xref: /openbmc/linux/mm/kasan/shadow.c (revision f5cc14e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kmemleak.h>
17 #include <linux/memory.h>
18 #include <linux/mm.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/vmalloc.h>
22 
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 
26 #include "kasan.h"
27 
28 bool __kasan_check_read(const volatile void *p, unsigned int size)
29 {
30 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
31 }
32 EXPORT_SYMBOL(__kasan_check_read);
33 
34 bool __kasan_check_write(const volatile void *p, unsigned int size)
35 {
36 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
37 }
38 EXPORT_SYMBOL(__kasan_check_write);
39 
40 #undef memset
41 void *memset(void *addr, int c, size_t len)
42 {
43 	if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
44 		return NULL;
45 
46 	return __memset(addr, c, len);
47 }
48 
49 #ifdef __HAVE_ARCH_MEMMOVE
50 #undef memmove
51 void *memmove(void *dest, const void *src, size_t len)
52 {
53 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
54 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
55 		return NULL;
56 
57 	return __memmove(dest, src, len);
58 }
59 #endif
60 
61 #undef memcpy
62 void *memcpy(void *dest, const void *src, size_t len)
63 {
64 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
65 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
66 		return NULL;
67 
68 	return __memcpy(dest, src, len);
69 }
70 
71 /*
72  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
73  * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
74  */
75 void poison_range(const void *address, size_t size, u8 value)
76 {
77 	void *shadow_start, *shadow_end;
78 
79 	/*
80 	 * Perform shadow offset calculation based on untagged address, as
81 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 	 * addresses to this function.
83 	 */
84 	address = kasan_reset_tag(address);
85 	size = round_up(size, KASAN_GRANULE_SIZE);
86 
87 	shadow_start = kasan_mem_to_shadow(address);
88 	shadow_end = kasan_mem_to_shadow(address + size);
89 
90 	__memset(shadow_start, value, shadow_end - shadow_start);
91 }
92 
93 void unpoison_range(const void *address, size_t size)
94 {
95 	u8 tag = get_tag(address);
96 
97 	/*
98 	 * Perform shadow offset calculation based on untagged address, as
99 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
100 	 * addresses to this function.
101 	 */
102 	address = kasan_reset_tag(address);
103 
104 	poison_range(address, size, tag);
105 
106 	if (size & KASAN_GRANULE_MASK) {
107 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
108 
109 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
110 			*shadow = tag;
111 		else /* CONFIG_KASAN_GENERIC */
112 			*shadow = size & KASAN_GRANULE_MASK;
113 	}
114 }
115 
116 #ifdef CONFIG_MEMORY_HOTPLUG
117 static bool shadow_mapped(unsigned long addr)
118 {
119 	pgd_t *pgd = pgd_offset_k(addr);
120 	p4d_t *p4d;
121 	pud_t *pud;
122 	pmd_t *pmd;
123 	pte_t *pte;
124 
125 	if (pgd_none(*pgd))
126 		return false;
127 	p4d = p4d_offset(pgd, addr);
128 	if (p4d_none(*p4d))
129 		return false;
130 	pud = pud_offset(p4d, addr);
131 	if (pud_none(*pud))
132 		return false;
133 
134 	/*
135 	 * We can't use pud_large() or pud_huge(), the first one is
136 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
137 	 * pud_bad(), if pud is bad then it's bad because it's huge.
138 	 */
139 	if (pud_bad(*pud))
140 		return true;
141 	pmd = pmd_offset(pud, addr);
142 	if (pmd_none(*pmd))
143 		return false;
144 
145 	if (pmd_bad(*pmd))
146 		return true;
147 	pte = pte_offset_kernel(pmd, addr);
148 	return !pte_none(*pte);
149 }
150 
151 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
152 			unsigned long action, void *data)
153 {
154 	struct memory_notify *mem_data = data;
155 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
156 	unsigned long shadow_end, shadow_size;
157 
158 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
159 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
160 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
161 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
162 	shadow_end = shadow_start + shadow_size;
163 
164 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
165 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
166 		return NOTIFY_BAD;
167 
168 	switch (action) {
169 	case MEM_GOING_ONLINE: {
170 		void *ret;
171 
172 		/*
173 		 * If shadow is mapped already than it must have been mapped
174 		 * during the boot. This could happen if we onlining previously
175 		 * offlined memory.
176 		 */
177 		if (shadow_mapped(shadow_start))
178 			return NOTIFY_OK;
179 
180 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
181 					shadow_end, GFP_KERNEL,
182 					PAGE_KERNEL, VM_NO_GUARD,
183 					pfn_to_nid(mem_data->start_pfn),
184 					__builtin_return_address(0));
185 		if (!ret)
186 			return NOTIFY_BAD;
187 
188 		kmemleak_ignore(ret);
189 		return NOTIFY_OK;
190 	}
191 	case MEM_CANCEL_ONLINE:
192 	case MEM_OFFLINE: {
193 		struct vm_struct *vm;
194 
195 		/*
196 		 * shadow_start was either mapped during boot by kasan_init()
197 		 * or during memory online by __vmalloc_node_range().
