xref: /openbmc/linux/mm/kasan/kasan_test.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
6  */
7 
8 #define pr_fmt(fmt) "kasan_test: " fmt
9 
10 #include <kunit/test.h>
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/module.h>
19 #include <linux/printk.h>
20 #include <linux/random.h>
21 #include <linux/set_memory.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/tracepoint.h>
25 #include <linux/uaccess.h>
26 #include <linux/vmalloc.h>
27 #include <trace/events/printk.h>
28 
29 #include <asm/page.h>
30 
31 #include "kasan.h"
32 
33 #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
34 
35 static bool multishot;
36 
37 /* Fields set based on lines observed in the console. */
38 static struct {
39 	bool report_found;
40 	bool async_fault;
41 } test_status;
42 
43 /*
44  * Some tests use these global variables to store return values from function
45  * calls that could otherwise be eliminated by the compiler as dead code.
46  */
47 void *kasan_ptr_result;
48 int kasan_int_result;
49 
50 /* Probe for console output: obtains test_status lines of interest. */
51 static void probe_console(void *ignore, const char *buf, size_t len)
52 {
53 	if (strnstr(buf, "BUG: KASAN: ", len))
54 		WRITE_ONCE(test_status.report_found, true);
55 	else if (strnstr(buf, "Asynchronous fault: ", len))
56 		WRITE_ONCE(test_status.async_fault, true);
57 }
58 
59 static void register_tracepoints(struct tracepoint *tp, void *ignore)
60 {
61 	check_trace_callback_type_console(probe_console);
62 	if (!strcmp(tp->name, "console"))
63 		WARN_ON(tracepoint_probe_register(tp, probe_console, NULL));
64 }
65 
66 static void unregister_tracepoints(struct tracepoint *tp, void *ignore)
67 {
68 	if (!strcmp(tp->name, "console"))
69 		tracepoint_probe_unregister(tp, probe_console, NULL);
70 }
71 
72 static int kasan_suite_init(struct kunit_suite *suite)
73 {
74 	if (!kasan_enabled()) {
75 		pr_err("Can't run KASAN tests with KASAN disabled");
76 		return -1;
77 	}
78 
79 	/* Stop failing KUnit tests on KASAN reports. */
80 	kasan_kunit_test_suite_start();
81 
82 	/*
83 	 * Temporarily enable multi-shot mode. Otherwise, KASAN would only
84 	 * report the first detected bug and panic the kernel if panic_on_warn
85 	 * is enabled.
86 	 */
87 	multishot = kasan_save_enable_multi_shot();
88 
89 	/*
90 	 * Because we want to be able to build the test as a module, we need to
91 	 * iterate through all known tracepoints, since the static registration
92 	 * won't work here.
93 	 */
94 	for_each_kernel_tracepoint(register_tracepoints, NULL);
95 	return 0;
96 }
97 
98 static void kasan_suite_exit(struct kunit_suite *suite)
99 {
100 	kasan_kunit_test_suite_end();
101 	kasan_restore_multi_shot(multishot);
102 	for_each_kernel_tracepoint(unregister_tracepoints, NULL);
103 	tracepoint_synchronize_unregister();
104 }
105 
106 static void kasan_test_exit(struct kunit *test)
107 {
108 	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
109 }
110 
111 /**
112  * KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
113  * KASAN report; causes a test failure otherwise. This relies on a KUnit
114  * resource named "kasan_status". Do not use this name for KUnit resources
115  * outside of KASAN tests.
116  *
117  * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
118  * checking is auto-disabled. When this happens, this test handler reenables
119  * tag checking. As tag checking can be only disabled or enabled per CPU,
120  * this handler disables migration (preemption).
121  *
122  * Since the compiler doesn't see that the expression can change the test_status
123  * fields, it can reorder or optimize away the accesses to those fields.
124  * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
125  * expression to prevent that.
126  *
127  * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
128  * as false. This allows detecting KASAN reports that happen outside of the
129  * checks by asserting !test_status.report_found at the start of
130  * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
131  */
132 #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
133 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
134 	    kasan_sync_fault_possible())				\
135 		migrate_disable();					\
136 	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
137 	barrier();							\
138 	expression;							\
139 	barrier();							\
140 	if (kasan_async_fault_possible())				\
141 		kasan_force_async_fault();				\
142 	if (!READ_ONCE(test_status.report_found)) {			\
143 		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
144 				"expected in \"" #expression		\
145 				 "\", but none occurred");		\
146 	}								\
147 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
148 	    kasan_sync_fault_possible()) {				\
149 		if (READ_ONCE(test_status.report_found) &&		\
150 		    !READ_ONCE(test_status.async_fault))		\
151 			kasan_enable_tagging();				\
152 		migrate_enable();					\
153 	}								\
154 	WRITE_ONCE(test_status.report_found, false);			\
155 	WRITE_ONCE(test_status.async_fault, false);			\
156 } while (0)
157 
158 #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
159 	if (!IS_ENABLED(config))					\
160 		kunit_skip((test), "Test requires " #config "=y");	\
161 } while (0)
162 
163 #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
164 	if (IS_ENABLED(config))						\
165 		kunit_skip((test), "Test requires " #config "=n");	\
166 } while (0)
167 
168 static void kmalloc_oob_right(struct kunit *test)
169 {
170 	char *ptr;
171 	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
172 
173 	ptr = kmalloc(size, GFP_KERNEL);
174 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
175 
176 	OPTIMIZER_HIDE_VAR(ptr);
177 	/*
178 	 * An unaligned access past the requested kmalloc size.
179 	 * Only generic KASAN can precisely detect these.
180 	 */
181 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182 		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
183 
184 	/*
185 	 * An aligned access into the first out-of-bounds granule that falls
186 	 * within the aligned kmalloc object.
