xref: /openbmc/linux/mm/kasan/common.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #define __KASAN_INTERNAL
18 
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/slab.h>
34 #include <linux/stacktrace.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/vmalloc.h>
38 #include <linux/bug.h>
39 
40 #include "kasan.h"
41 #include "../slab.h"
42 
43 static inline int in_irqentry_text(unsigned long ptr)
44 {
45 	return (ptr >= (unsigned long)&__irqentry_text_start &&
46 		ptr < (unsigned long)&__irqentry_text_end) ||
47 		(ptr >= (unsigned long)&__softirqentry_text_start &&
48 		 ptr < (unsigned long)&__softirqentry_text_end);
49 }
50 
51 static inline void filter_irq_stacks(struct stack_trace *trace)
52 {
53 	int i;
54 
55 	if (!trace->nr_entries)
56 		return;
57 	for (i = 0; i < trace->nr_entries; i++)
58 		if (in_irqentry_text(trace->entries[i])) {
59 			/* Include the irqentry function into the stack. */
60 			trace->nr_entries = i + 1;
61 			break;
62 		}
63 }
64 
65 static inline depot_stack_handle_t save_stack(gfp_t flags)
66 {
67 	unsigned long entries[KASAN_STACK_DEPTH];
68 	struct stack_trace trace = {
69 		.nr_entries = 0,
70 		.entries = entries,
71 		.max_entries = KASAN_STACK_DEPTH,
72 		.skip = 0
73 	};
74 
75 	save_stack_trace(&trace);
76 	filter_irq_stacks(&trace);
77 	if (trace.nr_entries != 0 &&
78 	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
79 		trace.nr_entries--;
80 
81 	return depot_save_stack(&trace, flags);
82 }
83 
84 static inline void set_track(struct kasan_track *track, gfp_t flags)
85 {
86 	track->pid = current->pid;
87 	track->stack = save_stack(flags);
88 }
89 
90 void kasan_enable_current(void)
91 {
92 	current->kasan_depth++;
93 }
94 
95 void kasan_disable_current(void)
96 {
97 	current->kasan_depth--;
98 }
99 
100 void kasan_check_read(const volatile void *p, unsigned int size)
101 {
102 	check_memory_region((unsigned long)p, size, false, _RET_IP_);
103 }
104 EXPORT_SYMBOL(kasan_check_read);
105 
106 void kasan_check_write(const volatile void *p, unsigned int size)
107 {
108 	check_memory_region((unsigned long)p, size, true, _RET_IP_);
109 }
110 EXPORT_SYMBOL(kasan_check_write);
111 
112 #undef memset
113 void *memset(void *addr, int c, size_t len)
114 {
115 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
116 
117 	return __memset(addr, c, len);
118 }
119 
120 #undef memmove
121 void *memmove(void *dest, const void *src, size_t len)
122 {
123 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
124 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
125 
126 	return __memmove(dest, src, len);
127 }
128 
129 #undef memcpy
130 void *memcpy(void *dest, const void *src, size_t len)
131 {
132 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
133 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
134 
135 	return __memcpy(dest, src, len);
136 }
137 
138 /*
139  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
140  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
141  */
142 void kasan_poison_shadow(const void *address, size_t size, u8 value)
143 {
144 	void *shadow_start, *shadow_end;
145 
146 	/*
147 	 * Perform shadow offset calculation based on untagged address, as
148 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
149 	 * addresses to this function.
150 	 */
151 	address = reset_tag(address);
152 
153 	shadow_start = kasan_mem_to_shadow(address);
154 	shadow_end = kasan_mem_to_shadow(address + size);
155 
156 	__memset(shadow_start, value, shadow_end - shadow_start);
157 }
158 
159 void kasan_unpoison_shadow(const void *address, size_t size)
160 {
161 	u8 tag = get_tag(address);
162 
163 	/*
164 	 * Perform shadow offset calculation based on untagged address, as
165 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
166 	 * addresses to this function.
