xref: /openbmc/linux/mm/kfence/core.c (revision 37d838de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/sysctl.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 
35 #include <asm/kfence.h>
36 
37 #include "kfence.h"
38 
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond)                                                   \
41 	({                                                                     \
42 		const bool __cond = WARN_ON(cond);                             \
43 		if (unlikely(__cond)) {                                        \
44 			WRITE_ONCE(kfence_enabled, false);                     \
45 			disabled_by_warn = true;                               \
46 		}                                                              \
47 		__cond;                                                        \
48 	})
49 
50 /* === Data ================================================================= */
51 
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54 
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57 
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62 
63 static int kfence_enable_late(void);
64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66 	unsigned long num;
67 	int ret = kstrtoul(val, 0, &num);
68 
69 	if (ret < 0)
70 		return ret;
71 
72 	/* Using 0 to indicate KFENCE is disabled. */
73 	if (!num && READ_ONCE(kfence_enabled)) {
74 		pr_info("disabled\n");
75 		WRITE_ONCE(kfence_enabled, false);
76 	}
77 
78 	*((unsigned long *)kp->arg) = num;
79 
80 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
82 	return 0;
83 }
84 
85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87 	if (!READ_ONCE(kfence_enabled))
88 		return sprintf(buffer, "0\n");
89 
90 	return param_get_ulong(buffer, kp);
91 }
92 
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 	.set = param_set_sample_interval,
95 	.get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98 
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102 
103 /* If true, use a deferrable timer. */
104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105 module_param_named(deferrable, kfence_deferrable, bool, 0444);
106 
107 /* If true, check all canary bytes on panic. */
108 static bool kfence_check_on_panic __read_mostly;
109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110 
111 /* The pool of pages used for guard pages and objects. */
112 char *__kfence_pool __read_mostly;
113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
114 
115 /*
116  * Per-object metadata, with one-to-one mapping of object metadata to
117  * backing pages (in __kfence_pool).
118  */
119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121 
122 /* Freelist with available objects. */
123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
125 
126 /*
127  * The static key to set up a KFENCE allocation; or if static keys are not used
128  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129  */
130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
131 
132 /* Gates the allocation, ensuring only one succeeds in a given period. */
133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
134 
135 /*
136  * A Counting Bloom filter of allocation coverage: limits currently covered
137  * allocations of the same source filling up the pool.
138  *
139  * Assuming a range of 15%-85% unique allocations in the pool at any point in
140  * time, the below parameters provide a probablity of 0.02-0.33 for false
141  * positive hits respectively:
142  *
143  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144  */
145 #define ALLOC_COVERED_HNUM	2
146 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
149 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151 
152 /* Stack depth used to determine uniqueness of an allocation. */
153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
154 
155 /*
156  * Randomness for stack hashes, making the same collisions across reboots and
157  * different machines less likely.
158  */
159 static u32 stack_hash_seed __ro_after_init;
160 
161 /* Statistics counters for debugfs. */
162 enum kfence_counter_id {
163 	KFENCE_COUNTER_ALLOCATED,
164 	KFENCE_COUNTER_ALLOCS,
165 	KFENCE_COUNTER_FREES,
166 	KFENCE_COUNTER_ZOMBIES,
167 	KFENCE_COUNTER_BUGS,
168 	KFENCE_COUNTER_SKIP_INCOMPAT,
169 	KFENCE_COUNTER_SKIP_CAPACITY,
170 	KFENCE_COUNTER_SKIP_COVERED,
171 	KFENCE_COUNTER_COUNT,
172 };
173 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174 static const char *const counter_names[] = {
175 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
176 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
177 	[KFENCE_COUNTER_FREES]		= "total frees",
178 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
179 	[KFENCE_COUNTER_BUGS]		= "total bugs",
180 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
181 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
182 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
183 };
184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185 
186 /* === Internals ============================================================ */
187 
188 static inline bool should_skip_covered(void)
189 {
190 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191 
192 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
193 }
194 
195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196 {
197 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198 	num_entries = filter_irq_stacks(stack_entries, num_entries);
199 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
200 }
201 
202 /*
203  * Adds (or subtracts) count @val for allocation stack trace hash
204  * @alloc_stack_hash from Counting Bloom filter.