187 	 */
188 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
189 
190 	/* Out-of-bounds access past the aligned kmalloc object. */
191 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
192 					ptr[size + KASAN_GRANULE_SIZE + 5]);
193 
194 	kfree(ptr);
195 }
196 
197 static void kmalloc_oob_left(struct kunit *test)
198 {
199 	char *ptr;
200 	size_t size = 15;
201 
202 	ptr = kmalloc(size, GFP_KERNEL);
203 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
204 
205 	OPTIMIZER_HIDE_VAR(ptr);
206 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
207 	kfree(ptr);
208 }
209 
210 static void kmalloc_node_oob_right(struct kunit *test)
211 {
212 	char *ptr;
213 	size_t size = 4096;
214 
215 	ptr = kmalloc_node(size, GFP_KERNEL, 0);
216 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
217 
218 	OPTIMIZER_HIDE_VAR(ptr);
219 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
220 	kfree(ptr);
221 }
222 
223 /*
224  * These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
225  * fit into a slab cache and therefore is allocated via the page allocator
226  * fallback. Since this kind of fallback is only implemented for SLUB, these
227  * tests are limited to that allocator.
228  */
229 static void kmalloc_pagealloc_oob_right(struct kunit *test)
230 {
231 	char *ptr;
232 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
233 
234 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
235 
236 	ptr = kmalloc(size, GFP_KERNEL);
237 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
238 
239 	OPTIMIZER_HIDE_VAR(ptr);
240 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
241 
242 	kfree(ptr);
243 }
244 
245 static void kmalloc_pagealloc_uaf(struct kunit *test)
246 {
247 	char *ptr;
248 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
249 
250 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
251 
252 	ptr = kmalloc(size, GFP_KERNEL);
253 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
254 	kfree(ptr);
255 
256 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
257 }
258 
259 static void kmalloc_pagealloc_invalid_free(struct kunit *test)
260 {
261 	char *ptr;
262 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
263 
264 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
265 
266 	ptr = kmalloc(size, GFP_KERNEL);
267 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
268 
269 	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
270 }
271 
272 static void pagealloc_oob_right(struct kunit *test)
273 {
274 	char *ptr;
275 	struct page *pages;
276 	size_t order = 4;
277 	size_t size = (1UL << (PAGE_SHIFT + order));
278 
279 	/*
280 	 * With generic KASAN page allocations have no redzones, thus
281 	 * out-of-bounds detection is not guaranteed.
282 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
283 	 */
284 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
285 
286 	pages = alloc_pages(GFP_KERNEL, order);
287 	ptr = page_address(pages);
288 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
289 
290 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
291 	free_pages((unsigned long)ptr, order);
292 }
293 
294 static void pagealloc_uaf(struct kunit *test)
295 {
296 	char *ptr;
297 	struct page *pages;
298 	size_t order = 4;
299 
300 	pages = alloc_pages(GFP_KERNEL, order);
301 	ptr = page_address(pages);
302 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
303 	free_pages((unsigned long)ptr, order);
304 
305 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
306 }
307 
308 static void kmalloc_large_oob_right(struct kunit *test)
309 {
310 	char *ptr;
311 	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
312 
313 	/*
314 	 * Allocate a chunk that is large enough, but still fits into a slab
315 	 * and does not trigger the page allocator fallback in SLUB.
316 	 */
317 	ptr = kmalloc(size, GFP_KERNEL);
318 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
319 
320 	OPTIMIZER_HIDE_VAR(ptr);
321 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
322 	kfree(ptr);
323 }
324 
325 static void krealloc_more_oob_helper(struct kunit *test,
326 					size_t size1, size_t size2)
327 {
328 	char *ptr1, *ptr2;
329 	size_t middle;
330 
331 	KUNIT_ASSERT_LT(test, size1, size2);
332 	middle = size1 + (size2 - size1) / 2;
333 
334 	ptr1 = kmalloc(size1, GFP_KERNEL);
335 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
336 
337 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
338 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
339 
340 	/* Suppress -Warray-bounds warnings. */
341 	OPTIMIZER_HIDE_VAR(ptr2);
342 
343 	/* All offsets up to size2 must be accessible. */
344 	ptr2[size1 - 1] = 'x';
345 	ptr2[size1] = 'x';
346 	ptr2[middle] = 'x';
347 	ptr2[size2 - 1] = 'x';
348 
349 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
350 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
351 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
352 
353 	/* For all modes first aligned offset after size2 must be inaccessible. */
354 	KUNIT_EXPECT_KASAN_FAIL(test,
355 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
356 
357 	kfree(ptr2);
358 }
359 
360 static void krealloc_less_oob_helper(struct kunit *test,
361 					size_t size1, size_t size2)
362 {
363 	char *ptr1, *ptr2;
364 	size_t middle;
365 
366 	KUNIT_ASSERT_LT(test, size2, size1);
367 	middle = size2 + (size1 - size2) / 2;
368 
369 	ptr1 = kmalloc(size1, GFP_KERNEL);
370 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
371 
372 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
373 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
374 
375 	/* Suppress -Warray-bounds warnings. */
376 	OPTIMIZER_HIDE_VAR(ptr2);
377 
378 	/* Must be accessible for all modes. */
379 	ptr2[size2 - 1] = 'x';
380 
381 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
382 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
383 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
384 
385 	/* For all modes first aligned offset after size2 must be inaccessible. */
386 	KUNIT_EXPECT_KASAN_FAIL(test,
387 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
388 
389 	/*
390 	 * For all modes all size2, middle, and size1 should land in separate
391 	 * granules and thus the latter two offsets should be inaccessible.
