1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/irq_work.h> 14 #include <linux/kcsan-checks.h> 15 #include <linux/kfence.h> 16 #include <linux/kmemleak.h> 17 #include <linux/list.h> 18 #include <linux/lockdep.h> 19 #include <linux/memblock.h> 20 #include <linux/moduleparam.h> 21 #include <linux/random.h> 22 #include <linux/rcupdate.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/string.h> 29 30 #include <asm/kfence.h> 31 32 #include "kfence.h" 33 34 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 35 #define KFENCE_WARN_ON(cond) \ 36 ({ \ 37 const bool __cond = WARN_ON(cond); \ 38 if (unlikely(__cond)) \ 39 WRITE_ONCE(kfence_enabled, false); \ 40 __cond; \ 41 }) 42 43 /* === Data ================================================================= */ 44 45 static bool kfence_enabled __read_mostly; 46 47 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 48 49 #ifdef MODULE_PARAM_PREFIX 50 #undef MODULE_PARAM_PREFIX 51 #endif 52 #define MODULE_PARAM_PREFIX "kfence." 53 54 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 55 { 56 unsigned long num; 57 int ret = kstrtoul(val, 0, &num); 58 59 if (ret < 0) 60 return ret; 61 62 if (!num) /* Using 0 to indicate KFENCE is disabled. */ 63 WRITE_ONCE(kfence_enabled, false); 64 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 65 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ 66 67 *((unsigned long *)kp->arg) = num; 68 return 0; 69 } 70 71 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 72 { 73 if (!READ_ONCE(kfence_enabled)) 74 return sprintf(buffer, "0\n"); 75 76 return param_get_ulong(buffer, kp); 77 } 78 79 static const struct kernel_param_ops sample_interval_param_ops = { 80 .set = param_set_sample_interval, 81 .get = param_get_sample_interval, 82 }; 83 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 84 85 /* The pool of pages used for guard pages and objects. */ 86 char *__kfence_pool __ro_after_init; 87 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 88 89 /* 90 * Per-object metadata, with one-to-one mapping of object metadata to 91 * backing pages (in __kfence_pool). 92 */ 93 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 94 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 95 96 /* Freelist with available objects. */ 97 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 98 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 99 100 #ifdef CONFIG_KFENCE_STATIC_KEYS 101 /* The static key to set up a KFENCE allocation. */ 102 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 103 #endif 104 105 /* Gates the allocation, ensuring only one succeeds in a given period. */ 106 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 107 108 /* Statistics counters for debugfs. */ 109 enum kfence_counter_id { 110 KFENCE_COUNTER_ALLOCATED, 111 KFENCE_COUNTER_ALLOCS, 112 KFENCE_COUNTER_FREES, 113 KFENCE_COUNTER_ZOMBIES, 114 KFENCE_COUNTER_BUGS, 115 KFENCE_COUNTER_COUNT, 116 }; 117 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 118 static const char *const counter_names[] = { 119 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 120 [KFENCE_COUNTER_ALLOCS] = "total allocations", 121 [KFENCE_COUNTER_FREES] = "total frees", 122 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 123 [KFENCE_COUNTER_BUGS] = "total bugs", 124 }; 125 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 126 127 /* === Internals ============================================================ */ 128 129 static bool kfence_protect(unsigned long addr) 130 { 131 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 132 } 133 134 static bool kfence_unprotect(unsigned long addr) 135 { 136 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 137 } 138 139 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) 140 { 141 long index; 142 143 /* The checks do not affect performance; only called from slow-paths. */ 144 145 if (!is_kfence_address((void *)addr)) 146 return NULL; 147 148 /* 149 * May be an invalid index if called with an address at the edge of 150 * __kfence_pool, in which case we would report an "invalid access" 151 * error. 152 */ 153 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; 154 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) 155 return NULL; 156 157 return &kfence_metadata[index]; 158 } 159 160 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 161 { 162 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 163 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 164 165 /* The checks do not affect performance; only called from slow-paths. */ 166 167 /* Only call with a pointer into kfence_metadata. */ 168 if (KFENCE_WARN_ON(meta < kfence_metadata || 169 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 170 return 0; 171 172 /* 173 * This metadata object only ever maps to 1 page; verify that the stored 174 * address is in the expected range. 