xref: /openbmc/linux/mm/kasan/shadow.c (revision e2db1a9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 		return NULL;
46 
47 	return __memset(addr, c, len);
48 }
49 
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 		return NULL;
57 
58 	return __memmove(dest, src, len);
59 }
60 #endif
61 
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 		return NULL;
68 
69 	return __memcpy(dest, src, len);
70 }
71 
72 void kasan_poison(const void *address, size_t size, u8 value)
73 {
74 	void *shadow_start, *shadow_end;
75 
76 	/*
77 	 * Perform shadow offset calculation based on untagged address, as
78 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
79 	 * addresses to this function.
80 	 */
81 	address = kasan_reset_tag(address);
82 
83 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
84 	if (is_kfence_address(address))
85 		return;
86 
87 	size = round_up(size, KASAN_GRANULE_SIZE);
88 	shadow_start = kasan_mem_to_shadow(address);
89 	shadow_end = kasan_mem_to_shadow(address + size);
90 
91 	__memset(shadow_start, value, shadow_end - shadow_start);
92 }
93 EXPORT_SYMBOL(kasan_poison);
94 
95 #ifdef CONFIG_KASAN_GENERIC
96 void kasan_poison_last_granule(const void *address, size_t size)
97 {
98 	if (size & KASAN_GRANULE_MASK) {
99 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
100 		*shadow = size & KASAN_GRANULE_MASK;
101 	}
102 }
103 #endif
104 
105 void kasan_unpoison(const void *address, size_t size)
106 {
107 	u8 tag = get_tag(address);
108 
109 	/*
110 	 * Perform shadow offset calculation based on untagged address, as
111 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
112 	 * addresses to this function.
113 	 */
114 	address = kasan_reset_tag(address);
115 
116 	/*
117 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
118 	 * that calls to ksize(), where size is not a multiple of machine-word
119 	 * size, would otherwise poison the invalid portion of the word.
120 	 */
121 	if (is_kfence_address(address))
122 		return;
123 
124 	/* Unpoison round_up(size, KASAN_GRANULE_SIZE) bytes. */
125 	kasan_poison(address, size, tag);
126 
127 	/* Partially poison the last granule for the generic mode. */
128 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
129 		kasan_poison_last_granule(address, size);
130 }
131 
132 #ifdef CONFIG_MEMORY_HOTPLUG
133 static bool shadow_mapped(unsigned long addr)
134 {
135 	pgd_t *pgd = pgd_offset_k(addr);
136 	p4d_t *p4d;
137 	pud_t *pud;
138 	pmd_t *pmd;
139 	pte_t *pte;
140 
141 	if (pgd_none(*pgd))
142 		return false;
143 	p4d = p4d_offset(pgd, addr);
144 	if (p4d_none(*p4d))
145 		return false;
146 	pud = pud_offset(p4d, addr);
147 	if (pud_none(*pud))
148 		return false;
149 
150 	/*
151 	 * We can't use pud_large() or pud_huge(), the first one is
152 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
153 	 * pud_bad(), if pud is bad then it's bad because it's huge.
154 	 */
155 	if (pud_bad(*pud))
156 		return true;
157 	pmd = pmd_offset(pud, addr);
158 	if (pmd_none(*pmd))
159 		return false;
160 
161 	if (pmd_bad(*pmd))
162 		return true;
163 	pte = pte_offset_kernel(pmd, addr);
164 	return !pte_none(*pte);
165 }
166 
167 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
168 			unsigned long action, void *data)
169 {
170 	struct memory_notify *mem_data = data;
171 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
172 	unsigned long shadow_end, shadow_size;
173 
174 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
175 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
176 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
177 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
178 	shadow_end = shadow_start + shadow_size;
179 
180 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
181 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
182 		return NOTIFY_BAD;
183 
184 	switch (action) {
185 	case MEM_GOING_ONLINE: {
186 		void *ret;
187 
188 		/*
189 		 * If shadow is mapped already than it must have been mapped
190 		 * during the boot. This could happen if we onlining previously
191 		 * offlined memory.
192 		 */
193 		if (shadow_mapped(shadow_start))
194 			return NOTIFY_OK;
195 
196 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
197 					shadow_end, GFP_KERNEL,
198 					PAGE_KERNEL, VM_NO_GUARD,
199 					pfn_to_nid(mem_data->start_pfn),
200 					__builtin_return_address(0));
201 		if (!ret)
202 			return NOTIFY_BAD;
203 
204 		kmemleak_ignore(ret);
205 		return NOTIFY_OK;
206 	}
207 	case MEM_CANCEL_ONLINE:
208 	case MEM_OFFLINE: {
209 		struct vm_struct *vm;
210 
211 		/*
212 		 * shadow_start was either mapped during boot by kasan_init()
213 		 * or during memory online by __vmalloc_node_range().