205  */
206 static void alloc_covered_add(u32 alloc_stack_hash, int val)
207 {
208 	int i;
209 
210 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
213 	}
214 }
215 
216 /*
217  * Returns true if the allocation stack trace hash @alloc_stack_hash is
218  * currently contained (non-zero count) in Counting Bloom filter.
219  */
220 static bool alloc_covered_contains(u32 alloc_stack_hash)
221 {
222 	int i;
223 
224 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226 			return false;
227 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
228 	}
229 
230 	return true;
231 }
232 
233 static bool kfence_protect(unsigned long addr)
234 {
235 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
236 }
237 
238 static bool kfence_unprotect(unsigned long addr)
239 {
240 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
241 }
242 
243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244 {
245 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247 
248 	/* The checks do not affect performance; only called from slow-paths. */
249 
250 	/* Only call with a pointer into kfence_metadata. */
251 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
252 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
253 		return 0;
254 
255 	/*
256 	 * This metadata object only ever maps to 1 page; verify that the stored
257 	 * address is in the expected range.
258 	 */
259 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
260 		return 0;
261 
262 	return pageaddr;
263 }
264 
265 /*
266  * Update the object's metadata state, including updating the alloc/free stacks
267  * depending on the state transition.
268  */
269 static noinline void
270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271 		      unsigned long *stack_entries, size_t num_stack_entries)
272 {
273 	struct kfence_track *track =
274 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275 
276 	lockdep_assert_held(&meta->lock);
277 
278 	if (stack_entries) {
279 		memcpy(track->stack_entries, stack_entries,
280 		       num_stack_entries * sizeof(stack_entries[0]));
281 	} else {
282 		/*
283 		 * Skip over 1 (this) functions; noinline ensures we do not
284 		 * accidentally skip over the caller by never inlining.
285 		 */
286 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287 	}
288 	track->num_stack_entries = num_stack_entries;
289 	track->pid = task_pid_nr(current);
290 	track->cpu = raw_smp_processor_id();
291 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
292 
293 	/*
294 	 * Pairs with READ_ONCE() in
295 	 *	kfence_shutdown_cache(),
296 	 *	kfence_handle_page_fault().
297 	 */
298 	WRITE_ONCE(meta->state, next);
299 }
300 
301 /* Write canary byte to @addr. */
302 static inline bool set_canary_byte(u8 *addr)
303 {
304 	*addr = KFENCE_CANARY_PATTERN(addr);
305 	return true;
306 }
307 
308 /* Check canary byte at @addr. */
309 static inline bool check_canary_byte(u8 *addr)
310 {
311 	struct kfence_metadata *meta;
312 	unsigned long flags;
313 
314 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
315 		return true;
316 
317 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318 
319 	meta = addr_to_metadata((unsigned long)addr);
320 	raw_spin_lock_irqsave(&meta->lock, flags);
321 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322 	raw_spin_unlock_irqrestore(&meta->lock, flags);
323 
324 	return false;
325 }
326 
327 /* __always_inline this to ensure we won't do an indirect call to fn. */
328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329 {
330 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
331 	unsigned long addr;
332 
333 	/*
334 	 * We'll iterate over each canary byte per-side until fn() returns
335 	 * false. However, we'll still iterate over the canary bytes to the
336 	 * right of the object even if there was an error in the canary bytes to
337 	 * the left of the object. Specifically, if check_canary_byte()
338 	 * generates an error, showing both sides might give more clues as to
339 	 * what the error is about when displaying which bytes were corrupted.