175 */ 176 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 177 return 0; 178 179 return pageaddr; 180 } 181 182 /* 183 * Update the object's metadata state, including updating the alloc/free stacks 184 * depending on the state transition. 185 */ 186 static noinline void metadata_update_state(struct kfence_metadata *meta, 187 enum kfence_object_state next) 188 { 189 struct kfence_track *track = 190 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 191 192 lockdep_assert_held(&meta->lock); 193 194 /* 195 * Skip over 1 (this) functions; noinline ensures we do not accidentally 196 * skip over the caller by never inlining. 197 */ 198 track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 199 track->pid = task_pid_nr(current); 200 track->cpu = raw_smp_processor_id(); 201 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ 202 203 /* 204 * Pairs with READ_ONCE() in 205 * kfence_shutdown_cache(), 206 * kfence_handle_page_fault(). 207 */ 208 WRITE_ONCE(meta->state, next); 209 } 210 211 /* Write canary byte to @addr. */ 212 static inline bool set_canary_byte(u8 *addr) 213 { 214 *addr = KFENCE_CANARY_PATTERN(addr); 215 return true; 216 } 217 218 /* Check canary byte at @addr. */ 219 static inline bool check_canary_byte(u8 *addr) 220 { 221 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 222 return true; 223 224 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 225 kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr), 226 KFENCE_ERROR_CORRUPTION); 227 return false; 228 } 229 230 /* __always_inline this to ensure we won't do an indirect call to fn. */ 231 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 232 { 233 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 234 unsigned long addr; 235 236 lockdep_assert_held(&meta->lock); 237 238 /* 239 * We'll iterate over each canary byte per-side until fn() returns 240 * false. However, we'll still iterate over the canary bytes to the 241 * right of the object even if there was an error in the canary bytes to 242 * the left of the object. Specifically, if check_canary_byte() 243 * generates an error, showing both sides might give more clues as to 244 * what the error is about when displaying which bytes were corrupted. 245 */ 246 247 /* Apply to left of object. */ 248 for (addr = pageaddr; addr < meta->addr; addr++) { 249 if (!fn((u8 *)addr)) 250 break; 251 } 252 253 /* Apply to right of object. */ 254 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 255 if (!fn((u8 *)addr)) 256 break; 257 } 258 } 259 260 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) 261 { 262 struct kfence_metadata *meta = NULL; 263 unsigned long flags; 264 struct page *page; 265 void *addr; 266 267 /* Try to obtain a free object. */ 268 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 269 if (!list_empty(&kfence_freelist)) { 270 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 271 list_del_init(&meta->list); 272 } 273 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 274 if (!meta) 275 return NULL; 276 277 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 278 /* 279 * This is extremely unlikely -- we are reporting on a 280 * use-after-free, which locked meta->lock, and the reporting 281 * code via printk calls kmalloc() which ends up in 282 * kfence_alloc() and tries to grab the same object that we're 283 * reporting on. While it has never been observed, lockdep does 284 * report that there is a possibility of deadlock. Fix it by 285 * using trylock and bailing out gracefully. 286 */ 287 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 288 /* Put the object back on the freelist. */ 289 list_add_tail(&meta->list, &kfence_freelist); 290 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 291 292 return NULL; 293 } 294 295 meta->addr = metadata_to_pageaddr(meta); 296 /* Unprotect if we're reusing this page. */ 297 if (meta->state == KFENCE_OBJECT_FREED) 298 kfence_unprotect(meta->addr); 299 300 /* 301 * Note: for allocations made before RNG initialization, will always 302 * return zero. We still benefit from enabling KFENCE as early as 303 * possible, even when the RNG is not yet available, as this will allow 304 * KFENCE to detect bugs due to earlier allocations. The only downside 305 * is that the out-of-bounds accesses detected are deterministic for 306 * such allocations. 