1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/ftrace.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/printk.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/stackdepot.h> 21 #include <linux/stacktrace.h> 22 #include <linux/string.h> 23 #include <linux/types.h> 24 #include <linux/kasan.h> 25 #include <linux/module.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/uaccess.h> 28 #include <trace/events/error_report.h> 29 30 #include <asm/sections.h> 31 32 #include <kunit/test.h> 33 34 #include "kasan.h" 35 #include "../slab.h" 36 37 static unsigned long kasan_flags; 38 39 #define KASAN_BIT_REPORTED 0 40 #define KASAN_BIT_MULTI_SHOT 1 41 42 bool kasan_save_enable_multi_shot(void) 43 { 44 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 45 } 46 EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); 47 48 void kasan_restore_multi_shot(bool enabled) 49 { 50 if (!enabled) 51 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 52 } 53 EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); 54 55 static int __init kasan_set_multi_shot(char *str) 56 { 57 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 58 return 1; 59 } 60 __setup("kasan_multi_shot", kasan_set_multi_shot); 61 62 static void print_error_description(struct kasan_access_info *info) 63 { 64 pr_err("BUG: KASAN: %s in %pS\n", 65 kasan_get_bug_type(info), (void *)info->ip); 66 if (info->access_size) 67 pr_err("%s of size %zu at addr %px by task %s/%d\n", 68 info->is_write ? "Write" : "Read", info->access_size, 69 info->access_addr, current->comm, task_pid_nr(current)); 70 else 71 pr_err("%s at addr %px by task %s/%d\n", 72 info->is_write ? "Write" : "Read", 73 info->access_addr, current->comm, task_pid_nr(current)); 74 } 75 76 static DEFINE_SPINLOCK(report_lock); 77 78 static void start_report(unsigned long *flags) 79 { 80 /* 81 * Make sure we don't end up in loop. 82 */ 83 kasan_disable_current(); 84 spin_lock_irqsave(&report_lock, *flags); 85 pr_err("==================================================================\n"); 86 } 87 88 static void end_report(unsigned long *flags, unsigned long addr) 89 { 90 trace_error_report_end(ERROR_DETECTOR_KASAN, addr); 91 pr_err("==================================================================\n"); 92 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 93 spin_unlock_irqrestore(&report_lock, *flags); 94 if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) { 95 /* 96 * This thread may hit another WARN() in the panic path. 97 * Resetting this prevents additional WARN() from panicking the 98 * system on this thread. Other threads are blocked by the 99 * panic_mutex in panic(). 100 */ 101 panic_on_warn = 0; 102 panic("panic_on_warn set ...\n"); 103 } 104 #ifdef CONFIG_KASAN_HW_TAGS 105 if (kasan_flag_panic) 106 panic("kasan.fault=panic set ...\n"); 107 #endif 108 kasan_enable_current(); 109 } 110 111 static void print_stack(depot_stack_handle_t stack) 112 { 113 unsigned long *entries; 114 unsigned int nr_entries; 115 116 nr_entries = stack_depot_fetch(stack, &entries); 117 stack_trace_print(entries, nr_entries, 0); 118 } 119 120 static void print_track(struct kasan_track *track, const char *prefix) 121 { 122 pr_err("%s by task %u:\n", prefix, track->pid); 123 if (track->stack) { 124 print_stack(track->stack); 125 } else { 126 pr_err("(stack is not available)\n"); 127 } 128 } 129 130 struct page *kasan_addr_to_page(const void *addr) 131 { 132 if ((addr >= (void *)PAGE_OFFSET) && 133 (addr < high_memory)) 134 return virt_to_head_page(addr); 135 return NULL; 136 } 137 138 static void describe_object_addr(struct kmem_cache *cache, void *object, 139 const void *addr) 140 { 141 unsigned long access_addr = (unsigned long)addr; 142 unsigned long object_addr = (unsigned long)object; 143 const char *rel_type; 144 int rel_bytes; 145 146 pr_err("The buggy address belongs to the object at %px\n" 147 " which belongs to the cache %s of size %d\n", 148 object, cache->name, cache->object_size); 149 150 if (!addr) 151 return; 152 153 if (access_addr < object_addr) { 154 rel_type = "to the left"; 155 rel_bytes = object_addr - access_addr; 156 } else if (access_addr >= object_addr + cache->object_size) { 157 rel_type = "to the right"; 158 rel_bytes = access_addr - (object_addr + cache->object_size); 159 } else { 160 rel_type = "inside"; 161 rel_bytes = access_addr - object_addr; 162 } 163 164 pr_err("The buggy address is located %d bytes %s of\n" 165 " %d-byte