1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common generic and tag-based KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 * 15 */ 16 17 #include <linux/export.h> 18 #include <linux/interrupt.h> 19 #include <linux/init.h> 20 #include <linux/kasan.h> 21 #include <linux/kernel.h> 22 #include <linux/kmemleak.h> 23 #include <linux/linkage.h> 24 #include <linux/memblock.h> 25 #include <linux/memory.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/printk.h> 29 #include <linux/sched.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/slab.h> 32 #include <linux/stacktrace.h> 33 #include <linux/string.h> 34 #include <linux/types.h> 35 #include <linux/vmalloc.h> 36 #include <linux/bug.h> 37 #include <linux/uaccess.h> 38 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 42 #include "kasan.h" 43 #include "../slab.h" 44 45 static inline int in_irqentry_text(unsigned long ptr) 46 { 47 return (ptr >= (unsigned long)&__irqentry_text_start && 48 ptr < (unsigned long)&__irqentry_text_end) || 49 (ptr >= (unsigned long)&__softirqentry_text_start && 50 ptr < (unsigned long)&__softirqentry_text_end); 51 } 52 53 static inline unsigned int filter_irq_stacks(unsigned long *entries, 54 unsigned int nr_entries) 55 { 56 unsigned int i; 57 58 for (i = 0; i < nr_entries; i++) { 59 if (in_irqentry_text(entries[i])) { 60 /* Include the irqentry function into the stack. */ 61 return i + 1; 62 } 63 } 64 return nr_entries; 65 } 66 67 static inline depot_stack_handle_t save_stack(gfp_t flags) 68 { 69 unsigned long entries[KASAN_STACK_DEPTH]; 70 unsigned int nr_entries; 71 72 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 73 nr_entries = filter_irq_stacks(entries, nr_entries); 74 return stack_depot_save(entries, nr_entries, flags); 75 } 76 77 static inline void set_track(struct kasan_track *track, gfp_t flags) 78 { 79 track->pid = current->pid; 80 track->stack = save_stack(flags); 81 } 82 83 void kasan_enable_current(void) 84 { 85 current->kasan_depth++; 86 } 87 88 void kasan_disable_current(void) 89 { 90 current->kasan_depth--; 91 } 92 93 bool __kasan_check_read(const volatile void *p, unsigned int size) 94 { 95 return check_memory_region((unsigned long)p, size, false, _RET_IP_); 96 } 97 EXPORT_SYMBOL(__kasan_check_read); 98 99 bool __kasan_check_write(const volatile void *p, unsigned int size) 100 { 101 return check_memory_region((unsigned long)p, size, true, _RET_IP_); 102 } 103 EXPORT_SYMBOL(__kasan_check_write); 104 105 #undef memset 106 void *memset(void *addr, int c, size_t len) 107 { 108 check_memory_region((unsigned long)addr, len, true, _RET_IP_); 109 110 return __memset(addr, c, len); 111 } 112 113 #undef memmove 114 void *memmove(void *dest, const void *src, size_t len) 115 { 116 check_memory_region((unsigned long)src, len, false, _RET_IP_); 117 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 118 119 return __memmove(dest, src, len); 120 } 121 122 #undef memcpy 123 void *memcpy(void *dest, const void *src, size_t len) 124 { 125 check_memory_region((unsigned long)src, len, false, _RET_IP_); 126 check_memory_region((unsigned long)dest, len, true, _RET_IP_); 127 128 return __memcpy(dest, src, len); 129 } 130 131 /* 132 * Poisons the shadow memory for 'size' bytes starting from 'addr'. 133 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. 134 */ 135 void kasan_poison_shadow(const void *address, size_t size, u8 value) 136 { 137 void *shadow_start, *shadow_end; 138 139 /* 140 * Perform shadow offset calculation based on untagged address, as 141 * some of the callers (e.g. kasan_poison_object_data) pass tagged 142 * addresses to this function. 143 */ 144 address = reset_tag(address); 145 146 shadow_start = kasan_mem_to_shadow(address); 147 shadow_end = kasan_mem_to_shadow(address + size); 148 149 __memset(shadow_start, value, shadow_end - shadow_start); 150 } 151 152 void kasan_unpoison_shadow(const void *address, size_t size) 153 { 154 u8 tag = get_tag(address); 155 156 /* 157 * Perform shadow offset calculation based on untagged address, as 158 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged 159 * addresses to this function. 