340 	 */
341 
342 	/* Apply to left of object. */
343 	for (addr = pageaddr; addr < meta->addr; addr++) {
344 		if (!fn((u8 *)addr))
345 			break;
346 	}
347 
348 	/* Apply to right of object. */
349 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
350 		if (!fn((u8 *)addr))
351 			break;
352 	}
353 }
354 
355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
356 				  unsigned long *stack_entries, size_t num_stack_entries,
357 				  u32 alloc_stack_hash)
358 {
359 	struct kfence_metadata *meta = NULL;
360 	unsigned long flags;
361 	struct slab *slab;
362 	void *addr;
363 
364 	/* Try to obtain a free object. */
365 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
366 	if (!list_empty(&kfence_freelist)) {
367 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
368 		list_del_init(&meta->list);
369 	}
370 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
371 	if (!meta) {
372 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
373 		return NULL;
374 	}
375 
376 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
377 		/*
378 		 * This is extremely unlikely -- we are reporting on a
379 		 * use-after-free, which locked meta->lock, and the reporting
380 		 * code via printk calls kmalloc() which ends up in
381 		 * kfence_alloc() and tries to grab the same object that we're
382 		 * reporting on. While it has never been observed, lockdep does
383 		 * report that there is a possibility of deadlock. Fix it by
384 		 * using trylock and bailing out gracefully.
385 		 */
386 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
387 		/* Put the object back on the freelist. */
388 		list_add_tail(&meta->list, &kfence_freelist);
389 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
390 
391 		return NULL;
392 	}
393 
394 	meta->addr = metadata_to_pageaddr(meta);
395 	/* Unprotect if we're reusing this page. */
396 	if (meta->state == KFENCE_OBJECT_FREED)
397 		kfence_unprotect(meta->addr);
398 
399 	/*
400 	 * Note: for allocations made before RNG initialization, will always
401 	 * return zero. We still benefit from enabling KFENCE as early as
402 	 * possible, even when the RNG is not yet available, as this will allow
403 	 * KFENCE to detect bugs due to earlier allocations. The only downside
404 	 * is that the out-of-bounds accesses detected are deterministic for
405 	 * such allocations.
406 	 */
407 	if (prandom_u32_max(2)) {
408 		/* Allocate on the "right" side, re-calculate address. */
409 		meta->addr += PAGE_SIZE - size;
410 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
411 	}
412 
413 	addr = (void *)meta->addr;
414 
415 	/* Update remaining metadata. */
416 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
417 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
418 	WRITE_ONCE(meta->cache, cache);
419 	meta->size = size;
420 	meta->alloc_stack_hash = alloc_stack_hash;
421 	raw_spin_unlock_irqrestore(&meta->lock, flags);
422 
423 	alloc_covered_add(alloc_stack_hash, 1);
424 
425 	/* Set required slab fields. */
426 	slab = virt_to_slab((void *)meta->addr);
427 	slab->slab_cache = cache;
428 #if defined(CONFIG_SLUB)
429 	slab->objects = 1;
430 #elif defined(CONFIG_SLAB)
431 	slab->s_mem = addr;
432 #endif
433 
434 	/* Memory initialization. */
435 	for_each_canary(meta, set_canary_byte);
436 
437 	/*
438 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
439 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
440 	 * redzone.