198 		 * In the latter case we can use vfree() to free shadow.
199 		 * Non-NULL result of the find_vm_area() will tell us if
200 		 * that was the second case.
201 		 *
202 		 * Currently it's not possible to free shadow mapped
203 		 * during boot by kasan_init(). It's because the code
204 		 * to do that hasn't been written yet. So we'll just
205 		 * leak the memory.
206 		 */
207 		vm = find_vm_area((void *)shadow_start);
208 		if (vm)
209 			vfree((void *)shadow_start);
210 	}
211 	}
212 
213 	return NOTIFY_OK;
214 }
215 
216 static int __init kasan_memhotplug_init(void)
217 {
218 	hotplug_memory_notifier(kasan_mem_notifier, 0);
219 
220 	return 0;
221 }
222 
223 core_initcall(kasan_memhotplug_init);
224 #endif
225 
226 #ifdef CONFIG_KASAN_VMALLOC
227 
228 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
229 				      void *unused)
230 {
231 	unsigned long page;
232 	pte_t pte;
233 
234 	if (likely(!pte_none(*ptep)))
235 		return 0;
236 
237 	page = __get_free_page(GFP_KERNEL);
238 	if (!page)
239 		return -ENOMEM;
240 
241 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
242 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
243 
244 	spin_lock(&init_mm.page_table_lock);
245 	if (likely(pte_none(*ptep))) {
246 		set_pte_at(&init_mm, addr, ptep, pte);
247 		page = 0;
248 	}
249 	spin_unlock(&init_mm.page_table_lock);
250 	if (page)
251 		free_page(page);
252 	return 0;
253 }
254 
255 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
256 {
257 	unsigned long shadow_start, shadow_end;
258 	int ret;
259 
260 	if (!is_vmalloc_or_module_addr((void *)addr))
261 		return 0;
262 
263 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
264 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
265 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
266 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
267 
268 	ret = apply_to_page_range(&init_mm, shadow_start,
269 				  shadow_end - shadow_start,
270 				  kasan_populate_vmalloc_pte, NULL);
271 	if (ret)
272 		return ret;
273 
274 	flush_cache_vmap(shadow_start, shadow_end);
275 
276 	/*
277 	 * We need to be careful about inter-cpu effects here. Consider:
278 	 *
279 	 *   CPU#0				  CPU#1
280 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
281 	 *					p[99] = 1;
282 	 *
283 	 * With compiler instrumentation, that ends up looking like this:
284 	 *
285 	 *   CPU#0				  CPU#1
286 	 * // vmalloc() allocates memory
287 	 * // let a = area->addr
288 	 * // we reach kasan_populate_vmalloc
289 	 * // and call unpoison_range:
290 	 * STORE shadow(a), unpoison_val
291 	 * ...
292 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
293 	 * // rest of vmalloc process		<data dependency>
294 	 * STORE p, a				LOAD shadow(x+99)
295 	 *
296 	 * If there is no barrier between the end of unpoisioning the shadow
297 	 * and the store of the result to p, the stores could be committed
298 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
299 	 * poison in the shadow.
300 	 *
301 	 * We need some sort of barrier between the stores.
302 	 *
303 	 * In the vmalloc() case, this is provided by a smp_wmb() in
304 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
305 	 * get_vm_area() and friends, the caller gets shadow allocated but
306 	 * doesn't have any pages mapped into the virtual address space that
307 	 * has been reserved. Mapping those pages in will involve taking and
308 	 * releasing a page-table lock, which will provide the barrier.
309 	 */
310 
311 	return 0;
312 }
313 
314 /*
315  * Poison the shadow for a vmalloc region. Called as part of the
316  * freeing process at the time the region is freed.
317  */
318 void kasan_poison_vmalloc(const void *start, unsigned long size)
319 {
320 	if (!is_vmalloc_or_module_addr(start))
321 		return;
322 
323 	size = round_up(size, KASAN_GRANULE_SIZE);
324 	poison_range(start, size, KASAN_VMALLOC_INVALID);
325 }
326 
327 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
328 {
329 	if (!is_vmalloc_or_module_addr(start))
330 		return;
331 
332 	unpoison_range(start, size);
333 }
334 
335 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
336 					void *unused)
337 {
338 	unsigned long page;
339 
340 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
341 
342 	spin_lock(&init_mm.page_table_lock);
343 
344 	if (likely(!pte_none(*ptep))) {
345 		pte_clear(&init_mm, addr, ptep);
346 		free_page(page);
347 	}
348 	spin_unlock(&init_mm.page_table_lock);
349 
350 	return 0;
351 }
352 
353 /*
354  * Release the backing for the vmalloc region [start, end), which
355  * lies within the free region [free_region_start, free_region_end).