160 */ 161 address = reset_tag(address); 162 163 kasan_poison_shadow(address, size, tag); 164 165 if (size & KASAN_SHADOW_MASK) { 166 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); 167 168 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 169 *shadow = tag; 170 else 171 *shadow = size & KASAN_SHADOW_MASK; 172 } 173 } 174 175 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 176 { 177 void *base = task_stack_page(task); 178 size_t size = sp - base; 179 180 kasan_unpoison_shadow(base, size); 181 } 182 183 /* Unpoison the entire stack for a task. */ 184 void kasan_unpoison_task_stack(struct task_struct *task) 185 { 186 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 187 } 188 189 /* Unpoison the stack for the current task beyond a watermark sp value. */ 190 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 191 { 192 /* 193 * Calculate the task stack base address. Avoid using 'current' 194 * because this function is called by early resume code which hasn't 195 * yet set up the percpu register (%gs). 196 */ 197 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 198 199 kasan_unpoison_shadow(base, watermark - base); 200 } 201 202 /* 203 * Clear all poison for the region between the current SP and a provided 204 * watermark value, as is sometimes required prior to hand-crafted asm function 205 * returns in the middle of functions. 206 */ 207 void kasan_unpoison_stack_above_sp_to(const void *watermark) 208 { 209 const void *sp = __builtin_frame_address(0); 210 size_t size = watermark - sp; 211 212 if (WARN_ON(sp > watermark)) 213 return; 214 kasan_unpoison_shadow(sp, size); 215 } 216 217 void kasan_alloc_pages(struct page *page, unsigned int order) 218 { 219 u8 tag; 220 unsigned long i; 221 222 if (unlikely(PageHighMem(page))) 223 return; 224 225 tag = random_tag(); 226 for (i = 0; i < (1 << order); i++) 227 page_kasan_tag_set(page + i, tag); 228 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); 229 } 230 231 void kasan_free_pages(struct page *page, unsigned int order) 232 { 233 if (likely(!PageHighMem(page))) 234 kasan_poison_shadow(page_address(page), 235 PAGE_SIZE << order, 236 KASAN_FREE_PAGE); 237 } 238 239 /* 240 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 241 * For larger allocations larger redzones are used. 242 */ 243 static inline unsigned int optimal_redzone(unsigned int object_size) 244 { 245 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 246 return 0; 247 248 return 249 object_size <= 64 - 16 ? 16 : 250 object_size <= 128 - 32 ? 32 : 251 object_size <= 512 - 64 ? 64 : 252 object_size <= 4096 - 128 ? 128 : 253 object_size <= (1 << 14) - 256 ? 256 : 254 object_size <= (1 << 15) - 512 ? 512 : 255 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 256 } 257 258 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 259 slab_flags_t *flags) 260 { 261 unsigned int orig_size = *size; 262 unsigned int redzone_size; 263 int redzone_adjust; 264 265 /* Add alloc meta. */ 266 cache->kasan_info.alloc_meta_offset = *size; 267 *size += sizeof(struct kasan_alloc_meta); 268 269 /* Add free meta. */ 270 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 271 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 272 cache->object_size < sizeof(struct kasan_free_meta))) { 273 cache->kasan_info.free_meta_offset = *size; 274 *size += sizeof(struct kasan_free_meta); 275 } 276 277 redzone_size = optimal_redzone(cache->object_size); 278 redzone_adjust = redzone_size - (*size - cache->object_size); 279 if (redzone_adjust > 0) 280 *size += redzone_adjust; 281 282 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 283 max(*size, cache->object_size + redzone_size)); 284 285 /* 286 * If the metadata doesn't fit, don't enable KASAN at all. 287 */ 288 if (*size <= cache->kasan_info.alloc_meta_offset || 289 *size <= cache->kasan_info.free_meta_offset) { 290 cache->kasan_info.alloc_meta_offset = 0; 291 cache->kasan_info.free_meta_offset = 0; 292 *size = orig_size; 293 return; 294 } 295 296 *flags |= SLAB_KASAN; 297 } 298 299 size_t kasan_metadata_size(struct kmem_cache *cache) 300 { 301 return (cache->kasan_info.alloc_meta_offset ? 302 sizeof(struct kasan_alloc_meta) : 0) + 303 (cache->kasan_info.free_meta_offset ? 