1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #define __KASAN_INTERNAL 18 19 #include <linux/export.h> 20 #include <linux/interrupt.h> 21 #include <linux/init.h> 22 #include <linux/kasan.h> 23 #include <linux/kernel.h> 24 #include <linux/kmemleak.h> 25 #include <linux/linkage.h> 26 #include <linux/memblock.h> 27 #include <linux/memory.h> 28 #include <linux/mm.h> 29 #include <linux/module.h> 30 #include <linux/printk.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/slab.h> 34 #include <linux/stacktrace.h> 35 #include <linux/string.h> 36 #include <linux/types.h> 37 #include <linux/vmalloc.h> 38 #include <linux/bug.h> 39 40 #include "kasan.h" 41 #include "../slab.h" 42 43 static inline int in_irqentry_text(unsigned long ptr) 44 { 45 return (ptr >= (unsigned long)&__irqentry_text_start && 46 ptr < (unsigned long)&__irqentry_text_end) || 47 (ptr >= (unsigned long)&__softirqentry_text_start && 48 ptr < (unsigned long)&__softirqentry_text_end); 49 } 50 51 static inline void filter_irq_stacks(struct stack_trace *trace) 52 { 53 int i; 54 55 if (!trace->nr_entries) 56 return; 57 for (i = 0; i < trace->nr_entries; i++) 58 if (in_irqentry_text(trace->entries[i])) { 59 /* Include the irqentry function into the stack. */ 60 trace->nr_entries = i + 1; 61 break; 62 } 63 } 64 65 static inline depot_stack_handle_t save_stack(gfp_t flags) 66 { 67 unsigned long entries[KASAN_STACK_DEPTH]; 68 struct stack_trace trace = { 69 .nr_entries = 0, 70 .entries = entries, 71 .max_entries = KASAN_STACK_DEPTH, 72 .skip = 0 73 }; 74 75 save_stack_trace(&trace); 76 filter_irq_stacks(&trace); 77 if (trace.nr_entries != 0 && 78 trace.entries[trace.nr_entries-1] == ULONG_MAX) 79 trace.nr_entries--; 80 81 return depot_save_stack(&trace, flags); 82 } 83 84 static inline void set_track(struct kasan_track *track, gfp_t flags) 85 { 86 track->pid = current->pid; 87 track->stack = save_stack(flags); 88 } 89 90 void kasan_enable_current(void) 91 { 92 current->kasan_depth++; 93 } 94 95 void kasan_disable_current(void) 96 { 97 current->kasan_depth--; 98 } 99 100 void kasan_check_read(const volatile void *p, unsigned int size) 101 { 102 check_memory_region((unsigned long)p, size, false, _RET_IP_); 103 } 104 EXPORT_SYMBOL(kasan_check_read); 105 106 void kasan_check_write(const volatile void *p, unsigned int size) 107 { 108 check_memory_region((unsigned long)p, size, true, _RET_IP_); 109 } 110 EXPORT_SYMBOL(kasan_check_write); 111 112 #undef memset 113 void *memset(void *addr, int c, size_t len) 114 { 115 check_memory_region((unsigned long)addr, len, true, _RET_IP_); 116 117 return __memset(addr, c, len); 118 } 119 120 #undef memmove 121 void *memmove(void *dest, const void *src, size_t len) 122 { 123 check_memory_region((unsigned long)src, len, false, _RET_IP_); 124 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 125 126 return __memmove(dest, src, len); 127 } 128 129 #undef memcpy 130 void *memcpy(void *dest, const void *src, size_t len) 131 { 132 check_memory_region((unsigned long)src, len, false, _RET_IP_); 133 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 134 135 return __memcpy(dest, src, len); 136 } 137 138 /* 139 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 140 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 141 */ 142 void kasan_poison_shadow(const void *address, size_t size, u8 value) 143 { 144 void *shadow_start, *shadow_end; 145 146 /* 147 * Perform shadow offset calculation based on untagged address, as 148 * some of the callers (e.g. kasan_poison_object_data) pass tagged 149 * addresses to this function. 150 */ 151 address = reset_tag(address); 152 153 shadow_start = kasan_mem_to_shadow(address); 154 shadow_end = kasan_mem_to_shadow(address + size); 155 156 __memset(shadow_start, value, shadow_end - shadow_start); 157 } 158 159 void kasan_unpoison_shadow(const void *address, size_t size) 160 { 161 u8 tag = get_tag(address); 162 163 /* 164 * Perform shadow offset calculation based on untagged address, as 165 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 166 * addresses to this function. 