xref: /openbmc/linux/mm/kasan/shadow.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #ifndef CONFIG_GENERIC_ENTRY
42 /*
43  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45  * for the sites they want to instrument.
46  */
47 #undef memset
48 void *memset(void *addr, int c, size_t len)
49 {
50 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
51 		return NULL;
52 
53 	return __memset(addr, c, len);
54 }
55 
56 #ifdef __HAVE_ARCH_MEMMOVE
57 #undef memmove
58 void *memmove(void *dest, const void *src, size_t len)
59 {
60 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
61 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
62 		return NULL;
63 
64 	return __memmove(dest, src, len);
65 }
66 #endif
67 
68 #undef memcpy
69 void *memcpy(void *dest, const void *src, size_t len)
70 {
71 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
72 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
73 		return NULL;
74 
75 	return __memcpy(dest, src, len);
76 }
77 #endif
78 
79 void *__asan_memset(void *addr, int c, size_t len)
80 {
81 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
82 		return NULL;
83 
84 	return __memset(addr, c, len);
85 }
86 EXPORT_SYMBOL(__asan_memset);
87 
88 #ifdef __HAVE_ARCH_MEMMOVE
89 void *__asan_memmove(void *dest, const void *src, size_t len)
90 {
91 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
92 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
93 		return NULL;
94 
95 	return __memmove(dest, src, len);
96 }
97 EXPORT_SYMBOL(__asan_memmove);
98 #endif
99 
100 void *__asan_memcpy(void *dest, const void *src, size_t len)
101 {
102 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
103 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
104 		return NULL;
105 
106 	return __memcpy(dest, src, len);
107 }
108 EXPORT_SYMBOL(__asan_memcpy);
109 
110 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
111 {
112 	void *shadow_start, *shadow_end;
113 
114 	if (!kasan_arch_is_ready())
115 		return;
116 
117 	/*
118 	 * Perform shadow offset calculation based on untagged address, as
119 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
120 	 * addresses to this function.
121 	 */
122 	addr = kasan_reset_tag(addr);
123 
124 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
125 	if (is_kfence_address(addr))
126 		return;
127 
128 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
129 		return;
130 	if (WARN_ON(size & KASAN_GRANULE_MASK))
131 		return;
132 
133 	shadow_start = kasan_mem_to_shadow(addr);
134 	shadow_end = kasan_mem_to_shadow(addr + size);
135 
136 	__memset(shadow_start, value, shadow_end - shadow_start);
137 }
138 EXPORT_SYMBOL(kasan_poison);
139 
140 #ifdef CONFIG_KASAN_GENERIC
141 void kasan_poison_last_granule(const void *addr, size_t size)
142 {
143 	if (!kasan_arch_is_ready())
144 		return;
145 
146 	if (size & KASAN_GRANULE_MASK) {
147 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
148 		*shadow = size & KASAN_GRANULE_MASK;
149 	}
150 }
151 #endif
152 
153 void kasan_unpoison(const void *addr, size_t size, bool init)
154 {
155 	u8 tag = get_tag(addr);
156 
157 	/*
158 	 * Perform shadow offset calculation based on untagged address, as
159 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
160 	 * addresses to this function.
161 	 */
162 	addr = kasan_reset_tag(addr);
163 
164 	/*
165 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
166 	 * that calls to ksize(), where size is not a multiple of machine-word
167 	 * size, would otherwise poison the invalid portion of the word.
168 	 */
169 	if (is_kfence_address(addr))
170 		return;
171 
172 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
173 		return;
174 
175 	/* Unpoison all granules that cover the object. */
176 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
177 
178 	/* Partially poison the last granule for the generic mode. */
179 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
180 		kasan_poison_last_granule(addr, size);
181 }
182 
183 #ifdef CONFIG_MEMORY_HOTPLUG
184 static bool shadow_mapped(unsigned long addr)
185 {
186 	pgd_t *pgd = pgd_offset_k(addr);
187 	p4d_t *p4d;
188 	pud_t *pud;
189 	pmd_t *pmd;
190 	pte_t *pte;
191 
192 	if (pgd_none(*pgd))
193 		return false;
194 	p4d = p4d_offset(pgd, addr);
195 	if (p4d_none(*p4d))
196 		return false;
197 	pud = pud_offset(p4d, addr);
198 	if (pud_none(*pud))
199 		return false;
200 
201 	/*
202 	 * We can't use pud_large() or pud_huge(), the first one is
203 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
204 	 * pud_bad(), if pud is bad then it's bad because it's huge.