304 sizeof(struct kasan_free_meta) : 0); 305 } 306 307 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 308 const void *object) 309 { 310 return (void *)object + cache->kasan_info.alloc_meta_offset; 311 } 312 313 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 314 const void *object) 315 { 316 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 317 return (void *)object + cache->kasan_info.free_meta_offset; 318 } 319 320 321 static void kasan_set_free_info(struct kmem_cache *cache, 322 void *object, u8 tag) 323 { 324 struct kasan_alloc_meta *alloc_meta; 325 u8 idx = 0; 326 327 alloc_meta = get_alloc_info(cache, object); 328 329 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY 330 idx = alloc_meta->free_track_idx; 331 alloc_meta->free_pointer_tag[idx] = tag; 332 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; 333 #endif 334 335 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); 336 } 337 338 void kasan_poison_slab(struct page *page) 339 { 340 unsigned long i; 341 342 for (i = 0; i < compound_nr(page); i++) 343 page_kasan_tag_reset(page + i); 344 kasan_poison_shadow(page_address(page), page_size(page), 345 KASAN_KMALLOC_REDZONE); 346 } 347 348 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 349 { 350 kasan_unpoison_shadow(object, cache->object_size); 351 } 352 353 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 354 { 355 kasan_poison_shadow(object, 356 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), 357 KASAN_KMALLOC_REDZONE); 358 } 359 360 /* 361 * This function assigns a tag to an object considering the following: 362 * 1. A cache might have a constructor, which might save a pointer to a slab 363 * object somewhere (e.g. in the object itself). We preassign a tag for 364 * each object in caches with constructors during slab creation and reuse 365 * the same tag each time a particular object is allocated. 366 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 367 * accessed after being freed. We preassign tags for objects in these 368 * caches as well. 369 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 370 * is stored as an array of indexes instead of a linked list. Assign tags 371 * based on objects indexes, so that objects that are next to each other 372 * get different tags. 373 */ 374 static u8 assign_tag(struct kmem_cache *cache, const void *object, 375 bool init, bool keep_tag) 376 { 377 /* 378 * 1. When an object is kmalloc()'ed, two hooks are called: 379 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 380 * tag only in the first one. 381 * 2. We reuse the same tag for krealloc'ed objects. 382 */ 383 if (keep_tag) 384 return get_tag(object); 385 386 /* 387 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 388 * set, assign a tag when the object is being allocated (init == false). 389 */ 390 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 391 return init ? KASAN_TAG_KERNEL : random_tag(); 392 393 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 394 #ifdef CONFIG_SLAB 395 /* For SLAB assign tags based on the object index in the freelist. */ 396 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 397 #else 398 /* 399 * For SLUB assign a random tag during slab creation, otherwise reuse 400 * the already assigned tag. 401 */ 402 return init ? random_tag() : get_tag(object); 403 #endif 404 } 405 406 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 407 const void *object) 408 { 409 struct kasan_alloc_meta *alloc_info; 410 411 if (!(cache->flags & SLAB_KASAN)) 412 return (void *)object; 413 414 alloc_info = get_alloc_info(cache, object); 415 __memset(alloc_info, 0, sizeof(*alloc_info)); 416 417 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 418 object = set_tag(object, 419 assign_tag(cache, object, true, false)); 420 421 return (void *)object; 422 } 423 424 static inline bool shadow_invalid(u8 tag, s8 shadow_byte) 425 { 426 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 427 return shadow_byte < 0 || 428 shadow_byte >= KASAN_SHADOW_SCALE_SIZE; 429 430 /* else CONFIG_KASAN_SW_TAGS: */ 431 if ((u8)shadow_byte == KASAN_TAG_INVALID) 432 return true; 433 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) 434 return true; 435 436 