441 	 */
442 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
443 		memzero_explicit(addr, size);
444 	if (cache->ctor)
445 		cache->ctor(addr);
446 
447 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
448 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
449 
450 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
451 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
452 
453 	return addr;
454 }
455 
456 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
457 {
458 	struct kcsan_scoped_access assert_page_exclusive;
459 	unsigned long flags;
460 	bool init;
461 
462 	raw_spin_lock_irqsave(&meta->lock, flags);
463 
464 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
465 		/* Invalid or double-free, bail out. */
466 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
467 		kfence_report_error((unsigned long)addr, false, NULL, meta,
468 				    KFENCE_ERROR_INVALID_FREE);
469 		raw_spin_unlock_irqrestore(&meta->lock, flags);
470 		return;
471 	}
472 
473 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
474 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
475 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
476 				  &assert_page_exclusive);
477 
478 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
479 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
480 
481 	/* Restore page protection if there was an OOB access. */
482 	if (meta->unprotected_page) {
483 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
484 		kfence_protect(meta->unprotected_page);
485 		meta->unprotected_page = 0;
486 	}
487 
488 	/* Mark the object as freed. */
489 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
490 	init = slab_want_init_on_free(meta->cache);
491 	raw_spin_unlock_irqrestore(&meta->lock, flags);
492 
493 	alloc_covered_add(meta->alloc_stack_hash, -1);
494 
495 	/* Check canary bytes for memory corruption. */
496 	for_each_canary(meta, check_canary_byte);
497 
498 	/*
499 	 * Clear memory if init-on-free is set. While we protect the page, the
500 	 * data is still there, and after a use-after-free is detected, we
501 	 * unprotect the page, so the data is still accessible.
502 	 */
503 	if (!zombie && unlikely(init))
504 		memzero_explicit(addr, meta->size);
505 
506 	/* Protect to detect use-after-frees. */
507 	kfence_protect((unsigned long)addr);
508 
509 	kcsan_end_scoped_access(&assert_page_exclusive);
510 	if (!zombie) {
511 		/* Add it to the tail of the freelist for reuse. */
512 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
513 		KFENCE_WARN_ON(!list_empty(&meta->list));
514 		list_add_tail(&meta->list, &kfence_freelist);
515 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
516 
517 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
518 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
519 	} else {
520 		/* See kfence_shutdown_cache(). */
521 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
522 	}
523 }
524 
525 static void rcu_guarded_free(struct rcu_head *h)
526 {
527 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
528 
529 	kfence_guarded_free((void *)meta->addr, meta, false);
530 }
531 
532 /*
533  * Initialization of the KFENCE pool after its allocation.
534  * Returns 0 on success; otherwise returns the address up to
535  * which partial initialization succeeded.
536  */
537 static unsigned long kfence_init_pool(void)
538 {
539 	unsigned long addr = (unsigned long)__kfence_pool;
540 	struct page *pages;
541 	int i;
542 
543 	if (!arch_kfence_init_pool())
544 		return addr;
545 
546 	pages = virt_to_page(addr);
547 
548 	/*
549 	 * Set up object pages: they must have PG_slab set, to avoid freeing
550 	 * these as real pages.
551 	 *
552 	 * We also want to avoid inserting kfence_free() in the kfree()
553 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
554 	 * enters __slab_free() slow-path.
555 	 */
556 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
557 		struct slab *slab = page_slab(&pages[i]);
558 
559 		if (!i || (i % 2))
560 			continue;
561 
562 		/* Verify we do not have a compound head page. */
563 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
564 			return addr;
565 
566 		__folio_set_slab(slab_folio(slab));
567 #ifdef CONFIG_MEMCG
568 		slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
569 				   MEMCG_DATA_OBJCGS;
570 #endif
571 	}
572 
573 	/*
574 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
575 	 * merely serves as an extended guard page. However, adding one
576 	 * additional page in the beginning gives us an even number of pages,
577 	 * which simplifies the mapping of address to metadata index.
578 	 */
579 	for (i = 0; i < 2; i++) {
580 		if (unlikely(!kfence_protect(addr)))
581 			return addr;
582 
583 		addr += PAGE_SIZE;
584 	}
585 
586 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
587 		struct kfence_metadata *meta = &kfence_metadata[i];
588 
589 		/* Initialize metadata. */
590 		INIT_LIST_HEAD(&meta->list);
591 		raw_spin_lock_init(&meta->lock);
592 		meta->state = KFENCE_OBJECT_UNUSED;
593 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
594 		list_add_tail(&meta->list, &kfence_freelist);
595 
596 		/* Protect the right redzone. */
597 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
598 			return addr;
599 
600 		addr += 2 * PAGE_SIZE;
601 	}
602 
603 	/*
604 	 * The pool is live and will never be deallocated from this point on.