214 		 * In the latter case we can use vfree() to free shadow.
215 		 * Non-NULL result of the find_vm_area() will tell us if
216 		 * that was the second case.
217 		 *
218 		 * Currently it's not possible to free shadow mapped
219 		 * during boot by kasan_init(). It's because the code
220 		 * to do that hasn't been written yet. So we'll just
221 		 * leak the memory.
222 		 */
223 		vm = find_vm_area((void *)shadow_start);
224 		if (vm)
225 			vfree((void *)shadow_start);
226 	}
227 	}
228 
229 	return NOTIFY_OK;
230 }
231 
232 static int __init kasan_memhotplug_init(void)
233 {
234 	hotplug_memory_notifier(kasan_mem_notifier, 0);
235 
236 	return 0;
237 }
238 
239 core_initcall(kasan_memhotplug_init);
240 #endif
241 
242 #ifdef CONFIG_KASAN_VMALLOC
243 
244 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
245 				      void *unused)
246 {
247 	unsigned long page;
248 	pte_t pte;
249 
250 	if (likely(!pte_none(*ptep)))
251 		return 0;
252 
253 	page = __get_free_page(GFP_KERNEL);
254 	if (!page)
255 		return -ENOMEM;
256 
257 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
258 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
259 
260 	spin_lock(&init_mm.page_table_lock);
261 	if (likely(pte_none(*ptep))) {
262 		set_pte_at(&init_mm, addr, ptep, pte);
263 		page = 0;
264 	}
265 	spin_unlock(&init_mm.page_table_lock);
266 	if (page)
267 		free_page(page);
268 	return 0;
269 }
270 
271 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
272 {
273 	unsigned long shadow_start, shadow_end;
274 	int ret;
275 
276 	if (!is_vmalloc_or_module_addr((void *)addr))
277 		return 0;
278 
279 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
280 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
281 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
282 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
283 
284 	ret = apply_to_page_range(&init_mm, shadow_start,
285 				  shadow_end - shadow_start,
286 				  kasan_populate_vmalloc_pte, NULL);
287 	if (ret)
288 		return ret;
289 
290 	flush_cache_vmap(shadow_start, shadow_end);
291 
292 	/*
293 	 * We need to be careful about inter-cpu effects here. Consider:
294 	 *
295 	 *   CPU#0				  CPU#1
296 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
297 	 *					p[99] = 1;
298 	 *
299 	 * With compiler instrumentation, that ends up looking like this:
300 	 *
301 	 *   CPU#0				  CPU#1
302 	 * // vmalloc() allocates memory
303 	 * // let a = area->addr
304 	 * // we reach kasan_populate_vmalloc
305 	 * // and call kasan_unpoison:
306 	 * STORE shadow(a), unpoison_val
307 	 * ...
308 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
309 	 * // rest of vmalloc process		<data dependency>
310 	 * STORE p, a				LOAD shadow(x+99)
311 	 *
312 	 * If there is no barrier between the end of unpoisioning the shadow
313 	 * and the store of the result to p, the stores could be committed
314 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
315 	 * poison in the shadow.
316 	 *
317 	 * We need some sort of barrier between the stores.
318 	 *
319 	 * In the vmalloc() case, this is provided by a smp_wmb() in
320 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
321 	 * get_vm_area() and friends, the caller gets shadow allocated but
322 	 * doesn't have any pages mapped into the virtual address space that
323 	 * has been reserved. Mapping those pages in will involve taking and
324 	 * releasing a page-table lock, which will provide the barrier.
325 	 */
326 
327 	return 0;
328 }
329 
330 /*
331  * Poison the shadow for a vmalloc region. Called as part of the
332  * freeing process at the time the region is freed.
333  */
334 void kasan_poison_vmalloc(const void *start, unsigned long size)
335 {
336 	if (!is_vmalloc_or_module_addr(start))
337 		return;
338 
339 	size = round_up(size, KASAN_GRANULE_SIZE);
340 	kasan_poison(start, size, KASAN_VMALLOC_INVALID);
341 }
342 
343 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
344 {
345 	if (!is_vmalloc_or_module_addr(start))
346 		return;
347 
348 	kasan_unpoison(start, size);
349 }
350 
351 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
352 					void *unused)
353 {
354 	unsigned long page;
355 
356 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
357 
358 	spin_lock(&init_mm.page_table_lock);
359 
360 	if (likely(!pte_none(*ptep))) {
361 		pte_clear(&init_mm, addr, ptep);
362 		free_page(page);
363 	}
364 	spin_unlock(&init_mm.page_table_lock);
365 
366 	return 0;
367 }
368 
369 /*
370  * Release the backing for the vmalloc region [start, end), which
371  * lies within the free region [free_region_start, free_region_end).
