1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KASAN quarantine.
4 *
5 * Author: Alexander Potapenko <glider@google.com>
6 * Copyright (C) 2016 Google, Inc.
7 *
8 * Based on code by Dmitry Chernenkov.
9 */
10
11 #include <linux/gfp.h>
12 #include <linux/hash.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/percpu.h>
16 #include <linux/printk.h>
17 #include <linux/shrinker.h>
18 #include <linux/slab.h>
19 #include <linux/srcu.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/cpuhotplug.h>
23
24 #include "../slab.h"
25 #include "kasan.h"
26
27 /* Data structure and operations for quarantine queues. */
28
29 /*
30 * Each queue is a single-linked list, which also stores the total size of
31 * objects inside of it.
32 */
33 struct qlist_head {
34 struct qlist_node *head;
35 struct qlist_node *tail;
36 size_t bytes;
37 bool offline;
38 };
39
40 #define QLIST_INIT { NULL, NULL, 0 }
41
qlist_empty(struct qlist_head * q)42 static bool qlist_empty(struct qlist_head *q)
43 {
44 return !q->head;
45 }
46
qlist_init(struct qlist_head * q)47 static void qlist_init(struct qlist_head *q)
48 {
49 q->head = q->tail = NULL;
50 q->bytes = 0;
51 }
52
qlist_put(struct qlist_head * q,struct qlist_node * qlink,size_t size)53 static void qlist_put(struct qlist_head *q, struct qlist_node *qlink,
54 size_t size)
55 {
56 if (unlikely(qlist_empty(q)))
57 q->head = qlink;
58 else
59 q->tail->next = qlink;
60 q->tail = qlink;
61 qlink->next = NULL;
62 q->bytes += size;
63 }
64
qlist_move_all(struct qlist_head * from,struct qlist_head * to)65 static void qlist_move_all(struct qlist_head *from, struct qlist_head *to)
66 {
67 if (unlikely(qlist_empty(from)))
68 return;
69
70 if (qlist_empty(to)) {
71 *to = *from;
72 qlist_init(from);
73 return;
74 }
75
76 to->tail->next = from->head;
77 to->tail = from->tail;
78 to->bytes += from->bytes;
79
80 qlist_init(from);
81 }
82
83 #define QUARANTINE_PERCPU_SIZE (1 << 20)
84 #define QUARANTINE_BATCHES \
85 (1024 > 4 * CONFIG_NR_CPUS ? 1024 : 4 * CONFIG_NR_CPUS)
86
87 /*
88 * The object quarantine consists of per-cpu queues and a global queue,
89 * guarded by quarantine_lock.
90 */
91 static DEFINE_PER_CPU(struct qlist_head, cpu_quarantine);
92
93 /* Round-robin FIFO array of batches. */
94 static struct qlist_head global_quarantine[QUARANTINE_BATCHES];
95 static int quarantine_head;
96 static int quarantine_tail;
97 /* Total size of all objects in global_quarantine across all batches. */
98 static unsigned long quarantine_size;
99 static DEFINE_RAW_SPINLOCK(quarantine_lock);
100 DEFINE_STATIC_SRCU(remove_cache_srcu);
101
102 struct cpu_shrink_qlist {
103 raw_spinlock_t lock;
104 struct qlist_head qlist;
105 };
106
107 static DEFINE_PER_CPU(struct cpu_shrink_qlist, shrink_qlist) = {
108 .lock = __RAW_SPIN_LOCK_UNLOCKED(shrink_qlist.lock),
109 };
110
111 /* Maximum size of the global queue. */
112 static unsigned long quarantine_max_size;
113
114 /*
115 * Target size of a batch in global_quarantine.
116 * Usually equal to QUARANTINE_PERCPU_SIZE unless we have too much RAM.
117 */
118 static unsigned long quarantine_batch_size;
119
120 /*
121 * The fraction of physical memory the quarantine is allowed to occupy.