167 	 */
168 	address = reset_tag(address);
169 
170 	kasan_poison_shadow(address, size, tag);
171 
172 	if (size & KASAN_SHADOW_MASK) {
173 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
174 
175 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
176 			*shadow = tag;
177 		else
178 			*shadow = size & KASAN_SHADOW_MASK;
179 	}
180 }
181 
182 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
183 {
184 	void *base = task_stack_page(task);
185 	size_t size = sp - base;
186 
187 	kasan_unpoison_shadow(base, size);
188 }
189 
190 /* Unpoison the entire stack for a task. */
191 void kasan_unpoison_task_stack(struct task_struct *task)
192 {
193 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
194 }
195 
196 /* Unpoison the stack for the current task beyond a watermark sp value. */
197 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
198 {
199 	/*
200 	 * Calculate the task stack base address.  Avoid using 'current'
201 	 * because this function is called by early resume code which hasn't
202 	 * yet set up the percpu register (%gs).
203 	 */
204 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
205 
206 	kasan_unpoison_shadow(base, watermark - base);
207 }
208 
209 /*
210  * Clear all poison for the region between the current SP and a provided
211  * watermark value, as is sometimes required prior to hand-crafted asm function
212  * returns in the middle of functions.
213  */
214 void kasan_unpoison_stack_above_sp_to(const void *watermark)
215 {
216 	const void *sp = __builtin_frame_address(0);
217 	size_t size = watermark - sp;
218 
219 	if (WARN_ON(sp > watermark))
220 		return;
221 	kasan_unpoison_shadow(sp, size);
222 }
223 
224 void kasan_alloc_pages(struct page *page, unsigned int order)
225 {
226 	u8 tag;
227 	unsigned long i;
228 
229 	if (unlikely(PageHighMem(page)))
230 		return;
231 
232 	tag = random_tag();
233 	for (i = 0; i < (1 << order); i++)
234 		page_kasan_tag_set(page + i, tag);
235 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
236 }
237 
238 void kasan_free_pages(struct page *page, unsigned int order)
239 {
240 	if (likely(!PageHighMem(page)))
241 		kasan_poison_shadow(page_address(page),
242 				PAGE_SIZE << order,
243 				KASAN_FREE_PAGE);
244 }
245 
246 /*
247  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
248  * For larger allocations larger redzones are used.
249  */
250 static inline unsigned int optimal_redzone(unsigned int object_size)
251 {
252 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
253 		return 0;
254 
255 	return
256 		object_size <= 64        - 16   ? 16 :
257 		object_size <= 128       - 32   ? 32 :
258 		object_size <= 512       - 64   ? 64 :
259 		object_size <= 4096      - 128  ? 128 :
260 		object_size <= (1 << 14) - 256  ? 256 :
261 		object_size <= (1 << 15) - 512  ? 512 :
262 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
263 }
264 
265 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
266 			slab_flags_t *flags)
267 {
268 	unsigned int orig_size = *size;
269 	unsigned int redzone_size;
270 	int redzone_adjust;
271 
272 	/* Add alloc meta. */
273 	cache->kasan_info.alloc_meta_offset = *size;
274 	*size += sizeof(struct kasan_alloc_meta);
275 
276 	/* Add free meta. */
277 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
278 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
279 	     cache->object_size < sizeof(struct kasan_free_meta))) {
280 		cache->kasan_info.free_meta_offset = *size;
281 		*size += sizeof(struct kasan_free_meta);
282 	}
283 
284 	redzone_size = optimal_redzone(cache->object_size);
285 	redzone_adjust = redzone_size -	(*size - cache->object_size);
286 	if (redzone_adjust > 0)
287 		*size += redzone_adjust;
288 
289 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
290 			max(*size, cache->object_size + redzone_size));
291 
292 	/*
293 	 * If the metadata doesn't fit, don't enable KASAN at all.
294 	 */
295 	if (*size <= cache->kasan_info.alloc_meta_offset ||
296 			*size <= cache->kasan_info.free_meta_offset) {
297 		cache->kasan_info.alloc_meta_offset = 0;
298 		cache->kasan_info.free_meta_offset = 0;
299 		*size = orig_size;
300 		return;
301 	}
302 
303 	*flags |= SLAB_KASAN;
304 }
305 
306 size_t kasan_metadata_size(struct kmem_cache *cache)
307 {
308 	return (cache->kasan_info.alloc_meta_offset ?