return false; 437 } 438 439 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 440 unsigned long ip, bool quarantine) 441 { 442 s8 shadow_byte; 443 u8 tag; 444 void *tagged_object; 445 unsigned long rounded_up_size; 446 447 tag = get_tag(object); 448 tagged_object = object; 449 object = reset_tag(object); 450 451 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 452 object)) { 453 kasan_report_invalid_free(tagged_object, ip); 454 return true; 455 } 456 457 /* RCU slabs could be legally used after free within the RCU period */ 458 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 459 return false; 460 461 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); 462 if (shadow_invalid(tag, shadow_byte)) { 463 kasan_report_invalid_free(tagged_object, ip); 464 return true; 465 } 466 467 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); 468 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); 469 470 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 471 unlikely(!(cache->flags & SLAB_KASAN))) 472 return false; 473 474 kasan_set_free_info(cache, object, tag); 475 476 quarantine_put(get_free_info(cache, object), cache); 477 478 return IS_ENABLED(CONFIG_KASAN_GENERIC); 479 } 480 481 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 482 { 483 return __kasan_slab_free(cache, object, ip, true); 484 } 485 486 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 487 size_t size, gfp_t flags, bool keep_tag) 488 { 489 unsigned long redzone_start; 490 unsigned long redzone_end; 491 u8 tag = 0xff; 492 493 if (gfpflags_allow_blocking(flags)) 494 quarantine_reduce(); 495 496 if (unlikely(object == NULL)) 497 return NULL; 498 499 redzone_start = round_up((unsigned long)(object + size), 500 KASAN_SHADOW_SCALE_SIZE); 501 redzone_end = round_up((unsigned long)object + cache->object_size, 502 KASAN_SHADOW_SCALE_SIZE); 503 504 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 505 tag = assign_tag(cache, object, false, keep_tag); 506 507 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 508 kasan_unpoison_shadow(set_tag(object, tag), size); 509 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 510 KASAN_KMALLOC_REDZONE); 511 512 if (cache->flags & SLAB_KASAN) 513 set_track(&get_alloc_info(cache, object)->alloc_track, flags); 514 515 return set_tag(object, tag); 516 } 517 518 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 519 gfp_t flags) 520 { 521 return __kasan_kmalloc(cache, object, cache->object_size, flags, false); 522 } 523 524 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 525 size_t size, gfp_t flags) 526 { 527 return __kasan_kmalloc(cache, object, size, flags, true); 528 } 529 EXPORT_SYMBOL(kasan_kmalloc); 530 531 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 532 gfp_t flags) 533 { 534 struct page *page; 535 unsigned long redzone_start; 536 unsigned long redzone_end; 537 538 if (gfpflags_allow_blocking(flags)) 539 quarantine_reduce(); 540 541 if (unlikely(ptr == NULL)) 542 return NULL; 543 544 page = virt_to_page(ptr); 545 redzone_start = round_up((unsigned long)(ptr + size), 546 KASAN_SHADOW_SCALE_SIZE); 547 redzone_end = (unsigned long)ptr + page_size(page); 548 549 kasan_unpoison_shadow(ptr, size); 550 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, 551 KASAN_PAGE_REDZONE); 552 553 return (void *)ptr; 554 } 555 556 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 557 { 558 struct page *page; 559 560 if (unlikely(object == ZERO_SIZE_PTR)) 561 return (void *)object; 562 563 page = virt_to_head_page(object); 564 565 if (unlikely(!PageSlab(page))) 566 return kasan_kmalloc_large(object, size, flags); 567 else 568 return __kasan_kmalloc(page->slab_cache, object, size, 569 flags, true); 570 } 571 572 void kasan_poison_kfree(void *ptr, unsigned long ip) 573 { 574 struct page *page; 575 576 page = virt_to_head_page(ptr); 577 578 if (unlikely(!PageSlab(page))) { 579 if (ptr != page_address(page)) { 580 kasan_report_invalid_free(ptr, ip); 581 return; 582 } 583 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); 584 } else { 585 __kasan_slab_free(page->slab_cache, ptr, ip, false); 586 } 587 } 588 589 void kasan_kfree_large(void *ptr, unsigned long ip) 590 { 