605 	 * Remove the pool object from the kmemleak object tree, as it would
606 	 * otherwise overlap with allocations returned by kfence_alloc(), which
607 	 * are registered with kmemleak through the slab post-alloc hook.
608 	 */
609 	kmemleak_free(__kfence_pool);
610 
611 	return 0;
612 }
613 
614 static bool __init kfence_init_pool_early(void)
615 {
616 	unsigned long addr;
617 
618 	if (!__kfence_pool)
619 		return false;
620 
621 	addr = kfence_init_pool();
622 
623 	if (!addr)
624 		return true;
625 
626 	/*
627 	 * Only release unprotected pages, and do not try to go back and change
628 	 * page attributes due to risk of failing to do so as well. If changing
629 	 * page attributes for some pages fails, it is very likely that it also
630 	 * fails for the first page, and therefore expect addr==__kfence_pool in
631 	 * most failure cases.
632 	 */
633 	for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
634 		struct slab *slab = virt_to_slab(p);
635 
636 		if (!slab)
637 			continue;
638 #ifdef CONFIG_MEMCG
639 		slab->memcg_data = 0;
640 #endif
641 		__folio_clear_slab(slab_folio(slab));
642 	}
643 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
644 	__kfence_pool = NULL;
645 	return false;
646 }
647 
648 static bool kfence_init_pool_late(void)
649 {
650 	unsigned long addr, free_size;
651 
652 	addr = kfence_init_pool();
653 
654 	if (!addr)
655 		return true;
656 
657 	/* Same as above. */
658 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
659 #ifdef CONFIG_CONTIG_ALLOC
660 	free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
661 #else
662 	free_pages_exact((void *)addr, free_size);
663 #endif
664 	__kfence_pool = NULL;
665 	return false;
666 }
667 
668 /* === DebugFS Interface ==================================================== */
669 
670 static int stats_show(struct seq_file *seq, void *v)
671 {
672 	int i;
673 
674 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
675 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
676 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
677 
678 	return 0;
679 }
680 DEFINE_SHOW_ATTRIBUTE(stats);
681 
682 /*
683  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
684  * start_object() and next_object() return the object index + 1, because NULL is used
685  * to stop iteration.
686  */
687 static void *start_object(struct seq_file *seq, loff_t *pos)
688 {
689 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
690 		return (void *)((long)*pos + 1);
691 	return NULL;
692 }
693 
694 static void stop_object(struct seq_file *seq, void *v)
695 {
696 }
697 
698 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
699 {
700 	++*pos;
701 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
702 		return (void *)((long)*pos + 1);
703 	return NULL;
704 }
705 
706 static int show_object(struct seq_file *seq, void *v)
707 {
708 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
709 	unsigned long flags;
710 
711 	raw_spin_lock_irqsave(&meta->lock, flags);
712 	kfence_print_object(seq, meta);
713 	raw_spin_unlock_irqrestore(&meta->lock, flags);
714 	seq_puts(seq, "---------------------------------\n");
715 
716 	return 0;
717 }
718 
719 static const struct seq_operations object_seqops = {
720 	.start = start_object,
721 	.next = next_object,
722 	.stop = stop_object,
723 	.show = show_object,
724 };
725 
726 static int open_objects(struct inode *inode, struct file *file)
727 {
728 	return seq_open(file, &object_seqops);
729 }
730 
731 static const struct file_operations objects_fops = {
732 	.open = open_objects,
733 	.read = seq_read,
734 	.llseek = seq_lseek,
735 	.release = seq_release,
736 };
737 
738 static int __init kfence_debugfs_init(void)
739 {
740 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
741 
742 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
743 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
744 	return 0;
745 }
746 
747 late_initcall(kfence_debugfs_init);
748 
749 /* === Panic Notifier ====================================================== */
750 
751 static void kfence_check_all_canary(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
756 		struct kfence_metadata *meta = &kfence_metadata[i];
757 
758 		if (meta->state == KFENCE_OBJECT_ALLOCATED)
759 			for_each_canary(meta, check_canary_byte);
760 	}
761 }
762 
763 static int kfence_check_canary_callback(struct notifier_block *nb,
764 					unsigned long reason, void *arg)
765 {
766 	kfence_check_all_canary();
767 	return NOTIFY_OK;
768 }
769 
770 static struct notifier_block kfence_check_canary_notifier = {
771 	.notifier_call = kfence_check_canary_callback,
772 };
773 
774 /* === Allocation Gate Timer ================================================ */
775 
776 static struct delayed_work kfence_timer;
777 