307 */ 308 if (prandom_u32_max(2)) { 309 /* Allocate on the "right" side, re-calculate address. */ 310 meta->addr += PAGE_SIZE - size; 311 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 312 } 313 314 addr = (void *)meta->addr; 315 316 /* Update remaining metadata. */ 317 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); 318 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 319 WRITE_ONCE(meta->cache, cache); 320 meta->size = size; 321 for_each_canary(meta, set_canary_byte); 322 323 /* Set required struct page fields. */ 324 page = virt_to_page(meta->addr); 325 page->slab_cache = cache; 326 if (IS_ENABLED(CONFIG_SLUB)) 327 page->objects = 1; 328 if (IS_ENABLED(CONFIG_SLAB)) 329 page->s_mem = addr; 330 331 raw_spin_unlock_irqrestore(&meta->lock, flags); 332 333 /* Memory initialization. */ 334 335 /* 336 * We check slab_want_init_on_alloc() ourselves, rather than letting 337 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 338 * redzone. 339 */ 340 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 341 memzero_explicit(addr, size); 342 if (cache->ctor) 343 cache->ctor(addr); 344 345 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) 346 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 347 348 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 349 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 350 351 return addr; 352 } 353 354 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 355 { 356 struct kcsan_scoped_access assert_page_exclusive; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&meta->lock, flags); 360 361 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 362 /* Invalid or double-free, bail out. */ 363 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 364 kfence_report_error((unsigned long)addr, false, NULL, meta, 365 KFENCE_ERROR_INVALID_FREE); 366 raw_spin_unlock_irqrestore(&meta->lock, flags); 367 return; 368 } 369 370 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 371 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 372 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 373 &assert_page_exclusive); 374 375 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 376 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 377 378 /* Restore page protection if there was an OOB access. */ 379 if (meta->unprotected_page) { 380 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 381 kfence_protect(meta->unprotected_page); 382 meta->unprotected_page = 0; 383 } 384 385 /* Check canary bytes for memory corruption. */ 386 for_each_canary(meta, check_canary_byte); 387 388 /* 389 * Clear memory if init-on-free is set. While we protect the page, the 390 * data is still there, and after a use-after-free is detected, we 391 * unprotect the page, so the data is still accessible. 392 */ 393 if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) 394 memzero_explicit(addr, meta->size); 395 396 /* Mark the object as freed. */ 397 metadata_update_state(meta, KFENCE_OBJECT_FREED); 398 399 raw_spin_unlock_irqrestore(&meta->lock, flags); 400 401 /* Protect to detect use-after-frees. */ 402 kfence_protect((unsigned long)addr); 403 404 kcsan_end_scoped_access(&assert_page_exclusive); 405 if (!zombie) { 406 /* Add it to the tail of the freelist for reuse. */ 407 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 408 KFENCE_WARN_ON(!list_empty(&meta->list)); 409 list_add_tail(&meta->list, &kfence_freelist); 410 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 411 412 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 413 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 414 } else { 415 /* See kfence_shutdown_cache(). */ 416 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 417 } 418 } 419 420 static void rcu_guarded_free(struct rcu_head *h) 421 { 422 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 423 424 kfence_guarded_free((void *)meta->addr, meta, false); 425 } 426 427 static bool __init kfence_init_pool(void) 428 { 429 unsigned long addr = (unsigned long)__kfence_pool; 430 struct page *pages; 431 int i; 432 433 if (!__kfence_pool) 434 return false; 435 436 if (!arch_kfence_init_pool()) 437 goto err; 438 439 pages = virt_to_page(addr); 440 441 /* 442 * Set up object pages: they must have PG_slab set, to avoid freeing 443 * these as real pages. 