xref: /openbmc/linux/mm/kasan/shadow.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 		return NULL;
46 
47 	return __memset(addr, c, len);
48 }
49 
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 		return NULL;
57 
58 	return __memmove(dest, src, len);
59 }
60 #endif
61 
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 		return NULL;
68 
69 	return __memcpy(dest, src, len);
70 }
71 
72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 	void *shadow_start, *shadow_end;
75 
76 	/*
77 	 * Perform shadow offset calculation based on untagged address, as
78 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
79 	 * addresses to this function.
80 	 */
81 	addr = kasan_reset_tag(addr);
82 
83 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
84 	if (is_kfence_address(addr))
85 		return;
86 
87 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
88 		return;
89 	if (WARN_ON(size & KASAN_GRANULE_MASK))
90 		return;
91 
92 	shadow_start = kasan_mem_to_shadow(addr);
93 	shadow_end = kasan_mem_to_shadow(addr + size);
94 
95 	__memset(shadow_start, value, shadow_end - shadow_start);
96 }
97 EXPORT_SYMBOL(kasan_poison);
98 
99 #ifdef CONFIG_KASAN_GENERIC
100 void kasan_poison_last_granule(const void *addr, size_t size)
101 {
102 	if (size & KASAN_GRANULE_MASK) {
103 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
104 		*shadow = size & KASAN_GRANULE_MASK;
105 	}
106 }
107 #endif
108 
109 void kasan_unpoison(const void *addr, size_t size, bool init)
110 {
111 	u8 tag = get_tag(addr);
112 
113 	/*
114 	 * Perform shadow offset calculation based on untagged address, as
115 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
116 	 * addresses to this function.
117 	 */
118 	addr = kasan_reset_tag(addr);
119 
120 	/*
121 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
122 	 * that calls to ksize(), where size is not a multiple of machine-word
123 	 * size, would otherwise poison the invalid portion of the word.
124 	 */
125 	if (is_kfence_address(addr))
126 		return;
127 
128 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
129 		return;
130 
131 	/* Unpoison all granules that cover the object. */
132 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
133 
134 	/* Partially poison the last granule for the generic mode. */
135 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
136 		kasan_poison_last_granule(addr, size);
137 }
138 
139 #ifdef CONFIG_MEMORY_HOTPLUG
140 static bool shadow_mapped(unsigned long addr)
141 {
142 	pgd_t *pgd = pgd_offset_k(addr);
143 	p4d_t *p4d;
144 	pud_t *pud;
145 	pmd_t *pmd;
146 	pte_t *pte;
147 
148 	if (pgd_none(*pgd))
149 		return false;
150 	p4d = p4d_offset(pgd, addr);
151 	if (p4d_none(*p4d))
152 		return false;
153 	pud = pud_offset(p4d, addr);
154 	if (pud_none(*pud))
155 		return false;
156 
157 	/*
158 	 * We can't use pud_large() or pud_huge(), the first one is
159 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
160 	 * pud_bad(), if pud is bad then it's bad because it's huge.
161 	 */
162 	if (pud_bad(*pud))
163 		return true;
164 	pmd = pmd_offset(pud, addr);
165 	if (pmd_none(*pmd))
166 		return false;
167 
168 	if (pmd_bad(*pmd))
169 		return true;
170 	pte = pte_offset_kernel(pmd, addr);
171 	return !pte_none(*pte);
172 }
173 
174 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
175 			unsigned long action, void *data)
176 {
177 	struct memory_notify *mem_data = data;
178 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
179 	unsigned long shadow_end, shadow_size;
180 
181 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
182 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
183 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
184 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
185 	shadow_end = shadow_start + shadow_size;
186 
187 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
188 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
189 		return NOTIFY_BAD;
190 
191 	switch (action) {
192 	case MEM_GOING_ONLINE: {
193 		void *ret;
194 
195 		/*
196 		 * If shadow is mapped already than it must have been mapped
197 		 * during the boot. This could happen if we onlining previously
198 		 * offlined memory.
199 		 */
200 		if (shadow_mapped(shadow_start))
201 			return NOTIFY_OK;
202 
203 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
204 					shadow_end, GFP_KERNEL,
205 					PAGE_KERNEL, VM_NO_GUARD,
206 					pfn_to_nid(mem_data->start_pfn),
207 					__builtin_return_address(0));
208 		if (!ret)
209 			return NOTIFY_BAD;
210 
211 		kmemleak_ignore(ret);
212 		return NOTIFY_OK;
213 	}
214 	case MEM_CANCEL_ONLINE:
215 	case MEM_OFFLINE: {
216 		struct vm_struct *vm;
217 
218 		/*
219 		 * shadow_start was either mapped during boot by kasan_init()
220 		 * or during memory online by __vmalloc_node_range().