167 */ 168 address = reset_tag(address); 169 170 kasan_poison_shadow(address, size, tag); 171 172 if (size & KASAN_SHADOW_MASK) { 173 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 174 175 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 176 *shadow = tag; 177 else 178 *shadow = size & KASAN_SHADOW_MASK; 179 } 180 } 181 182 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 183 { 184 void *base = task_stack_page(task); 185 size_t size = sp - base; 186 187 kasan_unpoison_shadow(base, size); 188 } 189 190 /* Unpoison the entire stack for a task. */ 191 void kasan_unpoison_task_stack(struct task_struct *task) 192 { 193 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 194 } 195 196 /* Unpoison the stack for the current task beyond a watermark sp value. */ 197 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 198 { 199 /* 200 * Calculate the task stack base address. Avoid using 'current' 201 * because this function is called by early resume code which hasn't 202 * yet set up the percpu register (%gs). 203 */ 204 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 205 206 kasan_unpoison_shadow(base, watermark - base); 207 } 208 209 /* 210 * Clear all poison for the region between the current SP and a provided 211 * watermark value, as is sometimes required prior to hand-crafted asm function 212 * returns in the middle of functions. 213 */ 214 void kasan_unpoison_stack_above_sp_to(const void *watermark) 215 { 216 const void *sp = __builtin_frame_address(0); 217 size_t size = watermark - sp; 218 219 if (WARN_ON(sp > watermark)) 220 return; 221 kasan_unpoison_shadow(sp, size); 222 } 223 224 void kasan_alloc_pages(struct page *page, unsigned int order) 225 { 226 u8 tag; 227 unsigned long i; 228 229 if (unlikely(PageHighMem(page))) 230 return; 231 232 tag = random_tag(); 233 for (i = 0; i < (1 << order); i++) 234 page_kasan_tag_set(page + i, tag); 235 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 236 } 237 238 void kasan_free_pages(struct page *page, unsigned int order) 239 { 240 if (likely(!PageHighMem(page))) 241 kasan_poison_shadow(page_address(page), 242 PAGE_SIZE << order, 243 KASAN_FREE_PAGE); 244 } 245 246 /* 247 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 248 * For larger allocations larger redzones are used. 249 */ 250 static inline unsigned int optimal_redzone(unsigned int object_size) 251 { 252 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 253 return 0; 254 255 return 256 object_size <= 64 - 16 ? 16 : 257 object_size <= 128 - 32 ? 32 : 258 object_size <= 512 - 64 ? 64 : 259 object_size <= 4096 - 128 ? 128 : 260 object_size <= (1 << 14) - 256 ? 256 : 261 object_size <= (1 << 15) - 512 ? 512 : 262 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 263 } 264 265 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 266 slab_flags_t *flags) 267 { 268 unsigned int orig_size = *size; 269 unsigned int redzone_size; 270 int redzone_adjust; 271 272 /* Add alloc meta. */ 273 cache->kasan_info.alloc_meta_offset = *size; 274 *size += sizeof(struct kasan_alloc_meta); 275 276 /* Add free meta. */ 277 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 278 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 279 cache->object_size < sizeof(struct kasan_free_meta))) { 280 cache->kasan_info.free_meta_offset = *size; 281 *size += sizeof(struct kasan_free_meta); 282 } 283 284 redzone_size = optimal_redzone(cache->object_size); 285 redzone_adjust = redzone_size - (*size - cache->object_size); 286 if (redzone_adjust > 0) 287 *size += redzone_adjust; 288 289 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 290 max(*size, cache->object_size + redzone_size)); 291 292 /* 293 * If the metadata doesn't fit, don't enable KASAN at all. 294 */ 295 if (*size <= cache->kasan_info.alloc_meta_offset || 296 *size <= cache->kasan_info.free_meta_offset) { 297 cache->kasan_info.alloc_meta_offset = 0; 298 cache->kasan_info.free_meta_offset = 0; 299 *size = orig_size; 300 return; 301 } 302 303 *flags |= SLAB_KASAN; 304 } 305 306 size_t kasan_metadata_size(struct kmem_cache *cache) 307 { 308 return (cache->kasan_info.alloc_meta_offset ? 