1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <kunit/test.h> 13 #include <linux/bitops.h> 14 #include <linux/ftrace.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/lockdep.h> 18 #include <linux/mm.h> 19 #include <linux/printk.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/stackdepot.h> 23 #include <linux/stacktrace.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 #include <linux/kasan.h> 27 #include <linux/module.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/uaccess.h> 30 #include <trace/events/error_report.h> 31 32 #include <asm/sections.h> 33 34 #include "kasan.h" 35 #include "../slab.h" 36 37 static unsigned long kasan_flags; 38 39 #define KASAN_BIT_REPORTED 0 40 #define KASAN_BIT_MULTI_SHOT 1 41 42 enum kasan_arg_fault { 43 KASAN_ARG_FAULT_DEFAULT, 44 KASAN_ARG_FAULT_REPORT, 45 KASAN_ARG_FAULT_PANIC, 46 KASAN_ARG_FAULT_PANIC_ON_WRITE, 47 }; 48 49 static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; 50 51 /* kasan.fault=report/panic */ 52 static int __init early_kasan_fault(char *arg) 53 { 54 if (!arg) 55 return -EINVAL; 56 57 if (!strcmp(arg, "report")) 58 kasan_arg_fault = KASAN_ARG_FAULT_REPORT; 59 else if (!strcmp(arg, "panic")) 60 kasan_arg_fault = KASAN_ARG_FAULT_PANIC; 61 else if (!strcmp(arg, "panic_on_write")) 62 kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE; 63 else 64 return -EINVAL; 65 66 return 0; 67 } 68 early_param("kasan.fault", early_kasan_fault); 69 70 static int __init kasan_set_multi_shot(char *str) 71 { 72 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 73 return 1; 74 } 75 __setup("kasan_multi_shot", kasan_set_multi_shot); 76 77 /* 78 * This function is used to check whether KASAN reports are suppressed for 79 * software KASAN modes via kasan_disable/enable_current() critical sections. 80 * 81 * This is done to avoid: 82 * 1. False-positive reports when accessing slab metadata, 83 * 2. Deadlocking when poisoned memory is accessed by the reporting code. 84 * 85 * Hardware Tag-Based KASAN instead relies on: 86 * For #1: Resetting tags via kasan_reset_tag(). 87 * For #2: Suppression of tag checks via CPU, see report_suppress_start/end(). 88 */ 89 static bool report_suppressed_sw(void) 90 { 91 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 92 if (current->kasan_depth) 93 return true; 94 #endif 95 return false; 96 } 97 98 static void report_suppress_start(void) 99 { 100 #ifdef CONFIG_KASAN_HW_TAGS 101 /* 102 * Disable preemption for the duration of printing a KASAN report, as 103 * hw_suppress_tag_checks_start() disables checks on the current CPU. 104 */ 105 preempt_disable(); 106 hw_suppress_tag_checks_start(); 107 #else 108 kasan_disable_current(); 109 #endif 110 } 111 112 static void report_suppress_stop(void) 113 { 114 #ifdef CONFIG_KASAN_HW_TAGS 115 hw_suppress_tag_checks_stop(); 116 preempt_enable(); 117 #else 118 kasan_enable_current(); 119 #endif 120 } 121 122 /* 123 * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot 124 * is enabled. Note that KASAN tests effectively enable kasan_multi_shot 125 * for their duration. 126 */ 127 static bool report_enabled(void) 128 { 129 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 130 return true; 131 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 132 } 133 134 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST) 135 136 bool kasan_save_enable_multi_shot(void) 137 { 138 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 139 } 140 EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); 141 142 void kasan_restore_multi_shot(bool enabled) 143 { 144 if (!enabled) 145 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 146 } 147 EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); 148 149 #endif 150 151 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 152 153 /* 154 * Whether the KASAN KUnit test suite is currently being executed. 