221 		 * In the latter case we can use vfree() to free shadow.
222 		 * Non-NULL result of the find_vm_area() will tell us if
223 		 * that was the second case.
224 		 *
225 		 * Currently it's not possible to free shadow mapped
226 		 * during boot by kasan_init(). It's because the code
227 		 * to do that hasn't been written yet. So we'll just
228 		 * leak the memory.
229 		 */
230 		vm = find_vm_area((void *)shadow_start);
231 		if (vm)
232 			vfree((void *)shadow_start);
233 	}
234 	}
235 
236 	return NOTIFY_OK;
237 }
238 
239 static int __init kasan_memhotplug_init(void)
240 {
241 	hotplug_memory_notifier(kasan_mem_notifier, 0);
242 
243 	return 0;
244 }
245 
246 core_initcall(kasan_memhotplug_init);
247 #endif
248 
249 #ifdef CONFIG_KASAN_VMALLOC
250 
251 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
252 				      void *unused)
253 {
254 	unsigned long page;
255 	pte_t pte;
256 
257 	if (likely(!pte_none(*ptep)))
258 		return 0;
259 
260 	page = __get_free_page(GFP_KERNEL);
261 	if (!page)
262 		return -ENOMEM;
263 
264 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
265 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
266 
267 	spin_lock(&init_mm.page_table_lock);
268 	if (likely(pte_none(*ptep))) {
269 		set_pte_at(&init_mm, addr, ptep, pte);
270 		page = 0;
271 	}
272 	spin_unlock(&init_mm.page_table_lock);
273 	if (page)
274 		free_page(page);
275 	return 0;
276 }
277 
278 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
279 {
280 	unsigned long shadow_start, shadow_end;
281 	int ret;
282 
283 	if (!is_vmalloc_or_module_addr((void *)addr))
284 		return 0;
285 
286 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
287 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
288 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
289 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
290 
291 	ret = apply_to_page_range(&init_mm, shadow_start,
292 				  shadow_end - shadow_start,
293 				  kasan_populate_vmalloc_pte, NULL);
294 	if (ret)
295 		return ret;
296 
297 	flush_cache_vmap(shadow_start, shadow_end);
298 
299 	/*
300 	 * We need to be careful about inter-cpu effects here. Consider:
301 	 *
302 	 *   CPU#0				  CPU#1
303 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
304 	 *					p[99] = 1;
305 	 *
306 	 * With compiler instrumentation, that ends up looking like this:
307 	 *
308 	 *   CPU#0				  CPU#1
309 	 * // vmalloc() allocates memory
310 	 * // let a = area->addr
311 	 * // we reach kasan_populate_vmalloc
312 	 * // and call kasan_unpoison:
313 	 * STORE shadow(a), unpoison_val
314 	 * ...
315 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
316 	 * // rest of vmalloc process		<data dependency>
317 	 * STORE p, a				LOAD shadow(x+99)
318 	 *
319 	 * If there is no barrier between the end of unpoisoning the shadow
320 	 * and the store of the result to p, the stores could be committed
321 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
322 	 * poison in the shadow.
323 	 *
324 	 * We need some sort of barrier between the stores.
325 	 *
326 	 * In the vmalloc() case, this is provided by a smp_wmb() in
327 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
328 	 * get_vm_area() and friends, the caller gets shadow allocated but
329 	 * doesn't have any pages mapped into the virtual address space that
330 	 * has been reserved. Mapping those pages in will involve taking and
331 	 * releasing a page-table lock, which will provide the barrier.
332 	 */
333 
334 	return 0;
335 }
336 
337 /*
338  * Poison the shadow for a vmalloc region. Called as part of the
339  * freeing process at the time the region is freed.
340  */
341 void kasan_poison_vmalloc(const void *start, unsigned long size)
342 {
343 	if (!is_vmalloc_or_module_addr(start))
344 		return;
345 
346 	size = round_up(size, KASAN_GRANULE_SIZE);
347 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
348 }
349 
350 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
351 {
352 	if (!is_vmalloc_or_module_addr(start))
353 		return;
354 
355 	kasan_unpoison(start, size, false);
356 }
357 
358 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
359 					void *unused)
360 {
361 	unsigned long page;
362 
363 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
364 
365 	spin_lock(&init_mm.page_table_lock);
366 
367 	if (likely(!pte_none(*ptep))) {
368 		pte_clear(&init_mm, addr, ptep);
369 		free_page(page);
370 	}
371 	spin_unlock(&init_mm.page_table_lock);
372 
373 	return 0;
374 }
375 
376 /*
377  * Release the backing for the vmalloc region [start, end), which
378  * lies within the free region [free_region_start, free_region_end).
