xref: /openbmc/linux/mm/kasan/generic.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains core generic KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/init.h>
15 #include <linux/kasan.h>
16 #include <linux/kernel.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/linkage.h>
20 #include <linux/memblock.h>
21 #include <linux/memory.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/printk.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/slab.h>
28 #include <linux/stacktrace.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/vmalloc.h>
32 #include <linux/bug.h>
33 
34 #include "kasan.h"
35 #include "../slab.h"
36 
37 /*
38  * All functions below always inlined so compiler could
39  * perform better optimizations in each of __asan_loadX/__assn_storeX
40  * depending on memory access size X.
41  */
42 
43 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
44 {
45 	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
46 
47 	if (unlikely(shadow_value)) {
48 		s8 last_accessible_byte = addr & KASAN_GRANULE_MASK;
49 		return unlikely(last_accessible_byte >= shadow_value);
50 	}
51 
52 	return false;
53 }
54 
55 static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
56 						unsigned long size)
57 {
58 	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
59 
60 	/*
61 	 * Access crosses 8(shadow size)-byte boundary. Such access maps
62 	 * into 2 shadow bytes, so we need to check them both.
63 	 */
64 	if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
65 		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
66 
67 	return memory_is_poisoned_1(addr + size - 1);
68 }
69 
70 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
71 {
72 	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
73 
74 	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
75 	if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE)))
76 		return *shadow_addr || memory_is_poisoned_1(addr + 15);
77 
78 	return *shadow_addr;
79 }
80 
81 static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
82 					size_t size)
83 {
84 	while (size) {
85 		if (unlikely(*start))
86 			return (unsigned long)start;
87 		start++;
88 		size--;
89 	}
90 
91 	return 0;
92 }
93 
94 static __always_inline unsigned long memory_is_nonzero(const void *start,
95 						const void *end)
96 {
97 	unsigned int words;
98 	unsigned long ret;
99 	unsigned int prefix = (unsigned long)start % 8;
100 
101 	if (end - start <= 16)
102 		return bytes_is_nonzero(start, end - start);
103 
104 	if (prefix) {
105 		prefix = 8 - prefix;
106 		ret = bytes_is_nonzero(start, prefix);
107 		if (unlikely(ret))
108 			return ret;
109 		start += prefix;
110 	}
111 
112 	words = (end - start) / 8;
113 	while (words) {
114 		if (unlikely(*(u64 *)start))
115 			return bytes_is_nonzero(start, 8);
116 		start += 8;
117 		words--;
118 	}
119 
120 	return bytes_is_nonzero(start, (end - start) % 8);
121 }
122 
123 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
124 						size_t size)
125 {
126 	unsigned long ret;
127 
128 	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
129 			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
130 
131 	if (unlikely(ret)) {
132 		unsigned long last_byte = addr + size - 1;
133 		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
134 
135 		if (unlikely(ret != (unsigned long)last_shadow ||
136 			((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow)))
137 			return true;
138 	}
139 	return false;
140 }
141 
142 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
143 {
144 	if (__builtin_constant_p(size)) {
145 		switch (size) {
146 		case 1:
147 			return memory_is_poisoned_1(addr);
148 		case 2:
149 		case 4:
150 		case 8:
151 			return memory_is_poisoned_2_4_8(addr, size);
152 		case 16:
153 			return memory_is_poisoned_16(addr);
154 		default:
155 			BUILD_BUG();
156 		}
157 	}
158 
159 	return memory_is_poisoned_n(addr, size);