778 #ifdef CONFIG_KFENCE_STATIC_KEYS
779 /* Wait queue to wake up allocation-gate timer task. */
780 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
781 
782 static void wake_up_kfence_timer(struct irq_work *work)
783 {
784 	wake_up(&allocation_wait);
785 }
786 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
787 #endif
788 
789 /*
790  * Set up delayed work, which will enable and disable the static key. We need to
791  * use a work queue (rather than a simple timer), since enabling and disabling a
792  * static key cannot be done from an interrupt.
793  *
794  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
795  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
796  * more aggressive sampling intervals), we could get away with a variant that
797  * avoids IPIs, at the cost of not immediately capturing allocations if the
798  * instructions remain cached.
799  */
800 static void toggle_allocation_gate(struct work_struct *work)
801 {
802 	if (!READ_ONCE(kfence_enabled))
803 		return;
804 
805 	atomic_set(&kfence_allocation_gate, 0);
806 #ifdef CONFIG_KFENCE_STATIC_KEYS
807 	/* Enable static key, and await allocation to happen. */
808 	static_branch_enable(&kfence_allocation_key);
809 
810 	if (sysctl_hung_task_timeout_secs) {
811 		/*
812 		 * During low activity with no allocations we might wait a
813 		 * while; let's avoid the hung task warning.
814 		 */
815 		wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
816 					sysctl_hung_task_timeout_secs * HZ / 2);
817 	} else {
818 		wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
819 	}
820 
821 	/* Disable static key and reset timer. */
822 	static_branch_disable(&kfence_allocation_key);
823 #endif
824 	queue_delayed_work(system_unbound_wq, &kfence_timer,
825 			   msecs_to_jiffies(kfence_sample_interval));
826 }
827 
828 /* === Public interface ===================================================== */
829 
830 void __init kfence_alloc_pool(void)
831 {
832 	if (!kfence_sample_interval)
833 		return;
834 
835 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
836 
837 	if (!__kfence_pool)
838 		pr_err("failed to allocate pool\n");
839 }
840 
841 static void kfence_init_enable(void)
842 {
843 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
844 		static_branch_enable(&kfence_allocation_key);
845 
846 	if (kfence_deferrable)
847 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
848 	else
849 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
850 
851 	if (kfence_check_on_panic)
852 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
853 
854 	WRITE_ONCE(kfence_enabled, true);
855 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
856 
857 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
858 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
859 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
860 }
861 
862 void __init kfence_init(void)
863 {
864 	stack_hash_seed = (u32)random_get_entropy();
865 
866 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
867 	if (!kfence_sample_interval)
868 		return;
869 
870 	if (!kfence_init_pool_early()) {
871 		pr_err("%s failed\n", __func__);
872 		return;
873 	}
874 
875 	kfence_init_enable();
876 }
877 
878 static int kfence_init_late(void)
879 {
880 	const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
881 #ifdef CONFIG_CONTIG_ALLOC
882 	struct page *pages;
883 
884 	pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
885 	if (!pages)
886 		return -ENOMEM;
887 	__kfence_pool = page_to_virt(pages);
888 #else
889 	if (nr_pages > MAX_ORDER_NR_PAGES) {
890 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
891 		return -EINVAL;
892 	}
893 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
894 	if (!__kfence_pool)
895 		return -ENOMEM;
896 #endif
897 
898 	if (!kfence_init_pool_late()) {
899 		pr_err("%s failed\n", __func__);
900 		return -EBUSY;
901 	}
902 
903 	kfence_init_enable();
904 	return 0;
905 }
906 
907 static int kfence_enable_late(void)
908 {
909 	if (!__kfence_pool)
910 		return kfence_init_late();
911 
912 	WRITE_ONCE(kfence_enabled, true);
913 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
914 	pr_info("re-enabled\n");
915 	return 0;
916 }
917 
918 void kfence_shutdown_cache(struct kmem_cache *s)
919 {
920 	unsigned long flags;
921 	struct kfence_metadata *meta;
922 	int i;
923 
924 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
925 		bool in_use;
926 
927 		meta = &kfence_metadata[i];
928 
929 		/*
930 		 * If we observe some inconsistent cache and state pair where we
931 		 * should have returned false here, cache destruction is racing
932 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
933 		 * the lock will not help, as different critical section
934 		 * serialization will have the same outcome.