155 * Updated in kasan_test.c. 156 */ 157 static bool kasan_kunit_executing; 158 159 void kasan_kunit_test_suite_start(void) 160 { 161 WRITE_ONCE(kasan_kunit_executing, true); 162 } 163 EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_start); 164 165 void kasan_kunit_test_suite_end(void) 166 { 167 WRITE_ONCE(kasan_kunit_executing, false); 168 } 169 EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_end); 170 171 static bool kasan_kunit_test_suite_executing(void) 172 { 173 return READ_ONCE(kasan_kunit_executing); 174 } 175 176 #else /* CONFIG_KASAN_KUNIT_TEST */ 177 178 static inline bool kasan_kunit_test_suite_executing(void) { return false; } 179 180 #endif /* CONFIG_KASAN_KUNIT_TEST */ 181 182 #if IS_ENABLED(CONFIG_KUNIT) 183 184 static void fail_non_kasan_kunit_test(void) 185 { 186 struct kunit *test; 187 188 if (kasan_kunit_test_suite_executing()) 189 return; 190 191 test = current->kunit_test; 192 if (test) 193 kunit_set_failure(test); 194 } 195 196 #else /* CONFIG_KUNIT */ 197 198 static inline void fail_non_kasan_kunit_test(void) { } 199 200 #endif /* CONFIG_KUNIT */ 201 202 static DEFINE_SPINLOCK(report_lock); 203 204 static void start_report(unsigned long *flags, bool sync) 205 { 206 fail_non_kasan_kunit_test(); 207 /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ 208 disable_trace_on_warning(); 209 /* Do not allow LOCKDEP mangling KASAN reports. */ 210 lockdep_off(); 211 /* Make sure we don't end up in loop. */ 212 report_suppress_start(); 213 spin_lock_irqsave(&report_lock, *flags); 214 pr_err("==================================================================\n"); 215 } 216 217 static void end_report(unsigned long *flags, const void *addr, bool is_write) 218 { 219 if (addr) 220 trace_error_report_end(ERROR_DETECTOR_KASAN, 221 (unsigned long)addr); 222 pr_err("==================================================================\n"); 223 spin_unlock_irqrestore(&report_lock, *flags); 224 if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 225 check_panic_on_warn("KASAN"); 226 switch (kasan_arg_fault) { 227 case KASAN_ARG_FAULT_DEFAULT: 228 case KASAN_ARG_FAULT_REPORT: 229 break; 230 case KASAN_ARG_FAULT_PANIC: 231 panic("kasan.fault=panic set ...\n"); 232 break; 233 case KASAN_ARG_FAULT_PANIC_ON_WRITE: 234 if (is_write) 235 panic("kasan.fault=panic_on_write set ...\n"); 236 break; 237 } 238 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 239 lockdep_on(); 240 report_suppress_stop(); 241 } 242 243 static void print_error_description(struct kasan_report_info *info) 244 { 245 pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip); 246 247 if (info->type != KASAN_REPORT_ACCESS) { 248 pr_err("Free of addr %px by task %s/%d\n", 249 info->access_addr, current->comm, task_pid_nr(current)); 250 return; 251 } 252 253 if (info->access_size) 254 pr_err("%s of size %zu at addr %px by task %s/%d\n", 255 info->is_write ? "Write" : "Read", info->access_size, 256 info->access_addr, current->comm, task_pid_nr(current)); 257 else 258 pr_err("%s at addr %px by task %s/%d\n", 259 info->is_write ? "Write" : "Read", 260 info->access_addr, current->comm, task_pid_nr(current)); 261 } 262 263 static void print_track(struct kasan_track *track, const char *prefix) 264 { 265 pr_err("%s by task %u:\n", prefix, track->pid); 266 if (track->stack) 267 stack_depot_print(track->stack); 268 else 269 pr_err("(stack is not available)\n"); 270 } 271 272 static inline struct page *addr_to_page(const void *addr) 273 { 274 if (virt_addr_valid(addr)) 275 return virt_to_head_page(addr); 276 return NULL; 277 } 278 279 static void describe_object_addr(const void *addr, struct kasan_report_info *info) 280 { 281 unsigned long access_addr = (unsigned long)addr; 282 unsigned long object_addr = (unsigned long)info->object; 283 const char *rel_type, *region_state = ""; 284 int rel_bytes; 285 286 pr_err("The buggy address belongs to the object at %px\n" 287 " which belongs to the cache %s of size %d\n", 288 info->object, info->cache->name, info->cache->object_size); 289 290 if (access_addr < object_addr) { 291 rel_type = "to the left"; 292 rel_bytes = object_addr - access_addr; 293 } else if (access_addr >= object_addr + info->alloc_size) { 294 rel_type = "to the right"; 295 rel_bytes = access_addr - (object_addr + info->alloc_size); 296 } else { 297 rel_type = "inside"; 298 rel_bytes = access_addr - object_addr; 299 } 300 301 /* 302 * Tag-Based modes use the stack ring to infer the bug type, but the 303 * memory region state description is generated based on the metadata. 304 * Thus, defining the region state as below can contradict the metadata. 305 * Fixing this requires further improvements, so only infer the state 306 * for the Generic mode. 307 */ 308 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) { 309 if (strcmp(info->bug_type, "slab-out-of-bounds") == 0) 310 region_state = "allocated "; 311 else if (strcmp(info->bug_type, "slab-use-after-free") == 0) 312 region_state = "freed "; 313 } 314 315 pr_err("The buggy address is located %d bytes %s of\n" 316 " %s%zu-byte region [%px, %px)\n", 317 rel_bytes, rel_type, region_state, info->alloc_size, 318 (void *)object_addr, (void *)(object_addr + info->alloc_size)); 319 } 320 321 static void describe_object_stacks(struct kasan_report_info *info) 322 { 323 if (info->alloc_track.stack) { 324 print_track(&info->alloc_track, "Allocated"); 325 pr_err("\n"); 326 } 327 328 if (info->free_track.stack) { 329 print_track(&info->free_track, "Freed"); 330 pr_err("\n"); 331 } 332 333 kasan_print_aux_stacks(info->cache, info->object); 334 } 335 336 static void describe_object(const void *addr, struct kasan_report_info *info) 337 { 338 if (kasan_stack_collection_enabled()) 339 describe_object_stacks(info); 340 describe_object_addr(addr, info); 341 } 342 343 static inline bool kernel_or_module_addr(const void *addr) 344 { 345 if (is_kernel((unsigned long)addr)) 346 return true; 347 if (is_module_address((unsigned long)addr)) 348 return true; 349 return false; 350 } 351 352 static inline bool init_task_stack_addr(const void *addr) 353 { 354 return addr >= (void *)&init_thread_union.stack && 355 (addr <= (void *)&init_thread_union.stack + 356 sizeof(init_thread_union.stack)); 357 } 358 359 static void print_address_description(void *addr, u8 tag, 360 struct kasan_report_info *info) 361 { 362 struct page *page = addr_to_page(addr); 363 364 dump_stack_lvl(KERN_ERR); 365 pr_err("\n"); 366 367 if (info->cache && info->object) { 368 describe_object(addr, info); 369 pr_err("\n"); 370 } 371 372 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 373 pr_err("The buggy address belongs to the variable:\n"); 374 pr_err(" %pS\n", addr); 375 pr_err("\n"); 376 } 377 378 if (object_is_on_stack(addr)) { 379 /* 380 * Currently, KASAN supports printing frame information only 381 * for accesses to the task's own stack. 382 */ 383 kasan_print_address_stack_frame(addr); 384 pr_err("\n"); 385 } 386 387 if (is_vmalloc_addr(addr)) { 388 struct vm_struct *va = find_vm_area(addr); 389 390 if (va) { 391 pr_err("The buggy address belongs to the virtual mapping at\n" 392 " [%px, %px) created by:\n" 393 " %pS\n", 394 va->addr, va->addr + va->size, va->caller); 395 pr_err("\n"); 396 397 page = vmalloc_to_page(addr); 398 } 399 } 400 401 if (page) { 402 pr_err("The buggy address belongs to the physical page:\n"); 403 dump_page(page, "kasan: bad access detected"); 404 pr_err("\n"); 405 } 406 } 407 408 static bool meta_row_is_guilty(const void *row, const void *addr) 409 { 410 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 411 } 412 413 static int meta_pointer_offset(const void *row, const void *addr) 414 { 415 /* 416 * Memory state around the buggy address: 417 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 418 * ... 