meta->size);
535 
536 	/* Protect to detect use-after-frees. */
537 	kfence_protect((unsigned long)addr);
538 
539 	kcsan_end_scoped_access(&assert_page_exclusive);
540 	if (!zombie) {
541 		/* Add it to the tail of the freelist for reuse. */
542 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
543 		KFENCE_WARN_ON(!list_empty(&meta->list));
544 		list_add_tail(&meta->list, &kfence_freelist);
545 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
546 
547 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
548 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
549 	} else {
550 		/* See kfence_shutdown_cache(). */
551 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
552 	}
553 }
554 
555 static void rcu_guarded_free(struct rcu_head *h)
556 {
557 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
558 
559 	kfence_guarded_free((void *)meta->addr, meta, false);
560 }
561 
562 /*
563  * Initialization of the KFENCE pool after its allocation.
564  * Returns 0 on success; otherwise returns the address up to
565  * which partial initialization succeeded.
566  */
567 static unsigned long kfence_init_pool(void)
568 {
569 	unsigned long addr = (unsigned long)__kfence_pool;
570 	struct page *pages;
571 	int i;
572 
573 	if (!arch_kfence_init_pool())
574 		return addr;
575 
576 	pages = virt_to_page(__kfence_pool);
577 
578 	/*
579 	 * Set up object pages: they must have PG_slab set, to avoid freeing
580 	 * these as real pages.
581 	 *
582 	 * We also want to avoid inserting kfence_free() in the kfree()
583 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
584 	 * enters __slab_free() slow-path.
585 	 */
586 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
587 		struct slab *slab = page_slab(nth_page(pages, i));
588 
589 		if (!i || (i % 2))
590 			continue;
591 
592 		__folio_set_slab(slab_folio(slab));
593 #ifdef CONFIG_MEMCG
594 		slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
595 				   MEMCG_DATA_OBJCGS;
596 #endif
597 	}
598 
599 	/*
600 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
601 	 * merely serves as an extended guard page. However, adding one
602 	 * additional page in the beginning gives us an even number of pages,
603 	 * which simplifies the mapping of address to metadata index.
604 	 */
605 	for (i = 0; i < 2; i++) {
606 		if (unlikely(!kfence_protect(addr)))
607 			return addr;
608 
609 		addr += PAGE_SIZE;
610 	}
611 
612 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
613 		struct kfence_metadata *meta = &kfence_metadata[i];
614 
615 		/* Initialize metadata. */
616 		INIT_LIST_HEAD(&meta->list);
617 		raw_spin_lock_init(&meta->lock);
618 		meta->state = KFENCE_OBJECT_UNUSED;
619 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
620 		list_add_tail(&meta->list, &kfence_freelist);
621 
622 		/* Protect the right redzone. */
623 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
624 			goto reset_slab;
625 
626 		addr += 2 * PAGE_SIZE;
627 	}
628 
629 	return 0;
630 
631 reset_slab:
632 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
633 		struct slab *slab = page_slab(nth_page(pages, i));
634 
635 		if (!i || (i % 2))
636 			continue;
637 #ifdef CONFIG_MEMCG
638 		slab->memcg_data = 0;
639 #endif
640 		__folio_clear_slab(slab_folio(slab));
641 	}
642 
643 	return addr;
644 }
645 
646 static bool __init kfence_init_pool_early(void)
647 {
648 	unsigned long addr;
649 
650 	if (!__kfence_pool)
651 		return false;
652 
653 	addr = kfence_init_pool();
654 
655 	if (!addr) {
656 		/*
657 		 * The pool is live and will never be deallocated from this point on.
658 		 * Ignore the pool object from the kmemleak phys object tree, as it would
659 		 * otherwise overlap with allocations returned by kfence_alloc(), which
660 		 * are registered with kmemleak through the slab post-alloc hook.
661 		 */
662 		kmemleak_ignore_phys(__pa(__kfence_pool));
663 		return true;
664 	}
665 
666 	/*
667 	 * Only release unprotected pages, and do not try to go back and change
668 	 * page attributes due to risk of failing to do so as well. If changing
669 	 * page attributes for some pages fails, it is very likely that it also
670 	 * fails for the first page, and therefore expect addr==__kfence_pool in
671 	 * most failure cases.