205 	 */
206 	if (pud_bad(*pud))
207 		return true;
208 	pmd = pmd_offset(pud, addr);
209 	if (pmd_none(*pmd))
210 		return false;
211 
212 	if (pmd_bad(*pmd))
213 		return true;
214 	pte = pte_offset_kernel(pmd, addr);
215 	return !pte_none(*pte);
216 }
217 
218 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
219 			unsigned long action, void *data)
220 {
221 	struct memory_notify *mem_data = data;
222 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
223 	unsigned long shadow_end, shadow_size;
224 
225 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
226 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
227 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
228 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
229 	shadow_end = shadow_start + shadow_size;
230 
231 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
232 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
233 		return NOTIFY_BAD;
234 
235 	switch (action) {
236 	case MEM_GOING_ONLINE: {
237 		void *ret;
238 
239 		/*
240 		 * If shadow is mapped already than it must have been mapped
241 		 * during the boot. This could happen if we onlining previously
242 		 * offlined memory.
243 		 */
244 		if (shadow_mapped(shadow_start))
245 			return NOTIFY_OK;
246 
247 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
248 					shadow_end, GFP_KERNEL,
249 					PAGE_KERNEL, VM_NO_GUARD,
250 					pfn_to_nid(mem_data->start_pfn),
251 					__builtin_return_address(0));
252 		if (!ret)
253 			return NOTIFY_BAD;
254 
255 		kmemleak_ignore(ret);
256 		return NOTIFY_OK;
257 	}
258 	case MEM_CANCEL_ONLINE:
259 	case MEM_OFFLINE: {
260 		struct vm_struct *vm;
261 
262 		/*
263 		 * shadow_start was either mapped during boot by kasan_init()
264 		 * or during memory online by __vmalloc_node_range().
265 		 * In the latter case we can use vfree() to free shadow.
266 		 * Non-NULL result of the find_vm_area() will tell us if
267 		 * that was the second case.
268 		 *
269 		 * Currently it's not possible to free shadow mapped
270 		 * during boot by kasan_init(). It's because the code
271 		 * to do that hasn't been written yet. So we'll just
272 		 * leak the memory.
273 		 */
274 		vm = find_vm_area((void *)shadow_start);
275 		if (vm)
276 			vfree((void *)shadow_start);
277 	}
278 	}
279 
280 	return NOTIFY_OK;
281 }
282 
283 static int __init kasan_memhotplug_init(void)
284 {
285 	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
286 
287 	return 0;
288 }
289 
290 core_initcall(kasan_memhotplug_init);
291 #endif
292 
293 #ifdef CONFIG_KASAN_VMALLOC
294 
295 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
296 						       unsigned long size)
297 {
298 }
299 
300 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
301 				      void *unused)
302 {
303 	unsigned long page;
304 	pte_t pte;
305 
306 	if (likely(!pte_none(*ptep)))
307 		return 0;
308 
309 	page = __get_free_page(GFP_KERNEL);
310 	if (!page)
311 		return -ENOMEM;
312 
313 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
314 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
315 
316 	spin_lock(&init_mm.page_table_lock);
317 	if (likely(pte_none(*ptep))) {
318 		set_pte_at(&init_mm, addr, ptep, pte);
319 		page = 0;
320 	}
321 	spin_unlock(&init_mm.page_table_lock);
322 	if (page)
323 		free_page(page);
324 	return 0;
325 }
326 
327 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
328 {
329 	unsigned long shadow_start, shadow_end;
330 	int ret;
331 
332 	if (!kasan_arch_is_ready())
333 		return 0;
334 
335 	if (!is_vmalloc_or_module_addr((void *)addr))
336 		return 0;
337 
338 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
339 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
340 
341 	/*
342 	 * User Mode Linux maps enough shadow memory for all of virtual memory
343 	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
344 	 *
345 	 * The remaining CONFIG_UML checks in this file exist for the same
346 	 * reason.