591 if (ptr != page_address(virt_to_head_page(ptr))) 592 kasan_report_invalid_free(ptr, ip); 593 /* The object will be poisoned by page_alloc. */ 594 } 595 596 #ifndef CONFIG_KASAN_VMALLOC 597 int kasan_module_alloc(void *addr, size_t size) 598 { 599 void *ret; 600 size_t scaled_size; 601 size_t shadow_size; 602 unsigned long shadow_start; 603 604 shadow_start = (unsigned long)kasan_mem_to_shadow(addr); 605 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; 606 shadow_size = round_up(scaled_size, PAGE_SIZE); 607 608 if (WARN_ON(!PAGE_ALIGNED(shadow_start))) 609 return -EINVAL; 610 611 ret = __vmalloc_node_range(shadow_size, 1, shadow_start, 612 shadow_start + shadow_size, 613 GFP_KERNEL, 614 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, 615 __builtin_return_address(0)); 616 617 if (ret) { 618 __memset(ret, KASAN_SHADOW_INIT, shadow_size); 619 find_vm_area(addr)->flags |= VM_KASAN; 620 kmemleak_ignore(ret); 621 return 0; 622 } 623 624 return -ENOMEM; 625 } 626 627 void kasan_free_shadow(const struct vm_struct *vm) 628 { 629 if (vm->flags & VM_KASAN) 630 vfree(kasan_mem_to_shadow(vm->addr)); 631 } 632 #endif 633 634 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); 635 636 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip) 637 { 638 unsigned long flags = user_access_save(); 639 __kasan_report(addr, size, is_write, ip); 640 user_access_restore(flags); 641 } 642 643 #ifdef CONFIG_MEMORY_HOTPLUG 644 static bool shadow_mapped(unsigned long addr) 645 { 646 pgd_t *pgd = pgd_offset_k(addr); 647 p4d_t *p4d; 648 pud_t *pud; 649 pmd_t *pmd; 650 pte_t *pte; 651 652 if (pgd_none(*pgd)) 653 return false; 654 p4d = p4d_offset(pgd, addr); 655 if (p4d_none(*p4d)) 656 return false; 657 pud = pud_offset(p4d, addr); 658 if (pud_none(*pud)) 659 return false; 660 661 /* 662 * We can't use pud_large() or pud_huge(), the first one is 663 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse 664 * pud_bad(), if pud is bad then it's bad because it's huge. 665 */ 666 if (pud_bad(*pud)) 667 return true; 668 pmd = pmd_offset(pud, addr); 669 if (pmd_none(*pmd)) 670 return false; 671 672 if (pmd_bad(*pmd)) 673 return true; 674 pte = pte_offset_kernel(pmd, addr); 675 return !pte_none(*pte); 676 } 677 678 static int __meminit kasan_mem_notifier(struct notifier_block *nb, 679 unsigned long action, void *data) 680 { 681 struct memory_notify *mem_data = data; 682 unsigned long nr_shadow_pages, start_kaddr, shadow_start; 683 unsigned long shadow_end, shadow_size; 684 685 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; 686 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); 687 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); 688 shadow_size = nr_shadow_pages << PAGE_SHIFT; 689 shadow_end = shadow_start + shadow_size; 690 691 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || 692 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) 693 return NOTIFY_BAD; 694 695 switch (action) { 696 case MEM_GOING_ONLINE: { 697 void *ret; 698 699 /* 700 * If shadow is mapped already than it must have been mapped 701 * during the boot. This could happen if we onlining previously 702 * offlined memory. 703 */ 704 if (shadow_mapped(shadow_start)) 705 return NOTIFY_OK; 706 707 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, 708 shadow_end, GFP_KERNEL, 709 PAGE_KERNEL, VM_NO_GUARD, 710 pfn_to_nid(mem_data->start_pfn), 711 __builtin_return_address(0)); 712 if (!ret) 713 return NOTIFY_BAD; 714 715 kmemleak_ignore(ret); 716 return NOTIFY_OK; 717 } 718 case MEM_CANCEL_ONLINE: 719 case MEM_OFFLINE: { 720 struct vm_struct *vm; 721 722 /* 723 * shadow_start was either mapped during boot by kasan_init() 724 * or during memory online by __vmalloc_node_range(). 725 * In the latter case we can use vfree() to free shadow. 726 * Non-NULL result of the find_vm_area() will tell us if 727 * that was the second case. 728 * 729 * Currently it's not possible to free shadow mapped 730 * during boot by kasan_init(). It's because the code 731 * to do that hasn't been written yet. So we'll just 732 * leak the memory. 