160 }
161 
162 static __always_inline bool check_region_inline(unsigned long addr,
163 						size_t size, bool write,
164 						unsigned long ret_ip)
165 {
166 	if (!kasan_arch_is_ready())
167 		return true;
168 
169 	if (unlikely(size == 0))
170 		return true;
171 
172 	if (unlikely(addr + size < addr))
173 		return !kasan_report(addr, size, write, ret_ip);
174 
175 	if (unlikely((void *)addr <
176 		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
177 		return !kasan_report(addr, size, write, ret_ip);
178 	}
179 
180 	if (likely(!memory_is_poisoned(addr, size)))
181 		return true;
182 
183 	return !kasan_report(addr, size, write, ret_ip);
184 }
185 
186 bool kasan_check_range(unsigned long addr, size_t size, bool write,
187 					unsigned long ret_ip)
188 {
189 	return check_region_inline(addr, size, write, ret_ip);
190 }
191 
192 bool kasan_byte_accessible(const void *addr)
193 {
194 	s8 shadow_byte;
195 
196 	if (!kasan_arch_is_ready())
197 		return true;
198 
199 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
200 
201 	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
202 }
203 
204 void kasan_cache_shrink(struct kmem_cache *cache)
205 {
206 	kasan_quarantine_remove_cache(cache);
207 }
208 
209 void kasan_cache_shutdown(struct kmem_cache *cache)
210 {
211 	if (!__kmem_cache_empty(cache))
212 		kasan_quarantine_remove_cache(cache);
213 }
214 
215 static void register_global(struct kasan_global *global)
216 {
217 	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
218 
219 	kasan_unpoison(global->beg, global->size, false);
220 
221 	kasan_poison(global->beg + aligned_size,
222 		     global->size_with_redzone - aligned_size,
223 		     KASAN_GLOBAL_REDZONE, false);
224 }
225 
226 void __asan_register_globals(struct kasan_global *globals, size_t size)
227 {
228 	int i;
229 
230 	for (i = 0; i < size; i++)
231 		register_global(&globals[i]);
232 }
233 EXPORT_SYMBOL(__asan_register_globals);
234 
235 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
236 {
237 }
238 EXPORT_SYMBOL(__asan_unregister_globals);
239 
240 #define DEFINE_ASAN_LOAD_STORE(size)					\
241 	void __asan_load##size(unsigned long addr)			\
242 	{								\
243 		check_region_inline(addr, size, false, _RET_IP_);	\
244 	}								\
245 	EXPORT_SYMBOL(__asan_load##size);				\
246 	__alias(__asan_load##size)					\
247 	void __asan_load##size##_noabort(unsigned long);		\
248 	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
249 	void __asan_store##size(unsigned long addr)			\
250 	{								\
251 		check_region_inline(addr, size, true, _RET_IP_);	\
252 	}								\
253 	EXPORT_SYMBOL(__asan_store##size);				\
254 	__alias(__asan_store##size)					\
255 	void __asan_store##size##_noabort(unsigned long);		\
256 	EXPORT_SYMBOL(__asan_store##size##_noabort)
257 
258 DEFINE_ASAN_LOAD_STORE(1);
259 DEFINE_ASAN_LOAD_STORE(2);
260 DEFINE_ASAN_LOAD_STORE(4);
261 DEFINE_ASAN_LOAD_STORE(8);
262 DEFINE_ASAN_LOAD_STORE(16);
263 
264 void __asan_loadN(unsigned long addr, size_t size)
265 {
266 	kasan_check_range(addr, size, false, _RET_IP_);
267 }
268 EXPORT_SYMBOL(__asan_loadN);
269 
270 __alias(__asan_loadN)
271 void __asan_loadN_noabort(unsigned long, size_t);
272 EXPORT_SYMBOL(__asan_loadN_noabort);
273 
274 void __asan_storeN(unsigned long addr, size_t size)
275 {
276 	kasan_check_range(addr, size, true, _RET_IP_);
277 }
278 EXPORT_SYMBOL(__asan_storeN);
279 
280 __alias(__asan_storeN)
281 void __asan_storeN_noabort(unsigned long, size_t);
282 EXPORT_SYMBOL(__asan_storeN_noabort);
283 
284 /* to shut up compiler complaints */
285 void __asan_handle_no_return(void) {}
286 EXPORT_SYMBOL(__asan_handle_no_return);
287 
288 /* Emitted by compiler to poison alloca()ed objects. */
289 void __asan_alloca_poison(unsigned long addr, size_t size)
290 {
291 	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
