xref: /openbmc/linux/mm/kasan/shadow.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 		return NULL;
46 
47 	return __memset(addr, c, len);
48 }
49 
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 		return NULL;
57 
58 	return __memmove(dest, src, len);
59 }
60 #endif
61 
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 		return NULL;
68 
69 	return __memcpy(dest, src, len);
70 }
71 
72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 	void *shadow_start, *shadow_end;
75 
76 	if (!kasan_arch_is_ready())
77 		return;
78 
79 	/*
80 	 * Perform shadow offset calculation based on untagged address, as
81 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 	 * addresses to this function.
83 	 */
84 	addr = kasan_reset_tag(addr);
85 
86 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
87 	if (is_kfence_address(addr))
88 		return;
89 
90 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91 		return;
92 	if (WARN_ON(size & KASAN_GRANULE_MASK))
93 		return;
94 
95 	shadow_start = kasan_mem_to_shadow(addr);
96 	shadow_end = kasan_mem_to_shadow(addr + size);
97 
98 	__memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101 
102 #ifdef CONFIG_KASAN_GENERIC
103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105 	if (!kasan_arch_is_ready())
106 		return;
107 
108 	if (size & KASAN_GRANULE_MASK) {
109 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110 		*shadow = size & KASAN_GRANULE_MASK;
111 	}
112 }
113 #endif
114 
115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117 	u8 tag = get_tag(addr);
118 
119 	/*
120 	 * Perform shadow offset calculation based on untagged address, as
121 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122 	 * addresses to this function.
123 	 */
124 	addr = kasan_reset_tag(addr);
125 
126 	/*
127 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128 	 * that calls to ksize(), where size is not a multiple of machine-word
129 	 * size, would otherwise poison the invalid portion of the word.
130 	 */
131 	if (is_kfence_address(addr))
132 		return;
133 
134 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135 		return;
136 
137 	/* Unpoison all granules that cover the object. */
138 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139 
140 	/* Partially poison the last granule for the generic mode. */
141 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142 		kasan_poison_last_granule(addr, size);
143 }
144 
145 #ifdef CONFIG_MEMORY_HOTPLUG
146 static bool shadow_mapped(unsigned long addr)
147 {
148 	pgd_t *pgd = pgd_offset_k(addr);
149 	p4d_t *p4d;
150 	pud_t *pud;
151 	pmd_t *pmd;
152 	pte_t *pte;
153 
154 	if (pgd_none(*pgd))
155 		return false;
156 	p4d = p4d_offset(pgd, addr);
157 	if (p4d_none(*p4d))
158 		return false;
159 	pud = pud_offset(p4d, addr);
160 	if (pud_none(*pud))
161 		return false;
162 
163 	/*
164 	 * We can't use pud_large() or pud_huge(), the first one is
165 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166 	 * pud_bad(), if pud is bad then it's bad because it's huge.
167 	 */
168 	if (pud_bad(*pud))
169 		return true;
170 	pmd = pmd_offset(pud, addr);
171 	if (pmd_none(*pmd))
172 		return false;
173 
174 	if (pmd_bad(*pmd))
175 		return true;
176 	pte = pte_offset_kernel(pmd, addr);
177 	return !pte_none(*pte);
178 }
179 
180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181 			unsigned long action, void *data)
182 {
183 	struct memory_notify *mem_data = data;
184 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185 	unsigned long shadow_end, shadow_size;
186 
187 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
191 	shadow_end = shadow_start + shadow_size;
192 
193 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195 		return NOTIFY_BAD;
196 
197 	switch (action) {
198 	case MEM_GOING_ONLINE: {
199 		void *ret;
200 
201 		/*
202 		 * If shadow is mapped already than it must have been mapped
203 		 * during the boot. This could happen if we onlining previously
204 		 * offlined memory.
205 		 */
206 		if (shadow_mapped(shadow_start))
207 			return NOTIFY_OK;
208 
209 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210 					shadow_end, GFP_KERNEL,
211 					PAGE_KERNEL, VM_NO_GUARD,
212 					pfn_to_nid(mem_data->start_pfn),
213 					__builtin_return_address(0));
214 		if (!ret)
215 			return NOTIFY_BAD;
216 
217 		kmemleak_ignore(ret);
218 		return NOTIFY_OK;
219 	}
220 	case MEM_CANCEL_ONLINE:
221 	case MEM_OFFLINE: {
222 		struct vm_struct *vm;
223 
224 		/*
225 		 * shadow_start was either mapped during boot by kasan_init()
226 		 * or during memory online by __vmalloc_node_range().
227 		 * In the latter case we can use vfree() to free shadow.