935 		 */
936 		if (READ_ONCE(meta->cache) != s ||
937 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
938 			continue;
939 
940 		raw_spin_lock_irqsave(&meta->lock, flags);
941 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
942 		raw_spin_unlock_irqrestore(&meta->lock, flags);
943 
944 		if (in_use) {
945 			/*
946 			 * This cache still has allocations, and we should not
947 			 * release them back into the freelist so they can still
948 			 * safely be used and retain the kernel's default
949 			 * behaviour of keeping the allocations alive (leak the
950 			 * cache); however, they effectively become "zombie
951 			 * allocations" as the KFENCE objects are the only ones
952 			 * still in use and the owning cache is being destroyed.
953 			 *
954 			 * We mark them freed, so that any subsequent use shows
955 			 * more useful error messages that will include stack
956 			 * traces of the user of the object, the original
957 			 * allocation, and caller to shutdown_cache().
958 			 */
959 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
960 		}
961 	}
962 
963 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
964 		meta = &kfence_metadata[i];
965 
966 		/* See above. */
967 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
968 			continue;
969 
970 		raw_spin_lock_irqsave(&meta->lock, flags);
971 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
972 			meta->cache = NULL;
973 		raw_spin_unlock_irqrestore(&meta->lock, flags);
974 	}
975 }
976 
977 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
978 {
979 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
980 	size_t num_stack_entries;
981 	u32 alloc_stack_hash;
982 
983 	/*
984 	 * Perform size check before switching kfence_allocation_gate, so that
985 	 * we don't disable KFENCE without making an allocation.
986 	 */
987 	if (size > PAGE_SIZE) {
988 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
989 		return NULL;
990 	}
991 
992 	/*
993 	 * Skip allocations from non-default zones, including DMA. We cannot
994 	 * guarantee that pages in the KFENCE pool will have the requested
995 	 * properties (e.g. reside in DMAable memory).
996 	 */
997 	if ((flags & GFP_ZONEMASK) ||
998 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
999 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1000 		return NULL;
1001 	}
1002 
1003 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
1004 		return NULL;
1005 #ifdef CONFIG_KFENCE_STATIC_KEYS
1006 	/*
1007 	 * waitqueue_active() is fully ordered after the update of
1008 	 * kfence_allocation_gate per atomic_inc_return().
1009 	 */
1010 	if (waitqueue_active(&allocation_wait)) {
1011 		/*
1012 		 * Calling wake_up() here may deadlock when allocations happen
1013 		 * from within timer code. Use an irq_work to defer it.
1014 		 */
1015 		irq_work_queue(&wake_up_kfence_timer_work);
1016 	}
1017 #endif
1018 
1019 	if (!READ_ONCE(kfence_enabled))
1020 		return NULL;
1021 
1022 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1023 
1024 	/*
1025 	 * Do expensive check for coverage of allocation in slow-path after
1026 	 * allocation_gate has already become non-zero, even though it might
1027 	 * mean not making any allocation within a given sample interval.