733 */ 734 vm = find_vm_area((void *)shadow_start); 735 if (vm) 736 vfree((void *)shadow_start); 737 } 738 } 739 740 return NOTIFY_OK; 741 } 742 743 static int __init kasan_memhotplug_init(void) 744 { 745 hotplug_memory_notifier(kasan_mem_notifier, 0); 746 747 return 0; 748 } 749 750 core_initcall(kasan_memhotplug_init); 751 #endif 752 753 #ifdef CONFIG_KASAN_VMALLOC 754 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, 755 void *unused) 756 { 757 unsigned long page; 758 pte_t pte; 759 760 if (likely(!pte_none(*ptep))) 761 return 0; 762 763 page = __get_free_page(GFP_KERNEL); 764 if (!page) 765 return -ENOMEM; 766 767 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); 768 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); 769 770 spin_lock(&init_mm.page_table_lock); 771 if (likely(pte_none(*ptep))) { 772 set_pte_at(&init_mm, addr, ptep, pte); 773 page = 0; 774 } 775 spin_unlock(&init_mm.page_table_lock); 776 if (page) 777 free_page(page); 778 return 0; 779 } 780 781 int kasan_populate_vmalloc(unsigned long addr, unsigned long size) 782 { 783 unsigned long shadow_start, shadow_end; 784 int ret; 785 786 if (!is_vmalloc_or_module_addr((void *)addr)) 787 return 0; 788 789 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); 790 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); 791 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); 792 shadow_end = ALIGN(shadow_end, PAGE_SIZE); 793 794 ret = apply_to_page_range(&init_mm, shadow_start, 795 shadow_end - shadow_start, 796 kasan_populate_vmalloc_pte, NULL); 797 if (ret) 798 return ret; 799 800 flush_cache_vmap(shadow_start, shadow_end); 801 802 /* 803 * We need to be careful about inter-cpu effects here. Consider: 804 * 805 * CPU#0 CPU#1 806 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; 807 * p[99] = 1; 808 * 809 * With compiler instrumentation, that ends up looking like this: 810 * 811 * CPU#0 CPU#1 812 * // vmalloc() allocates memory 813 * // let a = area->addr 814 * // we reach kasan_populate_vmalloc 815 * // and call kasan_unpoison_shadow: 816 * STORE shadow(a), unpoison_val 817 * ... 818 * STORE shadow(a+99), unpoison_val x = LOAD p 819 * // rest of vmalloc process <data dependency> 820 * STORE p, a LOAD shadow(x+99) 821 * 822 * If there is no barrier between the end of unpoisioning the shadow 823 * and the store of the result to p, the stores could be committed 824 * in a different order by CPU#0, and CPU#1 could erroneously observe 825 * poison in the shadow. 826 * 827 * We need some sort of barrier between the stores. 828 * 829 * In the vmalloc() case, this is provided by a smp_wmb() in 830 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in 831 * get_vm_area() and friends, the caller gets shadow allocated but 832 * doesn't have any pages mapped into the virtual address space that 833 * has been reserved. Mapping those pages in will involve taking and 834 * releasing a page-table lock, which will provide the barrier. 835 */ 836 837 return 0; 838 } 839 840 /* 841 * Poison the shadow for a vmalloc region. Called as part of the 842 * freeing process at the time the region is freed. 843 */ 844 void kasan_poison_vmalloc(const void *start, unsigned long size) 845 { 846 if (!is_vmalloc_or_module_addr(start)) 847 return; 848 849 size = round_up(size, KASAN_SHADOW_SCALE_SIZE); 850 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); 851 } 852 853 void kasan_unpoison_vmalloc(const void *start, unsigned long size) 854 { 855 if (!is_vmalloc_or_module_addr(start)) 856 return; 857 858 kasan_unpoison_shadow(start, size); 859 } 860 861 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, 862 void *unused) 863 { 864 unsigned long page; 865 866 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); 867 868 spin_lock(&init_mm.page_table_lock); 869 870 if (likely(!pte_none(*ptep))) { 871 pte_clear(&init_mm, addr, ptep); 872 free_page(page); 873 } 874 spin_unlock(&init_mm.page_table_lock); 875 876 return 0; 877 } 878 879 /* 880 * Release the backing for the vmalloc region [start, end), which 881 * lies within the free region [free_region_start, free_region_end). 882 * 883 * This can be run lazily, long after the region was freed. It runs 884 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap 885 * infrastructure. 