419 * 420 * The length of ">ff00ff00ff00ff00: " is 421 * 3 + (BITS_PER_LONG / 8) * 2 chars. 422 * The length of each granule metadata is 2 bytes 423 * plus 1 byte for space. 424 */ 425 return 3 + (BITS_PER_LONG / 8) * 2 + 426 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 427 } 428 429 static void print_memory_metadata(const void *addr) 430 { 431 int i; 432 void *row; 433 434 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 435 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 436 437 pr_err("Memory state around the buggy address:\n"); 438 439 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 440 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 441 char metadata[META_BYTES_PER_ROW]; 442 443 snprintf(buffer, sizeof(buffer), 444 (i == 0) ? ">%px: " : " %px: ", row); 445 446 /* 447 * We should not pass a shadow pointer to generic 448 * function, because generic functions may try to 449 * access kasan mapping for the passed address. 450 */ 451 kasan_metadata_fetch_row(&metadata[0], row); 452 453 print_hex_dump(KERN_ERR, buffer, 454 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 455 metadata, META_BYTES_PER_ROW, 0); 456 457 if (meta_row_is_guilty(row, addr)) 458 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 459 460 row += META_MEM_BYTES_PER_ROW; 461 } 462 } 463 464 static void print_report(struct kasan_report_info *info) 465 { 466 void *addr = kasan_reset_tag((void *)info->access_addr); 467 u8 tag = get_tag((void *)info->access_addr); 468 469 print_error_description(info); 470 if (addr_has_metadata(addr)) 471 kasan_print_tags(tag, info->first_bad_addr); 472 pr_err("\n"); 473 474 if (addr_has_metadata(addr)) { 475 print_address_description(addr, tag, info); 476 print_memory_metadata(info->first_bad_addr); 477 } else { 478 dump_stack_lvl(KERN_ERR); 479 } 480 } 481 482 static void complete_report_info(struct kasan_report_info *info) 483 { 484 void *addr = kasan_reset_tag((void *)info->access_addr); 485 struct slab *slab; 486 487 if (info->type == KASAN_REPORT_ACCESS) 488 info->first_bad_addr = kasan_find_first_bad_addr( 489 (void *)info->access_addr, info->access_size); 490 else 491 info->first_bad_addr = addr; 492 493 slab = kasan_addr_to_slab(addr); 494 if (slab) { 495 info->cache = slab->slab_cache; 496 info->object = nearest_obj(info->cache, slab, addr); 497 498 /* Try to determine allocation size based on the metadata. */ 499 info->alloc_size = kasan_get_alloc_size(info->object, info->cache); 500 /* Fallback to the object size if failed. */ 501 if (!info->alloc_size) 502 info->alloc_size = info->cache->object_size; 503 } else 504 info->cache = info->object = NULL; 505 506 switch (info->type) { 507 case KASAN_REPORT_INVALID_FREE: 508 info->bug_type = "invalid-free"; 509 break; 510 case KASAN_REPORT_DOUBLE_FREE: 511 info->bug_type = "double-free"; 512 break; 513 default: 514 /* bug_type filled in by kasan_complete_mode_report_info. */ 515 break; 516 } 517 518 /* Fill in mode-specific report info fields. */ 519 kasan_complete_mode_report_info(info); 520 } 521 522 void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type) 523 { 524 unsigned long flags; 525 struct kasan_report_info info; 526 527 /* 528 * Do not check report_suppressed_sw(), as an invalid-free cannot be 529 * caused by accessing poisoned memory and thus should not be suppressed 530 * by kasan_disable/enable_current() critical sections. 