347 	 */
348 	if (IS_ENABLED(CONFIG_UML)) {
349 		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
350 		return 0;
351 	}
352 
353 	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
354 	shadow_end = PAGE_ALIGN(shadow_end);
355 
356 	ret = apply_to_page_range(&init_mm, shadow_start,
357 				  shadow_end - shadow_start,
358 				  kasan_populate_vmalloc_pte, NULL);
359 	if (ret)
360 		return ret;
361 
362 	flush_cache_vmap(shadow_start, shadow_end);
363 
364 	/*
365 	 * We need to be careful about inter-cpu effects here. Consider:
366 	 *
367 	 *   CPU#0				  CPU#1
368 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
369 	 *					p[99] = 1;
370 	 *
371 	 * With compiler instrumentation, that ends up looking like this:
372 	 *
373 	 *   CPU#0				  CPU#1
374 	 * // vmalloc() allocates memory
375 	 * // let a = area->addr
376 	 * // we reach kasan_populate_vmalloc
377 	 * // and call kasan_unpoison:
378 	 * STORE shadow(a), unpoison_val
379 	 * ...
380 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
381 	 * // rest of vmalloc process		<data dependency>
382 	 * STORE p, a				LOAD shadow(x+99)
383 	 *
384 	 * If there is no barrier between the end of unpoisoning the shadow
385 	 * and the store of the result to p, the stores could be committed
386 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
387 	 * poison in the shadow.
388 	 *
389 	 * We need some sort of barrier between the stores.
390 	 *
391 	 * In the vmalloc() case, this is provided by a smp_wmb() in
392 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
393 	 * get_vm_area() and friends, the caller gets shadow allocated but
394 	 * doesn't have any pages mapped into the virtual address space that
395 	 * has been reserved. Mapping those pages in will involve taking and
396 	 * releasing a page-table lock, which will provide the barrier.
397 	 */
398 
399 	return 0;
400 }
401 
402 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
403 					void *unused)
404 {
405 	unsigned long page;
406 
407 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
408 
409 	spin_lock(&init_mm.page_table_lock);
410 
411 	if (likely(!pte_none(*ptep))) {
412 		pte_clear(&init_mm, addr, ptep);
413 		free_page(page);
414 	}
415 	spin_unlock(&init_mm.page_table_lock);
416 
417 	return 0;
418 }
419 
420 /*
421  * Release the backing for the vmalloc region [start, end), which
422  * lies within the free region [free_region_start, free_region_end).
423  *
424  * This can be run lazily, long after the region was freed. It runs
425  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
426  * infrastructure.
427  *
428  * How does this work?
429  * -------------------
430  *
431  * We have a region that is page aligned, labeled as A.
432  * That might not map onto the shadow in a way that is page-aligned:
433  *
434  *                    start                     end
435  *                    v                         v
436  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
437  *  -------- -------- --------          -------- --------
438  *      |        |       |                 |        |
439  *      |        |       |         /-------/        |
440  *      \-------\|/------/         |/---------------/
441  *              |||                ||
442  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
443  *                 (1)      (2)      (3)
444  *
445  * First we align the start upwards and the end downwards, so that the
446  * shadow of the region aligns with shadow page boundaries. In the
447  * example, this gives us the shadow page (2). This is the shadow entirely
448  * covered by this allocation.
449  *
450  * Then we have the tricky bits. We want to know if we can free the
451  * partially covered shadow pages - (1) and (3) in the example. For this,
452  * we are given the start and end of the free region that contains this
453  * allocation. Extending our previous example, we could have:
454  *
455  *  free_region_start                                    free_region_end
456  *  |                 start                     end      |
457  *  v                 v                         v        v
458  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
459  *  -------- -------- --------          -------- --------
460  *      |        |       |                 |        |
461  *      |        |       |         /-------/        |
462  *      \-------\|/------/         |/---------------/
463  *              |||                ||
464  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
465  *                 (1)      (2)      (3)
466  *
467  * Once again, we align the start of the free region up, and the end of
468  * the free region down so that the shadow is page aligned. So we can free
469  * page (1) - we know no allocation currently uses anything in that page,
470  * because all of it is in the vmalloc free region. But we cannot free
471  * page (3), because we can't be sure that the rest of it is unused.
472  *
473  * We only consider pages that contain part of the original region for
474  * freeing: we don't try to free other pages from the free region or we'd
475  * end up trying to free huge chunks of virtual address space.
476  *
477  * Concurrency
478  * -----------
479  *
480  * How do we know that we're not freeing a page that is simultaneously
481  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
482  *
483  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
484  * at the same time. While we run under free_vmap_area_lock, the population
485  * code does not.