444 * 445 * We also want to avoid inserting kfence_free() in the kfree() 446 * fast-path in SLUB, and therefore need to ensure kfree() correctly 447 * enters __slab_free() slow-path. 448 */ 449 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 450 if (!i || (i % 2)) 451 continue; 452 453 /* Verify we do not have a compound head page. */ 454 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 455 goto err; 456 457 __SetPageSlab(&pages[i]); 458 } 459 460 /* 461 * Protect the first 2 pages. The first page is mostly unnecessary, and 462 * merely serves as an extended guard page. However, adding one 463 * additional page in the beginning gives us an even number of pages, 464 * which simplifies the mapping of address to metadata index. 465 */ 466 for (i = 0; i < 2; i++) { 467 if (unlikely(!kfence_protect(addr))) 468 goto err; 469 470 addr += PAGE_SIZE; 471 } 472 473 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 474 struct kfence_metadata *meta = &kfence_metadata[i]; 475 476 /* Initialize metadata. */ 477 INIT_LIST_HEAD(&meta->list); 478 raw_spin_lock_init(&meta->lock); 479 meta->state = KFENCE_OBJECT_UNUSED; 480 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 481 list_add_tail(&meta->list, &kfence_freelist); 482 483 /* Protect the right redzone. */ 484 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 485 goto err; 486 487 addr += 2 * PAGE_SIZE; 488 } 489 490 /* 491 * The pool is live and will never be deallocated from this point on. 492 * Remove the pool object from the kmemleak object tree, as it would 493 * otherwise overlap with allocations returned by kfence_alloc(), which 494 * are registered with kmemleak through the slab post-alloc hook. 495 */ 496 kmemleak_free(__kfence_pool); 497 498 return true; 499 500 err: 501 /* 502 * Only release unprotected pages, and do not try to go back and change 503 * page attributes due to risk of failing to do so as well. If changing 504 * page attributes for some pages fails, it is very likely that it also 505 * fails for the first page, and therefore expect addr==__kfence_pool in 506 * most failure cases. 507 */ 508 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 509 __kfence_pool = NULL; 510 return false; 511 } 512 513 /* === DebugFS Interface ==================================================== */ 514 515 static int stats_show(struct seq_file *seq, void *v) 516 { 517 int i; 518 519 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 520 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 521 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 522 523 return 0; 524 } 525 DEFINE_SHOW_ATTRIBUTE(stats); 526 527 /* 528 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 529 * start_object() and next_object() return the object index + 1, because NULL is used 530 * to stop iteration. 531 */ 532 static void *start_object(struct seq_file *seq, loff_t *pos) 533 { 534 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 535 return (void *)((long)*pos + 1); 536 return NULL; 537 } 538 539 static void stop_object(struct seq_file *seq, void *v) 540 { 541 } 542 543 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 544 { 545 ++*pos; 546 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 547 return (void *)((long)*pos + 1); 548 return NULL; 549 } 550 551 static int show_object(struct seq_file *seq, void *v) 552 { 553 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 554 unsigned long flags; 555 556 raw_spin_lock_irqsave(&meta->lock, flags); 557 kfence_print_object(seq, meta); 558 raw_spin_unlock_irqrestore(&meta->lock, flags); 559 seq_puts(seq, "---------------------------------\n"); 560 561 return 0; 562 } 563 564 static const struct seq_operations object_seqops = { 565 .start = start_object, 566 .next = next_object, 567 .stop = stop_object, 568 .show = show_object, 569 }; 570 571 static int open_objects(struct inode *inode, struct file *file) 572 { 573 return seq_open(file, &object_seqops); 574 } 575 576 static const struct file_operations objects_fops = { 577 .open = open_objects, 578 .read = seq_read, 579 .llseek = seq_lseek, 580 }; 581 582 static int __init kfence_debugfs_init(void) 583 { 584 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 585 586 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 587 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 588 return 0; 589 } 590 591 late_initcall(kfence_debugfs_init); 592 593 /* === Allocation Gate Timer ================================================ */ 594 595 #ifdef CONFIG_KFENCE_STATIC_KEYS 596 /* Wait queue to wake up allocation-gate timer task. */ 597 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 598 599 static void wake_up_kfence_timer(struct irq_work *work) 600 { 601 wake_up(&allocation_wait); 602 } 603 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 604 #endif 605 606 /* 607 * Set up delayed work, which will enable and disable the static key. We need to 608 * use a work queue (rather than a simple timer), since enabling and disabling a 609 * static key cannot be done from an interrupt. 