122 * Quarantine doesn't support memory shrinker with SLAB allocator, so we keep
123 * the ratio low to avoid OOM.
124 */
125 #define QUARANTINE_FRACTION 32
126
qlink_to_cache(struct qlist_node * qlink)127 static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
128 {
129 return virt_to_slab(qlink)->slab_cache;
130 }
131
qlink_to_object(struct qlist_node * qlink,struct kmem_cache * cache)132 static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
133 {
134 struct kasan_free_meta *free_info =
135 container_of(qlink, struct kasan_free_meta,
136 quarantine_link);
137
138 return ((void *)free_info) - cache->kasan_info.free_meta_offset;
139 }
140
qlink_free(struct qlist_node * qlink,struct kmem_cache * cache)141 static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache)
142 {
143 void *object = qlink_to_object(qlink, cache);
144 struct kasan_free_meta *meta = kasan_get_free_meta(cache, object);
145 unsigned long flags;
146
147 if (IS_ENABLED(CONFIG_SLAB))
148 local_irq_save(flags);
149
150 /*
151 * If init_on_free is enabled and KASAN's free metadata is stored in
152 * the object, zero the metadata. Otherwise, the object's memory will
153 * not be properly zeroed, as KASAN saves the metadata after the slab
154 * allocator zeroes the object.
155 */
156 if (slab_want_init_on_free(cache) &&
157 cache->kasan_info.free_meta_offset == 0)
158 memzero_explicit(meta, sizeof(*meta));
159
160 /*
161 * As the object now gets freed from the quarantine, assume that its
162 * free track is no longer valid.
163 */
164 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
165
166 ___cache_free(cache, object, _THIS_IP_);
167
168 if (IS_ENABLED(CONFIG_SLAB))
169 local_irq_restore(flags);
170 }
171
qlist_free_all(struct qlist_head * q,struct kmem_cache * cache)172 static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache)
173 {
174 struct qlist_node *qlink;
175
176 if (unlikely(qlist_empty(q)))
177 return;
178
179 qlink = q->head;
180 while (qlink) {
181 struct kmem_cache *obj_cache =
182 cache ? cache : qlink_to_cache(qlink);
183 struct qlist_node *next = qlink->next;
184
185 qlink_free(qlink, obj_cache);
186 qlink = next;
187 }
188 qlist_init(q);
189 }
190
kasan_quarantine_put(struct kmem_cache * cache,void * object)191 bool kasan_quarantine_put(struct kmem_cache *cache, void *object)
192 {
193 unsigned long flags;
194 struct qlist_head *q;
195 struct qlist_head temp = QLIST_INIT;
196 struct kasan_free_meta *meta = kasan_get_free_meta(cache, object);
197
198 /*
199 * If there's no metadata for this object, don't put it into
200 * quarantine.
201 */
202 if (!meta)
203 return false;
204
205 /*
206 * Note: irq must be disabled until after we move the batch to the
207 * global quarantine. Otherwise kasan_quarantine_remove_cache() can
208 * miss some objects belonging to the cache if they are in our local
209 * temp list. kasan_quarantine_remove_cache() executes on_each_cpu()
210 * at the beginning which ensures that it either sees the objects in
211 * per-cpu lists or in the global quarantine.