309 		sizeof(struct kasan_alloc_meta) : 0) +
310 		(cache->kasan_info.free_meta_offset ?
311 		sizeof(struct kasan_free_meta) : 0);
312 }
313 
314 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
315 					const void *object)
316 {
317 	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
318 	return (void *)object + cache->kasan_info.alloc_meta_offset;
319 }
320 
321 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
322 				      const void *object)
323 {
324 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
325 	return (void *)object + cache->kasan_info.free_meta_offset;
326 }
327 
328 void kasan_poison_slab(struct page *page)
329 {
330 	unsigned long i;
331 
332 	for (i = 0; i < (1 << compound_order(page)); i++)
333 		page_kasan_tag_reset(page + i);
334 	kasan_poison_shadow(page_address(page),
335 			PAGE_SIZE << compound_order(page),
336 			KASAN_KMALLOC_REDZONE);
337 }
338 
339 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
340 {
341 	kasan_unpoison_shadow(object, cache->object_size);
342 }
343 
344 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
345 {
346 	kasan_poison_shadow(object,
347 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
348 			KASAN_KMALLOC_REDZONE);
349 }
350 
351 /*
352  * This function assigns a tag to an object considering the following:
353  * 1. A cache might have a constructor, which might save a pointer to a slab
354  *    object somewhere (e.g. in the object itself). We preassign a tag for
355  *    each object in caches with constructors during slab creation and reuse
356  *    the same tag each time a particular object is allocated.
357  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
358  *    accessed after being freed. We preassign tags for objects in these
359  *    caches as well.
360  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
361  *    is stored as an array of indexes instead of a linked list. Assign tags
362  *    based on objects indexes, so that objects that are next to each other
363  *    get different tags.
364  */
365 static u8 assign_tag(struct kmem_cache *cache, const void *object,
366 			bool init, bool keep_tag)
367 {
368 	/*
369 	 * 1. When an object is kmalloc()'ed, two hooks are called:
370 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
371 	 *    tag only in the first one.
372 	 * 2. We reuse the same tag for krealloc'ed objects.
373 	 */
374 	if (keep_tag)
375 		return get_tag(object);
376 
377 	/*
378 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
379 	 * set, assign a tag when the object is being allocated (init == false).
380 	 */
381 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
382 		return init ? KASAN_TAG_KERNEL : random_tag();
383 
384 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
385 #ifdef CONFIG_SLAB
386 	/* For SLAB assign tags based on the object index in the freelist. */
387 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
388 #else
389 	/*
390 	 * For SLUB assign a random tag during slab creation, otherwise reuse
391 	 * the already assigned tag.
392 	 */
393 	return init ? random_tag() : get_tag(object);
394 #endif
395 }
396 
397 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
398 						const void *object)
399 {
400 	struct kasan_alloc_meta *alloc_info;
401 
402 	if (!(cache->flags & SLAB_KASAN))
403 		return (void *)object;
404 
405 	alloc_info = get_alloc_info(cache, object);
406 	__memset(alloc_info, 0, sizeof(*alloc_info));
407 
408 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
409 		object = set_tag(object,
410 				assign_tag(cache, object, true, false));
411 
412 	return (void *)object;
413 }
414 
415 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
416 {
417 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
418 		return shadow_byte < 0 ||
419 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
420 	else
421 		return tag != (u8)shadow_byte;
422 }
423 
424 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
425 			      unsigned long ip, bool quarantine)
426 {
427 	s8 shadow_byte;
428 	u8 tag;
429 	void *tagged_object;
430 	unsigned long rounded_up_size;
431 
432 	tag = get_tag(object);
433 	tagged_object = object;