610 * 611 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 612 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 613 * more aggressive sampling intervals), we could get away with a variant that 614 * avoids IPIs, at the cost of not immediately capturing allocations if the 615 * instructions remain cached. 616 */ 617 static struct delayed_work kfence_timer; 618 static void toggle_allocation_gate(struct work_struct *work) 619 { 620 if (!READ_ONCE(kfence_enabled)) 621 return; 622 623 atomic_set(&kfence_allocation_gate, 0); 624 #ifdef CONFIG_KFENCE_STATIC_KEYS 625 /* Enable static key, and await allocation to happen. */ 626 static_branch_enable(&kfence_allocation_key); 627 628 if (sysctl_hung_task_timeout_secs) { 629 /* 630 * During low activity with no allocations we might wait a 631 * while; let's avoid the hung task warning. 632 */ 633 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), 634 sysctl_hung_task_timeout_secs * HZ / 2); 635 } else { 636 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); 637 } 638 639 /* Disable static key and reset timer. */ 640 static_branch_disable(&kfence_allocation_key); 641 #endif 642 queue_delayed_work(system_unbound_wq, &kfence_timer, 643 msecs_to_jiffies(kfence_sample_interval)); 644 } 645 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); 646 647 /* === Public interface ===================================================== */ 648 649 void __init kfence_alloc_pool(void) 650 { 651 if (!kfence_sample_interval) 652 return; 653 654 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 655 656 if (!__kfence_pool) 657 pr_err("failed to allocate pool\n"); 658 } 659 660 void __init kfence_init(void) 661 { 662 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 663 if (!kfence_sample_interval) 664 return; 665 666 if (!kfence_init_pool()) { 667 pr_err("%s failed\n", __func__); 668 return; 669 } 670 671 WRITE_ONCE(kfence_enabled, true); 672 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 673 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 674 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 675 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 676 } 677 678 void kfence_shutdown_cache(struct kmem_cache *s) 679 { 680 unsigned long flags; 681 struct kfence_metadata *meta; 682 int i; 683 684 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 685 bool in_use; 686 687 meta = &kfence_metadata[i]; 688 689 /* 690 * If we observe some inconsistent cache and state pair where we 691 * should have returned false here, cache destruction is racing 692 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 693 * the lock will not help, as different critical section 694 * serialization will have the same outcome. 695 */ 696 if (READ_ONCE(meta->cache) != s || 697 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 698 continue; 699 700 raw_spin_lock_irqsave(&meta->lock, flags); 701 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 702 raw_spin_unlock_irqrestore(&meta->lock, flags); 703 704 if (in_use) { 705 /* 706 * This cache still has allocations, and we should not 707 * release them back into the freelist so they can still 708 * safely be used and retain the kernel's default 709 * behaviour of keeping the allocations alive (leak the 710 * cache); however, they effectively become "zombie 711 * allocations" as the KFENCE objects are the only ones 712 * still in use and the owning cache is being destroyed. 713 * 714 * We mark them freed, so that any subsequent use shows 715 * more useful error messages that will include stack 716 * traces of the user of the object, the original 717 * allocation, and caller to shutdown_cache(). 718 */ 719 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 720 } 721 } 722 723 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 724 meta = &kfence_metadata[i]; 725 726 /* See above. */ 727 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 728 continue; 729 730 raw_spin_lock_irqsave(&meta->lock, flags); 731 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 732 meta->cache = NULL; 733 raw_spin_unlock_irqrestore(&meta->lock, flags); 734 } 735 } 736 737 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 738 { 739 /* 740 * Perform size check before switching kfence_allocation_gate, so that 741 * we don't disable KFENCE without making an allocation. 