228 		 * Non-NULL result of the find_vm_area() will tell us if
229 		 * that was the second case.
230 		 *
231 		 * Currently it's not possible to free shadow mapped
232 		 * during boot by kasan_init(). It's because the code
233 		 * to do that hasn't been written yet. So we'll just
234 		 * leak the memory.
235 		 */
236 		vm = find_vm_area((void *)shadow_start);
237 		if (vm)
238 			vfree((void *)shadow_start);
239 	}
240 	}
241 
242 	return NOTIFY_OK;
243 }
244 
245 static int __init kasan_memhotplug_init(void)
246 {
247 	hotplug_memory_notifier(kasan_mem_notifier, 0);
248 
249 	return 0;
250 }
251 
252 core_initcall(kasan_memhotplug_init);
253 #endif
254 
255 #ifdef CONFIG_KASAN_VMALLOC
256 
257 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
258 				      void *unused)
259 {
260 	unsigned long page;
261 	pte_t pte;
262 
263 	if (likely(!pte_none(*ptep)))
264 		return 0;
265 
266 	page = __get_free_page(GFP_KERNEL);
267 	if (!page)
268 		return -ENOMEM;
269 
270 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
271 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
272 
273 	spin_lock(&init_mm.page_table_lock);
274 	if (likely(pte_none(*ptep))) {
275 		set_pte_at(&init_mm, addr, ptep, pte);
276 		page = 0;
277 	}
278 	spin_unlock(&init_mm.page_table_lock);
279 	if (page)
280 		free_page(page);
281 	return 0;
282 }
283 
284 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
285 {
286 	unsigned long shadow_start, shadow_end;
287 	int ret;
288 
289 	if (!is_vmalloc_or_module_addr((void *)addr))
290 		return 0;
291 
292 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
293 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
294 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
295 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
296 
297 	ret = apply_to_page_range(&init_mm, shadow_start,
298 				  shadow_end - shadow_start,
299 				  kasan_populate_vmalloc_pte, NULL);
300 	if (ret)
301 		return ret;
302 
303 	flush_cache_vmap(shadow_start, shadow_end);
304 
305 	/*
306 	 * We need to be careful about inter-cpu effects here. Consider:
307 	 *
308 	 *   CPU#0				  CPU#1
309 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
310 	 *					p[99] = 1;
311 	 *
312 	 * With compiler instrumentation, that ends up looking like this:
313 	 *
314 	 *   CPU#0				  CPU#1
315 	 * // vmalloc() allocates memory
316 	 * // let a = area->addr
317 	 * // we reach kasan_populate_vmalloc
318 	 * // and call kasan_unpoison:
319 	 * STORE shadow(a), unpoison_val
320 	 * ...
321 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
322 	 * // rest of vmalloc process		<data dependency>
323 	 * STORE p, a				LOAD shadow(x+99)
324 	 *
325 	 * If there is no barrier between the end of unpoisoning the shadow
326 	 * and the store of the result to p, the stores could be committed
327 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
328 	 * poison in the shadow.
329 	 *
330 	 * We need some sort of barrier between the stores.
331 	 *
332 	 * In the vmalloc() case, this is provided by a smp_wmb() in
333 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
334 	 * get_vm_area() and friends, the caller gets shadow allocated but
335 	 * doesn't have any pages mapped into the virtual address space that
336 	 * has been reserved. Mapping those pages in will involve taking and
337 	 * releasing a page-table lock, which will provide the barrier.
338 	 */
339 
340 	return 0;
341 }
342 
343 /*
344  * Poison the shadow for a vmalloc region. Called as part of the
345  * freeing process at the time the region is freed.
346  */
347 void kasan_poison_vmalloc(const void *start, unsigned long size)
348 {
349 	if (!is_vmalloc_or_module_addr(start))
350 		return;
351 
352 	size = round_up(size, KASAN_GRANULE_SIZE);
353 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
354 }
355 
356 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
357 {
358 	if (!is_vmalloc_or_module_addr(start))
359 		return;
360 
361 	kasan_unpoison(start, size, false);
362 }
363 
364 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
365 					void *unused)
366 {
367 	unsigned long page;
368 
369 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
370 
371 	spin_lock(&init_mm.page_table_lock);
372 
373 	if (likely(!pte_none(*ptep))) {
374 		pte_clear(&init_mm, addr, ptep);
375 		free_page(page);
376 	}
377 	spin_unlock(&init_mm.page_table_lock);
378 
379 	return 0;
380 }
381 
382 /*
383  * Release the backing for the vmalloc region [start, end), which
384  * lies within the free region [free_region_start, free_region_end).
385  *
386  * This can be run lazily, long after the region was freed. It runs
387  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
388  * infrastructure.