372  *
373  * This can be run lazily, long after the region was freed. It runs
374  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
375  * infrastructure.
376  *
377  * How does this work?
378  * -------------------
379  *
380  * We have a region that is page aligned, labelled as A.
381  * That might not map onto the shadow in a way that is page-aligned:
382  *
383  *                    start                     end
384  *                    v                         v
385  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
386  *  -------- -------- --------          -------- --------
387  *      |        |       |                 |        |
388  *      |        |       |         /-------/        |
389  *      \-------\|/------/         |/---------------/
390  *              |||                ||
391  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
392  *                 (1)      (2)      (3)
393  *
394  * First we align the start upwards and the end downwards, so that the
395  * shadow of the region aligns with shadow page boundaries. In the
396  * example, this gives us the shadow page (2). This is the shadow entirely
397  * covered by this allocation.
398  *
399  * Then we have the tricky bits. We want to know if we can free the
400  * partially covered shadow pages - (1) and (3) in the example. For this,
401  * we are given the start and end of the free region that contains this
402  * allocation. Extending our previous example, we could have:
403  *
404  *  free_region_start                                    free_region_end
405  *  |                 start                     end      |
406  *  v                 v                         v        v
407  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
408  *  -------- -------- --------          -------- --------
409  *      |        |       |                 |        |
410  *      |        |       |         /-------/        |
411  *      \-------\|/------/         |/---------------/
412  *              |||                ||
413  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
414  *                 (1)      (2)      (3)
415  *
416  * Once again, we align the start of the free region up, and the end of
417  * the free region down so that the shadow is page aligned. So we can free
418  * page (1) - we know no allocation currently uses anything in that page,
419  * because all of it is in the vmalloc free region. But we cannot free
420  * page (3), because we can't be sure that the rest of it is unused.
421  *
422  * We only consider pages that contain part of the original region for
423  * freeing: we don't try to free other pages from the free region or we'd
424  * end up trying to free huge chunks of virtual address space.
425  *
426  * Concurrency
427  * -----------
428  *
429  * How do we know that we're not freeing a page that is simultaneously
430  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
431  *
432  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
433  * at the same time. While we run under free_vmap_area_lock, the population
434  * code does not.
435  *
436  * free_vmap_area_lock instead operates to ensure that the larger range
437  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
438  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
439  * no space identified as free will become used while we are running. This
440  * means that so long as we are careful with alignment and only free shadow
441  * pages entirely covered by the free region, we will not run in to any
442  * trouble - any simultaneous allocations will be for disjoint regions.
443  */
444 void kasan_release_vmalloc(unsigned long start, unsigned long end,
445 			   unsigned long free_region_start,
446 			   unsigned long free_region_end)
447 {
448 	void *shadow_start, *shadow_end;
449 	unsigned long region_start, region_end;
450 	unsigned long size;
451 
452 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
453 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
454 
455 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
456 
457 	if (start != region_start &&
458 	    free_region_start < region_start)
459 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
460 
461 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
462 
463 	if (end != region_end &&
464 	    free_region_end > region_end)
465 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
466 
467 	shadow_start = kasan_mem_to_shadow((void *)region_start);
468 	shadow_end = kasan_mem_to_shadow((void *)region_end);
469 
470 	if (shadow_end > shadow_start) {
471 		size = shadow_end - shadow_start;
472 		apply_to_existing_page_range(&init_mm,
473 					     (unsigned long)shadow_start,
474 					     size, kasan_depopulate_vmalloc_pte,
475 					     NULL);
476 		flush_tlb_kernel_range((unsigned long)shadow_start,
477 				       (unsigned long)shadow_end);
478 	}
479 }
480 
481 #else /* CONFIG_KASAN_VMALLOC */
482 
483 int kasan_module_alloc(void *addr, size_t size)
484 {
485 	void *ret;
486 	size_t scaled_size;
487 	size_t shadow_size;
488 	unsigned long shadow_start;
489 
490 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
491 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
492 				KASAN_SHADOW_SCALE_SHIFT;
493 	shadow_size = round_up(scaled_size, PAGE_SIZE);
494 
495 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
496 		return -EINVAL;
497 
498 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
499 			shadow_start + shadow_size,
500 			GFP_KERNEL,
501 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
502 			__builtin_return_address(0));
503 
504 	if (ret) {
505 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
506 		find_vm_area(addr)->flags |= VM_KASAN;
507 		kmemleak_ignore(ret);
508 		return 0;
509 	}
510 
511 	return -ENOMEM;
512 }
513 
514 void kasan_free_shadow(const struct vm_struct *vm)
515 {
516 	if (vm->flags & VM_KASAN)
517 		vfree(kasan_mem_to_shadow(vm->addr));
518 }
519 
520 #endif
521