742 */ 743 if (size > PAGE_SIZE) 744 return NULL; 745 746 /* 747 * Skip allocations from non-default zones, including DMA. We cannot 748 * guarantee that pages in the KFENCE pool will have the requested 749 * properties (e.g. reside in DMAable memory). 750 */ 751 if ((flags & GFP_ZONEMASK) || 752 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) 753 return NULL; 754 755 /* 756 * allocation_gate only needs to become non-zero, so it doesn't make 757 * sense to continue writing to it and pay the associated contention 758 * cost, in case we have a large number of concurrent allocations. 759 */ 760 if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) 761 return NULL; 762 #ifdef CONFIG_KFENCE_STATIC_KEYS 763 /* 764 * waitqueue_active() is fully ordered after the update of 765 * kfence_allocation_gate per atomic_inc_return(). 766 */ 767 if (waitqueue_active(&allocation_wait)) { 768 /* 769 * Calling wake_up() here may deadlock when allocations happen 770 * from within timer code. Use an irq_work to defer it. 771 */ 772 irq_work_queue(&wake_up_kfence_timer_work); 773 } 774 #endif 775 776 if (!READ_ONCE(kfence_enabled)) 777 return NULL; 778 779 return kfence_guarded_alloc(s, size, flags); 780 } 781 782 size_t kfence_ksize(const void *addr) 783 { 784 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 785 786 /* 787 * Read locklessly -- if there is a race with __kfence_alloc(), this is 788 * either a use-after-free or invalid access. 789 */ 790 return meta ? meta->size : 0; 791 } 792 793 void *kfence_object_start(const void *addr) 794 { 795 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 796 797 /* 798 * Read locklessly -- if there is a race with __kfence_alloc(), this is 799 * either a use-after-free or invalid access. 800 */ 801 return meta ? (void *)meta->addr : NULL; 802 } 803 804 void __kfence_free(void *addr) 805 { 806 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 807 808 /* 809 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 810 * the object, as the object page may be recycled for other-typed 811 * objects once it has been freed. meta->cache may be NULL if the cache 812 * was destroyed. 813 */ 814 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 815 call_rcu(&meta->rcu_head, rcu_guarded_free); 816 else 817 kfence_guarded_free(addr, meta, false); 818 } 819 820 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 821 { 822 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 823 struct kfence_metadata *to_report = NULL; 824 enum kfence_error_type error_type; 825 unsigned long flags; 826 827 if (!is_kfence_address((void *)addr)) 828 return false; 829 830 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 831 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 832 833 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 834 835 if (page_index % 2) { 836 /* This is a redzone, report a buffer overflow. */ 837 struct kfence_metadata *meta; 838 int distance = 0; 839 840 meta = addr_to_metadata(addr - PAGE_SIZE); 841 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 842 to_report = meta; 843 /* Data race ok; distance calculation approximate. */ 844 distance = addr - data_race(meta->addr + meta->size); 845 } 846 847 meta = addr_to_metadata(addr + PAGE_SIZE); 848 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 849 /* Data race ok; distance calculation approximate. */ 850 if (!to_report || distance > data_race(meta->addr) - addr) 851 to_report = meta; 852 } 853 854 if (!to_report) 855 goto out; 856 857 raw_spin_lock_irqsave(&to_report->lock, flags); 858 to_report->unprotected_page = addr; 859 error_type = KFENCE_ERROR_OOB; 860 861 /* 862 * If the object was freed before we took the look we can still 863 * report this as an OOB -- the report will simply show the 864 * stacktrace of the free as well. 865 */ 866 } else { 867 to_report = addr_to_metadata(addr); 868 if (!to_report) 869 goto out; 870 871 raw_spin_lock_irqsave(&to_report->lock, flags); 872 error_type = KFENCE_ERROR_UAF; 873 /* 874 * We may race with __kfence_alloc(), and it is possible that a 875 * freed object may be reallocated. We simply report this as a 876 * use-after-free, with the stack trace showing the place where 877 * the object was re-allocated. 878 */ 879 } 880 881 out: 882 if (to_report) { 883 kfence_report_error(addr, is_write, regs, to_report, error_type); 884 raw_spin_unlock_irqrestore(&to_report->lock, flags); 885 } else { 886 /* This may be a UAF or OOB access, but we can't be sure. */ 887 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 888 } 889 890 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 891 } 892