392 	 */
393 	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
394 				round_down(middle, KASAN_GRANULE_SIZE));
395 	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
396 				round_down(size1, KASAN_GRANULE_SIZE));
397 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
398 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
399 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
400 
401 	kfree(ptr2);
402 }
403 
404 static void krealloc_more_oob(struct kunit *test)
405 {
406 	krealloc_more_oob_helper(test, 201, 235);
407 }
408 
409 static void krealloc_less_oob(struct kunit *test)
410 {
411 	krealloc_less_oob_helper(test, 235, 201);
412 }
413 
414 static void krealloc_pagealloc_more_oob(struct kunit *test)
415 {
416 	/* page_alloc fallback in only implemented for SLUB. */
417 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
418 
419 	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
420 					KMALLOC_MAX_CACHE_SIZE + 235);
421 }
422 
423 static void krealloc_pagealloc_less_oob(struct kunit *test)
424 {
425 	/* page_alloc fallback in only implemented for SLUB. */
426 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
427 
428 	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
429 					KMALLOC_MAX_CACHE_SIZE + 201);
430 }
431 
432 /*
433  * Check that krealloc() detects a use-after-free, returns NULL,
434  * and doesn't unpoison the freed object.
435  */
436 static void krealloc_uaf(struct kunit *test)
437 {
438 	char *ptr1, *ptr2;
439 	int size1 = 201;
440 	int size2 = 235;
441 
442 	ptr1 = kmalloc(size1, GFP_KERNEL);
443 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
444 	kfree(ptr1);
445 
446 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
447 	KUNIT_ASSERT_NULL(test, ptr2);
448 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
449 }
450 
451 static void kmalloc_oob_16(struct kunit *test)
452 {
453 	struct {
454 		u64 words[2];
455 	} *ptr1, *ptr2;
456 
457 	/* This test is specifically crafted for the generic mode. */
458 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
459 
460 	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
461 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
462 
463 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
464 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
465 
466 	OPTIMIZER_HIDE_VAR(ptr1);
467 	OPTIMIZER_HIDE_VAR(ptr2);
468 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
469 	kfree(ptr1);
470 	kfree(ptr2);
471 }
472 
473 static void kmalloc_uaf_16(struct kunit *test)
474 {
475 	struct {
476 		u64 words[2];
477 	} *ptr1, *ptr2;
478 
479 	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
480 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
481 
482 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
483 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
484 	kfree(ptr2);
485 
486 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
487 	kfree(ptr1);
488 }
489 
490 /*
491  * Note: in the memset tests below, the written range touches both valid and
492  * invalid memory. This makes sure that the instrumentation does not only check
493  * the starting address but the whole range.
494  */
495 
496 static void kmalloc_oob_memset_2(struct kunit *test)
497 {
498 	char *ptr;
499 	size_t size = 128 - KASAN_GRANULE_SIZE;
500 
501 	ptr = kmalloc(size, GFP_KERNEL);
502 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
503 
504 	OPTIMIZER_HIDE_VAR(size);
505 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, 2));
506 	kfree(ptr);
507 }
508 
509 static void kmalloc_oob_memset_4(struct kunit *test)
510 {
511 	char *ptr;
512 	size_t size = 128 - KASAN_GRANULE_SIZE;
513 
514 	ptr = kmalloc(size, GFP_KERNEL);
515 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
516 
517 	OPTIMIZER_HIDE_VAR(size);
518 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, 4));
519 	kfree(ptr);
520 }
521 
522 static void kmalloc_oob_memset_8(struct kunit *test)
523 {
524 	char *ptr;
525 	size_t size = 128 - KASAN_GRANULE_SIZE;
526 
527 	ptr = kmalloc(size, GFP_KERNEL);
528 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
529 
530 	OPTIMIZER_HIDE_VAR(size);
531 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, 8));
532 	kfree(ptr);
533 }
534 
535 static void kmalloc_oob_memset_16(struct kunit *test)
536 {
537 	char *ptr;
538 	size_t size = 128 - KASAN_GRANULE_SIZE;
539 
540 	ptr = kmalloc(size, GFP_KERNEL);
541 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
542 
543 	OPTIMIZER_HIDE_VAR(size);
544 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, 16));
545 	kfree(ptr);
546 }
547 
548 static void kmalloc_oob_in_memset(struct kunit *test)
549 {
550 	char *ptr;
551 	size_t size = 128 - KASAN_GRANULE_SIZE;
552 
553 	ptr = kmalloc(size, GFP_KERNEL);
554 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
555 
556 	OPTIMIZER_HIDE_VAR(ptr);
557 	OPTIMIZER_HIDE_VAR(size);
558 	KUNIT_EXPECT_KASAN_FAIL(test,
559 				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
560 	kfree(ptr);
561 }
562 
563 static void kmalloc_memmove_negative_size(struct kunit *test)
564 {
565 	char *ptr;
566 	size_t size = 64;
567 	size_t invalid_size = -2;
568 
569 	/*
570 	 * Hardware tag-based mode doesn't check memmove for negative size.
571 	 * As a result, this test introduces a side-effect memory corruption,
572 	 * which can result in a crash.
573 	 */
574 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
575 
576 	ptr = kmalloc(size, GFP_KERNEL);
577 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
578 
579 	memset((char *)ptr, 0, 64);
580 	OPTIMIZER_HIDE_VAR(ptr);
581 	OPTIMIZER_HIDE_VAR(invalid_size);
582 	KUNIT_EXPECT_KASAN_FAIL(test,
583 		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
584 	kfree(ptr);
585 }
586 
587 static void kmalloc_memmove_invalid_size(struct kunit *test)
588 {
589 	char *ptr;
590 	size_t size = 64;
591 	size_t invalid_size = size;
592 
593 	ptr = kmalloc(size, GFP_KERNEL);
594 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
595 
596 	memset((char *)ptr, 0, 64);
597 	OPTIMIZER_HIDE_VAR(ptr);
598 	OPTIMIZER_HIDE_VAR(invalid_size);
599 	KUNIT_EXPECT_KASAN_FAIL(test,
600 		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
601 	kfree(ptr);
602 }
603 
604 static void kmalloc_uaf(struct kunit *test)
605 {
606 	char *ptr;
607 	size_t size = 10;
608 
609 	ptr = kmalloc(size, GFP_KERNEL);
610 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
611 
612 	kfree(ptr);
613 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
614 }
615 
616 static void kmalloc_uaf_memset(struct kunit *test)
617 {
618 	char *ptr;
619 	size_t size = 33;
620 
621 	/*
622 	 * Only generic KASAN uses quarantine, which is required to avoid a
623 	 * kernel memory corruption this test causes.