309 sizeof(struct kasan_alloc_meta) : 0) + 310 (cache->kasan_info.free_meta_offset ? 311 sizeof(struct kasan_free_meta) : 0); 312 } 313 314 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 315 const void *object) 316 { 317 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); 318 return (void *)object + cache->kasan_info.alloc_meta_offset; 319 } 320 321 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 322 const void *object) 323 { 324 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 325 return (void *)object + cache->kasan_info.free_meta_offset; 326 } 327 328 void kasan_poison_slab(struct page *page) 329 { 330 unsigned long i; 331 332 for (i = 0; i < (1 << compound_order(page)); i++) 333 page_kasan_tag_reset(page + i); 334 kasan_poison_shadow(page_address(page), 335 PAGE_SIZE << compound_order(page), 336 KASAN_KMALLOC_REDZONE); 337 } 338 339 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 340 { 341 kasan_unpoison_shadow(object, cache->object_size); 342 } 343 344 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 345 { 346 kasan_poison_shadow(object, 347 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 348 KASAN_KMALLOC_REDZONE); 349 } 350 351 /* 352 * This function assigns a tag to an object considering the following: 353 * 1. A cache might have a constructor, which might save a pointer to a slab 354 * object somewhere (e.g. in the object itself). We preassign a tag for 355 * each object in caches with constructors during slab creation and reuse 356 * the same tag each time a particular object is allocated. 357 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 358 * accessed after being freed. We preassign tags for objects in these 359 * caches as well. 360 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 361 * is stored as an array of indexes instead of a linked list. Assign tags 362 * based on objects indexes, so that objects that are next to each other 363 * get different tags. 364 */ 365 static u8 assign_tag(struct kmem_cache *cache, const void *object, 366 bool init, bool keep_tag) 367 { 368 /* 369 * 1. When an object is kmalloc()'ed, two hooks are called: 370 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 371 * tag only in the first one. 372 * 2. We reuse the same tag for krealloc'ed objects. 373 */ 374 if (keep_tag) 375 return get_tag(object); 376 377 /* 378 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 379 * set, assign a tag when the object is being allocated (init == false). 380 */ 381 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 382 return init ? KASAN_TAG_KERNEL : random_tag(); 383 384 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 385 #ifdef CONFIG_SLAB 386 /* For SLAB assign tags based on the object index in the freelist. */ 387 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 388 #else 389 /* 390 * For SLUB assign a random tag during slab creation, otherwise reuse 391 * the already assigned tag. 392 */ 393 return init ? random_tag() : get_tag(object); 394 #endif 395 } 396 397 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 398 const void *object) 399 { 400 struct kasan_alloc_meta *alloc_info; 401 402 if (!(cache->flags & SLAB_KASAN)) 403 return (void *)object; 404 405 alloc_info = get_alloc_info(cache, object); 406 __memset(alloc_info, 0, sizeof(*alloc_info)); 407 408 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 409 object = set_tag(object, 410 assign_tag(cache, object, true, false)); 411 412 return (void *)object; 413 } 414 415 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 416 { 417 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 418 return shadow_byte < 0 || 419 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 420 else 421 return tag != (u8)shadow_byte; 422 } 423 424 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 425 unsigned long ip, bool quarantine) 426 { 427 s8 shadow_byte; 428 u8 tag; 429 void *tagged_object; 430 unsigned