389  *
390  * How does this work?
391  * -------------------
392  *
393  * We have a region that is page aligned, labeled as A.
394  * That might not map onto the shadow in a way that is page-aligned:
395  *
396  *                    start                     end
397  *                    v                         v
398  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
399  *  -------- -------- --------          -------- --------
400  *      |        |       |                 |        |
401  *      |        |       |         /-------/        |
402  *      \-------\|/------/         |/---------------/
403  *              |||                ||
404  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
405  *                 (1)      (2)      (3)
406  *
407  * First we align the start upwards and the end downwards, so that the
408  * shadow of the region aligns with shadow page boundaries. In the
409  * example, this gives us the shadow page (2). This is the shadow entirely
410  * covered by this allocation.
411  *
412  * Then we have the tricky bits. We want to know if we can free the
413  * partially covered shadow pages - (1) and (3) in the example. For this,
414  * we are given the start and end of the free region that contains this
415  * allocation. Extending our previous example, we could have:
416  *
417  *  free_region_start                                    free_region_end
418  *  |                 start                     end      |
419  *  v                 v                         v        v
420  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
421  *  -------- -------- --------          -------- --------
422  *      |        |       |                 |        |
423  *      |        |       |         /-------/        |
424  *      \-------\|/------/         |/---------------/
425  *              |||                ||
426  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
427  *                 (1)      (2)      (3)
428  *
429  * Once again, we align the start of the free region up, and the end of
430  * the free region down so that the shadow is page aligned. So we can free
431  * page (1) - we know no allocation currently uses anything in that page,
432  * because all of it is in the vmalloc free region. But we cannot free
433  * page (3), because we can't be sure that the rest of it is unused.
434  *
435  * We only consider pages that contain part of the original region for
436  * freeing: we don't try to free other pages from the free region or we'd
437  * end up trying to free huge chunks of virtual address space.
438  *
439  * Concurrency
440  * -----------
441  *
442  * How do we know that we're not freeing a page that is simultaneously
443  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
444  *
445  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
446  * at the same time. While we run under free_vmap_area_lock, the population
447  * code does not.
448  *
449  * free_vmap_area_lock instead operates to ensure that the larger range
450  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
451  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
452  * no space identified as free will become used while we are running. This
453  * means that so long as we are careful with alignment and only free shadow
454  * pages entirely covered by the free region, we will not run in to any
455  * trouble - any simultaneous allocations will be for disjoint regions.
456  */
457 void kasan_release_vmalloc(unsigned long start, unsigned long end,
458 			   unsigned long free_region_start,
459 			   unsigned long free_region_end)
460 {
461 	void *shadow_start, *shadow_end;
462 	unsigned long region_start, region_end;
463 	unsigned long size;
464 
465 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
466 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
467 
468 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
469 
470 	if (start != region_start &&
471 	    free_region_start < region_start)
472 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
473 
474 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
475 
476 	if (end != region_end &&
477 	    free_region_end > region_end)
478 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
479 
480 	shadow_start = kasan_mem_to_shadow((void *)region_start);
481 	shadow_end = kasan_mem_to_shadow((void *)region_end);
482 
483 	if (shadow_end > shadow_start) {
484 		size = shadow_end - shadow_start;
485 		apply_to_existing_page_range(&init_mm,
486 					     (unsigned long)shadow_start,
487 					     size, kasan_depopulate_vmalloc_pte,
488 					     NULL);
489 		flush_tlb_kernel_range((unsigned long)shadow_start,
490 				       (unsigned long)shadow_end);
491 	}
492 }
493 
494 #else /* CONFIG_KASAN_VMALLOC */
495 
496 int kasan_module_alloc(void *addr, size_t size)
497 {
498 	void *ret;
499 	size_t scaled_size;
500 	size_t shadow_size;
501 	unsigned long shadow_start;
502 
503 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
504 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
505 				KASAN_SHADOW_SCALE_SHIFT;
506 	shadow_size = round_up(scaled_size, PAGE_SIZE);
507 
508 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
509 		return -EINVAL;
510 
511 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
512 			shadow_start + shadow_size,
513 			GFP_KERNEL,
514 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
515 			__builtin_return_address(0));
516 
517 	if (ret) {
518 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
519 		find_vm_area(addr)->flags |= VM_KASAN;
520 		kmemleak_ignore(ret);
521 		return 0;
522 	}
523 
524 	return -ENOMEM;
525 }
526 
527 void kasan_free_shadow(const struct vm_struct *vm)
528 {
529 	if (vm->flags & VM_KASAN)
530 		vfree(kasan_mem_to_shadow(vm->addr));
531 }
532 
533 #endif
534