212 */
213 local_irq_save(flags);
214
215 q = this_cpu_ptr(&cpu_quarantine);
216 if (q->offline) {
217 local_irq_restore(flags);
218 return false;
219 }
220 qlist_put(q, &meta->quarantine_link, cache->size);
221 if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) {
222 qlist_move_all(q, &temp);
223
224 raw_spin_lock(&quarantine_lock);
225 WRITE_ONCE(quarantine_size, quarantine_size + temp.bytes);
226 qlist_move_all(&temp, &global_quarantine[quarantine_tail]);
227 if (global_quarantine[quarantine_tail].bytes >=
228 READ_ONCE(quarantine_batch_size)) {
229 int new_tail;
230
231 new_tail = quarantine_tail + 1;
232 if (new_tail == QUARANTINE_BATCHES)
233 new_tail = 0;
234 if (new_tail != quarantine_head)
235 quarantine_tail = new_tail;
236 }
237 raw_spin_unlock(&quarantine_lock);
238 }
239
240 local_irq_restore(flags);
241
242 return true;
243 }
244
kasan_quarantine_reduce(void)245 void kasan_quarantine_reduce(void)
246 {
247 size_t total_size, new_quarantine_size, percpu_quarantines;
248 unsigned long flags;
249 int srcu_idx;
250 struct qlist_head to_free = QLIST_INIT;
251
252 if (likely(READ_ONCE(quarantine_size) <=
253 READ_ONCE(quarantine_max_size)))
254 return;
255
256 /*
257 * srcu critical section ensures that kasan_quarantine_remove_cache()
258 * will not miss objects belonging to the cache while they are in our
259 * local to_free list. srcu is chosen because (1) it gives us private
260 * grace period domain that does not interfere with anything else,
261 * and (2) it allows synchronize_srcu() to return without waiting
262 * if there are no pending read critical sections (which is the
263 * expected case).
264 */
265 srcu_idx = srcu_read_lock(&remove_cache_srcu);
266 raw_spin_lock_irqsave(&quarantine_lock, flags);
267
268 /*
269 * Update quarantine size in case of hotplug. Allocate a fraction of
270 * the installed memory to quarantine minus per-cpu queue limits.
271 */
272 total_size = (totalram_pages() << PAGE_SHIFT) /
273 QUARANTINE_FRACTION;
274 percpu_quarantines = QUARANTINE_PERCPU_SIZE * num_online_cpus();
275 new_quarantine_size = (total_size < percpu_quarantines) ?
276 0 : total_size - percpu_quarantines;
277 WRITE_ONCE(quarantine_max_size, new_quarantine_size);
278 /* Aim at consuming at most 1/2 of slots in quarantine. */
279 WRITE_ONCE(quarantine_batch_size, max((size_t)QUARANTINE_PERCPU_SIZE,
280 2 * total_size / QUARANTINE_BATCHES));
281
282 if (likely(quarantine_size > quarantine_max_size)) {
283 qlist_move_all(&global_quarantine[quarantine_head], &to_free);
284 WRITE_ONCE(quarantine_size, quarantine_size - to_free.bytes);
285 quarantine_head++;
286 if (quarantine_head == QUARANTINE_BATCHES)
287 quarantine_head = 0;
288 }
289
290 raw_spin_unlock_irqrestore(&quarantine_lock, flags);
291
292 qlist_free_all(&to_free, NULL);
293 srcu_read_unlock(&remove_cache_srcu, srcu_idx);
294 }
295
qlist_move_cache(struct qlist_head * from,struct qlist_head * to,struct kmem_cache * cache)296 static void qlist_move_cache(struct qlist_head *from,
297 struct qlist_head *to,
298 struct kmem_cache *cache)
299 {
300 struct qlist_node *curr;
301
302 if (unlikely(qlist_empty(from)))
303 return;
304
305 curr = from->head;
306 qlist_init(from);
307 while (curr) {
308 struct qlist_node *next = curr->next;
309 struct kmem_cache *obj_cache = qlink_to_cache(curr);
310
311 if (obj_cache == cache)
312 qlist_put(to, curr, obj_cache->size);
313 else
314 qlist_put(from, curr, obj_cache->size);
315
316 curr = next;
317 }
318 }
319
__per_cpu_remove_cache(struct qlist_head * q,void * arg)320 static void __per_cpu_remove_cache(struct qlist_head *q, void *arg)
321 {
322 struct kmem_cache *cache = arg;
323 unsigned long flags;
324 struct cpu_shrink_qlist *sq;
325
326 sq = this_cpu_ptr(&shrink_qlist);
327 raw_spin_lock_irqsave(&sq->lock, flags);
328 qlist_move_cache(q, &sq->qlist, cache);
329 raw_spin_unlock_irqrestore(&sq->lock, flags);
330 }
331
per_cpu_remove_cache(void * arg)332 static void per_cpu_remove_cache(void *arg)
333 {
334 struct qlist_head *q;
335
336 q = this_cpu_ptr(&cpu_quarantine);
337 /*
338 * Ensure the ordering between the writing to q->offline and
339 * per_cpu_remove_cache. Prevent cpu_quarantine from being corrupted
340 * by interrupt.