long rounded_up_size; 431 432 tag = get_tag(object); 433 tagged_object = object; 434 object = reset_tag(object); 435 436 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 437 object)) { 438 kasan_report_invalid_free(tagged_object, ip); 439 return true; 440 } 441 442 /* RCU slabs could be legally used after free within the RCU period */ 443 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 444 return false; 445 446 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 447 if (shadow_invalid(tag, shadow_byte)) { 448 kasan_report_invalid_free(tagged_object, ip); 449 return true; 450 } 451 452 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 453 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 454 455 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 456 unlikely(!(cache->flags & SLAB_KASAN))) 457 return false; 458 459 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); 460 quarantine_put(get_free_info(cache, object), cache); 461 462 return IS_ENABLED(CONFIG_KASAN_GENERIC); 463 } 464 465 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 466 { 467 return __kasan_slab_free(cache, object, ip, true); 468 } 469 470 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 471 size_t size, gfp_t flags, bool keep_tag) 472 { 473 unsigned long redzone_start; 474 unsigned long redzone_end; 475 u8 tag; 476 477 if (gfpflags_allow_blocking(flags)) 478 quarantine_reduce(); 479 480 if (unlikely(object == NULL)) 481 return NULL; 482 483 redzone_start = round_up((unsigned long)(object + size), 484 KASAN_SHADOW_SCALE_SIZE); 485 redzone_end = round_up((unsigned long)object + cache->object_size, 486 KASAN_SHADOW_SCALE_SIZE); 487 488 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 489 tag = assign_tag(cache, object, false, keep_tag); 490 491 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 492 kasan_unpoison_shadow(set_tag(object, tag), size); 493 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 494 KASAN_KMALLOC_REDZONE); 495 496 if (cache->flags & SLAB_KASAN) 497 set_track(&get_alloc_info(cache, object)->alloc_track, flags); 498 499 return set_tag(object, tag); 500 } 501 502 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 503 gfp_t flags) 504 { 505 return __kasan_kmalloc(cache, object, cache->object_size, flags, false); 506 } 507 508 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 509 size_t size, gfp_t flags) 510 { 511 return __kasan_kmalloc(cache, object, size, flags, true); 512 } 513 EXPORT_SYMBOL(kasan_kmalloc); 514 515 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 516 gfp_t flags) 517 { 518 struct page *page; 519 unsigned long redzone_start; 520 unsigned long redzone_end; 521 522 if (gfpflags_allow_blocking(flags)) 523 quarantine_reduce(); 524 525 if (unlikely(ptr == NULL)) 526 return NULL; 527 528 page = virt_to_page(ptr); 529 redzone_start = round_up((unsigned long)(ptr + size), 530 KASAN_SHADOW_SCALE_SIZE); 531 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); 532 533 kasan_unpoison_shadow(ptr, size); 534 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 535 KASAN_PAGE_REDZONE); 536 537 return (void *)ptr; 538 } 539 540 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 541 { 542 struct page *page; 543 544 if (unlikely(object == ZERO_SIZE_PTR)) 545 return (void *)object; 546 547 page = virt_to_head_page(object); 548 549 if (unlikely(!PageSlab(page))) 550 return kasan_kmalloc_large(object, size, flags); 551 else 552 return __kasan_kmalloc(page->slab_cache, object, size, 553 flags, true); 554 } 555 556 void kasan_poison_kfree(void *ptr, unsigned long ip) 557 { 558 struct page *page; 559 560 page = virt_to_head_page(ptr); 561 562 if (unlikely(!PageSlab(page))) { 563 if (ptr != page_address(page)) { 564 kasan_report_invalid_free(ptr, ip); 565 return; 566 } 567 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), 568 KASAN_FREE_PAGE); 569 } else { 570 __kasan_slab_free(page->slab_cache, ptr, ip, false); 571 } 572 } 573 574 void kasan_kfree_large(void *ptr, unsigned long ip) 575 { 576 if (ptr != page_address(virt_to_head_page(ptr))) 