1028 	 *
1029 	 * This ensures reasonable allocation coverage when the pool is almost
1030 	 * full, including avoiding long-lived allocations of the same source
1031 	 * filling up the pool (e.g. pagecache allocations).
1032 	 */
1033 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1034 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1035 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1036 		return NULL;
1037 	}
1038 
1039 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1040 				    alloc_stack_hash);
1041 }
1042 
1043 size_t kfence_ksize(const void *addr)
1044 {
1045 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1046 
1047 	/*
1048 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1049 	 * either a use-after-free or invalid access.
1050 	 */
1051 	return meta ? meta->size : 0;
1052 }
1053 
1054 void *kfence_object_start(const void *addr)
1055 {
1056 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1057 
1058 	/*
1059 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1060 	 * either a use-after-free or invalid access.
1061 	 */
1062 	return meta ? (void *)meta->addr : NULL;
1063 }
1064 
1065 void __kfence_free(void *addr)
1066 {
1067 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1068 
1069 #ifdef CONFIG_MEMCG
1070 	KFENCE_WARN_ON(meta->objcg);
1071 #endif
1072 	/*
1073 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1074 	 * the object, as the object page may be recycled for other-typed
1075 	 * objects once it has been freed. meta->cache may be NULL if the cache
1076 	 * was destroyed.
1077 	 */
1078 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1079 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1080 	else
1081 		kfence_guarded_free(addr, meta, false);
1082 }
1083 
1084 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1085 {
1086 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1087 	struct kfence_metadata *to_report = NULL;
1088 	enum kfence_error_type error_type;
1089 	unsigned long flags;
1090 
1091 	if (!is_kfence_address((void *)addr))
1092 		return false;
1093 
1094 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1095 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1096 
1097 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1098 
1099 	if (page_index % 2) {
1100 		/* This is a redzone, report a buffer overflow. */
1101 		struct kfence_metadata *meta;
1102 		int distance = 0;
1103 
1104 		meta = addr_to_metadata(addr - PAGE_SIZE);
1105 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1106 			to_report = meta;
1107 			/* Data race ok; distance calculation approximate. */
1108 			distance = addr - data_race(meta->addr + meta->size);
1109 		}
1110 
1111 		meta = addr_to_metadata(addr + PAGE_SIZE);
1112 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1113 			/* Data race ok; distance calculation approximate. */
1114 			if (!to_report || distance > data_race(meta->addr) - addr)
1115 				to_report = meta;
1116 		}
1117 
1118 		if (!to_report)
1119 			goto out;
1120 
1121 		raw_spin_lock_irqsave(&to_report->lock, flags);
1122 		to_report->unprotected_page = addr;
1123 		error_type = KFENCE_ERROR_OOB;
1124 
1125 		/*
1126 		 * If the object was freed before we took the look we can still
1127 		 * report this as an OOB -- the report will simply show the
1128 		 * stacktrace of the free as well.
1129 		 */
1130 	} else {
1131 		to_report = addr_to_metadata(addr);
1132 		if (!to_report)
1133 			goto out;
1134 
1135 		raw_spin_lock_irqsave(&to_report->lock, flags);
1136 		error_type = KFENCE_ERROR_UAF;
1137 		/*
1138 		 * We may race with __kfence_alloc(), and it is possible that a
1139 		 * freed object may be reallocated. We simply report this as a
1140 		 * use-after-free, with the stack trace showing the place where
1141 		 * the object was re-allocated.
1142 		 */
1143 	}
1144 
1145 out:
1146 	if (to_report) {
1147 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1148 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1149 	} else {
1150 		/* This may be a UAF or OOB access, but we can't be sure. */
1151 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1152 	}
1153 
1154 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1155 }
1156