486  *
487  * free_vmap_area_lock instead operates to ensure that the larger range
488  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
489  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
490  * no space identified as free will become used while we are running. This
491  * means that so long as we are careful with alignment and only free shadow
492  * pages entirely covered by the free region, we will not run in to any
493  * trouble - any simultaneous allocations will be for disjoint regions.
494  */
495 void kasan_release_vmalloc(unsigned long start, unsigned long end,
496 			   unsigned long free_region_start,
497 			   unsigned long free_region_end)
498 {
499 	void *shadow_start, *shadow_end;
500 	unsigned long region_start, region_end;
501 	unsigned long size;
502 
503 	if (!kasan_arch_is_ready())
504 		return;
505 
506 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
507 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
508 
509 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
510 
511 	if (start != region_start &&
512 	    free_region_start < region_start)
513 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
514 
515 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
516 
517 	if (end != region_end &&
518 	    free_region_end > region_end)
519 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
520 
521 	shadow_start = kasan_mem_to_shadow((void *)region_start);
522 	shadow_end = kasan_mem_to_shadow((void *)region_end);
523 
524 	if (shadow_end > shadow_start) {
525 		size = shadow_end - shadow_start;
526 		if (IS_ENABLED(CONFIG_UML)) {
527 			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
528 			return;
529 		}
530 		apply_to_existing_page_range(&init_mm,
531 					     (unsigned long)shadow_start,
532 					     size, kasan_depopulate_vmalloc_pte,
533 					     NULL);
534 		flush_tlb_kernel_range((unsigned long)shadow_start,
535 				       (unsigned long)shadow_end);
536 	}
537 }
538 
539 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
540 			       kasan_vmalloc_flags_t flags)
541 {
542 	/*
543 	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
544 	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
545 	 * Software KASAN modes can't optimize zeroing memory by combining it
546 	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
547 	 */
548 
549 	if (!kasan_arch_is_ready())
550 		return (void *)start;
551 
552 	if (!is_vmalloc_or_module_addr(start))
553 		return (void *)start;
554 
555 	/*
556 	 * Don't tag executable memory with the tag-based mode.
557 	 * The kernel doesn't tolerate having the PC register tagged.
558 	 */
559 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
560 	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
561 		return (void *)start;
562 
563 	start = set_tag(start, kasan_random_tag());
564 	kasan_unpoison(start, size, false);
565 	return (void *)start;
566 }
567 
568 /*
569  * Poison the shadow for a vmalloc region. Called as part of the
570  * freeing process at the time the region is freed.
571  */
572 void __kasan_poison_vmalloc(const void *start, unsigned long size)
573 {
574 	if (!kasan_arch_is_ready())
575 		return;
576 
577 	if (!is_vmalloc_or_module_addr(start))
578 		return;
579 
580 	size = round_up(size, KASAN_GRANULE_SIZE);
581 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
582 }
583 
584 #else /* CONFIG_KASAN_VMALLOC */
585 
586 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
587 {
588 	void *ret;
589 	size_t scaled_size;
590 	size_t shadow_size;
591 	unsigned long shadow_start;
592 
593 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
594 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
595 				KASAN_SHADOW_SCALE_SHIFT;
596 	shadow_size = round_up(scaled_size, PAGE_SIZE);
597 
598 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
599 		return -EINVAL;
600 
601 	if (IS_ENABLED(CONFIG_UML)) {
602 		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
603 		return 0;
604 	}
605 
606 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
607 			shadow_start + shadow_size,
608 			GFP_KERNEL,
609 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
610 			__builtin_return_address(0));
611 
612 	if (ret) {
613 		struct vm_struct *vm = find_vm_area(addr);
614 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
615 		vm->flags |= VM_KASAN;
616 		kmemleak_ignore(ret);
617 
618 		if (vm->flags & VM_DEFER_KMEMLEAK)
619 			kmemleak_vmalloc(vm, size, gfp_mask);
620 
621 		return 0;
622 	}
623 
624 	return -ENOMEM;
625 }
626 
627 void kasan_free_module_shadow(const struct vm_struct *vm)
628 {
629 	if (IS_ENABLED(CONFIG_UML))
630 		return;
631 
632 	if (vm->flags & VM_KASAN)
633 		vfree(kasan_mem_to_shadow(vm->addr));
634 }
635 
636 #endif
637