292 	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
293 			rounded_up_size;
294 	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
295 
296 	const void *left_redzone = (const void *)(addr -
297 			KASAN_ALLOCA_REDZONE_SIZE);
298 	const void *right_redzone = (const void *)(addr + rounded_up_size);
299 
300 	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
301 
302 	kasan_unpoison((const void *)(addr + rounded_down_size),
303 			size - rounded_down_size, false);
304 	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
305 		     KASAN_ALLOCA_LEFT, false);
306 	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
307 		     KASAN_ALLOCA_RIGHT, false);
308 }
309 EXPORT_SYMBOL(__asan_alloca_poison);
310 
311 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
312 void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
313 {
314 	if (unlikely(!stack_top || stack_top > stack_bottom))
315 		return;
316 
317 	kasan_unpoison(stack_top, stack_bottom - stack_top, false);
318 }
319 EXPORT_SYMBOL(__asan_allocas_unpoison);
320 
321 /* Emitted by the compiler to [un]poison local variables. */
322 #define DEFINE_ASAN_SET_SHADOW(byte) \
323 	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
324 	{								\
325 		__memset((void *)addr, 0x##byte, size);			\
326 	}								\
327 	EXPORT_SYMBOL(__asan_set_shadow_##byte)
328 
329 DEFINE_ASAN_SET_SHADOW(00);
330 DEFINE_ASAN_SET_SHADOW(f1);
331 DEFINE_ASAN_SET_SHADOW(f2);
332 DEFINE_ASAN_SET_SHADOW(f3);
333 DEFINE_ASAN_SET_SHADOW(f5);
334 DEFINE_ASAN_SET_SHADOW(f8);
335 
336 /* Only allow cache merging when no per-object metadata is present. */
337 slab_flags_t kasan_never_merge(void)
338 {
339 	if (!kasan_requires_meta())
340 		return 0;
341 	return SLAB_KASAN;
342 }
343 
344 /*
345  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
346  * For larger allocations larger redzones are used.
347  */
348 static inline unsigned int optimal_redzone(unsigned int object_size)
349 {
350 	return
351 		object_size <= 64        - 16   ? 16 :
352 		object_size <= 128       - 32   ? 32 :
353 		object_size <= 512       - 64   ? 64 :
354 		object_size <= 4096      - 128  ? 128 :
355 		object_size <= (1 << 14) - 256  ? 256 :
356 		object_size <= (1 << 15) - 512  ? 512 :
357 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
358 }
359 
360 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
361 			  slab_flags_t *flags)
362 {
363 	unsigned int ok_size;
364 	unsigned int optimal_size;
365 
366 	if (!kasan_requires_meta())
367 		return;
368 
369 	/*
370 	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
371 	 * and that thus have per-object metadata.
372 	 * Currently this flag is used in two places:
373 	 * 1. In slab_ksize() to account for per-object metadata when
374 	 *    calculating the size of the accessible memory within the object.
375 	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
376 	 *    caches with per-object metadata.
377 	 */
378 	*flags |= SLAB_KASAN;
379 
380 	ok_size = *size;
381 
382 	/* Add alloc meta into redzone. */
383 	cache->kasan_info.alloc_meta_offset = *size;
384 	*size += sizeof(struct kasan_alloc_meta);
385 
386 	/*
387 	 * If alloc meta doesn't fit, don't add it.
388 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
389 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
390 	 * larger sizes.
391 	 */
392 	if (*size > KMALLOC_MAX_SIZE) {
393 		cache->kasan_info.alloc_meta_offset = 0;
394 		*size = ok_size;
395 		/* Continue, since free meta might still fit. */
396 	}
397 
398 	/*
399 	 * Add free meta into redzone when it's not possible to store
400 	 * it in the object. This is the case when:
401 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
402 	 *    be touched after it was freed, or
403 	 * 2. Object has a constructor, which means it's expected to
404 	 *    retain its content until the next allocation, or
405 	 * 3. Object is too small.