672 	 */
673 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
674 	__kfence_pool = NULL;
675 	return false;
676 }
677 
678 static bool kfence_init_pool_late(void)
679 {
680 	unsigned long addr, free_size;
681 
682 	addr = kfence_init_pool();
683 
684 	if (!addr)
685 		return true;
686 
687 	/* Same as above. */
688 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
689 #ifdef CONFIG_CONTIG_ALLOC
690 	free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
691 #else
692 	free_pages_exact((void *)addr, free_size);
693 #endif
694 	__kfence_pool = NULL;
695 	return false;
696 }
697 
698 /* === DebugFS Interface ==================================================== */
699 
700 static int stats_show(struct seq_file *seq, void *v)
701 {
702 	int i;
703 
704 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
705 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
706 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
707 
708 	return 0;
709 }
710 DEFINE_SHOW_ATTRIBUTE(stats);
711 
712 /*
713  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
714  * start_object() and next_object() return the object index + 1, because NULL is used
715  * to stop iteration.
716  */
717 static void *start_object(struct seq_file *seq, loff_t *pos)
718 {
719 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
720 		return (void *)((long)*pos + 1);
721 	return NULL;
722 }
723 
724 static void stop_object(struct seq_file *seq, void *v)
725 {
726 }
727 
728 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
729 {
730 	++*pos;
731 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
732 		return (void *)((long)*pos + 1);
733 	return NULL;
734 }
735 
736 static int show_object(struct seq_file *seq, void *v)
737 {
738 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
739 	unsigned long flags;
740 
741 	raw_spin_lock_irqsave(&meta->lock, flags);
742 	kfence_print_object(seq, meta);
743 	raw_spin_unlock_irqrestore(&meta->lock, flags);
744 	seq_puts(seq, "---------------------------------\n");
745 
746 	return 0;
747 }
748 
749 static const struct seq_operations objects_sops = {
750 	.start = start_object,
751 	.next = next_object,
752 	.stop = stop_object,
753 	.show = show_object,
754 };
755 DEFINE_SEQ_ATTRIBUTE(objects);
756 
757 static int kfence_debugfs_init(void)
758 {
759 	struct dentry *kfence_dir;
760 
761 	if (!READ_ONCE(kfence_enabled))
762 		return 0;
763 
764 	kfence_dir = debugfs_create_dir("kfence", NULL);
765 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
766 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
767 	return 0;
768 }
769 
770 late_initcall(kfence_debugfs_init);
771 
772 /* === Panic Notifier ====================================================== */
773 
774 static void kfence_check_all_canary(void)
775 {
776 	int i;
777 
778 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
779 		struct kfence_metadata *meta = &kfence_metadata[i];
780 
781 		if (meta->state == KFENCE_OBJECT_ALLOCATED)
782 			check_canary(meta);
783 	}
784 }
785 
786 static int kfence_check_canary_callback(struct notifier_block *nb,
787 					unsigned long reason, void *arg)
788 {
789 	kfence_check_all_canary();
790 	return NOTIFY_OK;
791 }
792 
793 static struct notifier_block kfence_check_canary_notifier = {
794 	.notifier_call = kfence_check_canary_callback,
795 };
796 
797 /* === Allocation Gate Timer ================================================ */
798 
799 static struct delayed_work kfence_timer;
800 
801 #ifdef CONFIG_KFENCE_STATIC_KEYS
802 /* Wait queue to wake up allocation-gate timer task. */
803 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
804 
805 static void wake_up_kfence_timer(struct irq_work *work)
806 {
807 	wake_up(&allocation_wait);
808 }
809 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
810 #endif
811 
812 /*
813  * Set up delayed work, which will enable and disable the static key. We need to
814  * use a work queue (rather than a simple timer), since enabling and disabling a
815  * static key cannot be done from an interrupt.
816  *
817  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
818  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
819  * more aggressive sampling intervals), we could get away with a variant that
820  * avoids IPIs, at the cost of not immediately capturing allocations if the
821  * instructions remain cached.