624 	 */
625 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
626 
627 	ptr = kmalloc(size, GFP_KERNEL);
628 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
629 
630 	kfree(ptr);
631 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
632 }
633 
634 static void kmalloc_uaf2(struct kunit *test)
635 {
636 	char *ptr1, *ptr2;
637 	size_t size = 43;
638 	int counter = 0;
639 
640 again:
641 	ptr1 = kmalloc(size, GFP_KERNEL);
642 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
643 
644 	kfree(ptr1);
645 
646 	ptr2 = kmalloc(size, GFP_KERNEL);
647 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
648 
649 	/*
650 	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
651 	 * Allow up to 16 attempts at generating different tags.
652 	 */
653 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
654 		kfree(ptr2);
655 		goto again;
656 	}
657 
658 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
659 	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
660 
661 	kfree(ptr2);
662 }
663 
664 /*
665  * Check that KASAN detects use-after-free when another object was allocated in
666  * the same slot. Relevant for the tag-based modes, which do not use quarantine.
667  */
668 static void kmalloc_uaf3(struct kunit *test)
669 {
670 	char *ptr1, *ptr2;
671 	size_t size = 100;
672 
673 	/* This test is specifically crafted for tag-based modes. */
674 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
675 
676 	ptr1 = kmalloc(size, GFP_KERNEL);
677 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
678 	kfree(ptr1);
679 
680 	ptr2 = kmalloc(size, GFP_KERNEL);
681 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
682 	kfree(ptr2);
683 
684 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
685 }
686 
687 static void kfree_via_page(struct kunit *test)
688 {
689 	char *ptr;
690 	size_t size = 8;
691 	struct page *page;
692 	unsigned long offset;
693 
694 	ptr = kmalloc(size, GFP_KERNEL);
695 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
696 
697 	page = virt_to_page(ptr);
698 	offset = offset_in_page(ptr);
699 	kfree(page_address(page) + offset);
700 }
701 
702 static void kfree_via_phys(struct kunit *test)
703 {
704 	char *ptr;
705 	size_t size = 8;
706 	phys_addr_t phys;
707 
708 	ptr = kmalloc(size, GFP_KERNEL);
709 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
710 
711 	phys = virt_to_phys(ptr);
712 	kfree(phys_to_virt(phys));
713 }
714 
715 static void kmem_cache_oob(struct kunit *test)
716 {
717 	char *p;
718 	size_t size = 200;
719 	struct kmem_cache *cache;
720 
721 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
722 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
723 
724 	p = kmem_cache_alloc(cache, GFP_KERNEL);
725 	if (!p) {
726 		kunit_err(test, "Allocation failed: %s\n", __func__);
727 		kmem_cache_destroy(cache);
728 		return;
729 	}
730 
731 	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
732 
733 	kmem_cache_free(cache, p);
734 	kmem_cache_destroy(cache);
735 }
736 
737 static void kmem_cache_accounted(struct kunit *test)
738 {
739 	int i;
740 	char *p;
741 	size_t size = 200;
742 	struct kmem_cache *cache;
743 
744 	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
745 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
746 
747 	/*
748 	 * Several allocations with a delay to allow for lazy per memcg kmem
749 	 * cache creation.
750 	 */
751 	for (i = 0; i < 5; i++) {
752 		p = kmem_cache_alloc(cache, GFP_KERNEL);
753 		if (!p)
754 			goto free_cache;
755 
756 		kmem_cache_free(cache, p);
757 		msleep(100);
758 	}
759 
760 free_cache:
761 	kmem_cache_destroy(cache);
762 }
763 
764 static void kmem_cache_bulk(struct kunit *test)
765 {
766 	struct kmem_cache *cache;
767 	size_t size = 200;
768 	char *p[10];
769 	bool ret;
770 	int i;
771 
772 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
773 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
774 
775 	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
776 	if (!ret) {
777 		kunit_err(test, "Allocation failed: %s\n", __func__);
778 		kmem_cache_destroy(cache);
779 		return;
780 	}
781 
782 	for (i = 0; i < ARRAY_SIZE(p); i++)
783 		p[i][0] = p[i][size - 1] = 42;
784 
785 	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
786 	kmem_cache_destroy(cache);
787 }
788 
789 static char global_array[10];
790 
791 static void kasan_global_oob_right(struct kunit *test)
792 {
793 	/*
794 	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
795 	 * from failing here and panicking the kernel, access the array via a
796 	 * volatile pointer, which will prevent the compiler from being able to
797 	 * determine the array bounds.
798 	 *
799 	 * This access uses a volatile pointer to char (char *volatile) rather
800 	 * than the more conventional pointer to volatile char (volatile char *)
801 	 * because we want to prevent the compiler from making inferences about
802 	 * the pointer itself (i.e. its array bounds), not the data that it
803 	 * refers to.
804 	 */
805 	char *volatile array = global_array;
806 	char *p = &array[ARRAY_SIZE(global_array) + 3];
807 
808 	/* Only generic mode instruments globals. */
809 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
810 
811 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
812 }
813 
814 static void kasan_global_oob_left(struct kunit *test)
815 {
816 	char *volatile array = global_array;
817 	char *p = array - 3;
818 
819 	/*
820 	 * GCC is known to fail this test, skip it.