406 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
407 	 */
408 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
409 	    cache->object_size < sizeof(struct kasan_free_meta)) {
410 		ok_size = *size;
411 
412 		cache->kasan_info.free_meta_offset = *size;
413 		*size += sizeof(struct kasan_free_meta);
414 
415 		/* If free meta doesn't fit, don't add it. */
416 		if (*size > KMALLOC_MAX_SIZE) {
417 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
418 			*size = ok_size;
419 		}
420 	}
421 
422 	/* Calculate size with optimal redzone. */
423 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
424 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
425 	if (optimal_size > KMALLOC_MAX_SIZE)
426 		optimal_size = KMALLOC_MAX_SIZE;
427 	/* Use optimal size if the size with added metas is not large enough. */
428 	if (*size < optimal_size)
429 		*size = optimal_size;
430 }
431 
432 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
433 					      const void *object)
434 {
435 	if (!cache->kasan_info.alloc_meta_offset)
436 		return NULL;
437 	return (void *)object + cache->kasan_info.alloc_meta_offset;
438 }
439 
440 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
441 					    const void *object)
442 {
443 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
444 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
445 		return NULL;
446 	return (void *)object + cache->kasan_info.free_meta_offset;
447 }
448 
449 void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
450 {
451 	struct kasan_alloc_meta *alloc_meta;
452 
453 	alloc_meta = kasan_get_alloc_meta(cache, object);
454 	if (alloc_meta)
455 		__memset(alloc_meta, 0, sizeof(*alloc_meta));
456 }
457 
458 size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
459 {
460 	struct kasan_cache *info = &cache->kasan_info;
461 
462 	if (!kasan_requires_meta())
463 		return 0;
464 
465 	if (in_object)
466 		return (info->free_meta_offset ?
467 			0 : sizeof(struct kasan_free_meta));
468 	else
469 		return (info->alloc_meta_offset ?
470 			sizeof(struct kasan_alloc_meta) : 0) +
471 			((info->free_meta_offset &&
472 			info->free_meta_offset != KASAN_NO_FREE_META) ?
473 			sizeof(struct kasan_free_meta) : 0);
474 }
475 
476 static void __kasan_record_aux_stack(void *addr, bool can_alloc)
477 {
478 	struct slab *slab = kasan_addr_to_slab(addr);
479 	struct kmem_cache *cache;
480 	struct kasan_alloc_meta *alloc_meta;
481 	void *object;
482 
483 	if (is_kfence_address(addr) || !slab)
484 		return;
485 
486 	cache = slab->slab_cache;
487 	object = nearest_obj(cache, slab, addr);
488 	alloc_meta = kasan_get_alloc_meta(cache, object);
489 	if (!alloc_meta)
490 		return;
491 
492 	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
493 	alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT, can_alloc);
494 }
495 
496 void kasan_record_aux_stack(void *addr)
497 {
498 	return __kasan_record_aux_stack(addr, true);
499 }
500 
501 void kasan_record_aux_stack_noalloc(void *addr)
502 {
503 	return __kasan_record_aux_stack(addr, false);
504 }
505 
506 void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
507 {
508 	struct kasan_alloc_meta *alloc_meta;
509 
510 	alloc_meta = kasan_get_alloc_meta(cache, object);
511 	if (alloc_meta)
512 		kasan_set_track(&alloc_meta->alloc_track, flags);
513 }
514 
515 void kasan_save_free_info(struct kmem_cache *cache, void *object)
516 {
517 	struct kasan_free_meta *free_meta;
518 
519 	free_meta = kasan_get_free_meta(cache, object);
520 	if (!free_meta)
521 		return;
522 
523 	kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
524 	/* The object was freed and has free track set. */
525 	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
526 }
527