822  */
823 static void toggle_allocation_gate(struct work_struct *work)
824 {
825 	if (!READ_ONCE(kfence_enabled))
826 		return;
827 
828 	atomic_set(&kfence_allocation_gate, 0);
829 #ifdef CONFIG_KFENCE_STATIC_KEYS
830 	/* Enable static key, and await allocation to happen. */
831 	static_branch_enable(&kfence_allocation_key);
832 
833 	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
834 
835 	/* Disable static key and reset timer. */
836 	static_branch_disable(&kfence_allocation_key);
837 #endif
838 	queue_delayed_work(system_unbound_wq, &kfence_timer,
839 			   msecs_to_jiffies(kfence_sample_interval));
840 }
841 
842 /* === Public interface ===================================================== */
843 
844 void __init kfence_alloc_pool(void)
845 {
846 	if (!kfence_sample_interval)
847 		return;
848 
849 	/* if the pool has already been initialized by arch, skip the below. */
850 	if (__kfence_pool)
851 		return;
852 
853 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
854 
855 	if (!__kfence_pool)
856 		pr_err("failed to allocate pool\n");
857 }
858 
859 static void kfence_init_enable(void)
860 {
861 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
862 		static_branch_enable(&kfence_allocation_key);
863 
864 	if (kfence_deferrable)
865 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
866 	else
867 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
868 
869 	if (kfence_check_on_panic)
870 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
871 
872 	WRITE_ONCE(kfence_enabled, true);
873 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
874 
875 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
876 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
877 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
878 }
879 
880 void __init kfence_init(void)
881 {
882 	stack_hash_seed = get_random_u32();
883 
884 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
885 	if (!kfence_sample_interval)
886 		return;
887 
888 	if (!kfence_init_pool_early()) {
889 		pr_err("%s failed\n", __func__);
890 		return;
891 	}
892 
893 	kfence_init_enable();
894 }
895 
896 static int kfence_init_late(void)
897 {
898 	const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
899 #ifdef CONFIG_CONTIG_ALLOC
900 	struct page *pages;
901 
902 	pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
903 	if (!pages)
904 		return -ENOMEM;
905 	__kfence_pool = page_to_virt(pages);
906 #else
907 	if (nr_pages > MAX_ORDER_NR_PAGES) {
908 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
909 		return -EINVAL;
910 	}
911 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
912 	if (!__kfence_pool)
913 		return -ENOMEM;
914 #endif
915 
916 	if (!kfence_init_pool_late()) {
917 		pr_err("%s failed\n", __func__);
918 		return -EBUSY;
919 	}
920 
921 	kfence_init_enable();
922 	kfence_debugfs_init();
923 
924 	return 0;
925 }
926 
927 static int kfence_enable_late(void)
928 {
929 	if (!__kfence_pool)
930 		return kfence_init_late();
931 
932 	WRITE_ONCE(kfence_enabled, true);
933 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
934 	pr_info("re-enabled\n");
935 	return 0;
936 }
937 
938 void kfence_shutdown_cache(struct kmem_cache *s)
939 {
940 	unsigned long flags;
941 	struct kfence_metadata *meta;
942 	int i;
943 
944 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
945 		bool in_use;
946 
947 		meta = &kfence_metadata[i];
948 
949 		/*
950 		 * If we observe some inconsistent cache and state pair where we
951 		 * should have returned false here, cache destruction is racing
952 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
953 		 * the lock will not help, as different critical section
954 		 * serialization will have the same outcome.
955 		 */
956 		if (READ_ONCE(meta->cache) != s ||
957 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
958 			continue;
959 
960 		raw_spin_lock_irqsave(&meta->lock, flags);
961 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
962 		raw_spin_unlock_irqrestore(&meta->lock, flags);
963 
964 		if (in_use) {
965 			/*
966 			 * This cache still has allocations, and we should not
967 			 * release them back into the freelist so they can still
968 			 * safely be used and retain the kernel's default
969 			 * behaviour of keeping the allocations alive (leak the
970 			 * cache); however, they effectively become "zombie
971 			 * allocations" as the KFENCE objects are the only ones
972 			 * still in use and the owning cache is being destroyed.
973 			 *
974 			 * We mark them freed, so that any subsequent use shows
975 			 * more useful error messages that will include stack
976 			 * traces of the user of the object, the original
977 			 * allocation, and caller to shutdown_cache().
978 			 */
979 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
980 		}
981 	}
982 
983 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
984 		meta = &kfence_metadata[i];
985 
986 		/* See above. */
987 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
988 			continue;
989 
990 		raw_spin_lock_irqsave(&meta->lock, flags);
991 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
992 			meta->cache = NULL;
993 		raw_spin_unlock_irqrestore(&meta->lock, flags);
994 	}
995 }
996 
997 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
998 {
999 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1000 	size_t num_stack_entries;
1001 	u32 alloc_stack_hash;
1002 
1003 	/*
1004 	 * Perform size check before switching kfence_allocation_gate, so that
1005 	 * we don't disable KFENCE without making an allocation.
1006 	 */
1007 	if (size > PAGE_SIZE) {
1008 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1009 		return NULL;
1010 	}
1011 
1012 	/*
1013 	 * Skip allocations from non-default zones, including DMA. We cannot
1014 	 * guarantee that pages in the KFENCE pool will have the requested
1015 	 * properties (e.g. reside in DMAable memory).
1016 	 */
1017 	if ((flags & GFP_ZONEMASK) ||
1018 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1019 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1020 		return NULL;
1021 	}
1022 
1023 	/*
1024 	 * Skip allocations for this slab, if KFENCE has been disabled for
1025 	 * this slab.
