xref: /openbmc/linux/mm/kasan/shadow.c (revision 83762cb5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 		return NULL;
46 
47 	return __memset(addr, c, len);
48 }
49 
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 		return NULL;
57 
58 	return __memmove(dest, src, len);
59 }
60 #endif
61 
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 		return NULL;
68 
69 	return __memcpy(dest, src, len);
70 }
71 
72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 	void *shadow_start, *shadow_end;
75 
76 	if (!kasan_arch_is_ready())
77 		return;
78 
79 	/*
80 	 * Perform shadow offset calculation based on untagged address, as
81 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 	 * addresses to this function.
83 	 */
84 	addr = kasan_reset_tag(addr);
85 
86 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
87 	if (is_kfence_address(addr))
88 		return;
89 
90 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91 		return;
92 	if (WARN_ON(size & KASAN_GRANULE_MASK))
93 		return;
94 
95 	shadow_start = kasan_mem_to_shadow(addr);
96 	shadow_end = kasan_mem_to_shadow(addr + size);
97 
98 	__memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101 
102 #ifdef CONFIG_KASAN_GENERIC
103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105 	if (!kasan_arch_is_ready())
106 		return;
107 
108 	if (size & KASAN_GRANULE_MASK) {
109 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110 		*shadow = size & KASAN_GRANULE_MASK;
111 	}
112 }
113 #endif
114 
115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117 	u8 tag = get_tag(addr);
118 
119 	/*
120 	 * Perform shadow offset calculation based on untagged address, as
121 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122 	 * addresses to this function.
123 	 */
124 	addr = kasan_reset_tag(addr);
125 
126 	/*
127 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128 	 * that calls to ksize(), where size is not a multiple of machine-word
129 	 * size, would otherwise poison the invalid portion of the word.
130 	 */
131 	if (is_kfence_address(addr))
132 		return;
133 
134 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135 		return;
136 
137 	/* Unpoison all granules that cover the object. */
138 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139 
140 	/* Partially poison the last granule for the generic mode. */
141 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142 		kasan_poison_last_granule(addr, size);
143 }
144 
145 #ifdef CONFIG_MEMORY_HOTPLUG
146 static bool shadow_mapped(unsigned long addr)
147 {
148 	pgd_t *pgd = pgd_offset_k(addr);
149 	p4d_t *p4d;
150 	pud_t *pud;
151 	pmd_t *pmd;
152 	pte_t *pte;
153 
154 	if (pgd_none(*pgd))
155 		return false;
156 	p4d = p4d_offset(pgd, addr);
157 	if (p4d_none(*p4d))
158 		return false;
159 	pud = pud_offset(p4d, addr);
160 	if (pud_none(*pud))
161 		return false;
162 
163 	/*
164 	 * We can't use pud_large() or pud_huge(), the first one is
165 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166 	 * pud_bad(), if pud is bad then it's bad because it's huge.
167 	 */
168 	if (pud_bad(*pud))
169 		return true;
170 	pmd = pmd_offset(pud, addr);
171 	if (pmd_none(*pmd))
172 		return false;
173 
174 	if (pmd_bad(*pmd))
175 		return true;
176 	pte = pte_offset_kernel(pmd, addr);
177 	return !pte_none(*pte);
178 }
179 
180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181 			unsigned long action, void *data)
182 {
183 	struct memory_notify *mem_data = data;
184 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185 	unsigned long shadow_end, shadow_size;
186 
187 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
191 	shadow_end = shadow_start + shadow_size;
192 
193 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195 		return NOTIFY_BAD;
196 
197 	switch (action) {
198 	case MEM_GOING_ONLINE: {
199 		void *ret;
200 
201 		/*
202 		 * If shadow is mapped already than it must have been mapped
203 		 * during the boot. This could happen if we onlining previously
204 		 * offlined memory.
205 		 */
206 		if (shadow_mapped(shadow_start))
207 			return NOTIFY_OK;
208 
209 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210 					shadow_end, GFP_KERNEL,
211 					PAGE_KERNEL, VM_NO_GUARD,
212 					pfn_to_nid(mem_data->start_pfn),
213 					__builtin_return_address(0));
214 		if (!ret)
215 			return NOTIFY_BAD;
216 
217 		kmemleak_ignore(ret);
218 		return NOTIFY_OK;
219 	}
220 	case MEM_CANCEL_ONLINE:
221 	case MEM_OFFLINE: {
222 		struct vm_struct *vm;
223 
224 		/*
225 		 * shadow_start was either mapped during boot by kasan_init()
226 		 * or during memory online by __vmalloc_node_range().
227 		 * In the latter case we can use vfree() to free shadow.