531 * 532 * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free() 533 * is triggered by explicit tag checks and not by the ones performed by 534 * the CPU. Thus, reporting invalid-free is not suppressed as well. 535 */ 536 if (unlikely(!report_enabled())) 537 return; 538 539 start_report(&flags, true); 540 541 memset(&info, 0, sizeof(info)); 542 info.type = type; 543 info.access_addr = ptr; 544 info.access_size = 0; 545 info.is_write = false; 546 info.ip = ip; 547 548 complete_report_info(&info); 549 550 print_report(&info); 551 552 /* 553 * Invalid free is considered a "write" since the allocator's metadata 554 * updates involves writes. 555 */ 556 end_report(&flags, ptr, true); 557 } 558 559 /* 560 * kasan_report() is the only reporting function that uses 561 * user_access_save/restore(): kasan_report_invalid_free() cannot be called 562 * from a UACCESS region, and kasan_report_async() is not used on x86. 563 */ 564 bool kasan_report(const void *addr, size_t size, bool is_write, 565 unsigned long ip) 566 { 567 bool ret = true; 568 unsigned long ua_flags = user_access_save(); 569 unsigned long irq_flags; 570 struct kasan_report_info info; 571 572 if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) { 573 ret = false; 574 goto out; 575 } 576 577 start_report(&irq_flags, true); 578 579 memset(&info, 0, sizeof(info)); 580 info.type = KASAN_REPORT_ACCESS; 581 info.access_addr = addr; 582 info.access_size = size; 583 info.is_write = is_write; 584 info.ip = ip; 585 586 complete_report_info(&info); 587 588 print_report(&info); 589 590 end_report(&irq_flags, (void *)addr, is_write); 591 592 out: 593 user_access_restore(ua_flags); 594 595 return ret; 596 } 597 598 #ifdef CONFIG_KASAN_HW_TAGS 599 void kasan_report_async(void) 600 { 601 unsigned long flags; 602 603 /* 604 * Do not check report_suppressed_sw(), as 605 * kasan_disable/enable_current() critical sections do not affect 606 * Hardware Tag-Based KASAN. 607 */ 608 if (unlikely(!report_enabled())) 609 return; 610 611 start_report(&flags, false); 612 pr_err("BUG: KASAN: invalid-access\n"); 613 pr_err("Asynchronous fault: no details available\n"); 614 pr_err("\n"); 615 dump_stack_lvl(KERN_ERR); 616 /* 617 * Conservatively set is_write=true, because no details are available. 618 * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic. 619 */ 620 end_report(&flags, NULL, true); 621 } 622 #endif /* CONFIG_KASAN_HW_TAGS */ 623 624 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 625 /* 626 * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high 627 * canonical half of the address space) cause out-of-bounds shadow memory reads 628 * before the actual access. For addresses in the low canonical half of the 629 * address space, as well as most non-canonical addresses, that out-of-bounds 630 * shadow memory access lands in the non-canonical part of the address space. 631 * Help the user figure out what the original bogus pointer was. 632 */ 633 void kasan_non_canonical_hook(unsigned long addr) 634 { 635 unsigned long orig_addr; 636 const char *bug_type; 637 638 if (addr < KASAN_SHADOW_OFFSET) 639 return; 640 641 orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; 642 /* 643 * For faults near the shadow address for NULL, we can be fairly certain 644 * that this is a KASAN shadow memory access. 645 * For faults that correspond to shadow for low canonical addresses, we 646 * can still be pretty sure - that shadow region is a fairly narrow 647 * chunk of the non-canonical address space. 648 * But faults that look like shadow for non-canonical addresses are a 649 * really large chunk of the address space. In that case, we still 650 * print the decoded address, but make it clear that this is not 651 * necessarily what's actually going on. 652 */ 653 if (orig_addr < PAGE_SIZE) 654 bug_type = "null-ptr-deref"; 655 else if (orig_addr < TASK_SIZE) 656 bug_type = "probably user-memory-access"; 657 else 658 bug_type = "maybe wild-memory-access"; 659 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 660 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 661 } 662 #endif 663