1026 	 */
1027 	if (s->flags & SLAB_SKIP_KFENCE)
1028 		return NULL;
1029 
1030 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
1031 		return NULL;
1032 #ifdef CONFIG_KFENCE_STATIC_KEYS
1033 	/*
1034 	 * waitqueue_active() is fully ordered after the update of
1035 	 * kfence_allocation_gate per atomic_inc_return().
1036 	 */
1037 	if (waitqueue_active(&allocation_wait)) {
1038 		/*
1039 		 * Calling wake_up() here may deadlock when allocations happen
1040 		 * from within timer code. Use an irq_work to defer it.
1041 		 */
1042 		irq_work_queue(&wake_up_kfence_timer_work);
1043 	}
1044 #endif
1045 
1046 	if (!READ_ONCE(kfence_enabled))
1047 		return NULL;
1048 
1049 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1050 
1051 	/*
1052 	 * Do expensive check for coverage of allocation in slow-path after
1053 	 * allocation_gate has already become non-zero, even though it might
1054 	 * mean not making any allocation within a given sample interval.
1055 	 *
1056 	 * This ensures reasonable allocation coverage when the pool is almost
1057 	 * full, including avoiding long-lived allocations of the same source
1058 	 * filling up the pool (e.g. pagecache allocations).
1059 	 */
1060 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1061 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1062 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1063 		return NULL;
1064 	}
1065 
1066 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1067 				    alloc_stack_hash);
1068 }
1069 
1070 size_t kfence_ksize(const void *addr)
1071 {
1072 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1073 
1074 	/*
1075 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1076 	 * either a use-after-free or invalid access.
1077 	 */
1078 	return meta ? meta->size : 0;
1079 }
1080 
1081 void *kfence_object_start(const void *addr)
1082 {
1083 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1084 
1085 	/*
1086 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1087 	 * either a use-after-free or invalid access.
1088 	 */
1089 	return meta ? (void *)meta->addr : NULL;
1090 }
1091 
1092 void __kfence_free(void *addr)
1093 {
1094 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1095 
1096 #ifdef CONFIG_MEMCG
1097 	KFENCE_WARN_ON(meta->objcg);
1098 #endif
1099 	/*
1100 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1101 	 * the object, as the object page may be recycled for other-typed
1102 	 * objects once it has been freed. meta->cache may be NULL if the cache
1103 	 * was destroyed.
1104 	 */
1105 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1106 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1107 	else
1108 		kfence_guarded_free(addr, meta, false);
1109 }
1110 
1111 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1112 {
1113 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1114 	struct kfence_metadata *to_report = NULL;
1115 	enum kfence_error_type error_type;
1116 	unsigned long flags;
1117 
1118 	if (!is_kfence_address((void *)addr))
1119 		return false;
1120 
1121 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1122 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1123 
1124 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1125 
1126 	if (page_index % 2) {
1127 		/* This is a redzone, report a buffer overflow. */
1128 		struct kfence_metadata *meta;
1129 		int distance = 0;
1130 
1131 		meta = addr_to_metadata(addr - PAGE_SIZE);
1132 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1133 			to_report = meta;
1134 			/* Data race ok; distance calculation approximate. */
1135 			distance = addr - data_race(meta->addr + meta->size);
1136 		}
1137 
1138 		meta = addr_to_metadata(addr + PAGE_SIZE);
1139 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1140 			/* Data race ok; distance calculation approximate. */
1141 			if (!to_report || distance > data_race(meta->addr) - addr)
1142 				to_report = meta;
1143 		}
1144 
1145 		if (!to_report)
1146 			goto out;
1147 
1148 		raw_spin_lock_irqsave(&to_report->lock, flags);
1149 		to_report->unprotected_page = addr;
1150 		error_type = KFENCE_ERROR_OOB;
1151 
1152 		/*
1153 		 * If the object was freed before we took the look we can still
1154 		 * report this as an OOB -- the report will simply show the
1155 		 * stacktrace of the free as well.
1156 		 */
1157 	} else {
1158 		to_report = addr_to_metadata(addr);
1159 		if (!to_report)
1160 			goto out;
1161 
1162 		raw_spin_lock_irqsave(&to_report->lock, flags);
1163 		error_type = KFENCE_ERROR_UAF;
1164 		/*
1165 		 * We may race with __kfence_alloc(), and it is possible that a
1166 		 * freed object may be reallocated. We simply report this as a
1167 		 * use-after-free, with the stack trace showing the place where
1168 		 * the object was re-allocated.
1169 		 */
1170 	}
1171 
1172 out:
1173 	if (to_report) {
1174 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1175 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1176 	} else {
1177 		/* This may be a UAF or OOB access, but we can't be sure. */
1178 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1179 	}
1180 
1181 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1182 }
1183