577 kasan_report_invalid_free(ptr, ip); 578 /* The object will be poisoned by page_alloc. */ 579 } 580 581 int kasan_module_alloc(void *addr, size_t size) 582 { 583 void *ret; 584 size_t scaled_size; 585 size_t shadow_size; 586 unsigned long shadow_start; 587 588 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 589 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 590 shadow_size = round_up(scaled_size, PAGE_SIZE); 591 592 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 593 return -EINVAL; 594 595 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 596 shadow_start + shadow_size, 597 GFP_KERNEL, 598 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 599 __builtin_return_address(0)); 600 601 if (ret) { 602 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 603 find_vm_area(addr)->flags |= VM_KASAN; 604 kmemleak_ignore(ret); 605 return 0; 606 } 607 608 return -ENOMEM; 609 } 610 611 void kasan_free_shadow(const struct vm_struct *vm) 612 { 613 if (vm->flags & VM_KASAN) 614 vfree(kasan_mem_to_shadow(vm->addr)); 615 } 616 617 #ifdef CONFIG_MEMORY_HOTPLUG 618 static bool shadow_mapped(unsigned long addr) 619 { 620 pgd_t *pgd = pgd_offset_k(addr); 621 p4d_t *p4d; 622 pud_t *pud; 623 pmd_t *pmd; 624 pte_t *pte; 625 626 if (pgd_none(*pgd)) 627 return false; 628 p4d = p4d_offset(pgd, addr); 629 if (p4d_none(*p4d)) 630 return false; 631 pud = pud_offset(p4d, addr); 632 if (pud_none(*pud)) 633 return false; 634 635 /* 636 * We can't use pud_large() or pud_huge(), the first one is 637 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 638 * pud_bad(), if pud is bad then it's bad because it's huge. 639 */ 640 if (pud_bad(*pud)) 641 return true; 642 pmd = pmd_offset(pud, addr); 643 if (pmd_none(*pmd)) 644 return false; 645 646 if (pmd_bad(*pmd)) 647 return true; 648 pte = pte_offset_kernel(pmd, addr); 649 return !pte_none(*pte); 650 } 651 652 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 653 unsigned long action, void *data) 654 { 655 struct memory_notify *mem_data = data; 656 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 657 unsigned long shadow_end, shadow_size; 658 659 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 660 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 661 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 662 shadow_size = nr_shadow_pages << PAGE_SHIFT; 663 shadow_end = shadow_start + shadow_size; 664 665 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 666 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 667 return NOTIFY_BAD; 668 669 switch (action) { 670 case MEM_GOING_ONLINE: { 671 void *ret; 672 673 /* 674 * If shadow is mapped already than it must have been mapped 675 * during the boot. This could happen if we onlining previously 676 * offlined memory. 677 */ 678 if (shadow_mapped(shadow_start)) 679 return NOTIFY_OK; 680 681 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 682 shadow_end, GFP_KERNEL, 683 PAGE_KERNEL, VM_NO_GUARD, 684 pfn_to_nid(mem_data->start_pfn), 685 __builtin_return_address(0)); 686 if (!ret) 687 return NOTIFY_BAD; 688 689 kmemleak_ignore(ret); 690 return NOTIFY_OK; 691 } 692 case MEM_CANCEL_ONLINE: 693 case MEM_OFFLINE: { 694 struct vm_struct *vm; 695 696 /* 697 * shadow_start was either mapped during boot by kasan_init() 698 * or during memory online by __vmalloc_node_range(). 699 * In the latter case we can use vfree() to free shadow. 700 * Non-NULL result of the find_vm_area() will tell us if 701 * that was the second case. 702 * 703 * Currently it's not possible to free shadow mapped 704 * during boot by kasan_init(). It's because the code 705 * to do that hasn't been written yet. So we'll just 706 * leak the memory. 707 */ 708 vm = find_vm_area((void *)shadow_start); 709 if (vm) 710 vfree((void *)shadow_start); 711 } 712 } 713 714 return NOTIFY_OK; 715 } 716 717 static int __init kasan_memhotplug_init(void) 718 { 719 hotplug_memory_notifier(kasan_mem_notifier, 0); 720 721 return 0; 722 } 723 724 core_initcall(kasan_memhotplug_init); 725 #endif 726