356  *
357  * This can be run lazily, long after the region was freed. It runs
358  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
359  * infrastructure.
360  *
361  * How does this work?
362  * -------------------
363  *
364  * We have a region that is page aligned, labelled as A.
365  * That might not map onto the shadow in a way that is page-aligned:
366  *
367  *                    start                     end
368  *                    v                         v
369  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
370  *  -------- -------- --------          -------- --------
371  *      |        |       |                 |        |
372  *      |        |       |         /-------/        |
373  *      \-------\|/------/         |/---------------/
374  *              |||                ||
375  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
376  *                 (1)      (2)      (3)
377  *
378  * First we align the start upwards and the end downwards, so that the
379  * shadow of the region aligns with shadow page boundaries. In the
380  * example, this gives us the shadow page (2). This is the shadow entirely
381  * covered by this allocation.
382  *
383  * Then we have the tricky bits. We want to know if we can free the
384  * partially covered shadow pages - (1) and (3) in the example. For this,
385  * we are given the start and end of the free region that contains this
386  * allocation. Extending our previous example, we could have:
387  *
388  *  free_region_start                                    free_region_end
389  *  |                 start                     end      |
390  *  v                 v                         v        v
391  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
392  *  -------- -------- --------          -------- --------
393  *      |        |       |                 |        |
394  *      |        |       |         /-------/        |
395  *      \-------\|/------/         |/---------------/
396  *              |||                ||
397  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
398  *                 (1)      (2)      (3)
399  *
400  * Once again, we align the start of the free region up, and the end of
401  * the free region down so that the shadow is page aligned. So we can free
402  * page (1) - we know no allocation currently uses anything in that page,
403  * because all of it is in the vmalloc free region. But we cannot free
404  * page (3), because we can't be sure that the rest of it is unused.
405  *
406  * We only consider pages that contain part of the original region for
407  * freeing: we don't try to free other pages from the free region or we'd
408  * end up trying to free huge chunks of virtual address space.
409  *
410  * Concurrency
411  * -----------
412  *
413  * How do we know that we're not freeing a page that is simultaneously
414  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
415  *
416  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
417  * at the same time. While we run under free_vmap_area_lock, the population
418  * code does not.
419  *
420  * free_vmap_area_lock instead operates to ensure that the larger range
421  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
422  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
423  * no space identified as free will become used while we are running. This
424  * means that so long as we are careful with alignment and only free shadow
425  * pages entirely covered by the free region, we will not run in to any
426  * trouble - any simultaneous allocations will be for disjoint regions.
427  */
428 void kasan_release_vmalloc(unsigned long start, unsigned long end,
429 			   unsigned long free_region_start,
430 			   unsigned long free_region_end)
431 {
432 	void *shadow_start, *shadow_end;
433 	unsigned long region_start, region_end;
434 	unsigned long size;
435 
436 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
437 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
438 
439 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
440 
441 	if (start != region_start &&
442 	    free_region_start < region_start)
443 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
444 
445 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
446 
447 	if (end != region_end &&
448 	    free_region_end > region_end)
449 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
450 
451 	shadow_start = kasan_mem_to_shadow((void *)region_start);
452 	shadow_end = kasan_mem_to_shadow((void *)region_end);
453 
454 	if (shadow_end > shadow_start) {
455 		size = shadow_end - shadow_start;
456 		apply_to_existing_page_range(&init_mm,
457 					     (unsigned long)shadow_start,
458 					     size, kasan_depopulate_vmalloc_pte,
459 					     NULL);
460 		flush_tlb_kernel_range((unsigned long)shadow_start,
461 				       (unsigned long)shadow_end);
462 	}
463 }
464 
465 #else /* CONFIG_KASAN_VMALLOC */
466 
467 int kasan_module_alloc(void *addr, size_t size)
468 {
469 	void *ret;
470 	size_t scaled_size;
471 	size_t shadow_size;
472 	unsigned long shadow_start;
473 
474 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
475 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
476 				KASAN_SHADOW_SCALE_SHIFT;
477 	shadow_size = round_up(scaled_size, PAGE_SIZE);
478 
479 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
480 		return -EINVAL;
481 
482 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
483 			shadow_start + shadow_size,
484 			GFP_KERNEL,
485 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
486 			__builtin_return_address(0));
487 
488 	if (ret) {
489 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
490 		find_vm_area(addr)->flags |= VM_KASAN;
491 		kmemleak_ignore(ret);
492 		return 0;
493 	}
494 
495 	return -ENOMEM;
496 }
497 
498 void kasan_free_shadow(const struct vm_struct *vm)
499 {
500 	if (vm->flags & VM_KASAN)
501 		vfree(kasan_mem_to_shadow(vm->addr));
502 }
503 
504 #endif
505