228 		 * Non-NULL result of the find_vm_area() will tell us if
229 		 * that was the second case.
230 		 *
231 		 * Currently it's not possible to free shadow mapped
232 		 * during boot by kasan_init(). It's because the code
233 		 * to do that hasn't been written yet. So we'll just
234 		 * leak the memory.
235 		 */
236 		vm = find_vm_area((void *)shadow_start);
237 		if (vm)
238 			vfree((void *)shadow_start);
239 	}
240 	}
241 
242 	return NOTIFY_OK;
243 }
244 
245 static int __init kasan_memhotplug_init(void)
246 {
247 	hotplug_memory_notifier(kasan_mem_notifier, 0);
248 
249 	return 0;
250 }
251 
252 core_initcall(kasan_memhotplug_init);
253 #endif
254 
255 #ifdef CONFIG_KASAN_VMALLOC
256 
257 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
258 						       unsigned long size)
259 {
260 }
261 
262 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
263 				      void *unused)
264 {
265 	unsigned long page;
266 	pte_t pte;
267 
268 	if (likely(!pte_none(*ptep)))
269 		return 0;
270 
271 	page = __get_free_page(GFP_KERNEL);
272 	if (!page)
273 		return -ENOMEM;
274 
275 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
276 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
277 
278 	spin_lock(&init_mm.page_table_lock);
279 	if (likely(pte_none(*ptep))) {
280 		set_pte_at(&init_mm, addr, ptep, pte);
281 		page = 0;
282 	}
283 	spin_unlock(&init_mm.page_table_lock);
284 	if (page)
285 		free_page(page);
286 	return 0;
287 }
288 
289 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
290 {
291 	unsigned long shadow_start, shadow_end;
292 	int ret;
293 
294 	if (!is_vmalloc_or_module_addr((void *)addr))
295 		return 0;
296 
297 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
298 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
299 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
300 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
301 
302 	ret = apply_to_page_range(&init_mm, shadow_start,
303 				  shadow_end - shadow_start,
304 				  kasan_populate_vmalloc_pte, NULL);
305 	if (ret)
306 		return ret;
307 
308 	flush_cache_vmap(shadow_start, shadow_end);
309 
310 	/*
311 	 * We need to be careful about inter-cpu effects here. Consider:
312 	 *
313 	 *   CPU#0				  CPU#1
314 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
315 	 *					p[99] = 1;
316 	 *
317 	 * With compiler instrumentation, that ends up looking like this:
318 	 *
319 	 *   CPU#0				  CPU#1
320 	 * // vmalloc() allocates memory
321 	 * // let a = area->addr
322 	 * // we reach kasan_populate_vmalloc
323 	 * // and call kasan_unpoison:
324 	 * STORE shadow(a), unpoison_val
325 	 * ...
326 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
327 	 * // rest of vmalloc process		<data dependency>
328 	 * STORE p, a				LOAD shadow(x+99)
329 	 *
330 	 * If there is no barrier between the end of unpoisoning the shadow
331 	 * and the store of the result to p, the stores could be committed
332 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
333 	 * poison in the shadow.
334 	 *
335 	 * We need some sort of barrier between the stores.
336 	 *
337 	 * In the vmalloc() case, this is provided by a smp_wmb() in
338 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
339 	 * get_vm_area() and friends, the caller gets shadow allocated but
340 	 * doesn't have any pages mapped into the virtual address space that
341 	 * has been reserved. Mapping those pages in will involve taking and
342 	 * releasing a page-table lock, which will provide the barrier.
343 	 */
344 
345 	return 0;
346 }
347 
348 /*
349  * Poison the shadow for a vmalloc region. Called as part of the
350  * freeing process at the time the region is freed.
351  */
352 void kasan_poison_vmalloc(const void *start, unsigned long size)
353 {
354 	if (!is_vmalloc_or_module_addr(start))
355 		return;
356 
357 	size = round_up(size, KASAN_GRANULE_SIZE);
358 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
359 }
360 
361 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
362 {
363 	if (!is_vmalloc_or_module_addr(start))
364 		return;
365 
366 	kasan_unpoison(start, size, false);
367 }
368 
369 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
370 					void *unused)
371 {
372 	unsigned long page;
373 
374 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
375 
376 	spin_lock(&init_mm.page_table_lock);
377 
378 	if (likely(!pte_none(*ptep))) {
379 		pte_clear(&init_mm, addr, ptep);
380 		free_page(page);
381 	}
382 	spin_unlock(&init_mm.page_table_lock);
383 
384 	return 0;
385 }
386 
387 /*
388  * Release the backing for the vmalloc region [start, end), which
389  * lies within the free region [free_region_start, free_region_end).
390  *
391  * This can be run lazily, long after the region was freed. It runs
392  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
393  * infrastructure.