886 * 887 * How does this work? 888 * ------------------- 889 * 890 * We have a region that is page aligned, labelled as A. 891 * That might not map onto the shadow in a way that is page-aligned: 892 * 893 * start end 894 * v v 895 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc 896 * -------- -------- -------- -------- -------- 897 * | | | | | 898 * | | | /-------/ | 899 * \-------\|/------/ |/---------------/ 900 * ||| || 901 * |??AAAAAA|AAAAAAAA|AA??????| < shadow 902 * (1) (2) (3) 903 * 904 * First we align the start upwards and the end downwards, so that the 905 * shadow of the region aligns with shadow page boundaries. In the 906 * example, this gives us the shadow page (2). This is the shadow entirely 907 * covered by this allocation. 908 * 909 * Then we have the tricky bits. We want to know if we can free the 910 * partially covered shadow pages - (1) and (3) in the example. For this, 911 * we are given the start and end of the free region that contains this 912 * allocation. Extending our previous example, we could have: 913 * 914 * free_region_start free_region_end 915 * | start end | 916 * v v v v 917 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc 918 * -------- -------- -------- -------- -------- 919 * | | | | | 920 * | | | /-------/ | 921 * \-------\|/------/ |/---------------/ 922 * ||| || 923 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow 924 * (1) (2) (3) 925 * 926 * Once again, we align the start of the free region up, and the end of 927 * the free region down so that the shadow is page aligned. So we can free 928 * page (1) - we know no allocation currently uses anything in that page, 929 * because all of it is in the vmalloc free region. But we cannot free 930 * page (3), because we can't be sure that the rest of it is unused. 931 * 932 * We only consider pages that contain part of the original region for 933 * freeing: we don't try to free other pages from the free region or we'd 934 * end up trying to free huge chunks of virtual address space. 935 * 936 * Concurrency 937 * ----------- 938 * 939 * How do we know that we're not freeing a page that is simultaneously 940 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? 941 * 942 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running 943 * at the same time. While we run under free_vmap_area_lock, the population 944 * code does not. 945 * 946 * free_vmap_area_lock instead operates to ensure that the larger range 947 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and 948 * the per-cpu region-finding algorithm both run under free_vmap_area_lock, 949 * no space identified as free will become used while we are running. This 950 * means that so long as we are careful with alignment and only free shadow 951 * pages entirely covered by the free region, we will not run in to any 952 * trouble - any simultaneous allocations will be for disjoint regions. 953 */ 954 void kasan_release_vmalloc(unsigned long start, unsigned long end, 955 unsigned long free_region_start, 956 unsigned long free_region_end) 957 { 958 void *shadow_start, *shadow_end; 959 unsigned long region_start, region_end; 960 unsigned long size; 961 962 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 963 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 964 965 free_region_start = ALIGN(free_region_start, 966 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 967 968 if (start != region_start && 969 free_region_start < region_start) 970 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 971 972 free_region_end = ALIGN_DOWN(free_region_end, 973 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); 974 975 if (end != region_end && 976 free_region_end > region_end) 977 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; 978 979 shadow_start = kasan_mem_to_shadow((void *)region_start); 980 shadow_end = kasan_mem_to_shadow((void *)region_end); 981 982 if (shadow_end > shadow_start) { 983 size = shadow_end - shadow_start; 984 apply_to_existing_page_range(&init_mm, 985 (unsigned long)shadow_start, 986 size, kasan_depopulate_vmalloc_pte, 987 NULL); 988 flush_tlb_kernel_range((unsigned long)shadow_start, 989 (unsigned long)shadow_end); 990 } 991 } 992 #endif 993