821 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
822 	 */
823 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
824 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
825 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
826 }
827 
828 /* Check that ksize() does NOT unpoison whole object. */
829 static void ksize_unpoisons_memory(struct kunit *test)
830 {
831 	char *ptr;
832 	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
833 	size_t real_size;
834 
835 	ptr = kmalloc(size, GFP_KERNEL);
836 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
837 
838 	real_size = ksize(ptr);
839 	KUNIT_EXPECT_GT(test, real_size, size);
840 
841 	OPTIMIZER_HIDE_VAR(ptr);
842 
843 	/* These accesses shouldn't trigger a KASAN report. */
844 	ptr[0] = 'x';
845 	ptr[size - 1] = 'x';
846 
847 	/* These must trigger a KASAN report. */
848 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
849 		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
850 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
851 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);
852 
853 	kfree(ptr);
854 }
855 
856 /*
857  * Check that a use-after-free is detected by ksize() and via normal accesses
858  * after it.
859  */
860 static void ksize_uaf(struct kunit *test)
861 {
862 	char *ptr;
863 	int size = 128 - KASAN_GRANULE_SIZE;
864 
865 	ptr = kmalloc(size, GFP_KERNEL);
866 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
867 	kfree(ptr);
868 
869 	OPTIMIZER_HIDE_VAR(ptr);
870 	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
871 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
872 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
873 }
874 
875 static void kasan_stack_oob(struct kunit *test)
876 {
877 	char stack_array[10];
878 	/* See comment in kasan_global_oob_right. */
879 	char *volatile array = stack_array;
880 	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
881 
882 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
883 
884 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
885 }
886 
887 static void kasan_alloca_oob_left(struct kunit *test)
888 {
889 	volatile int i = 10;
890 	char alloca_array[i];
891 	/* See comment in kasan_global_oob_right. */
892 	char *volatile array = alloca_array;
893 	char *p = array - 1;
894 
895 	/* Only generic mode instruments dynamic allocas. */
896 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
897 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
898 
899 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
900 }
901 
902 static void kasan_alloca_oob_right(struct kunit *test)
903 {
904 	volatile int i = 10;
905 	char alloca_array[i];
906 	/* See comment in kasan_global_oob_right. */
907 	char *volatile array = alloca_array;
908 	char *p = array + i;
909 
910 	/* Only generic mode instruments dynamic allocas. */
911 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
912 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
913 
914 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
915 }
916 
917 static void kmem_cache_double_free(struct kunit *test)
918 {
919 	char *p;
920 	size_t size = 200;
921 	struct kmem_cache *cache;
922 
923 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
924 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
925 
926 	p = kmem_cache_alloc(cache, GFP_KERNEL);
927 	if (!p) {
928 		kunit_err(test, "Allocation failed: %s\n", __func__);
929 		kmem_cache_destroy(cache);
930 		return;
931 	}
932 
933 	kmem_cache_free(cache, p);
934 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
935 	kmem_cache_destroy(cache);
936 }
937 
938 static void kmem_cache_invalid_free(struct kunit *test)
939 {
940 	char *p;
941 	size_t size = 200;
942 	struct kmem_cache *cache;
943 
944 	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
945 				  NULL);
946 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
947 
948 	p = kmem_cache_alloc(cache, GFP_KERNEL);
949 	if (!p) {
950 		kunit_err(test, "Allocation failed: %s\n", __func__);
951 		kmem_cache_destroy(cache);
952 		return;
953 	}
954 
955 	/* Trigger invalid free, the object doesn't get freed. */
956 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
957 
958 	/*
959 	 * Properly free the object to prevent the "Objects remaining in
960 	 * test_cache on __kmem_cache_shutdown" BUG failure.
961 	 */
962 	kmem_cache_free(cache, p);
963 
964 	kmem_cache_destroy(cache);
965 }
966 
967 static void empty_cache_ctor(void *object) { }
968 
969 static void kmem_cache_double_destroy(struct kunit *test)
970 {
971 	struct kmem_cache *cache;
972 
973 	/* Provide a constructor to prevent cache merging. */
974 	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
975 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
976 	kmem_cache_destroy(cache);
977 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
978 }
979 
980 static void kasan_memchr(struct kunit *test)
981 {
982 	char *ptr;
983 	size_t size = 24;
984 
985 	/*
986 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
987 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
988 	 */
989 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
990 
991 	if (OOB_TAG_OFF)
992 		size = round_up(size, OOB_TAG_OFF);
993 
994 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
995 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
996 
997 	OPTIMIZER_HIDE_VAR(ptr);
998 	OPTIMIZER_HIDE_VAR(size);
999 	KUNIT_EXPECT_KASAN_FAIL(test,
1000 		kasan_ptr_result = memchr(ptr, '1', size + 1));
1001 
1002 	kfree(ptr);
1003 }
1004 
1005 static void kasan_memcmp(struct kunit *test)
1006 {
1007 	char *ptr;
1008 	size_t size = 24;
1009 	int arr[9];
1010 
1011 	/*
1012 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1013 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1014 	 */
1015 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1016 
1017 	if (OOB_TAG_OFF)
1018 		size = round_up(size, OOB_TAG_OFF);
1019 
1020 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1021 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1022 	memset(arr, 0, sizeof(arr));
1023 
1024 	OPTIMIZER_HIDE_VAR(ptr);
1025 	OPTIMIZER_HIDE_VAR(size);
1026 	KUNIT_EXPECT_KASAN_FAIL(test,
1027 		kasan_int_result = memcmp(ptr, arr, size+1));
1028 	kfree(ptr);
1029 }
1030 
1031 static void kasan_strings(struct kunit *test)
1032 {
1033 	char *ptr;
1034 	size_t size = 24;
1035 
1036 	/*
1037 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1038 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1039 	 */
1040 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1041 
1042 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1043 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1044 
1045 	kfree(ptr);
1046 
1047 	/*
1048 	 * Try to cause only 1 invalid access (less spam in dmesg).