434 	object = reset_tag(object);
435 
436 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
437 	    object)) {
438 		kasan_report_invalid_free(tagged_object, ip);
439 		return true;
440 	}
441 
442 	/* RCU slabs could be legally used after free within the RCU period */
443 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
444 		return false;
445 
446 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
447 	if (shadow_invalid(tag, shadow_byte)) {
448 		kasan_report_invalid_free(tagged_object, ip);
449 		return true;
450 	}
451 
452 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
453 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
454 
455 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
456 			unlikely(!(cache->flags & SLAB_KASAN)))
457 		return false;
458 
459 	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
460 	quarantine_put(get_free_info(cache, object), cache);
461 
462 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
463 }
464 
465 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
466 {
467 	return __kasan_slab_free(cache, object, ip, true);
468 }
469 
470 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
471 				size_t size, gfp_t flags, bool keep_tag)
472 {
473 	unsigned long redzone_start;
474 	unsigned long redzone_end;
475 	u8 tag;
476 
477 	if (gfpflags_allow_blocking(flags))
478 		quarantine_reduce();
479 
480 	if (unlikely(object == NULL))
481 		return NULL;
482 
483 	redzone_start = round_up((unsigned long)(object + size),
484 				KASAN_SHADOW_SCALE_SIZE);
485 	redzone_end = round_up((unsigned long)object + cache->object_size,
486 				KASAN_SHADOW_SCALE_SIZE);
487 
488 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
489 		tag = assign_tag(cache, object, false, keep_tag);
490 
491 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
492 	kasan_unpoison_shadow(set_tag(object, tag), size);
493 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
494 		KASAN_KMALLOC_REDZONE);
495 
496 	if (cache->flags & SLAB_KASAN)
497 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
498 
499 	return set_tag(object, tag);
500 }
501 
502 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
503 					gfp_t flags)
504 {
505 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
506 }
507 
508 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
509 				size_t size, gfp_t flags)
510 {
511 	return __kasan_kmalloc(cache, object, size, flags, true);
512 }
513 EXPORT_SYMBOL(kasan_kmalloc);
514 
515 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
516 						gfp_t flags)
517 {
518 	struct page *page;
519 	unsigned long redzone_start;
520 	unsigned long redzone_end;
521 
522 	if (gfpflags_allow_blocking(flags))
523 		quarantine_reduce();
524 
525 	if (unlikely(ptr == NULL))
526 		return NULL;
527 
528 	page = virt_to_page(ptr);
529 	redzone_start = round_up((unsigned long)(ptr + size),
530 				KASAN_SHADOW_SCALE_SIZE);
531 	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
532 
533 	kasan_unpoison_shadow(ptr, size);
534 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
535 		KASAN_PAGE_REDZONE);
536 
537 	return (void *)ptr;
538 }
539 
540 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
541 {
542 	struct page *page;
543 
544 	if (unlikely(object == ZERO_SIZE_PTR))
545 		return (void *)object;
546 
547 	page = virt_to_head_page(object);
548 
549 	if (unlikely(!PageSlab(page)))
550 		return kasan_kmalloc_large(object, size, flags);
551 	else
552 		return __kasan_kmalloc(page->slab_cache, object, size,
553 						flags, true);
554 }
555 
556 void kasan_poison_kfree(void *ptr, unsigned long ip)
557 {
558 	struct page *page;
559 
560 	page = virt_to_head_page(ptr);
561 
562 	if (unlikely(!PageSlab(page))) {
563 		if (ptr != page_address(page)) {
564 			kasan_report_invalid_free(ptr, ip);
565 			return;
566 		}
567 		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
568 				KASAN_FREE_PAGE);
569 	} else {
570 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
571 	}
572 }
573 
574 void kasan_kfree_large(void *ptr, unsigned long ip)
575 {
576 	if (ptr != page_address(virt_to_head_page(ptr)))
577 		kasan_report_invalid_free(ptr, ip);