394  *
395  * How does this work?
396  * -------------------
397  *
398  * We have a region that is page aligned, labeled as A.
399  * That might not map onto the shadow in a way that is page-aligned:
400  *
401  *                    start                     end
402  *                    v                         v
403  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
404  *  -------- -------- --------          -------- --------
405  *      |        |       |                 |        |
406  *      |        |       |         /-------/        |
407  *      \-------\|/------/         |/---------------/
408  *              |||                ||
409  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
410  *                 (1)      (2)      (3)
411  *
412  * First we align the start upwards and the end downwards, so that the
413  * shadow of the region aligns with shadow page boundaries. In the
414  * example, this gives us the shadow page (2). This is the shadow entirely
415  * covered by this allocation.
416  *
417  * Then we have the tricky bits. We want to know if we can free the
418  * partially covered shadow pages - (1) and (3) in the example. For this,
419  * we are given the start and end of the free region that contains this
420  * allocation. Extending our previous example, we could have:
421  *
422  *  free_region_start                                    free_region_end
423  *  |                 start                     end      |
424  *  v                 v                         v        v
425  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
426  *  -------- -------- --------          -------- --------
427  *      |        |       |                 |        |
428  *      |        |       |         /-------/        |
429  *      \-------\|/------/         |/---------------/
430  *              |||                ||
431  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
432  *                 (1)      (2)      (3)
433  *
434  * Once again, we align the start of the free region up, and the end of
435  * the free region down so that the shadow is page aligned. So we can free
436  * page (1) - we know no allocation currently uses anything in that page,
437  * because all of it is in the vmalloc free region. But we cannot free
438  * page (3), because we can't be sure that the rest of it is unused.
439  *
440  * We only consider pages that contain part of the original region for
441  * freeing: we don't try to free other pages from the free region or we'd
442  * end up trying to free huge chunks of virtual address space.
443  *
444  * Concurrency
445  * -----------
446  *
447  * How do we know that we're not freeing a page that is simultaneously
448  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
449  *
450  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
451  * at the same time. While we run under free_vmap_area_lock, the population
452  * code does not.
453  *
454  * free_vmap_area_lock instead operates to ensure that the larger range
455  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
456  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
457  * no space identified as free will become used while we are running. This
458  * means that so long as we are careful with alignment and only free shadow
459  * pages entirely covered by the free region, we will not run in to any
460  * trouble - any simultaneous allocations will be for disjoint regions.
461  */
462 void kasan_release_vmalloc(unsigned long start, unsigned long end,
463 			   unsigned long free_region_start,
464 			   unsigned long free_region_end)
465 {
466 	void *shadow_start, *shadow_end;
467 	unsigned long region_start, region_end;
468 	unsigned long size;
469 
470 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
471 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
472 
473 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
474 
475 	if (start != region_start &&
476 	    free_region_start < region_start)
477 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
478 
479 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
480 
481 	if (end != region_end &&
482 	    free_region_end > region_end)
483 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
484 
485 	shadow_start = kasan_mem_to_shadow((void *)region_start);
486 	shadow_end = kasan_mem_to_shadow((void *)region_end);
487 
488 	if (shadow_end > shadow_start) {
489 		size = shadow_end - shadow_start;
490 		apply_to_existing_page_range(&init_mm,
491 					     (unsigned long)shadow_start,
492 					     size, kasan_depopulate_vmalloc_pte,
493 					     NULL);
494 		flush_tlb_kernel_range((unsigned long)shadow_start,
495 				       (unsigned long)shadow_end);
496 	}
497 }
498 
499 #else /* CONFIG_KASAN_VMALLOC */
500 
501 int kasan_module_alloc(void *addr, size_t size)
502 {
503 	void *ret;
504 	size_t scaled_size;
505 	size_t shadow_size;
506 	unsigned long shadow_start;
507 
508 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
509 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
510 				KASAN_SHADOW_SCALE_SHIFT;
511 	shadow_size = round_up(scaled_size, PAGE_SIZE);
512 
513 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
514 		return -EINVAL;
515 
516 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
517 			shadow_start + shadow_size,
518 			GFP_KERNEL,
519 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
520 			__builtin_return_address(0));
521 
522 	if (ret) {
523 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
524 		find_vm_area(addr)->flags |= VM_KASAN;
525 		kmemleak_ignore(ret);
526 		return 0;
527 	}
528 
529 	return -ENOMEM;
530 }
531 
532 void kasan_free_shadow(const struct vm_struct *vm)
533 {
534 	if (vm->flags & VM_KASAN)
535 		vfree(kasan_mem_to_shadow(vm->addr));
536 }
537 
538 #endif
539