1049 	 * For that we need ptr to point to zeroed byte.
1050 	 * Skip metadata that could be stored in freed object so ptr
1051 	 * will likely point to zeroed byte.
1052 	 */
1053 	ptr += 16;
1054 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
1055 
1056 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
1057 
1058 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
1059 
1060 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
1061 
1062 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
1063 
1064 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
1065 }
1066 
1067 static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
1068 {
1069 	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
1070 	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
1071 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
1072 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
1073 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
1074 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
1075 	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
1076 	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
1077 }
1078 
1079 static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
1080 {
1081 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
1082 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
1083 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
1084 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
1085 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
1086 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
1087 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
1088 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
1089 
1090 #if defined(clear_bit_unlock_is_negative_byte)
1091 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
1092 				clear_bit_unlock_is_negative_byte(nr, addr));
1093 #endif
1094 }
1095 
1096 static void kasan_bitops_generic(struct kunit *test)
1097 {
1098 	long *bits;
1099 
1100 	/* This test is specifically crafted for the generic mode. */
1101 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1102 
1103 	/*
1104 	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
1105 	 * this way we do not actually corrupt other memory.
1106 	 */
1107 	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
1108 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1109 
1110 	/*
1111 	 * Below calls try to access bit within allocated memory; however, the
1112 	 * below accesses are still out-of-bounds, since bitops are defined to
1113 	 * operate on the whole long the bit is in.
1114 	 */
1115 	kasan_bitops_modify(test, BITS_PER_LONG, bits);
1116 
1117 	/*
1118 	 * Below calls try to access bit beyond allocated memory.
1119 	 */
1120 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
1121 
1122 	kfree(bits);
1123 }
1124 
1125 static void kasan_bitops_tags(struct kunit *test)
1126 {
1127 	long *bits;
1128 
1129 	/* This test is specifically crafted for tag-based modes. */
1130 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1131 
1132 	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
1133 	bits = kzalloc(48, GFP_KERNEL);
1134 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1135 
1136 	/* Do the accesses past the 48 allocated bytes, but within the redone. */
1137 	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
1138 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
1139 
1140 	kfree(bits);
1141 }
1142 
1143 static void kmalloc_double_kzfree(struct kunit *test)
1144 {
1145 	char *ptr;
1146 	size_t size = 16;
1147 
1148 	ptr = kmalloc(size, GFP_KERNEL);
1149 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1150 
1151 	kfree_sensitive(ptr);
1152 	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
1153 }
1154 
1155 /*
1156  * The two tests below check that Generic KASAN prints auxiliary stack traces
1157  * for RCU callbacks and workqueues. The reports need to be inspected manually.
1158  *
1159  * These tests are still enabled for other KASAN modes to make sure that all
1160  * modes report bad accesses in tested scenarios.
1161  */
1162 
1163 static struct kasan_rcu_info {
1164 	int i;
1165 	struct rcu_head rcu;
1166 } *global_rcu_ptr;
1167 
1168 static void rcu_uaf_reclaim(struct rcu_head *rp)
1169 {
1170 	struct kasan_rcu_info *fp =
1171 		container_of(rp, struct kasan_rcu_info, rcu);
1172 
1173 	kfree(fp);
1174 	((volatile struct kasan_rcu_info *)fp)->i;
1175 }
1176 
1177 static void rcu_uaf(struct kunit *test)
1178 {
1179 	struct kasan_rcu_info *ptr;
1180 
1181 	ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
1182 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1183 
1184 	global_rcu_ptr = rcu_dereference_protected(
1185 				(struct kasan_rcu_info __rcu *)ptr, NULL);
1186 
1187 	KUNIT_EXPECT_KASAN_FAIL(test,
1188 		call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
1189 		rcu_barrier());
1190 }
1191 
1192 static void workqueue_uaf_work(struct work_struct *work)
1193 {
1194 	kfree(work);
1195 }
1196 
1197 static void workqueue_uaf(struct kunit *test)
1198 {
1199 	struct workqueue_struct *workqueue;
1200 	struct work_struct *work;
1201 
1202 	workqueue = create_workqueue("kasan_workqueue_test");
1203 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);
1204 
1205 	work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
1206 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);
1207 
1208 	INIT_WORK(work, workqueue_uaf_work);
1209 	queue_work(workqueue, work);
1210 	destroy_workqueue(workqueue);
1211 
1212 	KUNIT_EXPECT_KASAN_FAIL(test,
1213 		((volatile struct work_struct *)work)->data);
1214 }
1215 
1216 static void vmalloc_helpers_tags(struct kunit *test)
1217 {
1218 	void *ptr;
1219 
1220 	/* This test is intended for tag-based modes. */
1221 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1222 
1223 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1224 
1225 	ptr = vmalloc(PAGE_SIZE);
1226 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1227 
1228 	/* Check that the returned pointer is tagged. */
1229 	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1230 	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1231 
1232 	/* Make sure exported vmalloc helpers handle tagged pointers. */
1233 	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
1234 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
1235 
1236 #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
1237 	{
1238 		int rv;
1239 
1240 		/* Make sure vmalloc'ed memory permissions can be changed. */
1241 		rv = set_memory_ro((unsigned long)ptr, 1);
1242 		KUNIT_ASSERT_GE(test, rv, 0);
1243 		rv = set_memory_rw((unsigned long)ptr, 1);
1244 		KUNIT_ASSERT_GE(test, rv, 0);
1245 	}
1246 #endif
1247 
1248 	vfree(ptr);
1249 }
1250 
1251 static void vmalloc_oob(struct kunit *test)
1252 {
1253 	char *v_ptr, *p_ptr;
1254 	struct page *page;
1255 	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
1256 
1257 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1258 
1259 	v_ptr = vmalloc(size);
1260 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1261 
1262 	OPTIMIZER_HIDE_VAR(v_ptr);
1263 
1264 	/*
1265 	 * We have to be careful not to hit the guard page in vmalloc tests.