379  *
380  * This can be run lazily, long after the region was freed. It runs
381  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
382  * infrastructure.
383  *
384  * How does this work?
385  * -------------------
386  *
387  * We have a region that is page aligned, labeled as A.
388  * That might not map onto the shadow in a way that is page-aligned:
389  *
390  *                    start                     end
391  *                    v                         v
392  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
393  *  -------- -------- --------          -------- --------
394  *      |        |       |                 |        |
395  *      |        |       |         /-------/        |
396  *      \-------\|/------/         |/---------------/
397  *              |||                ||
398  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
399  *                 (1)      (2)      (3)
400  *
401  * First we align the start upwards and the end downwards, so that the
402  * shadow of the region aligns with shadow page boundaries. In the
403  * example, this gives us the shadow page (2). This is the shadow entirely
404  * covered by this allocation.
405  *
406  * Then we have the tricky bits. We want to know if we can free the
407  * partially covered shadow pages - (1) and (3) in the example. For this,
408  * we are given the start and end of the free region that contains this
409  * allocation. Extending our previous example, we could have:
410  *
411  *  free_region_start                                    free_region_end
412  *  |                 start                     end      |
413  *  v                 v                         v        v
414  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
415  *  -------- -------- --------          -------- --------
416  *      |        |       |                 |        |
417  *      |        |       |         /-------/        |
418  *      \-------\|/------/         |/---------------/
419  *              |||                ||
420  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
421  *                 (1)      (2)      (3)
422  *
423  * Once again, we align the start of the free region up, and the end of
424  * the free region down so that the shadow is page aligned. So we can free
425  * page (1) - we know no allocation currently uses anything in that page,
426  * because all of it is in the vmalloc free region. But we cannot free
427  * page (3), because we can't be sure that the rest of it is unused.
428  *
429  * We only consider pages that contain part of the original region for
430  * freeing: we don't try to free other pages from the free region or we'd
431  * end up trying to free huge chunks of virtual address space.
432  *
433  * Concurrency
434  * -----------
435  *
436  * How do we know that we're not freeing a page that is simultaneously
437  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
438  *
439  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
440  * at the same time. While we run under free_vmap_area_lock, the population
441  * code does not.
442  *
443  * free_vmap_area_lock instead operates to ensure that the larger range
444  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
445  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
446  * no space identified as free will become used while we are running. This
447  * means that so long as we are careful with alignment and only free shadow
448  * pages entirely covered by the free region, we will not run in to any
449  * trouble - any simultaneous allocations will be for disjoint regions.
450  */
451 void kasan_release_vmalloc(unsigned long start, unsigned long end,
452 			   unsigned long free_region_start,
453 			   unsigned long free_region_end)
454 {
455 	void *shadow_start, *shadow_end;
456 	unsigned long region_start, region_end;
457 	unsigned long size;
458 
459 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
460 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
461 
462 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
463 
464 	if (start != region_start &&
465 	    free_region_start < region_start)
466 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
467 
468 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
469 
470 	if (end != region_end &&
471 	    free_region_end > region_end)
472 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
473 
474 	shadow_start = kasan_mem_to_shadow((void *)region_start);
475 	shadow_end = kasan_mem_to_shadow((void *)region_end);
476 
477 	if (shadow_end > shadow_start) {
478 		size = shadow_end - shadow_start;
479 		apply_to_existing_page_range(&init_mm,
480 					     (unsigned long)shadow_start,
481 					     size, kasan_depopulate_vmalloc_pte,
482 					     NULL);
483 		flush_tlb_kernel_range((unsigned long)shadow_start,
484 				       (unsigned long)shadow_end);
485 	}
486 }
487 
488 #else /* CONFIG_KASAN_VMALLOC */
489 
490 int kasan_module_alloc(void *addr, size_t size)
491 {
492 	void *ret;
493 	size_t scaled_size;
494 	size_t shadow_size;
495 	unsigned long shadow_start;
496 
497 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
498 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
499 				KASAN_SHADOW_SCALE_SHIFT;
500 	shadow_size = round_up(scaled_size, PAGE_SIZE);
501 
502 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
503 		return -EINVAL;
504 
505 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
506 			shadow_start + shadow_size,
507 			GFP_KERNEL,
508 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
509 			__builtin_return_address(0));
510 
511 	if (ret) {
512 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
513 		find_vm_area(addr)->flags |= VM_KASAN;
514 		kmemleak_ignore(ret);
515 		return 0;
516 	}
517 
518 	return -ENOMEM;
519 }
520 
521 void kasan_free_shadow(const struct vm_struct *vm)
522 {
523 	if (vm->flags & VM_KASAN)
524 		vfree(kasan_mem_to_shadow(vm->addr));
525 }
526 
527 #endif
528