region [%px, %px)\n", 166 rel_bytes, rel_type, cache->object_size, (void *)object_addr, 167 (void *)(object_addr + cache->object_size)); 168 } 169 170 static void describe_object_stacks(struct kmem_cache *cache, void *object, 171 const void *addr, u8 tag) 172 { 173 struct kasan_alloc_meta *alloc_meta; 174 struct kasan_track *free_track; 175 176 alloc_meta = kasan_get_alloc_meta(cache, object); 177 if (alloc_meta) { 178 print_track(&alloc_meta->alloc_track, "Allocated"); 179 pr_err("\n"); 180 } 181 182 free_track = kasan_get_free_track(cache, object, tag); 183 if (free_track) { 184 print_track(free_track, "Freed"); 185 pr_err("\n"); 186 } 187 188 #ifdef CONFIG_KASAN_GENERIC 189 if (!alloc_meta) 190 return; 191 if (alloc_meta->aux_stack[0]) { 192 pr_err("Last potentially related work creation:\n"); 193 print_stack(alloc_meta->aux_stack[0]); 194 pr_err("\n"); 195 } 196 if (alloc_meta->aux_stack[1]) { 197 pr_err("Second to last potentially related work creation:\n"); 198 print_stack(alloc_meta->aux_stack[1]); 199 pr_err("\n"); 200 } 201 #endif 202 } 203 204 static void describe_object(struct kmem_cache *cache, void *object, 205 const void *addr, u8 tag) 206 { 207 if (kasan_stack_collection_enabled()) 208 describe_object_stacks(cache, object, addr, tag); 209 describe_object_addr(cache, object, addr); 210 } 211 212 static inline bool kernel_or_module_addr(const void *addr) 213 { 214 if (addr >= (void *)_stext && addr < (void *)_end) 215 return true; 216 if (is_module_address((unsigned long)addr)) 217 return true; 218 return false; 219 } 220 221 static inline bool init_task_stack_addr(const void *addr) 222 { 223 return addr >= (void *)&init_thread_union.stack && 224 (addr <= (void *)&init_thread_union.stack + 225 sizeof(init_thread_union.stack)); 226 } 227 228 static void print_address_description(void *addr, u8 tag) 229 { 230 struct page *page = kasan_addr_to_page(addr); 231 232 dump_stack(); 233 pr_err("\n"); 234 235 if (page && PageSlab(page)) { 236 struct kmem_cache *cache = page->slab_cache; 237 void *object = nearest_obj(cache, page, addr); 238 239 describe_object(cache, object, addr, tag); 240 } 241 242 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 243 pr_err("The buggy address belongs to the variable:\n"); 244 pr_err(" %pS\n", addr); 245 } 246 247 if (page) { 248 pr_err("The buggy address belongs to the page:\n"); 249 dump_page(page, "kasan: bad access detected"); 250 } 251 252 kasan_print_address_stack_frame(addr); 253 } 254 255 static bool meta_row_is_guilty(const void *row, const void *addr) 256 { 257 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 258 } 259 260 static int meta_pointer_offset(const void *row, const void *addr) 261 { 262 /* 263 * Memory state around the buggy address: 264 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 265 * ... 266 * 267 * The length of ">ff00ff00ff00ff00: " is 268 * 3 + (BITS_PER_LONG / 8) * 2 chars. 269 * The length of each granule metadata is 2 bytes 270 * plus 1 byte for space. 271 */ 272 return 3 + (BITS_PER_LONG / 8) * 2 + 273 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 274 } 275 276 static void print_memory_metadata(const void *addr) 277 { 278 int i; 279 void *row; 280 281 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 282 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 283 284 pr_err("Memory state around the buggy address:\n"); 285 286 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 287 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 288 char metadata[META_BYTES_PER_ROW]; 289 290 snprintf(buffer, sizeof(buffer), 291 (i == 0) ? ">%px: " : " %px: ", row); 292 293 /* 294 * We should not pass a shadow pointer to generic 295 * function, because generic functions may try to 296 * access kasan mapping for the passed address. 