1266 	 * The MMU will catch that and crash us.
1267 	 */
1268 
1269 	/* Make sure in-bounds accesses are valid. */
1270 	v_ptr[0] = 0;
1271 	v_ptr[size - 1] = 0;
1272 
1273 	/*
1274 	 * An unaligned access past the requested vmalloc size.
1275 	 * Only generic KASAN can precisely detect these.
1276 	 */
1277 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1278 		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
1279 
1280 	/* An aligned access into the first out-of-bounds granule. */
1281 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
1282 
1283 	/* Check that in-bounds accesses to the physical page are valid. */
1284 	page = vmalloc_to_page(v_ptr);
1285 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1286 	p_ptr = page_address(page);
1287 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1288 	p_ptr[0] = 0;
1289 
1290 	vfree(v_ptr);
1291 
1292 	/*
1293 	 * We can't check for use-after-unmap bugs in this nor in the following
1294 	 * vmalloc tests, as the page might be fully unmapped and accessing it
1295 	 * will crash the kernel.
1296 	 */
1297 }
1298 
1299 static void vmap_tags(struct kunit *test)
1300 {
1301 	char *p_ptr, *v_ptr;
1302 	struct page *p_page, *v_page;
1303 
1304 	/*
1305 	 * This test is specifically crafted for the software tag-based mode,
1306 	 * the only tag-based mode that poisons vmap mappings.
1307 	 */
1308 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1309 
1310 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1311 
1312 	p_page = alloc_pages(GFP_KERNEL, 1);
1313 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
1314 	p_ptr = page_address(p_page);
1315 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1316 
1317 	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
1318 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1319 
1320 	/*
1321 	 * We can't check for out-of-bounds bugs in this nor in the following
1322 	 * vmalloc tests, as allocations have page granularity and accessing
1323 	 * the guard page will crash the kernel.
1324 	 */
1325 
1326 	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1327 	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1328 
1329 	/* Make sure that in-bounds accesses through both pointers work. */
1330 	*p_ptr = 0;
1331 	*v_ptr = 0;
1332 
1333 	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
1334 	v_page = vmalloc_to_page(v_ptr);
1335 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
1336 	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
1337 
1338 	vunmap(v_ptr);
1339 	free_pages((unsigned long)p_ptr, 1);
1340 }
1341 
1342 static void vm_map_ram_tags(struct kunit *test)
1343 {
1344 	char *p_ptr, *v_ptr;
1345 	struct page *page;
1346 
1347 	/*
1348 	 * This test is specifically crafted for the software tag-based mode,
1349 	 * the only tag-based mode that poisons vm_map_ram mappings.
1350 	 */
1351 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1352 
1353 	page = alloc_pages(GFP_KERNEL, 1);
1354 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1355 	p_ptr = page_address(page);
1356 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1357 
1358 	v_ptr = vm_map_ram(&page, 1, -1);
1359 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1360 
1361 	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1362 	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1363 
1364 	/* Make sure that in-bounds accesses through both pointers work. */
1365 	*p_ptr = 0;
1366 	*v_ptr = 0;
1367 
1368 	vm_unmap_ram(v_ptr, 1);
1369 	free_pages((unsigned long)p_ptr, 1);
1370 }
1371 
1372 static void vmalloc_percpu(struct kunit *test)
1373 {
1374 	char __percpu *ptr;
1375 	int cpu;
1376 
1377 	/*
1378 	 * This test is specifically crafted for the software tag-based mode,
1379 	 * the only tag-based mode that poisons percpu mappings.
1380 	 */
1381 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1382 
1383 	ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
1384 
1385 	for_each_possible_cpu(cpu) {
1386 		char *c_ptr = per_cpu_ptr(ptr, cpu);
1387 
1388 		KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
1389 		KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
1390 
1391 		/* Make sure that in-bounds accesses don't crash the kernel. */
1392 		*c_ptr = 0;
1393 	}
1394 
1395 	free_percpu(ptr);
1396 }
1397 
1398 /*
1399  * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
1400  * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
1401  * modes.