341 */
342 if (READ_ONCE(q->offline))
343 return;
344 __per_cpu_remove_cache(q, arg);
345 }
346
347 /* Free all quarantined objects belonging to cache. */
kasan_quarantine_remove_cache(struct kmem_cache * cache)348 void kasan_quarantine_remove_cache(struct kmem_cache *cache)
349 {
350 unsigned long flags, i;
351 struct qlist_head to_free = QLIST_INIT;
352 int cpu;
353 struct cpu_shrink_qlist *sq;
354
355 /*
356 * Must be careful to not miss any objects that are being moved from
357 * per-cpu list to the global quarantine in kasan_quarantine_put(),
358 * nor objects being freed in kasan_quarantine_reduce(). on_each_cpu()
359 * achieves the first goal, while synchronize_srcu() achieves the
360 * second.
361 */
362 on_each_cpu(per_cpu_remove_cache, cache, 1);
363
364 for_each_online_cpu(cpu) {
365 sq = per_cpu_ptr(&shrink_qlist, cpu);
366 raw_spin_lock_irqsave(&sq->lock, flags);
367 qlist_move_cache(&sq->qlist, &to_free, cache);
368 raw_spin_unlock_irqrestore(&sq->lock, flags);
369 }
370 qlist_free_all(&to_free, cache);
371
372 raw_spin_lock_irqsave(&quarantine_lock, flags);
373 for (i = 0; i < QUARANTINE_BATCHES; i++) {
374 if (qlist_empty(&global_quarantine[i]))
375 continue;
376 qlist_move_cache(&global_quarantine[i], &to_free, cache);
377 /* Scanning whole quarantine can take a while. */
378 raw_spin_unlock_irqrestore(&quarantine_lock, flags);
379 cond_resched();
380 raw_spin_lock_irqsave(&quarantine_lock, flags);
381 }
382 raw_spin_unlock_irqrestore(&quarantine_lock, flags);
383
384 qlist_free_all(&to_free, cache);
385
386 synchronize_srcu(&remove_cache_srcu);
387 }
388
kasan_cpu_online(unsigned int cpu)389 static int kasan_cpu_online(unsigned int cpu)
390 {
391 this_cpu_ptr(&cpu_quarantine)->offline = false;
392 return 0;
393 }
394
kasan_cpu_offline(unsigned int cpu)395 static int kasan_cpu_offline(unsigned int cpu)
396 {
397 struct qlist_head *q;
398
399 q = this_cpu_ptr(&cpu_quarantine);
400 /* Ensure the ordering between the writing to q->offline and
401 * qlist_free_all. Otherwise, cpu_quarantine may be corrupted
402 * by interrupt.
403 */
404 WRITE_ONCE(q->offline, true);
405 barrier();
406 qlist_free_all(q, NULL);
407 return 0;
408 }
409
kasan_cpu_quarantine_init(void)410 static int __init kasan_cpu_quarantine_init(void)
411 {
412 int ret = 0;
413
414 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/kasan:online",
415 kasan_cpu_online, kasan_cpu_offline);
416 if (ret < 0)
417 pr_err("kasan cpu quarantine register failed [%d]\n", ret);
418 return ret;
419 }
420 late_initcall(kasan_cpu_quarantine_init);
421