297 */ 298 kasan_metadata_fetch_row(&metadata[0], row); 299 300 print_hex_dump(KERN_ERR, buffer, 301 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 302 metadata, META_BYTES_PER_ROW, 0); 303 304 if (meta_row_is_guilty(row, addr)) 305 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 306 307 row += META_MEM_BYTES_PER_ROW; 308 } 309 } 310 311 static bool report_enabled(void) 312 { 313 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 314 if (current->kasan_depth) 315 return false; 316 #endif 317 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 318 return true; 319 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 320 } 321 322 #if IS_ENABLED(CONFIG_KUNIT) 323 static void kasan_update_kunit_status(struct kunit *cur_test) 324 { 325 struct kunit_resource *resource; 326 struct kunit_kasan_expectation *kasan_data; 327 328 resource = kunit_find_named_resource(cur_test, "kasan_data"); 329 330 if (!resource) { 331 kunit_set_failure(cur_test); 332 return; 333 } 334 335 kasan_data = (struct kunit_kasan_expectation *)resource->data; 336 WRITE_ONCE(kasan_data->report_found, true); 337 kunit_put_resource(resource); 338 } 339 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 340 341 void kasan_report_invalid_free(void *object, unsigned long ip) 342 { 343 unsigned long flags; 344 u8 tag = get_tag(object); 345 346 object = kasan_reset_tag(object); 347 348 #if IS_ENABLED(CONFIG_KUNIT) 349 if (current->kunit_test) 350 kasan_update_kunit_status(current->kunit_test); 351 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 352 353 start_report(&flags); 354 pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip); 355 kasan_print_tags(tag, object); 356 pr_err("\n"); 357 print_address_description(object, tag); 358 pr_err("\n"); 359 print_memory_metadata(object); 360 end_report(&flags, (unsigned long)object); 361 } 362 363 static void __kasan_report(unsigned long addr, size_t size, bool is_write, 364 unsigned long ip) 365 { 366 struct kasan_access_info info; 367 void *tagged_addr; 368 void *untagged_addr; 369 unsigned long flags; 370 371 #if IS_ENABLED(CONFIG_KUNIT) 372 if (current->kunit_test) 373 kasan_update_kunit_status(current->kunit_test); 374 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 375 376 disable_trace_on_warning(); 377 378 tagged_addr = (void *)addr; 379 untagged_addr = kasan_reset_tag(tagged_addr); 380 381 info.access_addr = tagged_addr; 382 if (addr_has_metadata(untagged_addr)) 383 info.first_bad_addr = 384 kasan_find_first_bad_addr(tagged_addr, size); 385 else 386 info.first_bad_addr = untagged_addr; 387 info.access_size = size; 388 info.is_write = is_write; 389 info.ip = ip; 390 391 start_report(&flags); 392 393 print_error_description(&info); 394 if (addr_has_metadata(untagged_addr)) 395 kasan_print_tags(get_tag(tagged_addr), info.first_bad_addr); 396 pr_err("\n"); 397 398 if (addr_has_metadata(untagged_addr)) { 399 print_address_description(untagged_addr, get_tag(tagged_addr)); 400 pr_err("\n"); 401 print_memory_metadata(info.first_bad_addr); 402 } else { 403 dump_stack(); 404 } 405 406 end_report(&flags, addr); 407 } 408 409 bool kasan_report(unsigned long addr, size_t size, bool is_write, 410 unsigned long ip) 411 { 412 unsigned long flags = user_access_save(); 413 bool ret = false; 414 415 if (likely(report_enabled())) { 416 __kasan_report(addr, size, is_write, ip); 417 ret = true; 418 } 419 420 user_access_restore(flags); 421 422 return ret; 423 } 424 425 #ifdef CONFIG_KASAN_INLINE 426 /* 427 * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high 428 * canonical half of the address space) cause out-of-bounds shadow memory reads 429 * before the actual access. For addresses in the low canonical half of the 430 * address space, as well as most non-canonical addresses, that out-of-bounds 431 * shadow memory access lands in the non-canonical part of the address space. 432 * Help the user figure out what the original bogus pointer was. 433 */ 434 void kasan_non_canonical_hook(unsigned long addr) 435 { 436 unsigned long orig_addr; 437 const char *bug_type; 438 439 if (addr < KASAN_SHADOW_OFFSET) 440 return; 441 442 orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; 443 /* 444 * For faults near the shadow address for NULL, we can be fairly certain 445 * that this is a KASAN shadow memory access. 446 * For faults that correspond to shadow for low canonical addresses, we 447 * can still be pretty sure - that shadow region is a fairly narrow 448 * chunk of the non-canonical address space. 449 * But faults that look like shadow for non-canonical addresses are a 450 * really large chunk of the address space. In that case, we still 451 * print the decoded address, but make it clear that this is not 452 * necessarily what's actually going on. 453 */ 454 if (orig_addr < PAGE_SIZE) 455 bug_type = "null-ptr-deref"; 456 else if (orig_addr < TASK_SIZE) 457 bug_type = "probably user-memory-access"; 458 else 459 bug_type = "maybe wild-memory-access"; 460 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 461 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 462 } 463 #endif 464