1402  */
1403 static void match_all_not_assigned(struct kunit *test)
1404 {
1405 	char *ptr;
1406 	struct page *pages;
1407 	int i, size, order;
1408 
1409 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1410 
1411 	for (i = 0; i < 256; i++) {
1412 		size = get_random_u32_inclusive(1, 1024);
1413 		ptr = kmalloc(size, GFP_KERNEL);
1414 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1415 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1416 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1417 		kfree(ptr);
1418 	}
1419 
1420 	for (i = 0; i < 256; i++) {
1421 		order = get_random_u32_inclusive(1, 4);
1422 		pages = alloc_pages(GFP_KERNEL, order);
1423 		ptr = page_address(pages);
1424 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1425 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1426 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1427 		free_pages((unsigned long)ptr, order);
1428 	}
1429 
1430 	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
1431 		return;
1432 
1433 	for (i = 0; i < 256; i++) {
1434 		size = get_random_u32_inclusive(1, 1024);
1435 		ptr = vmalloc(size);
1436 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1437 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1438 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1439 		vfree(ptr);
1440 	}
1441 }
1442 
1443 /* Check that 0xff works as a match-all pointer tag for tag-based modes. */
1444 static void match_all_ptr_tag(struct kunit *test)
1445 {
1446 	char *ptr;
1447 	u8 tag;
1448 
1449 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1450 
1451 	ptr = kmalloc(128, GFP_KERNEL);
1452 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1453 
1454 	/* Backup the assigned tag. */
1455 	tag = get_tag(ptr);
1456 	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1457 
1458 	/* Reset the tag to 0xff.*/
1459 	ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1460 
1461 	/* This access shouldn't trigger a KASAN report. */
1462 	*ptr = 0;
1463 
1464 	/* Recover the pointer tag and free. */
1465 	ptr = set_tag(ptr, tag);
1466 	kfree(ptr);
1467 }
1468 
1469 /* Check that there are no match-all memory tags for tag-based modes. */
1470 static void match_all_mem_tag(struct kunit *test)
1471 {
1472 	char *ptr;
1473 	int tag;
1474 
1475 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1476 
1477 	ptr = kmalloc(128, GFP_KERNEL);
1478 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1479 	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1480 
1481 	/* For each possible tag value not matching the pointer tag. */
1482 	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1483 		if (tag == get_tag(ptr))
1484 			continue;
1485 
1486 		/* Mark the first memory granule with the chosen memory tag. */
1487 		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1488 
1489 		/* This access must cause a KASAN report. */
1490 		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1491 	}
1492 
1493 	/* Recover the memory tag and free. */
1494 	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1495 	kfree(ptr);
1496 }
1497 
1498 static struct kunit_case kasan_kunit_test_cases[] = {
1499 	KUNIT_CASE(kmalloc_oob_right),
1500 	KUNIT_CASE(kmalloc_oob_left),
1501 	KUNIT_CASE(kmalloc_node_oob_right),
1502 	KUNIT_CASE(kmalloc_pagealloc_oob_right),
1503 	KUNIT_CASE(kmalloc_pagealloc_uaf),
1504 	KUNIT_CASE(kmalloc_pagealloc_invalid_free),
1505 	KUNIT_CASE(pagealloc_oob_right),
1506 	KUNIT_CASE(pagealloc_uaf),
1507 	KUNIT_CASE(kmalloc_large_oob_right),
1508 	KUNIT_CASE(krealloc_more_oob),
1509 	KUNIT_CASE(krealloc_less_oob),
1510 	KUNIT_CASE(krealloc_pagealloc_more_oob),
1511 	KUNIT_CASE(krealloc_pagealloc_less_oob),
1512 	KUNIT_CASE(krealloc_uaf),
1513 	KUNIT_CASE(kmalloc_oob_16),
1514 	KUNIT_CASE(kmalloc_uaf_16),
1515 	KUNIT_CASE(kmalloc_oob_in_memset),
1516 	KUNIT_CASE(kmalloc_oob_memset_2),
1517 	KUNIT_CASE(kmalloc_oob_memset_4),
1518 	KUNIT_CASE(kmalloc_oob_memset_8),
1519 	KUNIT_CASE(kmalloc_oob_memset_16),
1520 	KUNIT_CASE(kmalloc_memmove_negative_size),
1521 	KUNIT_CASE(kmalloc_memmove_invalid_size),
1522 	KUNIT_CASE(kmalloc_uaf),
1523 	KUNIT_CASE(kmalloc_uaf_memset),
1524 	KUNIT_CASE(kmalloc_uaf2),
1525 	KUNIT_CASE(kmalloc_uaf3),
1526 	KUNIT_CASE(kfree_via_page),
1527 	KUNIT_CASE(kfree_via_phys),
1528 	KUNIT_CASE(kmem_cache_oob),
1529 	KUNIT_CASE(kmem_cache_accounted),
1530 	KUNIT_CASE(kmem_cache_bulk),
1531 	KUNIT_CASE(kasan_global_oob_right),
1532 	KUNIT_CASE(kasan_global_oob_left),
1533 	KUNIT_CASE(kasan_stack_oob),
1534 	KUNIT_CASE(kasan_alloca_oob_left),
1535 	KUNIT_CASE(kasan_alloca_oob_right),
1536 	KUNIT_CASE(ksize_unpoisons_memory),
1537 	KUNIT_CASE(ksize_uaf),
1538 	KUNIT_CASE(kmem_cache_double_free),
1539 	KUNIT_CASE(kmem_cache_invalid_free),
1540 	KUNIT_CASE(kmem_cache_double_destroy),
1541 	KUNIT_CASE(kasan_memchr),
1542 	KUNIT_CASE(kasan_memcmp),
1543 	KUNIT_CASE(kasan_strings),
1544 	KUNIT_CASE(kasan_bitops_generic),
1545 	KUNIT_CASE(kasan_bitops_tags),
1546 	KUNIT_CASE(kmalloc_double_kzfree),
1547 	KUNIT_CASE(rcu_uaf),
1548 	KUNIT_CASE(workqueue_uaf),
1549 	KUNIT_CASE(vmalloc_helpers_tags),
1550 	KUNIT_CASE(vmalloc_oob),
1551 	KUNIT_CASE(vmap_tags),
1552 	KUNIT_CASE(vm_map_ram_tags),
1553 	KUNIT_CASE(vmalloc_percpu),
1554 	KUNIT_CASE(match_all_not_assigned),
1555 	KUNIT_CASE(match_all_ptr_tag),
1556 	KUNIT_CASE(match_all_mem_tag),
1557 	{}
1558 };
1559 
1560 static struct kunit_suite kasan_kunit_test_suite = {
1561 	.name = "kasan",
1562 	.test_cases = kasan_kunit_test_cases,
1563 	.exit = kasan_test_exit,
1564 	.suite_init = kasan_suite_init,
1565 	.suite_exit = kasan_suite_exit,
1566 };
1567 
1568 kunit_test_suite(kasan_kunit_test_suite);
1569 
1570 MODULE_LICENSE("GPL");
1571