578 	/* The object will be poisoned by page_alloc. */
579 }
580 
581 int kasan_module_alloc(void *addr, size_t size)
582 {
583 	void *ret;
584 	size_t scaled_size;
585 	size_t shadow_size;
586 	unsigned long shadow_start;
587 
588 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
589 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
590 	shadow_size = round_up(scaled_size, PAGE_SIZE);
591 
592 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
593 		return -EINVAL;
594 
595 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
596 			shadow_start + shadow_size,
597 			GFP_KERNEL,
598 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
599 			__builtin_return_address(0));
600 
601 	if (ret) {
602 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
603 		find_vm_area(addr)->flags |= VM_KASAN;
604 		kmemleak_ignore(ret);
605 		return 0;
606 	}
607 
608 	return -ENOMEM;
609 }
610 
611 void kasan_free_shadow(const struct vm_struct *vm)
612 {
613 	if (vm->flags & VM_KASAN)
614 		vfree(kasan_mem_to_shadow(vm->addr));
615 }
616 
617 #ifdef CONFIG_MEMORY_HOTPLUG
618 static bool shadow_mapped(unsigned long addr)
619 {
620 	pgd_t *pgd = pgd_offset_k(addr);
621 	p4d_t *p4d;
622 	pud_t *pud;
623 	pmd_t *pmd;
624 	pte_t *pte;
625 
626 	if (pgd_none(*pgd))
627 		return false;
628 	p4d = p4d_offset(pgd, addr);
629 	if (p4d_none(*p4d))
630 		return false;
631 	pud = pud_offset(p4d, addr);
632 	if (pud_none(*pud))
633 		return false;
634 
635 	/*
636 	 * We can't use pud_large() or pud_huge(), the first one is
637 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
638 	 * pud_bad(), if pud is bad then it's bad because it's huge.
639 	 */
640 	if (pud_bad(*pud))
641 		return true;
642 	pmd = pmd_offset(pud, addr);
643 	if (pmd_none(*pmd))
644 		return false;
645 
646 	if (pmd_bad(*pmd))
647 		return true;
648 	pte = pte_offset_kernel(pmd, addr);
649 	return !pte_none(*pte);
650 }
651 
652 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
653 			unsigned long action, void *data)
654 {
655 	struct memory_notify *mem_data = data;
656 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
657 	unsigned long shadow_end, shadow_size;
658 
659 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
660 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
661 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
662 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
663 	shadow_end = shadow_start + shadow_size;
664 
665 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
666 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
667 		return NOTIFY_BAD;
668 
669 	switch (action) {
670 	case MEM_GOING_ONLINE: {
671 		void *ret;
672 
673 		/*
674 		 * If shadow is mapped already than it must have been mapped
675 		 * during the boot. This could happen if we onlining previously
676 		 * offlined memory.
677 		 */
678 		if (shadow_mapped(shadow_start))
679 			return NOTIFY_OK;
680 
681 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
682 					shadow_end, GFP_KERNEL,
683 					PAGE_KERNEL, VM_NO_GUARD,
684 					pfn_to_nid(mem_data->start_pfn),
685 					__builtin_return_address(0));
686 		if (!ret)
687 			return NOTIFY_BAD;
688 
689 		kmemleak_ignore(ret);
690 		return NOTIFY_OK;
691 	}
692 	case MEM_CANCEL_ONLINE:
693 	case MEM_OFFLINE: {
694 		struct vm_struct *vm;
695 
696 		/*
697 		 * shadow_start was either mapped during boot by kasan_init()
698 		 * or during memory online by __vmalloc_node_range().
699 		 * In the latter case we can use vfree() to free shadow.
700 		 * Non-NULL result of the find_vm_area() will tell us if
701 		 * that was the second case.
702 		 *
703 		 * Currently it's not possible to free shadow mapped
704 		 * during boot by kasan_init(). It's because the code
705 		 * to do that hasn't been written yet. So we'll just
706 		 * leak the memory.
707 		 */
708 		vm = find_vm_area((void *)shadow_start);
709 		if (vm)
710 			vfree((void *)shadow_start);
711 	}
712 	}
713 
714 	return NOTIFY_OK;
715 }
716 
717 static int __init kasan_memhotplug_init(void)
718 {
719 	hotplug_memory_notifier(kasan_mem_notifier, 0);
720 
721 	return 0;
722 }
723 
724 core_initcall(kasan_memhotplug_init);
725 #endif
726